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We further develop a theory of self-resonance after inflation in a large class of models involving
multiple scalar fields. We concentrate on inflaton potentials that carry an internal symmetry, but also
analyze weak breaking of this symmetry. This is the second part of a two part series of papers. Here
in Part 2 we develop an understanding of the resonance structure from the underlying many particle
quantum mechanics. We begin by a small amplitude analysis, which obtains the central resonant
wave numbers, and relate it to perturbative processes. We show that the dominant resonance
structure is determined by (i) the nonrelativistic scattering of many quantum particles and (ii) the
application of Bose-Einstein statistics to the adiabatic and isocurvature modes, as introduced in
Part 1 [1]. Other resonance structure is understood in terms of annihilations and decays. We setup
Bunch-Davies vacuum initial conditions during inflation and track the evolution of modes including
Hubble expansion. In the case of a complex inflaton carrying an internal U(1) symmetry, we show
that when the isocurvature instability is active, the inflaton fragments into separate regions of φ-
particles and anti-φ-particles. We then introduce a weak breaking of the U(1) symmetry; this can
lead to baryogenesis, as shown by some of us recently [2, 3]. Then using our results, we compute
corrections to the particle-antiparticle asymmetry from this preheating era.

I. INTRODUCTION

Inflationary cosmology provides an account of several
otherwise puzzling features of the universe, namely the
large scale homogeneity, isotropy, and flatness [4–6]. Re-
cent observations are in good agreement with the basic
predictions of inflation, including a nearly scale-invariant
spectrum of primordial fluctuations, Gaussianity, etc.
Recent tantalizing evidence of primordial B-modes [7]
would provide information about the inflationary energy
scale. Altogether, although the full details of inflation
are not known, significant progress is being made, both
observationally [8–10] and theoretically [11–19].

However, the post-inflationary era is much more un-
certain. This era is essential for understanding the
transition from the inflaton into other fields, including
the Standard Model degrees of freedom. In this post-
inflationary era, tremendous power can be generated
on small scales from particle interactions. Indeed var-
ious forms of resonance can take place, including self-
resonance, as quantum perturbations of the inflaton are
“pumped” by the homogeneous background.

Many interesting works, often investigating the cou-
pling to other fields, has appeared in the literature [20–
41]. This includes Refs. [20, 21], which emphasized a
coupling of the inflaton φ to a daughter field χ, with
interactions such as ∼ g2φ2χ2 or ∼ g φχ2. Under cer-
tain circumstances, this can cause a dramatic growth in
χ, that goes beyond standard perturbation theory. Other
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interactions include coupling to gauge fields [30, 32], cou-
pling to fermionic fields [27, 28], and the metric itself
[25]. Self-resonance, where the inflaton pumps its own
fluctuations, can occur for potentials with nonlinearities,
including the quartic term ∼ λφ4, as discussed in [22].
In some parameter regimes (namely negative λ), this can
produce an abundance of coherent structures, such as
oscillons; see [37–39]. In this work, we focus on the im-
portant issue of self-resonance of the inflaton, and assume
couplings to other fields are small. We will understand
the structure of the self-resonance from the point of view
of many particle quantum mechanics and apply the re-
sults to a model of baryogenesis; which appears to go
beyond the existing literature.

During this phase, a detailed understanding of the re-
lationship between the classical field approximation and
the quantum behavior of many particles is important.
But perhaps the most important feature of the early uni-
verse that remains uncertain is the generation of all the
matter in the universe. This is thought to arise from
the decay of the inflaton. If subsequent interactions are
sufficiently symmetric between particles and antiparti-
cles, then no net baryon number will be left over. Hence
it is essential to formulate models of the generation of
asymmetry between particles and antiparticles. In this
paper we address these quantum and particle-antiparticle
asymmetry issues.

This is the second in a two part series of papers. In
the first paper [1] we introduced a large class of interest-
ing models. Namely, models with an arbitrary number
of scalar fields, organized by an internal O(N ) symme-
try. Since couplings to other fields can be small, (as is
often assumed for the flatness of the inflationary poten-
tial to be technically natural), it can sometimes be the
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case that self-resonance after inflation is most important.
With multiple fields, we showed in Part 1 [1] that the
field decomposes into adiabatic and isocurvature modes.
We showed that the spectrum is gapless, as required by
the Goldstone theorem, and derived the growth rates
(“Floquet exponents”) from the appropriate time aver-
aged pressure and densities. We saw that the resonance
structure could be particularly efficient at relatively long
wavelengths, as it is dominated by the first instability
band. We found that for positive self couplings, the adi-
abatic mode is stable, while the isocurvature modes are
unstable. While for negative self couplings, the adiabatic
mode is unstable, while the isocurvature modes are sta-
ble. This was derived from the background pressure asso-
ciated with the adiabatic mode, and an auxiliary pressure
associated with the isocurvature modes.

In this second paper, we introduce quantum mechan-
ics in two important respects to extend the classical field
theory analysis of Part 1 [1]. Firstly, we understand the
stability structure from the point of view of many parti-
cle quantum mechanics. The behavior of adiabatic and
isocurvature modes at long wavelengths can be under-
stood in terms of nonrelativistic quantum mechanics. We
describe the (sometimes subdominant) higher instability
bands perturbatively, using Feynman diagrams involving
annihilation and decays of the parent inflaton into rel-
ativistic daughter particles. As an important stepping
stone to this analysis, we first perform a (classical) small
amplitude analysis, which connects to the Feynman di-
agrams directly. Secondly, we quantize the inflationary
fields. We put the inflaton in its Bunch-Davies vacuum
initial conditions. We then track the modes under Hub-
ble expansion. We show how the resonant modes can
grow approximately exponentially in the slow redshifting
regime. We compute the final power spectra of adiabatic
and isocurvature modes.

These spectra set the probability distributions for the
fields. We draw from these probability distributions. For
the case of two fields, with a U(1) symmetry, we find that
when the isocurvature instability is active, the inflaton
fragments into separate regions of particles and antipar-
ticles. In this way, the symmetry between particles and
antiparticles is spontaneously broken.

In the case of a complex inflaton, we go further and
introduce an explicit breaking of the U(1) symmetry. In
some models, the breaking can lead to an over abundance
of inflaton particles over antiparticles (or vice versa).
This may further lead to the cosmological baryon asym-
metry if the inflaton can decay into quarks appropriately;
as showed by some of us recently in Refs. [2, 3]. Here we
include the leading corrections from self-resonance. We
show how to use the symmetric theory to obtain these
leading corrections. The asymmetry is found to be pro-
portional to an integral over the difference in power spec-
tra between the adiabatic and isocurvature modes. So
while each of these is individually UV divergent, the dif-
ference leads to a finite contribution.

The outline of this paper is as follows: In Section II we

present the class of models under investigation and recap
numerical results for dimension 4 potentials. In Section
III we derive analytical results for small inflaton ampli-
tudes, for both the first and second instability bands. In
Section IV we discuss the connection of our results to the
quantum mechanics of many particles. In Section V we
include Hubble expansion in the analysis. In Section VI
we quantize the fields and sample the ground state wave-
functionals to present the fields in position space. In
Section VII we apply our results to inflationary baryo-
genesis models. Finally, in Section VIII we discuss our
findings and conclude.

II. SYMMETRIC AND ASYMMETRIC
THEORIES

Many high energy particle physics models involving
one or more scalar fields coupled to gravity. Since scalar
fields can, under appropriate conditions, lead to an effec-
tive equation of state w ≈ −1, then they can lead to a
period of inflation. As in Part 1 [1], we consider N scalar
fields and organize them into a vector

~φ = {φ1, . . . , φN } (1)

Later we will specialize to the case of two scalar fields. In
that case it is particularly convenient to organize them
into a complex scalar as follows

φ =
φ1 + iφ2√

2
(2)

We now discuss the structure of the dynamics. Since
we will emphasize quantum effects in this paper, it
is appropriate to recall that the inflationary action
is only an effective field theory, since gravitation is
non-renormalizable in 4 dimensions. However, in a
weakly coupled model, corrections from the leading two-
derivative action are typically small (though exceptions
are possible). So here we assume, for simplicity, that
all higher order derivative corrections to the Einstein-
Hilbert action are small. Furthermore, we specialize to
canonical kinetic energy in the Einstein frame. Since
inflaton couplings are usually small in order to achieve
small fluctuations, this is technically natural. So we take
the action for N scalar fields to be (signature − + ++,
units ~ = c = 1)

S =

∫
d4x
√
−g
[
M2
Pl

2
R− 1

2
δij ∂µφ

i∂µφj − V (~φ)

]
(3)

where MPl ≡ 1
√

8πGN is the reduced Planck mass. In
the Appendix of Part 1 [1] we developed some results for
more general potentials, including higher derivative cor-
rections and non-trivial metrics Gij on field space. But
these generalizations are not important for our analysis
here.

Ignoring higher order corrections, the residual freedom

is in the choice of the potential V (~φ). In Part 1 [1] we
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exclusively studied symmetric potentials that carry the
internal rotational symmetry

φi → Rij φ
j (4)

where R is a rotation matrix acting on field space. For-
mally this implied an O(N ) symmetry and the potential

may be written as V (~φ) = V (|~φ|). Here we often focus
on these symmetric potentials, but we also allow for a
breaking of the symmetry. So we decompose the poten-
tial as

V (~φ) = Vs(|~φ|) + Vb(~φ) (5)

The term Vs is a symmetric potential that carries the in-
ternal rotational symmetry, while Vb does not. For most
of this paper we ignore the breaking term and utilize the
symmetry to simplify the analysis. We then make use of
the breaking term in Section VII to provide an asymme-
try between particles and antiparticles. This breaking of
a symmetry means that particle number is not exactly
conserved, potentially leading to the matter-antimatter
asymmetry.

A. Classical Evolution (Preliminary)

We begin by discussing the evolution of the classical
background. The metric is established by inflation to be
the standard flat FRW metric

ds2 = −dt2 + a(t)2dx2 (6)

where a(t) is the scale factor.
The evolution of the classical field is, in general, com-

plicated. When the symmetry breaking term Vb is
present, the field tends to get kicked around in field space.
If the breaking is small, then it is roughy a kind of elliptic
behavior. This will play a role later in our Section VII
on baryogenesis.

On the other hand, if the breaking term is negligible,
then the motion simplifies considerably. Inflation tends
to erase angular momentum, even in field space. This
leads to the multi-field inflaton moving radially in fields
space. As in Part 1 [1], the purely radial motion for the
background shall be denoted by the field φ0(t). From
varying the action, we obtain the standard equation of
motion for a homogeneous scalar field

φ̈0 + 3Hφ̇0 + V ′(φ0) = 0 (7)

where H = ȧ/a is the Hubble parameter. During slow-
roll inflation, the second and third terms here dominate.
After inflation, as is the focus of this work, the first and
third terms dominate and the second “friction” term is
sub-dominant.

In Section V we will properly track the behavior for φ0,
where we self consistently solve for the Hubble parameter
H from the Friedmann equation

H2 =
1

3M2
Pl

(
1

2
φ̇2

0 + Vs(φ0)

)
(8)

This leads to a redshifting of the background (classical)
fields that will influence the self-resonance of the pertur-
bations in an important fashion.

B. Quantal Evolution (Preliminary)

Due to quantum mechanics the field cannot have a well
defined value, so there are necessarily quantum fluctua-
tions. Focussing then on the symmetric case, we can
decompose these fluctuations into those that are parallel
to the radial motion of the background δφ‖, and those
that are orthogonal to the background δφ⊥. Later in
Section IV we will be precise about the quantization of
these fluctuations. But for now it suffices to treat them as
any form of fluctuation, either classical or quantum, even
though its origin is necessarily quantum. We expand the
field around the background as

~φ(x, t) = ~φ0(t) + δ~φ(x, t) (9)

where

δ~φ(x, t) = {δφ⊥1(x, t), . . . , δφ⊥N−1(x, t), δφ‖(x, t)}(10)

and we have put the background motion in theN th direc-
tion, without loss of generality, in the symmetric theory.
Later in Section VII we will allow for a general direction
for the asymmetry theory.

Expanding the perturbations (classical or quantal) to
first order we have

¨δφ‖ + 3H ˙δφ‖ +

(
k2

a2
+ V ′′(φ0)

)
δφ‖ = G (11)

¨δφ⊥i + 3H ˙δφ⊥i +

(
k2

a2
+
V ′(φ0)

φ0

)
δφ⊥i = 0 (12)

where we have Fourier transformed to k-space. For the
orthogonal components, we have included an “i” index,
where i runs over i = 1, . . . ,N − 1; each equation carries
the same structure due to the symmetry.

We note that at linear order one can include linearized
corrections to the metric, such as the Newtonian poten-
tial. It is possible to make a gauge choice in which the
fluctuating dynamical degrees of freedom are solely de-
scribed by the scalar field fluctuations. In the gauge in
which there are spatially flat hypersurfaces, the function
G is

G =
1

a3M2
Pl

d

dt

(
a3φ̇2

0

H

)
δφ‖ (13)

One can show that on sub-Hubble scales, such corrections
are small, in particular they are suppressed relative to
the terms included in eqs. (11, 12) by ∼ a2H2/k2. On
the other hand, for order Hubble or super-Hubble scales,
such corrections can be important. For simplicity, we
ignore such corrections in this work, and we suspect this
will not change our central conclusions. In fact we will
see that our primary effects occur on lengths scales that
are not parametrically larger than the Hubble length. So
this simplification is reasonable.
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FIG. 1. Contour plot of the real part of Floquet exponent µk for dimension 4 potentials as a function of wavenumber k and
background amplitude φa with m2 > 0. Left panel is λ > 0 and right panel is λ < 0. Upper panel is δφ‖ and lower panel is

δφ⊥. We have plotted µk in units of rH where r ≡
√
|λ|MPl/m, k in units of m, and φa in units of m/

√
|λ|. (This is taken

from Part 1 [1].)

C. Floquet Results for Dimension 4 Potentials

As we describe explicitly in Section VI A where we
quantize the perturbations, the mode functions satisfy
these classical equations of motion. In this case, it is use-
ful to develop a numerical recipe to solve these equations.
Here we provide a brief recap of the central numerical re-
sults found in Part 1 [1].

Importantly, we need a form for the potential Vs. We
consider the regime well after inflation, where the po-
tential should be well approximated by its leading order

operators. Since the potential is assumed to carry an
internal rotational symmetry, we can expand it as

Vs(~φ) = V0 +
1

2
m2|~φ|2 +

λ

4
|~φ|4 + . . . (14)

For sufficiently small field amplitudes, these leading di-
mension 4 terms will dominate the dynamics. Such a
regime will normally arise after a sufficient amount of
redshifting has occurred. A counter example would be if
some of the above coefficients happen to vanish; we will
consider this possibility in Section III. For large ampli-
tudes, higher order corrections to the potential may be
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important (we mention a toy example example in Section
VII C).

In Part 1 [1] we described the recipe to obtain the
Floquet exponents µk, which govern any possible expo-
nential growth in the modes. This is rigorously defined
when the background is oscillating periodically. This is a
good approximation in the limit in which the oscillation
time scale is short compared to the Hubble time. We
will return to these details later in Section V. For now
we truncate the potential to purely dimension ≤ 4 terms
and numerically solve for the corresponding Floquet ex-
ponent using the method of Part 1 [1].

In Fig. 1 we recap the results for the Floquet expo-
nent from Part 1 [1]. We have plotted the dimensionless
quantity µk(rH). Here r is the dimensionless parameter

r ≡
√
|λ|MPl

m
(15)

It is found to control the amount of resonance in the
problem. As we show in Section V, for r � 1, µk/H can
be large and there is significant resonance, else there is
rather insignificant resonance. The variable µk/(rH) is
convenient here as it scales out the physical parameters.
In the left panel we have taken the coupling λ > 0 and in
the right panel we have taken the coupling λ < 0. In the
upper panel we study the parallel, or “adiabatic”, per-
turbations. In the lower panel we study the orthogonal,
or “isocurvature”, perturbations. We see clearly that for
λ > 0 there is a large instability for the isocurvature
mode, while for λ < 0 there is a large instability for the
adiabatic mode. There is also a band originating from
k =

√
3m at small amplitudes for the adiabatic mode

only for either sign of λ.
Furthermore, in Fig. 2 we allow for a Higgs type po-

tential with m2 < 0 and λ > 0. In this case we have
focussed on the just the first instability band. We see
that it begins at k = 0 for the parallel perturbations,
and at k = |m|/

√
2 for the isocurvature perturbations.

We will explain the above observations in this paper
from the underlying quantum mechanics on many par-
ticles. As a step in this direction, we being with the
analytical treatment of perturbation theory at small am-
plitude.

III. SMALL AMPLITUDE: ANALYTICAL
RESULTS

In the previous section we presented numerical results
on the behavior of all the perturbations, and in Part 1 [1]
we presented analytical results a long wavelengths using a
pressure analysis. It is also important to have analytical
results at both long and short wavelengths. This can be
achieved if we focus on small amplitudes of the inflaton
field; this will eventually arise after sufficient redshifting.

At small amplitudes, we can perform a weakly coupled
expansion around the almost free theory. To do so, we
assume there exists a mass term which dominates the

FIG. 2. Contour plot of the real part of Floquet exponent µk
for dimension 4 potentials as a function of wavenumber k and
background amplitude φa with m2 < 0 and λ > 0. Upper
panel is for δφ‖ and lower panel is for δφ⊥. We have plotted

µk in units of rH where r ≡
√
λMPl/|m|, k in units of |m|,

and φa in units of |m|/
√
λ. (This is taken from Part 1 [1].)

oscillatory behavior of the background giving rise to al-
most harmonic motion. Plus we add interactions that
are sub-dominant leading to anharmonic behavior, and
can possibly drive resonance in perturbations. We write
the potential as an expansion as

Vs(~φ) = V0 +
1

2
m2|~φ|2 +

λ

2 q
|~φ|2q + . . . (16)

where we assume q is an integer q ≥ 2 which governs the
leading interaction term around small field values. Of
most interest is the case q = 2, giving rise to a standard
dimension 4 interaction term. On general effective field
theory grounds, we should expect this quartic term to
exist. It is conceivable that the quartic term vanishes
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and that the leading interaction term begins at q = 3 or
higher. For now we simply allow for a general integer
power, and specialize to the quartic case q = 2 when
necessary.

A. Background Evolution

We begin by studying the positive mass squared case
(m2 > 0). Later we shall study the negative mass squared
(tachyonic) case in Section III D. So for now, we set
the vacuum energy V0 = 0 and allow the interaction’s
coupling λ to be either positive or negative.

As before, the background evolution ~φ0 is taken to be
radial. The equation of motion is

φ̈0 +m2φ0 + λφ2q−1
0 = 0 (17)

We would like to solve this in a small amplitude expan-
sion. So lets expand the background φ0 as

φ0 = ε φ1 + ε2q−1 φ2q−1 + . . . (18)

where ε is a small dimensionless constant that sets the
power counting. The functions φ1, φ2q−1, . . . are func-
tions of time to solve for.

Naively, we would like to substitute this expansion into
the equation of motion directly and match powers of ε.
However this would lead to secular behavior as the driv-
ing terms would carry the same frequency as the natural
frequency defined by the harmonic terms. To avoid this
problem, we need to identify a shifted frequency. We do
this by introducing a new time variable as follows

τ ≡ t
√

1± ε2q−2 (19)

where the upper “+” sign is for λ > 0, as the interaction
will raise the fundamental oscillation frequency, and the
lower “-” sign is for λ < 0, as the interaction will lower
the fundamental oscillation frequency. This also allows
us to define the value of ε uniquely, as we see shortly. So
with respect to τ we have the equation of motion

d2φ0

dτ2
± ε2q−2 d

2φ0

dτ2
+m2φ0 + λφ2q−1

0 = 0 (20)

Now using the expansion (18) and matching powers at
O(ε) gives

d2φ1

dτ2
+m2φ1 = 0 (21)

We write the solution as

φ1 = φa1 cos(mτ) (22)

where we have dropped an overall phase. Here φa1 is a
type of amplitude. At this leading order, the full ampli-
tude for φ0 is related to this by

φa = ε φa1 (23)

Then using the expansion (18) and the solution for φ1

from eq. (22) and matching powers at O(ε2q−1) gives

d2φ2q−1

dτ2
+m2φ2q−1

= ±m2φa1 cos(mτ)− λφ2q−1
a1 cos2q−1(mτ) (24)

The right hand side acts as a driving term. We need
to remove the piece that is proportional to cos(mτ) as
it would otherwise drive a resonance leading to secular
behavior. For any integer power q, the final cosine has a
leading harmonic given by

cos2q−1(mτ) =
C(2q − 1, q)

22q−2
cos(mτ) + h.h (25)

where C is the binomial coefficient and “h.h” represents
higher harmonics. We substitute this into (24) and de-
mand that the coefficient of cos(mτ) vanishes. This leads
to a unique value for the amplitude φa1, which we find
to be

φa1 = 2

[
m2

C(2q − 1, q)|λ|

] 1
2q−2

(26)

This finalizes the background solution φ0 at leading order
as φ0 = ε φ1, with φ1 given by eqs.(22,26) and ε parame-
terizing the amplitude.

B. First Instability Band

We now examine the behavior of perturbations about
this background. For the sake of brevity, here we will
present a unified treatment of the adiabatic and isocur-
vature modes, rather than separate analyses.

By switching to the new time variable τ , the Hill’s
equation becomes

d2

dτ2
δφ+ h(τ)δφ = 0 (27)

where h(τ) is the periodic pump with respect to the τ
variable. It is given by

h(τ) =
k2 +m2 + γ λφ2q−2

0 (τ)

1± ε2q−2
(28)

where we have divided throughout by the factor 1±ε2q−2

to make the second derivative term in Hill’s equation
canonical. In h we have introduced the factor γ which
distinguishes the two classes of modes as

γ =
{

2q − 1 for δφ‖
1 for δφ⊥

(29)

Since the driving term is given by λφ2q−2
0 , we would like

to expand this in terms of harmonics using our leading or-
der ε result of the previous subsection. We find a constant
term and a piece promotional to cos(2mτ) as follows

λφ2q−2
0 = ±m

2ε2q−2

2q − 1

[
q + (2q − 2) cos(2mτ) + h.h

]
(30)
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where again “h.h” represents higher harmonics. Substi-
tution into h(τ) and working to leading non-zero order
∼ ε2q−2 re-organizes h into the form of the so called
Mathieu equation

h(τ) = A+ 2B cos(2mτ) (31)

where for now we drop higher harmonics; these will only
be important for the second instability band that we dis-
cuss in the next subsection. We find that the Mathieu B
and A coefficients are

B = ± γ m2ε2q−2 q − 1

2q − 1
(32)

A = k2 +m2 + γ̄ B/γ (33)

where

γ̄ =
{

2q − 1 for δφ‖
−1 for δφ⊥

(34)

We note that in the first instability band k ∼ εq−1 so
we have not included powers of ε that multiple k2 when
expanding out the denominator that appears in h.

Now the Mathieu equation can be solved by performing
a harmonic expansion as follows

δφ(τ) =
∑
ω

eiωτδφω(τ) (35)

where the frequencies are summed over integer multi-
plies of the mass m; the fundamental frequency, with
−∞ < ω < +∞. Here we assume the δφω are slowly
varying in time. Substitution into the Mathieu equation
and matching harmonics, gives the following coupled sys-
tem of ODEs

2iω
d

dτ
δφω + (A− ω2)δφω +B(δφω−2m + δφω+2m) = 0

(36)
where we have dropped the second order derivative
d2

dτ2 δφω since δφω is slowly varying. Notice that odd
harmonics are only coupled to odd harmonics, and even
harmonics are only coupled to even harmonics.

The first instability band comes from studying the fun-
damental frequencies ω = +m and ω = −m. To leading
order, these evolve independently of the higher harmon-
ics, allowing us to truncate this system to just these fre-
quencies. This leads to the following pair of ODEs

d

dτ

(
δφ+m

δφ−m

)
=

i

2m

(
A−m2 B
−B m2 −A

)(
δφ+m

δφ−m

)
(37)

The eigenvalues of this matrix gives the Floquet expo-
nents to leading order for small amplitudes

µk =
1

2m

√
B2 − (A−m2)2 (38)

(we should take both signs of the square root to get both
Floquet exponents). Substitution of the above values for

B and A into this and eliminating ε in favor of the phys-
ical amplitude φa using (23, 26), we obtain the following
result for the Floquet exponent

µk =
k

2m

√
−α γ̄ λ φ2q−2

a − k2 (39)

where

α ≡ C(2q − 1, q)(q − 1)

22q−3(2q − 1)
(40)

(for q = 2; −α γ̄ = −3/2 for δφ‖, −α γ̄ = +1/2 for δφ⊥).
Since the first term inside the square root is proportional
to −γ̄ λ, with all other factors positive, we see that the
existence of an instability band is determined by the sign
of −γ̄ λ. So this proves that if λ > 0 there is an instability
for the isocurvature mode (γ̄ = −1 < 0) and if λ < 0
there is an instability for the adiabatic mode (γ̄ = 2q −
1 > 0). So again we find an entire class of potentials
whose stability is complementary between adiabatic and
isocurvature modes.

For the cases in which there is an instability band, the
right hand edge of the band has the shape

kr,edge =
√
−α γ̄ λ φq−1

a (41)

For the important case q = 2, this gives a linear relation-
ship between kr,edge and amplitude φa. The left hand
edge of the instability band is at

kl,edge = 0 (42)

which connects to the long wavelength analysis of Part
1 [1]. For a fixed amplitude φa, the Floquet exponent

is maximized for kmax = kr,edge/
√

2. The corresponding
maximum Floquet exponent is

µmax =
−α γ̄ λ φ2q−2

a

4m
(43)

(so µmax ∝ φ2
a for q = 2).

Altogether this explains the width and shape of the
first instability bands seen earlier in Fig. 1. Further-
more, when q = 2, we see that µk for the adiabatic mode
can be related to µk for the isocurvature mode by the
replacement

λ→ −λ
3

(44)

This is in agreement with the result we proved in Part 1
[1], where we derived an auxiliary potential and Taylor
expanded for small amplitudes.

Out of interest, let us take the small k limit of this
result. This leaves a result for µk that is linear in k,
as we proved it should be in Part 1 [1] where we did
a general long wavelength analysis, and the Goldstone
theorem ensured a gapless spectrum. If we are both at
small wavenumber and small amplitude (the lower left
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corner of the stability charts) we obtain from eqs. (39, 40)
the following relationship among the speeds

c2I = − c2S
2q − 1

(45)

whose sign governs the stability structure. Indeed for the
case q = 2, we obtain c2I = −c2S/3.

C. Second Instability Band

In the previous subsection we discussed the ε expan-
sion that governs the behavior at small amplitudes, and
applied it to the first instability band. In principle one
can go further and study any band to any desired order
in perturbation theory. Here we mention the key leading
order results of the second instability band. We continue
to study m2 > 0, but now we specialize to q = 2, i.e.,
dimension 4 potentials.

In the previous subsection we found the solution to
O(ε) in eqs. (22, 26) (by taking q → 2). For the next
band, we need the background solution to O(ε3). With-
out going through the full details, we find that the result
to this order is

φ0 = (ε φa1 + ε3φa3) cos(mτ) + ε3
λφ3

a1

32m2
cos(3mτ) (46)

where

φa1 =
2m√
3|λ|

, φa3 = ∓ m

24
√

3|λ|
(47)

Substitution into the perturbation equations leads to a
Hill’s function h that is more complicated than the stan-
dard Mathieu equation, namely

h(τ) = A+ 2B cos(2mτ) + 2C cos(4mτ) (48)

where we have gone to the required number of harmonics.
The coefficients are required to O(ε4), and we find them
to be

B =
γ m2

72

(
±24ε2 − 23ε4

)
(49)

C =
γ m2

36
ε4 (50)

A = m2

(
1±

(
2γ

3
− 1

)
ε2 +

(
1− 25γ

36

)
ε4
)

+k2
(
1∓ ε2 + ε4

)
(51)

where we again use γ from eq. (29) with q = 2; so γ = 3
for δφ‖, and γ = 1 for δφ⊥.

We then substitute into the harmonic expansion (35).
Previously we studied the first instability band by track-
ing the leading odd harmonics ω = −m,+m. To study
the second instability band we need to look at the leading
even harmonics ω = −2m, 0,+2m. The ω = 0 mode is
easily solved for, leaving just two unknown coefficients.

We note that these couple to ω = −4m,+4m, giving fi-
nite corrections. However, a reasonable approximation
for the central results, arises from just focussing on the
ω = −2m,+2m harmonics. We find that the 2×2 matrix
problem for the second instability band takes the form

d

dτ

(
δφ+2m

δφ−2m

)
=

i

4m

(
A− 4m2 − B2

A C − B2

A
B2

A − C 4m2 + B2

A −A

)(
δφ+2m

δφ−2m

)
(52)

The eigenvalues of this matrix are the Floquet exponents
of the second band

µk =
1

4m

√(
C − B2

A

)2

−
(
A− 4m2 − B2

A

)2

(53)

The full expression for µk after substituting in the above
values for A, B, C is somewhat complicated, but it suf-
fices to discuss its features.

Firstly, lets discuss at what k value the band starts at
in the small amplitude limit. If we take φa → 0, then
B → 0, C → 0, and A→ k2 +m2, and µk becomes

µk → ±
i

4m
(k2 − 3m2) (54)

Hence the value of k∗ that sets the imaginary part of
µk to zero, and hence corresponds to the start of the
instability band, is

k∗ =
√

3m (55)

In Section IV we will explain this wavenumber as arising
from 4φ→ 2φ particle annihilations.

Next, we discuss the shape and width of the instability
band. If we work only to O(ε2) we find that both the
left hand and right hand edge of the instability band
coincide. As a function of amplitude this merely provides
the overall bending of the band. If we express this in
terms of the amplitude φa, we find that to O(ε2) we have

kedge =
√

3m+
(6− γ)

4
√

3

λφ2
a

m
(56)

On the other hand, we find a splitting between the left
and right hand edges atO(ε4). This splitting, which gives
the width of the band, is found to be

∆k = kr,edge − kl,edge =
γ|γ − 1|
64
√

3

λ2φ4
a

m2
(57)

So for the isocurvature modes (γ = 1) the width is zero.
This means there is no instability band. This is in ac-
cord with the bottom panel of Fig. 1. On the other hand,
for the adiabatic modes (γ = 3) there does exist a finite
width and hence a narrow instability band. From eq. (56)
we see that this band bends to the right (higher k) for
λ > 0, or bends to the left (lower k) for λ < 0, as we in-
crease the amplitude. This explains the features seen in
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the narrow instability band in the upper panel of Fig. 1.
Since this band is due to 4φ → 2φ annihilations, as we
explain in Section IV, it requires energy density pertur-
bations, and so it makes sense that it does not exist for
the isocurvature modes.

D. Negative Mass Squared

We now consider the case of negative mass squared
(m2 < 0 and λ > 0) at small amplitudes. So we now
study a Higgs-type of potential and expand around the

true vacuum |~φ| = φvev = |m|/
√
λ. We put the VEV in

the N th direction in field space and write the field as

~φ = {φ1, . . . , φN−1,
|m|√
λ

+ σ} (58)

The dimension 4 potential becomes

V =
1

2
m2
σσ

2 +
λ3

3
σ3 +

λ

4
σ4

+
λ3

3
σ
∑
i

φ2
i +

λ

2
σ2
∑
i

φ2
i +

λ

4

(∑
i

φ2
i

)2

(59)

where the sum over i is from 1 to N−1 of the Goldstones
φi. The mass of the σ field and the cubic coupling are

mσ =
√

2 |m| (60)

λ3 = 3
√
λ |m| (61)

Let us discuss radial motion of the background de-
scribed by the field σ0. This satisfies the equation of
motion

σ̈0 +m2
σ σ0 + λ3 σ

2
0 + λσ3

0 = 0 (62)

We again use a small ε expansion to solve this to leading
order. Due to the cubic interaction, there will be both
odd and even harmonics in the expansion. We will not
go through the full details, but we find that to leading
order, the solution is

σ0(τ) = ε
2mσ√

3|λ− 10λ2
3/(9m

2
σ)|

cos(mσ τ) (63)

This result is general for any choice of λ and λ3. Of
course by using the relationships in eqs. (60, 61) the de-
nominator can be simplified. Compared to the analysis
of Section III B, where there was no cubic term, we see
that in some sense the “effective” λ has been shifted to

λ→ λ− 10λ2
3

9m2
σ

= −4λ (64)

With this understanding we can immediately use eq. (39)
(with q = 2) to write down the answer for the Floquet
exponent in the first instability band for the parallel, or
adiabatic, perturbations. We find

µk =
k

2mσ

√
6λσ2

a − k2 (65)

We now see opposite behavior of the adiabatic mode for
m2 < 0 compared to m2 > 0. Now we see that for λ > 0
there is an instability band for small k. On the other
hand, when m2 > 0 we only saw such a band for λ < 0.
This makes sense from the point of view of the pressure
analysis of Part 1 [1]. Indeed one can check that the cubic
term induces a negative pressure for small amplitudes,
even though the quartic term is positive. For sufficiently
large amplitudes, the pressure returns to being positive,
as the positive quartic term dominates, and the band is
shut off for small k. This explains the change between
Figs. 1 and 2. In the λ > 0, m2 > 0 plot for the parallel
perturbations we saw that a thin band started at k =√

3m. In the m2 < 0 plot for the parallel perturbations
we saw this band thicken and extend all the way down
to k = 0, in agreement with our new analysis.

For the orthogonal, or isocurvature, perturbations the
equation of motion for small amplitudes is

δ̈φ⊥i + (k2 +
√

2λmσ σa cos(mσt))δφ⊥i = 0 (66)

In fact we will not require the distinction between τ and
t for this leading order analysis, so we have written the
argument of the cosine as mσt. Since this is of the form
of the Mathieu equation, we can follow through the steps
of Section III B to readily obtain the Floquet exponent.
We find

µk =
1

2

√
8λσ2

a −
(

4k2

mσ
−mσ

)2

(67)

We now see that this band no longer begins at k = 0,
instead it begins at

k∗ =
mσ

2
=
|m|√

2
(68)

This is precisely what is observed in the lower panel of
Fig. 2. The reason the band does not exist at small k is
because of the complementary behavior to the adiabatic
mode. Since the “ordinary” pressure is negative due to
the cubic term rendering the adiabatic mode unstable
for small k, the “auxiliary” pressure is positive rendering
the isocurvature modes stable for small k. Nevertheless
there is a thick instability band beginning at k = mσ/2;
we shall explain its origin as the decay of the “Higgs”
field into a pair of Goldstones φi in the next Section.

IV. MANY PARTICLE QUANTUM
MECHANICS

In the previous sections we have seen several inter-
esting results, including physical explanations in terms
of pressure, small amplitude analysis, etc. Some of the
salient results are (sharply true at small amplitudes):

(i) At small k and m2 > 0, the adiabatic mode is un-
stable for λ < 0, and the isocurvature modes are
unstable for λ > 0.
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(ii) At small k and m2 < 0, the adiabatic mode is un-
stable (we require λ > 0 here).

(iii) At k ∼
√

3m and m2 > 0, the adiabatic mode is
unstable (for either sign of λ).

(iv) At k ∼ |m|/
√

2 and m2 < 0, the isocurvature modes
are unstable.

In this Section we will give the underlying quantum me-
chanical explanation for each one of these facts. We will
particularly emphasize point (i) which most clearly high-
lights the complementary behavior between adiabatic
and isocurvature modes; their relative stability is deter-
mined by the sign of λ.

The reason there should be a quantum mechanical ex-
planation is that underlying the field theory should be a
more fundamental description in terms of many quantum
particles. Indeed the above classical scalar field theory
analysis is only a good approximation if it approximates
the behavior of some kind of condensate of scalar bosons.

A. Nonrelativistic Theory

Let us begin by focussing on dimension 4 potentials
with m2 > 0 and λ 6= 0. For k � m we should be
able to use the nonrelativistic treatment of a collection of
massive scalars. In the case of a complex field, there are 2
kinds of identical species: particles φ and antiparticles φ̄.
In the nonrelativistic regime these particles only interact
with one another via 2φ → 2φ scattering from a 4-point
vertex; see upper panel of Fig. 3. The associated matrix
element is a constant, namely M = −3 i λ. By Fourier
transforming, we obtain the following 2-body potential

V (x1 − x2) =
3λ

4m2
δ(x1 − x2) (69)

where x1 and x2 are the positions of a pair of parti-
cles/antiparticles. By considering Nφ particles and Nφ̄
antiparticles and summing, we obtain the the following
quantum Hamiltonian

Ĥ =

Nφ∑
a

p̂2
a

2m
+

Nφ̄∑
ā

p̂2
ā

2m
+

Nφ,Nφ∑
a<b

V (x̂a − x̂b)

+

Nφ,Nφ̄∑
a<b̄

V (x̂a − x̂b̄) +

Nφ̄,Nφ̄∑
ā<b̄

V (x̂ā − x̂b̄) (70)

where we have indicated particles by index a or b, and
antiparticles by index ā or b̄. So a positive λ implies a
repulsive force between the particles (and antiparticles),
while a negative λ implies an attractive force between
the particles (and antiparticles). In fact this is also true
if we went beyond the quartic interaction ∼ λφ4 to a
general potential ∼ λφ2q with q ≥ 2 an integer. Say
for q = 3, we have a 3-body contact interaction, whose
attraction/repulsion is determined by the sign of λ.

FIG. 3. Representative Feynman diagrams of two important
nonrelativistic processes. Upper panel: 2φ → 2φ scattering
from 4-point vertex. Lower panel: 2σ → 2σ scattering from
3-point vertex (relevant for Higgs potential).

Lets imagine an initial homogeneous configuration of
equal numbers of particles and antiparticles. Indeed for a
classical background that evolves radially in field space,
the background number density of particles minus an-
tiparticles is zero. If λ > 0, the particles will want to
remain evenly distributed due to their mutual repulsion.
On the other hand, if λ < 0, the particles will want to
clump together under their mutual attraction. A cartoon
of this behavior is depicted in upper panel of Fig. 4. (In
the figure we drew particles and antiparticles from Gaus-
sians centered around each of the 4 quadrants to illustrate
this.) This is the physical explanation as to why the adi-
abatic mode is stable with λ > 0 and unstable with λ < 0
for small k. At the nonlinear level, this can produce lo-
calized structures known as oscillons [37–39, 42], which
eventually annihilate away [40]. When there is an over-
abundance of particles to anti-particles (see Section VII)
this can produce stable objects known as Q-balls [45].

But what about the isocurvature mode? If λ > 0 the
particles will try to repel each other and remain with a
homogeneous energy density, with ε = m(nφ + nφ̄) in
nonrelativistic limit. However there are different types
of homogeneous configurations, since we have 2 species
available. For instance, the particles and the antiparticles
can remain homogeneous. Or the particles can move to
certain regions in space, while the antiparticles move to
other regions of space, in such a way that the total energy
density remains constant. This latter arrangement in-
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FIG. 4. A cartoon of the behavior of (nonrelativistic) parti-
cles φ in red and antiparticles φ̄ in blue. In the upper panel,
λ < 0, we depict both particles and antiparticles attracting
with statistically uniform number density (n = nφ − nφ̄). In
the lower panel, λ > 0, we depict particles clumping with
particles and antiparticles clumping with antiparticles with
statistically uniform energy density (ε = m(nφ + nφ̄) in non-
relativistic limit).

volves a change to n = nφ−nφ̄, the local number density
of particles minus antiparticles; an isocurvature mode.
Either arrangement seems to minimize the energy. How-
ever, it is the latter arrangement that is favored due to
Bose-Einstein statistics, which favors particles clumping
with particles, and antiparticles clumping with antiparti-
cles. A cartoon of this behavior is depicted in lower panel
of Fig. 4. (In the figure we drew particles and antipar-

ticles from Gaussians centered at opposite quadrants to
illustrate this.) This explains why the isocurvature mode
is unstable when λ > 0 for small k. These last pair of ar-
guments explain result (i) and the low k region of Fig. 1.

For m2 < 0 and λ > 0 we can expand around the
vacuum expectation value for the field. This induces a
cubic interaction for the Higgs field σ, as we explored in
Section III D. This 3-point interaction alters the 2 → 2
scattering, as given by the Feynman diagram in the lower
panel of Fig. 3. The adiabatic modes carry a mass (the
“Higgs” particles) and so we can take the nonrelativistic
limit. In the nonrelativistic limit these matrix elements
can be computed and Fourier transformed. The result is
again a delta-function potential with the coupling altered
as λ→ −4λ, precisely as we saw earlier in eq. (64). This
switches the sign of the potential. For λ > 0, the 2-
body potential is now attractive, due to the 3-body σ
exchanges. Hence it makes good sense that the adiabatic
mode is now unstable. This argument explains result (ii)
and the low k region of Fig. 2.

B. Relativistic Theory

Returning again to a regular mass term with a quar-
tic interaction, we now allow for relativistic processes to
occur. Since the homogeneous background is a dense con-
densate of bosons, a quartic interaction can lead to anni-
hilations. Due to the conserved particle number, we are
allowed to have processes, such as 2φ+2φ̄→ φ+ φ̄. This
is the leading annihilation process, whose corresponding
Feynman diagram is given in the upper panel of Fig. 5.
Since the annihilating particles are homogeneously dis-
tributed, they can be taken to be nonrelativistic. The
effective mass per particle is m in the small amplitude
limit. So the kinematics of this process is

4m = 2
√
m2 + k2

∗ =⇒ k∗ =
√

3m (71)

Notice that since this process occurs simply due to kine-
matics, it will occur regardless of the sign of λ. The only
significance of λ is that it alters the effective mass of the
homogeneous clump at finite amplitudes. So for λ > 0
the effective mass of the annihilating particles is raised,
causing the corresponding outgoing k to be raised. The
opposite is true for λ < 0. We also note that a process
such as this involves a redistribution of the local energy
density, and hence it is an adiabatic mode. These argu-
ments explain result (iii) and the thin bands of Fig. 1.

Finally we consider the Higgs type of potential, and
consider relativistic processes. Since the φi (i =
1, . . . ,N −1) are massless, a basic decay process can take
place between the background Higgs field and the daugh-
ter Goldstones σ → φi + φi. This process is given in the
lower panel of Fig. 5. The kinematics of this process is

mσ = 2 k∗ =⇒ k∗ =
|m|√

2
(72)
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FIG. 5. Representative Feynman diagrams of two important
relativistic processes. Upper panel: 2φ+ 2φ̄→ φ+ φ̄ annihi-
lation. Lower panel: σ → φi + φi decay (relevant for Higgs
potential).

Since the phase space of one particle decay is much
greater than the phase space of 4 particle annihilations,
this band should be much thicker than the band de-
scribed above in the unbroken theory. We also men-
tion that other annihilations are presumably allowed in
the broken theory, such as σ + σ → φi + φi. However
this will still result in a rather thin band, beginning at
k∗ =

√
2 |m|, and beyond the regime plotted in Fig. 2.

Altogether these arguments explain result (iv) and the
thick band in the lower panel of Fig. 2.

V. PERTURBATION GROWTH WITH HUBBLE
EXPANSION

Earlier when we computed the growth of fluctuations,
we ignored the effects of Hubble expansion. In this Sec-
tion we would like to reinstate the effects of expansion.
Accordingly, we return to the important case in which
the background field evolves radially in field space, as
initially established by inflation.

The expansion causes a breaking of the periodicity of
the pump h(t) as the background amplitude and pertur-
bation wavenumber redshift. So, strictly speaking, this
means that we can no longer use Floquet theory. In-
stead we can numerically solve the linearized equations
to capture the evolution; which we will do shortly in Sec-
tion V B. On the other hand, the Floquet theory is still

very useful to provide qualitative and semi-quantitative
results, as we now explain.

A. Slow Redshift Approximation

If we continue to study modes that are sub-horizon,
then we can introduce an approximate treatment of the
expansion. The idea is that on the scales of interest, the
background changes only slightly over a periodic of os-
cillation. So this presents a type of slow, or “adiabatic”,
approximation wherein we can utilize Floquet theory on
short time scales, as well as accounting for the slow red-
shifting in an approximate fashion (note that the use of
the word “adiabatic” here does not refer to the adiabatic
modes discussed elsewhere in this paper).

The first alteration is to take the Floquet exponent
from the previous section µk and replace its argument by
the physical wavenumber kp

k → kp(t) =
k

a(t)
, µk → µkp (73)

as it is this quantity that appears in the equation of mo-
tion. Secondly, we note that Hubble introduces a red-
shifting in the amplitude of the pump. The details de-
pend on the choice of the potential V . We can summarize
this as an effective evolution in the amplitude as

φa → φa(t) (74)

which we take to be slowly varying. There is also an
overall rapid oscillation in the perturbations, captured
by some quasi-periodic function f(t). At late times this
is roughly f(t) ≈ cos(mt+θ), where θ is some phase (see
ahead to Fig. 6).

Thirdly, since the Floquet exponent is now time depen-
dent due to redshifting, the growth is altered. The adia-
batic approximation is to replace the exponential growth
by an integral as follows (we denote the real part of the
Floquet exponent by µkp here)

exp[µk (t− ti)]→ exp

[∫ t

ti

dt′ µkp(t′)

]
(75)

where ti is some initial time (say, the end of inflation).
Now it is convenient to use the chain rule to recast the in-
tegral over time as an integral over physical wavenumber,
as this is what the Floquet exponent explicitly depends
on. Using (73) we can express this as∫ t

ti

dt′ µkp(t′) =

∫ kif

kp(t)

d ln kp

(µkp
H

)
(76)

where the integrand is evaluated along the appropriate
curve in the Floquet chart (see ahead to the dashed green
curve in Fig. 7). Note the limits of integration: We have
placed the late time wavenumber kp(t) at the lower end-
point, and the initial wavenumber kpi at the upper end-
point, so the integral is ordered in a standard way.
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FIG. 6. Evolution of background φ0 with Hubble expansion after inflation for dimension 4 potentials, with m2 > 0 and λ > 0.
In the left panel r ≡

√
λMPl/m = 200 (slower redshifting). In the right panel r ≡

√
λMPl/m = 5 (faster redshifting). We

have plotted φ0 in units of m/
√
λ and t in units of 1/m. At somewhat earlier times, the field slow-rolls during inflation.

So altogether, a rough inclusion of Hubble expansion
is to write the field fluctuations as

δφ(k, t)

δφ(k, ti)
∼
(
φa(t)f(t)

φa(ti)

)
exp

[∫ kif

kp(t)

d ln kp

(µkp
H

)]
(77)

where µkp is the (real part of) Floquet exponent for either
the adiabatic or isocurvature modes, as appropriate.

For dimension 4 potentials, it is convenient to intro-
duce the parameter r ≡

√
|λ|MPl/|m|, as mentioned

earlier. The reason this parameter is useful is that the
combination µkp/(rH) is independent of parameters at a
fixed amplitude and wavenumber, as reported on in our
earlier Floquet charts. The exponent can be written as

exp

[
r

∫ kif

kp

d ln kp

(µkp
Hr

)]
(78)

which shows that the growth is approximately exponen-
tial in r. We say “approximately” because the details of
the motion through the band has some parameter depen-
dence, though it is relatively small.

B. Numerical Results for Growth

We have numerically solved for the background field
φ0(t), allowing for Hubble expansion, for different values
of r. For m2 > 0 and λ > 0 the result is given in Fig. 6.
In the left panel we have taken r = 200 and in the right
panel we have taken r = 5. As the plots show, for higher
values of r the redshifting is slow and for lower values
of r the redshifting is fast. So in the former case, the
background φ0(t) is almost periodic on the time scale of

a small number of oscillations. This means that Floquet
theory provides a good approximation to the behavior, as
described in the previous subsection. In the latter case,
the background φ0(t) changes rather significantly from
one cycle to the next, so the Floquet theory becomes less
accurate.

It is, however, the case of large r that is of most in-
terest from the point of view of self-resonance. In Fig. 7
left panel we have plotted the behavior of a redshifting
physical wavenumber and amplitude for a fixed comoving
wavenumber; k = 0.4 a0m, where a0 is the scale factor
at φa = m/

√
λ. We have chosen this as a representative

wavenumber that passes through the central instability
band. We have chosen m2 > 0 and λ > 0 here and shown
the instability associated with the isocurvature modes.
For λ < 0 (not shown here) we find the behavior to be
qualitatively similar for the adiabatic mode.

In the next Section we will discuss the power spectra of
field fluctuations Pδφ(k, t), which is related to the square
of the fluctuations δφ(t). In Fig. 7 right panel we have
plotted the evolution of the power spectra, accounting
for Hubble expansion, for the same comoving wavenum-
ber k = 0.4 a0m. We see that the growth appears ex-
ponential, but is reduced at late times as the redshift
decreases the value of µkp/(rH) towards zero, and so its
amplitude asymptotes to a constant. There are of course
rapid oscillations on top of this.

VI. DISTRIBUTION OF DENSITIES δε, δn

In this section we discuss the quantization of the per-
turbations δφ and their initial conditions, and present
results for the distribution of fluctuations in k space and
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FIG. 7. Left panel: Contour plot of the real part of Floquet exponent µk for dimension 4 potentials as a function of physical
wavenumber kp and background amplitude φa for δφ⊥, with m2 > 0 and λ > 0 (zoomed in region of Fig. 1’s lower left
panel). The dashed green line indicates the redshifting physical wavenumber and amplitude of a fixed comoving wavenumber

k = 0.4 a0 m, where a0 is the scale factor at φa = m/
√
λ. We have plotted µk in units of rH where r ≡

√
λMPl/m, kp in units

of m, and φa in units of m/
√
λ. Right panel: Growth in power Pδφ⊥ as a function of time for the same comoving wavenumber

k = 0.4 a0 m with r = 20. We have plotted Pδφ⊥ in units of 1/(a3 m) and t in units of 1/m. For λ < 0 (not shown here)
qualitatively similar behavior occurs for δφ‖.

position space. We continue to account for Hubble ex-
pansion where necessary.

A. Quantization of Perturbations

When the background ~φ0 evolves radially in field space,
as preferred by inflation, the perturbations δφ‖ and δφ⊥
are decoupled at linear order, as discussed in Section II B.

Since these modes are decoupled, they can be readily
quantized in the Heisenberg picture. We write the oper-
ator for parallel fluctuations as

δ̂φ‖(x, t) =

∫
d3k

(2π)3

[
v‖,k(t) âk e

ik·x + v∗‖,k(t) â†k e
−ik·x

]
(79)

and the operator for orthogonal fluctuations as

δ̂φ⊥(x, t) =

∫
d3k

(2π)3

[
v⊥,k(t) b̂k e

ik·x + v∗⊥,k(t) b̂†k e
−ik·x

]
(80)

where v‖ and v⊥ are the respective mode functions. The
creation and annihilation operators satisfy the standard
quantization condition[

âk, â
†
k′

]
= (2π)3δ3(k− k′) (81)[

b̂k, b̂
†
k′

]
= (2π)3δ3(k− k′) (82)

As this is a free theory, the mode functions satisfy the
classical equations of motion that we previously discussed

for δφ in eqs. (11, 12). So, allowing for Hubble expansion,
we have

v̈‖ + 3Hv̇‖ +

(
k2

a2
+ V ′′(φ0)

)
v‖ = 0 (83)

v̈⊥ + 3Hv̇⊥ +

(
k2

a2
+
V ′(φ0)

φ0

)
v⊥ = 0 (84)

We assume that at early times, the mode functions are
in their Minkowski vacua, and then evolve; this is the
Bunch-Davies vacuum. So at early times we require the
initial condition

v‖,k, v⊥,k →
e−iωkt√
2ωk a3

(85)

where the frequency is ωk =
√
m2 + k2/a2. In fact at

early times it is sufficient to use ωk → k/a.
We can go further and quantize the perturbations in

energy density δε and number density δn. We write the
operator for energy density (adiabatic) fluctuations as

δ̂ε(x, t) =

∫
d3k

(2π)3

[
zk(t) âk e

ik·x + z∗k(t) â†k e
−ik·x

]
(86)

and the operator for number density (isocurvature) fluc-
tuations as

δ̂n(x, t) =

∫
d3k

(2π)3

[
wk(t) b̂k e

ik·x + w∗k(t) b̂†k e
−ik·x

]
(87)
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We can relate these density fluctuations to the field fluc-
tuations by using the quantized versions of the linearized
energy density and number densities, as we defined in
Part 1 [1]. This leads to the following relationship be-
tween the density mode functions z and w and the field
mode functions v‖ and v⊥

zk(t) =

(
φ̇0

∂

∂t
+ V ′(φ0)

)
v‖,k(t) (88)

wk(t) = −
(
φ0

∂

∂t
− φ̇0

)
v⊥,k(t) (89)

In the sub-horizon limit, the Floquet theory, pressure
analysis, and so on, of the earlier sections, determines
these mode functions.

B. Probability Distributions

So we have the following physical variables of interest

χ = {δφ‖, δε, δφ⊥, δn} (90)

where the first pair are independent of the last pair. By
placing the field fluctuations in their ground state, the
wave-functional Ψ for each variable is a Gaussian. In
the Schrödinger picture, the corresponding probability
distribution for any of these variables is

P[χ, t] ∝ exp

[
−1

2

∫
d3k

(2π)3

|χk|2

Pχ(k, t)

]
(91)

where Pχ is the power spectrum for each variable, defined
through the equal time 2-point correlation function as

〈χ̂k(t) χ̂k′(t)〉 = (2π)3δ3(k + k′)Pχ(k, t) (92)

Since the background breaks the time translation sym-
metry, the power spectra depend on time, as we have in-
dicated. It is straightforward to show that they are given
by the square of their corresponding mode functions

Pδφ‖(k, t) = |v‖,k(t)|2, Pδε(k, t) = |zk(t)|2 (93)

Pδφ⊥(k, t) = |v⊥,k(t)|2, Pδn(k, t) = |wk(t)|2 (94)

This furnishes the probability distribution for the fields.
We would also like to have the probability distributions

for their time derivatives. So lets define the variables

Π = { ˙δφ‖, δ̇ε,
˙δφ⊥,

˙δn} (95)

We then also have a Gaussian distribution for these “mo-
menta” (these are not canonically normalized momenta,
as this would require the inclusion of additional powers
of the scale factor, etc)

P[Π, t] ∝ exp

[
−1

2

∫
d3k

(2π)3

|Πk|2

PΠ(k, t)

]
(96)

where the power spectra for the momenta are given as
the square of the time derivatives of the corresponding
mode functions.

FIG. 8. Late time power spectra Pδφ of field fluctuations as
a function of comoving wavenumber k for dimension 4 poten-
tials, with m2 > 0, λ > 0, and r = 20. In the upper panel are
(non-resonant) parallel fluctuations Pδφ‖ . In the lower panel

are (resonant) orthogonal fluctuations Pδφ⊥ . We have plot-
ted Pδφ in units of 1/(a3 m) and comoving k in units of a0 m,

where a0 is the scale factor at φa = m/
√
λ. For λ < 0 (not

shown here) the resonances are interchanged.

In order to simulate the fields, we can use these proba-
bility distributions to draw the fields at a given moment
in time. Of course quantum mechanically, we cannot
specify both χ and Π simultaneously as they do not com-
mute with one another (uncertainty principle). On the
other hand, in order to provide the initial conditions of
a classical simulation, one can draw from both and then
evolve under the classical equations of motion. This nat-
urally loses the non-commutativity of the field and its
momentum conjugate, as is required for a classical simu-
lation. Interestingly, by drawing from both at an initial
time, then evolving under the classical equations of mo-
tion, then repeating and ensemble averaging, one actu-
ally reproduces the correct quantum expectation values
in the linear approximation.
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FIG. 9. Two-dimensional slice of number density fluctuations δn in position space for dimension 4 potentials, with m2 > 0,
λ > 0, and r = 20. The left panel is at an initial time, which is dominated by UV modes (cutoff at kUV = 3 a0 m), associated
with virtual particles-antiparticles. The right panel is at a late time, which is dominated by IR modes that have exponentially
grown, associated with separate regions of real particles and antiparticles. We have plotted δn in units of

√
λn0 and comoving

position in units of 1/(a0 m). For λ < 0 (not shown here) we find qualitatively similar results for the energy density fluctuations
δε.

C. Numerical Results for Distributions

We choose initial conditions of the Bunch-Davies vac-
uum for modes that are deep inside the apparent horizon
during inflation, and evolve numerically. The late time
power spectrum for dimension 4 potentials is given in
Fig. 8 for r = 20. By taking λ > 0 we see the differ-
ence between the behavior of the non-resonant adiabatic
mode (upper panel) and the resonant isocurvature modes
(lower panel). While for λ < 0 (not shown here) we find
the opposite behavior. Since the individual power spec-
tra for δφ oscillate, we have time averaged over a cycle to
give the late time average value. We also see qualitatively
similar behavior for the corresponding power spectra for
the densities δε and δn.

We can use the above probability distributions to draw
sample distributions for the densities. To do so we dis-
cretize on a cubic lattice. We call the box size L3 and
the lattice spacing ∆x. The discrete set of allowed wave
vectors are

k =
2π

L
(mx,my,mz) (97)

where mx,my,mz are integers. The maximum value of
the wave vector components is π/∆x, so the maximum
value of the integers is L/(2∆x).

The field in position space is a stochastic variable and
can be written as

χ(x) =
1

L3

∑
k

χk e
ik·x (98)

where the set of k is given above. The Fourier coefficients
χk are each drawn from the Gaussian distribution

P[χk, t] =
1√

2πσ2
k

exp

[
− |χk|

2

2σ2
k(t)

]
(99)

where the variance is

σ2
k(t) = L3Pχ(k, t) (100)

and the reality condition requires χ∗k = χ−k.
At very early times, the physical wave numbers of in-

terest are given by the Bunch-Davies vacuum and es-
sentially describe a free field in Minkowski space. We
draw on this distribution for the number density δn.
The result appears in the left panel of Fig. 9. This
shows vacuum fluctuations associated with virtual par-
ticles/antiparticles. The Minkowski fluctuations are UV
sensitive, as the field fluctuations have power that goes
as P ∝ 1/k. This leads to a formally infinite variance for
the field in position space 〈χ2〉. We have introduced a
UV cutoff of kUV = 3 a0m in this figure.

At late times, a range of modes grow exponentially.
This is predominantly for relatively low k modes, as de-
scribed earlier. For λ > 0 the corresponding power spec-
tra is given in the lower panel of Fig. 8, which shows that
there is large power at finite wave numbers with some
characteristic scale around k ∼ 0.5 a0m. A realization of
the number density δn is given in the right hand panel of
Fig. 9. This shows that for a complex field the inflaton
fragments into separate regions of φ-particles and anti-
φ-particles. We have plotted δn in units of

√
λn0, where
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n0 is the background density of particles (same as an-
tiparticles) defined as n0 ≡ ε0/m. For r = 20 we see that
the ratio approaches values of several thousand. This is
acceptable since the coupling λ can be very small, so this
can still be in the linear regime where the perturbation
δn is less than the background n0. For higher values of r
the growth is exponentially larger as discussed in Section
V. So this can easily lead to large fragmentation of the
inflaton, which can lead to large nonlinearities beyond
the linear regime.

We also find that qualitatively similar behavior hap-
pens for the energy density perturbations δε when λ < 0.

VII. APPLICATION TO BARYOGENESIS

In the previous sections we studied the behavior of the
inflaton fields after inflation in a class of models orga-
nized by an internal rotational symmetry. The internal
symmetry means that the field carries a conserved par-
ticle number. It is of interest to examine whether this
conserved particle number may be associated with the
late time conserved baryon number.

However, as mentioned earlier, the slow-roll inflation-
ary phase will cause the inflaton to evolve radially in field
space, and the net particle number associated with this
∆N = Nφ − Nφ̄ (number of particles minus antiparti-
cles) vanishes. So in order to produce a non-zero net
particle number, we need to introduce a breaking of the
symmetry. In Refs. [2, 3] some of us developed a method
to achieve this, as an inflationary version of the clas-
sic Affleck-Dine mechanism for baryogenesis. This idea
is particularly appealing as it more easily satisfies con-
straints on cosmological isocurvature fluctuations, that
can otherwise be problematic for low scale Affleck Dine
models. Some interesting follow up works includes [42–
44].

In our previous work [2, 3], only the homogeneous φ0(t)
was considered; here we would like to include corrections
from the inhomogeneous δφ(x, t) that arises from self-
resonance.

A. Inflationary Baryogenesis Models

Lets focus on the case of a complex inflaton field φ. For
canonical kinetic energy and standard gravity, its dynam-
ics are governed by the choice of potential V (φ). Earlier
in this paper, we imposed a global U(1) symmetry on this
potential so that it only depends on the magnitude of φ;
here we relax this. We decompose the potential in terms
of a symmetric piece Vs that respects the U(1) symmetry
and an asymmetric piece Vb that breaks the symmetry

V (φ, φ∗) = Vs(|φ|) + Vb(φ, φ
∗) (101)

where we have made it explicit that the potential now
is a function of 2 variables. We assume that the sym-
metry is weakly broken. This means that the symmetric

piece Vs is the dominant piece of the potential, both dur-
ing and after inflation, and the asymmetric piece Vb is
subdominant. In order to recover the symmetry at late
times, as the field redshifts, we assume the symmetric
piece includes a (positive) mass term

Vs(|φ|) = m2|φ|2 + . . . (102)

where the dots indicate higher order operators, such as
λ|φ|4, that can lead to self-resonance; these higher order
terms are even allowed to dominate at large field values
relevant for inflation. This symmetric potential Vs plays
the same role as the symmetric potential V we studied in
the earlier sections. At large field values, the higher order
terms may organize the potential into one with negative
pressure or positive pressure, as we saw earlier. This then
determines which mode is resonant at long wavelengths.

Lets assume that the breaking term is dominated by a
single operator. We take this to be a power law of the
form

Vb(φ, φ
∗) = λb (φn + φ∗n) (103)

where n ≥ 3 is the operator dimension of the U(1) break-
ing. Since n ≥ 3, and the symmetric piece includes the
quadratic mass term, the symmetry is indeed restored at
late times as the field redshifts to small values.

A couple of possible justifications of this Lagrangian
are as follows: (a) imposing a discrete Zn symmetry,
(b) promoting φ to carry color charge; this allows for
a color singlet operator that breaks the global U(1) as
∼ εijkφ

iφjφk (n = 3) for multiple generations. Each
of these justifications has its own advantages and disad-
vantages. For (a) it nicely organizes the action into the
desired form, but leaves open the question as to the ori-
gin of this discrete symmetry. In (b) it naturally leads
to the n = 3 breaking term, but it is non-trivial to give
the inflaton charge since that will tend to renormalize the
self couplings of the inflaton. Anyhow, a full analysis of
the embedding into microscopic physics is not the focus
of the present paper.

Let us turn our attention to the time evolution. The
full nonlinear equation of motion (including Hubble ex-
pansion) is

φ̈+ 3Hφ̇− ∇
2φ

a2
+
V ′s (ρ)

ρ
φ+ nλb φ

∗n−1 = 0 (104)

(where ρ =
√

2 |φ|). By tracking the evolution of the
complex inflaton, we see that the final term causes an
alteration to the purely radial motion. Then, as demon-
strated in Refs. [2, 3], this leads to a non-zero particle
number, which can later decay to quarks providing a
baryon asymmetry. The details of this final decay are
model dependent.

Since (i) the U(1) symmetry associated with baryon
number is explicitly broken, (ii) the C and CP symme-
tries are spontaneously broken by the inflaton’s VEV,
and (iii) the decay into quarks is out of equilibrium; the
Sakharov conditions for baryogenesis are satisfied.
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B. Weakly Broken Symmetry Approximation

At late times when the symmetry is restored, there is
a conserved net particle number given by

∆N = i

∫
d3x a3(t)

[
φ̇ φ∗ − φ̇∗ φ

]
(105)

In principle, we could solve the full nonlinear equations
of motion for some set of initial conditions, and then
integrate over space to obtain ∆N . However, we would
like to use our previous analysis involving Floquet theory
to obtain an approximation to this.

First, let us take a time derivative of this quantity. We
note that it will not be conserved due to the presence
of the breaking term. It is straightforward to use the
equation of motion for φ to simplify ˙∆N . By integrating
the result, we obtain

∆N(tf ) = i λb n

∫ tf

ti

dt d3x a2(t) [φn(x, t)− φ∗n(x, t)]

(106)
Note that it is proportional to the strength of the break-
ing λb, as it should be. We integrate over time from some
initial early time ti (say the start of inflation, where the
number is negligibly small since the comoving volume is
so small) to some late final time tf . In fact the answer
will asymptote to a constant as tf → ∞ as the particle
number becomes conserved at late times.

Since the expression for ∆N in eq. (106) is proportional
to λb, then for a sufficiently weak breaking of the sym-
metry (small λb) we can evaluate the quantity inside the
integral to zeroth order in λb. That is to say, we can use
the symmetric theory to determine φ as an input into the
integral. This means that the earlier results in this paper
on self-resonance in symmetric theories can be utilized
here to tell us about the net number of particles produced
in asymmetric theories in the weakly broken regime.

As usual we decompose the field into a background
piece and a perturbation. Since we can treat the field
as arising from the symmetric theory, we can take the
background to undergo radial motion as usual. Lets call
the fixed angle in the complex plane of the radial oscil-
lations θi. It is then useful to decompose the field into
background and perturbations φ = φ0 + δφ as follows

φ0(t) =
eiθi√

2
ρ0(t) (107)

δφ(x, t) =
eiθi√

2

(
δφ‖(x, t) + i δφ⊥(x, t)

)
(108)

We substitute this into eq. (106) and expand to leading
non-zero order in δφ. The result for the net number of
particles can be decomposed as

∆N = ∆N0 + ∆Nδ (109)

where ∆N0 is the background contribution and ∆Nδ is
the correction from perturbations. The background piece

FIG. 10. The late time difference in variances 〈δφ2〉 ≡
〈δφ2
‖〉 − 〈δφ2

⊥〉 from the exponential growth of IR modes (the
UV divergence cancels between the 2 terms) as a function of
the dimensionless coupling r for dimension 4 potentials, with
m2 > 0 and λ > 0. We have plotted the variance in units of
m2(a0/a)3 and absorbed an overall negative sign (since the
orthogonal modes are resonant, the difference is negative).

is [2, 3]

∆N0(tf ) = −λb
Vcom n

2
n
2−1

sin(n θi)

∫ tf

ti

dt a3(t) ρn0 (t) (110)

where Vcom is a comoving volume.
At linear order in the perturbations ∼ δφ, the contri-

bution to ∆N vanishes. This is because∫
d3x δφ(x, t) = 0 (111)

as the zero mode is entirely captured by φ0(t), by defini-
tion. This means that the leading non-zero contribution
to ∆N is quadratic in the perturbations ∼ δφ2. It is
useful to take the quantum expectation value of this re-
sult, leading to variances of the fluctuations. We find the
result

∆Nδ(tf ) = −λb
Vcom nC(n, 2)

2
n
2−1

sin(n θi)

×
∫ tf

ti

dt a3(t) ρn−2
0 (t)〈δφ2(t)〉 (112)

The expression 〈δφ2〉 is shorthand for the difference in
the variances 〈δφ2〉 ≡ 〈δφ2

‖〉 − 〈δφ
2
⊥〉. The variances may

be expressed in terms of integrals over the power spectra
as follows

〈δφ2(t)〉 =

∫
d3k

(2π)3

[
Pδφ‖(k, t)− Pδφ⊥(k, t)

]
(113)

where Pδφ‖ , Pδφ⊥ are the power spectra from Section VI
for the symmetric theory. A plot of this finite difference
in variance is given in Fig. 10.
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Due to statistical isotropy, the 3-dimensional integral
over wave-vectors, simplifies to a 1-dimensional integral∫

d3k

(2π)3
→
∫
dk k2

2π2
(114)

Now recall that the dominant exponential instability, if
present, is for relatively low wave numbers. On the other
hand, the asymptotically high wave numbers are deep in
Minkowski space corresponding to mode functions that
evolve circularly in the complex plane. So the power
spectra at high k are approximated by their Minkowski
space values

Pδφ‖(k, t) ≈ Pδφ⊥(k, t) ≈ 1

2 k a2
(115)

Hence each of the individual terms inside the k-integral
in eq. (112) would give rise to a quadratic UV divergence.
However, the difference is finite. A non-zero difference
primarily arises from the finite k regions in the Floquet
chart that carry an instability.

C. Numerical Results for Baryon Asymmetry

We would like to report on results for the parti-
cle/antiparticle asymmetry. A useful measure of asym-
metry comes by defining the asymmetry parameter as the
difference between the particle and antiparticles numbers
∆N = Nφ −Nφ̄ divided by their sum

A ≡
Nφ −Nφ̄
Nφ +Nφ̄

=
nφ − nφ̄
nφ + nφ̄

(116)

where in the latter expression we have recast this in terms
of densities. Now the difference is well defined as it is as-
sociated with a conserved quantity in the weakly broken
limit. However the sum is in general not well defined
in a relativistic theory. However at late times, we enter
the nonrelativistic regime, where it is given through the
energy density as nφ + nφ̄ = ε/m.

Let us begin with the homogeneous approximation.
Using the above expressions, we can write this as

A0 = −cn λb
mn−4

λ
n
2−1

sin(n θi) (117)

where

cn =
n

2
n
2 − 1

∫
dtd a(td)

3ρd(td)
n

a3 εd
(118)

is a type of “asymmetry coefficient”. Here td ≡ mt,
ρd ≡

√
λ ρ0/m, and εd ≡ λ ε/m4 is a dimensionless time,

field, and energy density, respectively. The end point of
integration and the denominator is to be evaluated at late
times. Note that the ratio of couplings in eq. (117) should

be small. For n = 3, the ratio is λb/(m
√
λ); this should

be small so that the breaking term is always subdominant

FIG. 11. The coefficient c4 that controls the homogeneous
asymmetry as a function of the dimensionless coupling r for
dimension 4 potentials, with m2 > 0, λ > 0, and n = 4.

to the quadratic or quartic terms. For n = 4, the ratio is
λb/λ; this should be small so that the asymmetric quartic
term is subdominant to the symmetric quartic term.

We have numerically computed the above integral to
determine the asymmetry coefficient cn. As an example,
we give the result in Fig. 11 for standard dimension 4
inflationary potentials with n = 4. This shows that the
asymmetry grows relatively mildly as we increase r.

The correction from parametric resonance of pertur-
bations arises from computing the integral over time and
wave numbers in eqs. (112, 113). We have carried out
these integrals with the result given in upper panel of
Fig. 12 for standard dimension 4 inflationary potentials.
We have plotted the asymmetry correction ∆Nδ in units
of the homogeneous asymmetry value ∆N0 and rescaled
by λ and absorbed an overall minus sign. This shows that
for these parameters, the asymmetry is reduced (due to
the overall minus sign) relative to the homogeneous ap-
proximation. Also, we see there is exponential sensitivity
to the parameter r. So for large r a full nonlinear treat-
ment would be useful to take into account effects of back
reaction. Nevertheless the numerical results here give a
sense of some of the overall qualitative behavior.

For negative quartic coupling we need to regulate the
potential at large field values. As a concrete example to
illustrate the possibilities, we consider the following toy
potential

Vs(|φ|) =
1
2m

2|φ|2√
1 + |φ|2/Λ2

(119)

and we take m2 > 0. When Taylor expanded around
φ = 0, this gives a positive mass and negative quartic
term with Λ = m/

√
|λ|. The potential grows more slowly

than a quadratic, namely as Vs ∼ |φ| at large field values,
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FIG. 12. The relative correction to the baryon asymmetry
∆Nδ/∆N0 (quantum fluctuations relative to classical back-
ground) as a function of the dimensionless coupling r for two
different kinds of inflationary potentials with n = 4. Up-
per panel is for the dimension 4 potential (with m2 > 0 and
λ > 0). Lower panel is for the toy potential of eq. (119) (an
m2 > 0 and λ < 0 model). We have plotted the relative
correction in units of λ and absorbed an overall minus sign.

which supports a phase of slow-roll inflation. Another
class of toy potentials was mentioned in Part 1 Section V
B 5 [1] for 0 < q < 1; those potentials are motivated by
string axions [46, 47], which do not carry baryon number,
so we do not study them further here. With potential
(119) we numerically solve for the baryon asymmetry,
with the result given in the lower panel of Fig. 12. In this

case the correction is enhanced relative to the background
value.

VIII. CONCLUSIONS

In this paper we have further developed a theory of
self-resonance after inflation from Part 1 [1]. We have
explained the deep reason for the self-resonance behavior
in terms of the underlying description of the quantum
mechanics of many particles.

In the nonrelativistic regime re-organized the theory
into contact interactions between particles and antipar-
ticles, with coupling strength given by λ. For λ > 0 the
particles (and antiparticles) exhibit repulsion, so the ho-
mogeneous configuration established by inflation is stable
against adiabatic perturbations. While for λ < 0 there
is mutual attraction leading to breakup of the homoge-
neous configuration and instability. On the other hand,
the isocurvature modes have very different behavior from
the adiabatic modes. In particular, for λ > 0 the isocur-
vature mode leads to an instability, despite the repulsion
among the particles (and antiparticles). The reason is
that Bose-Einstein statistics favor the particles to clump
with particles and the antiparticles to clump with an-
tiparticles.

We also developed a small amplitude analysis, which
captured not only the long wavelength behavior, but also
the higher band structure, and we explained this in terms
of Feynman diagrams of annihilation and decay, where
appropriate.

We then performed the quantization of our perturba-
tions. As an example we computed the distribution of the
number density of particles minus the density of antipar-
ticles for λ > 0. For strong resonance, we showed that
the inflaton fragments into separate regions of particles
and antiparticles.

Finally, we applied the quantization of the inflaton
fields to the case of particle-antiparticle asymmetry,
which is relevant to some models of baryogenesis [2, 3].
We showed that the symmetric theory can be used to
compute the leading order behavior of the asymmetric
theory in the limit of weak symmetry breaking. We
computed the corrections to the homogeneous theory
from the inhomogeneous theory due to self-resonance.
The result involves an integral over the difference in the
power between the adiabatic modes and the isocurvature
modes. This difference is finite and is dominated by the
resonant modes at relatively long wavelengths.

Altogether, along with Part 1 [1], our work gives a
detailed theory of self-resonance after inflation in single
and multi-field models. In Part 1 [1] we understood the
long wavelength behavior using the Goldstone theorem.
Here we have provided the deep underlying physical un-
derstanding of the entire resonance structure, with the
main structure determined by the attraction/repulsion
of particles.

An interesting direction for future work is to incorpo-



21

rate corrections from possibly large fluctuations of the
metric, and explore gravitational waves production. An-
other direction is to extend this theory by including cou-
plings to other fields beyond the inflaton, such as Stan-
dard Model fields.
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