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We develop a theory of self-resonance after inflation. We study a large class of models involving
multiple scalar fields with an internal symmetry. For illustration, we often specialize to dimension
4 potentials, but we derive results for general potentials. This is the first part of a two part series
of papers. Here in Part 1 we especially focus on the behavior of long wavelengths modes, which
are found to govern most of the important physics. Since the inflaton background spontaneously
breaks the time translation symmetry and the internal symmetry, we obtain Goldstone modes; these
are the adiabatic and isocurvature modes. We find general conditions on the potential for when a
large instability band exists for these modes at long wavelengths. For the adiabatic mode, this is
determined by a sound speed derived from the time averaged potential. While for the isocurvature
mode, this is determined by a speed derived from a time averaged auxiliary potential. Interestingly,
we find that this instability band usually exists for one of these classes of modes, rather than both
simultaneously. We focus on backgrounds that evolve radially in field space, as setup by inflation,
and also mention circular orbits, as relevant to Q-balls. In Part 2 [1] we derive the central behavior
from the underlying description of many particle quantum mechanics, and introduce a weak breaking
of the symmetry to study corrections to particle-antiparticle production from preheating.

I. INTRODUCTION

Cosmological inflation is a successful theory of the
early universe [2–4], which accounts for the approxi-
mately scale-invariant distribution of structures on large
scales. The structures arises from quantum fluctuations
in the inflaton scalar field/s φ by stretching modes to
large scales due to inflation’s exponential expansion. Ev-
idence for inflation is increasing with detailed measure-
ment of the cosmic microwave background radiation [5–
8], and this has motivated the construction of many in-
teresting theoretical models [9–17].

Once inflation has ended, the quantum fluctuations are
no longer exponentially stretched. However, another in-
teresting phenomenon can sometimes come into play. As
the inflaton oscillates back and forth in its potential, it
can cause quantum fluctuations to grow rapidly; an ex-
ample of parametric resonance. For inflationary models,
there can be resonance in daughter fields (preheating)
or to self-resonance in the inflaton field itself. Often in
the literature the focus has been on coupling to daughter
fields.

Various interesting and important work includes
Refs. [18–38]. For example, classic work [18, 19] empha-
sized a coupling of the inflaton φ to a daughter field χ,
with interactions such as∼ g2φ2χ2 or∼ g φχ2, which can
cause explosive growth in χ for some parameter regimes.
Other important possibilities include coupling to gauge
fields [28, 30], abelian or non-abelian, coupling to fer-
monic fields [25, 26], metric preheating [23], and so on.
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On the other hand, self-resonance can occur for potentials
with nonlinearities, including the quartic term ∼ λφ4, as
discussed in [20]. In fact this can lead to coherent struc-
tures, such as oscillons, for negative λ; see [35–37]. Here
we focus on the important issue of self-resonance of the
inflaton, and assume couplings to other fields are small.
We will re-organize the analysis of self-resonance into a
kind of fluid description for long wavelengths, which ap-
pears to go beyond the existing literature.

An important question is whether this self-resonance
is efficient, i.e., whether it causes significant resonance
for some range of k-modes. If so, this can provide a
corresponding enhancement in the power spectrum and
possible fragmentation of the inflaton field. Another im-
portant question is whether these modes are only on very
small sub-Hubble scales, as is usually thought to be the
case in the post-inflationary era, or whether there can
be some enhancement for order Hubble or super-Hubble
scales. In some of the simplest models of single field infla-
tion, such as∼ λφ4, the answer to both of these questions
is in the negative, i.e., the resonance is rather inefficient
[20] and is usually restricted to highly sub-Hubble modes.

This is Part 1 of a series of two papers. In these pa-
pers we consider multi-field inflation models and more
general potentials. This much more general framework is
motivated from the point of view of high energy physics,
as occurs in frameworks such as supersymmetry, string
theory, and beyond. For simplicity, we consider the po-
tential V to carry an internal O(N ) symmetry, so it is

only a function of |~φ|; this may be required by a gauge re-
dundancy or, more likely, due to an approximate global
symmetry. We show that in this class of models, the
resonance is often efficient and is predominantly given
by somewhat long wavelengths. We then investigate the
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conditions under which a large instability band exists for
long wavelengths in the post-inflationary era.

In the presence of multiple fields, there are correspond-
ingly multiple modes of excitations that can potentially
be resonant. In this first paper, we decompose these
modes into the adiabatic and isocurvature modes of the
inflaton and discuss under what conditions either of them
has significant resonance for long wavelengths. We show
that these modes exhibit a gapless spectrum, as required
by the Goldstone theorem. We show that the existence of
an instability in the adiabatic mode can be derived from
a sound speed associated with the pressure and density
of the background, while the existence of an instability
in the isocurvature mode can be derived from a speed
associated with the pressure and density of an auxiliary
background that we define. We find that the isocurva-
ture mode can lead to enhanced power on especially long
wavelengths.

Finally, we study the case of two fields, and organize
the inflaton into a complex scalar. For background circu-
lar motion in the complex plane, we derive the conditions
for breakup towards so called Q-balls.

In Part 2 [1], we show that for potentials that give rise
to an unstable isocurvature mode, the inflaton fragments
into regions of particles and antiparticles. As an ap-
plication, we connect our analysis to inflationary baryo-
genesis models as formulated by some of us recently in
Refs. [39, 40]. In particular, we allow for a small break-
ing of the internal symmetry and derive corrections to
the particle asymmetry, which may be responsible for
the late time baryon asymmetry.

The outline of this paper is as follows: In Section II
we present the class of models under investigation and
outline its equations of motion and Floquet theory. In
Section III we numerically solve the problem for dimen-
sion 4 potentials built out of a quadratic mass term and a
quartic interaction term. In Section IV we derive a type
of auxiliary potential that controls the behavior of the
isocurvature modes. In Section V we derive the general
conditions on the potential for when an instability ex-
ists at long wavelengths. In Section VI we explore back-
grounds that are circular in the complex field plane. In
Section VII we discuss our findings and conclude. Fi-
nally, in Appendix VIII we generalize the analysis to
non-canonical kinetic terms.

II. SYMMETRIC THEORIES

Inflation is a theory of the early universe driven by one
or more scalar fields coupled to gravity. Let us consider
N scalar fields. For convenience, we organize them into
a vector

~φ = {φ1, . . . , φN } (1)

In the case of two scalar fields, it is often useful to orga-
nize φ into a complex scalar as follows

φ =
φ1 + iφ2√

2
(2)

We shall focus on this complex field later, but more gen-
erally we shall focus on an arbitrary number of fields N .

The inflationary action is, in general, some effec-
tive field theory, since gravitation is known to be non-
renormalizable in 4 dimensions. A reasonable assump-
tion is that all higher order derivative corrections are
suppressed by a sufficiently large mass scale that they
can be ignored. This allows us to simply focus on the
leading order two-derivative action. The most general
form of the action may then be written as (signature
−+ ++, units ~ = c = 1)

S =

∫
d4x
√
−g
[
M2
Pl

2
R− 1

2
Gij(~φ)∂µφ

i∂µφj − V (~φ)

]
(3)

where MPl ≡ 1
√

8πGN is the reduced Planck mass. Here
we have expressed the action, without loss of generality,
in the Einstein frame where the gravity sector is canon-
ical. The matrix Gij is the metric on field space, which
in general leads to a type of non-linear sigma model. In
Appendix VIII we consider general forms for the kinetic
energy. For now we restrict attention to canonical kinetic
energy with

Gij = δij (4)

We note that this approximation is technically natural.
That is, if we assume the kinetic term is canonical, we
find that the quantum corrections tend to be small. The
reason is that this form of the kinetic term is broken
only by interactions between the fields in the potential
sector, which are suppressed by the strength of the cou-
plings; these couplings are typically small to achieve mod-
els of inflation with∼ 10−10 level variance in fluctuations,
though there can be exceptions.

Our freedom then lies in the choice of the potential

V (~φ). For simplicity we consider models that carry an
internal rotational symmetry

φi → Rij φ
j (5)

where R is a rotation matrix acting on field space. For-
mally this implies an O(N ) symmetry and the potential

may be written as V (~φ) = V (|~φ|). This group of sym-
metries may, for instance, be enforced by a gauge redun-
dancy (“gauge symmetry”). It is non-trivial, however,
to charge the inflaton since one then needs to explain
why the inflaton’s self interactions are small enough to
ensure the ∼ 10−10 level variance in fluctuations; though
it is conceivable. Another possibility is simply to appeal
to an approximate global symmetry. In Part 2 [1] we
introduce a small breaking of this global symmetry and
show how to utilize results from the symmetric theory to
obtain the leading order corrections to the generation of
particle number and baryogenesis.
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A. Background Evolution

Inflation inevitably forces the background space-time
to a flat FRW metric

ds2 = −dt2 + a(t)2dx2 (6)

where a(t) is the scale factor. Furthermore, in the slow-
roll phase of inflation, any angular motion in field space
will be redshifted away. This results in essentially radial
motion in field space. This is an attractor solution of
inflation due to the internal symmetry in field space.

This purely radial motion for the background shall be
denoted by the field φ0(t). We can, without loss of gen-
erality, orient our field space co-ordinates, such that the
background points along the φN direction, i.e.,

~φ0(t) = {0, . . . , 0, φ0(t)} (7)

This background field satisfies the equation of motion

φ̈0 + 3Hφ̇0 + V ′(φ0) = 0 (8)

where H = ȧ/a is the Hubble parameter. During slow-
roll inflation, the second and third terms here dominate.
After inflation, as is the focus of this work, the first and
third terms dominate and the second “friction” term is
sub-dominant.

B. Linearized Perturbations

We shall denote the φN direction as “parallel” since it
is parallel to the background. The other N −1 directions
shall be denoted as “orthogonal” since they are orthog-
onal to the background. We can then expand the field
around the background as

~φ(x, t) = ~φ0(t) + δ~φ(x, t) (9)

where

δ~φ(x, t) = {δφ⊥1(x, t), . . . , δφ⊥N−1(x, t), δφ‖(x, t)}(10)

Expanding the scalar field equations to linear order, the
equations of motion for these perturbations are found to
be

¨δφ‖ + 3H ˙δφ‖ +

(
k2

a2
+ V ′′(φ0)

)
δφ‖ = G (11)

¨δφ⊥i + 3H ˙δφ⊥i +

(
k2

a2
+
V ′(φ0)

φ0

)
δφ⊥i = 0 (12)

where we have Fourier transformed to k-space. For the
orthogonal components, we have included an “i” index,
where i runs over i = 1, . . . ,N − 1; each equation carries
the same structure due to the symmetry. If we ignore
linear corrections to the metric, then we have G = 0, and
the right hand side of eq. (11) becomes trivial. Otherwise,
we can include linear corrections to the metric, whose

form depends on gauge. For example, one can work in
a gauge with flat hypersurfaces, and one finds that local
gravity gives rise to the following correction on the right
hand side [41]

G =
1

a3M2
Pl

d

dt

(
a3φ̇20
H

)
δφ‖ (13)

We will comment on corrections from local gravity fur-
ther in Part 2 [1]. We note that there are no such cor-
rections from local gravity to the orthogonal modes in
eq. (12); this is associated with the fact that these are
isocurvature modes, as we will explain later.

C. Floquet Theory for Self-Resonance

The above set of equations can, in principle, be directly
solved numerically. However a tremendous amount of
analytical and semi-analytical progress can be made with
an appropriate simplification, as we now describe.

After inflation has ended, the Hubble friction term be-
comes sub-dominant to the other terms in these equa-
tions. This is true for both the background equation and
the perturbation equations. The Hubble term is then
primarily responsible for a type of slow redshifting of the
fields. This effect shall be incorporated in Part 2 [1].
For now, we shall focus on time scales short compared to
the Hubble time. On these time scales, the background
field φ0 oscillates rapidly back and forth in the poten-
tial V . This means that to a good approximation φ0(t)
is periodic. Furthermore, in the eqs. (11, 12) the back-
ground will provide a periodic pump for the perturba-
tions through the terms V ′′(φ0(t)) and V ′(φ0(t))/φ0(t).

In fact an approximate way to handle the expansion is
to re-scale the fields by defining φ̃ ≡ a3/2φ, which cap-
tures the overall red-shifting of the field. The effective
mass can be re-defined appropriately, although the final
result still carries some mile red-shift dependence. With
this in mind, the essential physics is captured by for-
mally sending H → 0 and a → 1, and then each of the
perturbation equations become a form of Hill’s equation.
We will reinstate these red-shifting effects in Part 2 [1].
So we are led, to good approximation, to a form for the
perturbations as

δ̈φ+ h(t)δφ = 0 (14)

where h(t) is the appropriate periodic pump. In our cases
of interest it is given by

h(t) =

{
k2 + V ′′(φ0(t)) for δφ‖
k2 + V ′(φ0(t))

φ0(t)
for δφ⊥

(15)

It is convenient to write the second order equation of
motion as a pair of first order equations of motion. To do
this, let’s define δπ ≡ ˙δφ. Then Hill’s equation becomes

d

dt

(
δφ
δπ

)
=

(
0 1
−h(t) 0

)(
δφ
δπ

)
(16)
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According to Floquet theory, the late time behavior of
this system is determined by the eigenvalues of a certain
matrix that we now describe.

Firstly, a complete basis of solutions comes from con-
sidering the following sets of initial conditions(

δφ(ti)
δπ(ti)

)
=

(
1
0

)
,

(
δφ(ti)
δπ(ti)

)
=

(
0
1

)
(17)

We organize this space of initial conditions into a ma-
trix. We then numerically evolve this matrix through
one period T of the background pump, giving an output
matrix, we call M . The evolution through n periods is
then determined by the matrix Mn. For arbitrary initial
conditions, the solution after time t (assuming t is an
integer multiple of the period T ) is given by(

δφ(t)
δπ(t)

)
= M t/T

(
δφ(ti)
δπ(ti)

)
(18)

The matrix M can be diagonalized in the standard way

M = S DS−1 (19)

where S is a matrix formed from the eigenvectors of M ,
and D is a diagonal matrix comprised of the eigenvalues
λ1, λ2 of M . One can prove that the determinant of M
must be 1, so λ = λ1 = 1/λ2. The evolution can then be
written as(

δφ(t)
δπ(t)

)
= S

(
eµkt 0

0 e−µkt

)
S−1

(
δφ(ti)
δπ(ti)

)
(20)

where we have written the time dependence in terms of
an exponential ∼ exp(µkt), where µk is the so called
Floquet exponent

µk =
1

T
log(λ) (21)

We have introduced a k subscript to indicate that the
value of the Floquet exponent depends on wavenumber.
If the real part of µk is non-zero, then there is exponential
growth of perturbations. Otherwise, if µk is purely imag-
inary, then there is only oscillatory, or stable, evolution
of perturbations.

III. MOTIVATION FROM DIMENSION 4
POTENTIALS

Let us begin by considering the regime well after in-
flation where the potential is well approximated by its
leading order operators. Since the potential is assumed
to carry an internal rotational symmetry, we can expand
it as

V (~φ) = V0 +
1

2
m2|~φ|2 +

λ

4
|~φ|4 + . . . (22)

For sufficiently small field amplitudes, these leading di-
mension 4 terms will dominate the dynamics. Such a

regime will normally arise after a sufficient amount of
redshifting has occurred. A counter example would be if
some of the above coefficients happen to vanish; we will
consider this possibility in Part 2 [1]. For large ampli-
tudes, higher order corrections to the potential may be
important (we mention some examples in Section V B 5).

We will explore the various possibilities, including λ >
0 and λ < 0. In the latter case, higher order terms are
necessarily important to ensure stability of the potential
relevant for inflation. We will normally focus on a regular
mass term m2 > 0, but will discuss the tachyonic case
m2 < 0 also. The constant term V0 will be chosen to
ensure the vacuum energy is zero (the late time dark
energy is irrelevant in this early era). So for m2 > 0, we
choose V0 = 0, and for m2 < 0, we choose V0 > 0.

For now we truncate the potential to purely dimension
≤ 4 terms and numerically solve for the corresponding
Floquet exponent using the method of Section II C.

A. Positive vs Negative Quartic Behavior

We begin by considering a regular mass term m2 > 0,

so the potential’s minimum is at ~φ = 0. We compare the
cases in which the quartic coupling λ is either positive or
negative.

The background field φ0(t) evolves under the equation
of motion

φ̈0 +m2φ0 + λφ30 = 0 (23)

This oscillates with some amplitude φa. We note that
in the case in which λ < 0, the potential exhibits a hill-
top, so there is a maximum amplitude. This is given by
φa,max = m/

√
|λ|. A natural dimensionless measure of

the amplitude is

Φa ≡
φa
√
|λ|

m
(24)

with Φa,max = 1 when λ < 0.
The linearized perturbations solve Hill’s equation with

h function

h(t) =

{
k2 +m2 + 3λφ20(t) for δφ‖
k2 +m2 + λφ20(t) for δφ⊥

(25)

We have numerically solved for the corresponding Flo-
quet exponents, with results for the real part of µk given
in Fig. 1.

In the left hand panel we have λ > 0 and in the right
hand panel we have λ < 0. In these contour plots we have
rescaled the Floquet exponent µk to a certain dimension-
less quantity involving Hubble and the Plank mass MPl.
Although we have ignored Hubble in the analysis, it is
still useful to rescale µk by its value. We will discuss
these details in Part 2 [1]. The Hubble parameter H is
given from the Friedmann equation as

H2 =
1

3M2
Pl

V (φa) (26)
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FIG. 1. Contour plot of the real part of Floquet exponent µk for dimension 4 potentials as a function of wavenumber k and
background amplitude φa with m2 > 0. Left panel is λ > 0 and right panel is λ < 0. Upper panel is δφ‖ and lower panel is

δφ⊥. We have plotted µk in units of rH where r ≡
√
|λ|MPl/m, k in units of m, and φa in units of m/

√
|λ|.

where we have evaluated the energy density at the am-
plitude of an oscillation, which is therefore purely given
by the potential energy. This naturally introduces the
Planck scale, which for the present purposes we would
like to scale out. As we discuss in Part 2 [1], the dimen-
sionless parameter that controls the amount of resonance
in the problem is r ≡

√
|λ|MPl/m. In Fig. 1 we plot the

variable µk/(rH), which scales out all physical parame-
ters in the problem.

The resulting difference between positive and negative
λ should be clear from Fig. 1. For λ > 0 we see a total of
two bands that show up clearly. In the upper panel is a
thin band that begins for small amplitude at k =

√
3m

and bends to the right; we shall explain this structure in
Part 2 [1]. In the lower panel we see a thick band that
begins at small amplitude at k = 0. This band continues
to exists for small k for any amplitude; we shall explain
this structure in Section V.

For λ < 0 we again see a total of two bands that show
up clearly. In the upper panel is a thin band that again
begins for small amplitude at k =

√
3m and bends to

the left; we shall explain this structure in Part 2 [1]. In
the upper panel we also see a thick band that begins at
small amplitude at k = 0. These bands only make sense
up to the maximum amplitude Φa, but in this regime the
band continues to exists for small k for any amplitude;
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we shall explain this structure in Section V. Finally, in
the lower panel, there is no additional instability.

B. Adiabatic vs Isocurvature Behavior

In the previous discussion we saw that there are two
prominent instability bands; a rather thick band at small
k and a thin band that begins at k =

√
3m (there should

be even much thinner bands at higher k also). This is
true whether λ is positive or negative. This gives the im-
pression that positive or negative is qualitatively similar.

We would like to discuss that in fact there is a huge
qualitative and quantitative difference between the pos-
itive and negative λ cases. This is associated with the
character of the modes that are being resonant. In par-
ticular, let us focus on the dominant thick band that
extends towards k = 0. This band is associated with
δφ⊥ for λ > 0 and δφ‖ for λ < 0. These two classes of
fluctuations are physically very different. In fact, as we
will discuss in detail in Section V, the δφ‖ fluctuation is
associated with an adiabatic mode, while the δφ⊥ fluc-
tuations are associated with isocurvature modes. The
adiabatic mode is characterized by a density perturba-
tion, while the isocurvature mode is characterized by a
conserved number density perturbation; we shall clarify
all these details in Section V. Hence the sign of λ deter-
mines whether it is the adiabatic or isocurvature modes
that are resonant for long wavelengths. In this paper we
shall get to the bottom of this interesting observation.

As a consequence of these numerical results, it follows
that in this case of a single field with λ > 0, there would
be no isocurvature mode, and hence relatively little insta-
bility. This is the classic observation that pure ∼ λφ4 in-
flation leads to inefficient resonance, as mentioned in the
introduction. On the other hand, when there are mul-
tiple fields driving inflation, there will exist isocurvature
modes, and hence there can be significant self-resonance
even in classic models with λ > 0.

C. Negative Mass Squared Behavior

For λ > 0 another possibility arises by allowing a
tachyonic mass m2 < 0. This gives rise to a type of
Higgs potential. Here we choose V0 = m4/(4λ) in order
to bring the energy density at the true vacuum to zero.

The numerical results for the Floquet exponent in this
case is given in Fig. 2. Here we have chose the dimension-
less amplitude Φa to be in the domain Φa ≥ 1, i..e., the
field amplitude can be taken to be greater than or equal
to the field’s vacuum expectation value φvev = |m|/

√
λ.

We see that for the adiabatic mode δφ‖, the instabil-
ity now begins at small amplitude at k = 0, and for the
isocurvature mode δφ⊥, the instability at small ampli-
tude now begins at k = |m|/

√
2; as we will explain in

Part 2 [1].

FIG. 2. Contour plot of the real part of Floquet exponent µk

for dimension 4 potentials as a function of wavenumber k and
background amplitude φa with m2 < 0 and λ > 0. Upper
panel is for δφ‖ and lower panel is for δφ⊥. We have plotted

µk in units of rH where r ≡
√
λMPl/|m|, k in units of |m|,

and φa in units of |m|/
√
λ.

Furthermore, we see the complementary behavior that
for small k, there is either stability/instability above the

point φa =
√

2 |m|/
√
λ. This is the critical amplitude

beyond which the field oscillates across the full double
well potential. While for |m|/

√
λ < φa <

√
2 |m|/

√
λ

the background only oscillates on one side of the double
well. This alters the effective sign of a type of pressure
associated with the background; we shall discuss these
sorts of matters and define the pressure in Section V.
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IV. AUXILIARY POTENTIAL FOR
ISOCURVATURE MODES

In the previous section we showed numerical evidence
that there is a significant difference between the behavior
of the adiabatic modes and the isocurvature modes. This
is especially true with regards to the existence or non-
existence of a large instability band at long wavelengths.

In the next section we will show how the behavior at
long wavelengths of the adiabatic mode can be derived
from a sound speed associated with the pressure and den-
sity of the background. Since this analysis will be so
physical and intuitive, we would like to be able to dis-
cuss the isocurvature modes in a similar way. It is there-
fore important to be able to re-organize the equations
that govern the isocurvature modes into a form that re-
sembles those of the adiabatic modes. This will require
the construction of a type of auxiliary potential for the
isocurvature modes that we now describe.

A. Correspondence between Modes

Recall the forms of the Hill’s functions h from eq. (25).
We see that the h driving the adiabatic mode δφ‖ is re-
lated to the h driving the isocurvature mode δφ⊥ by the
replacement

V ′′(φ0)→ V ′(φ0)

φ0
(27)

We would like to bring the second expression into the
same form as the first. To do so we need to construct an
auxiliary potential Ṽ , with background solution φ̃0, for
the isocurvature mode that satisfies

Ṽ ′′(φ̃0) =
V ′(φ0)

φ0
(28)

It is important to note that the primes here refer to each
potential’s respective arguments.

The equation of motion for φ̃0 is, by definition, the
standard equation of motion with respect to its potential
Ṽ (again ignoring Hubble)

¨̃
φ0 + Ṽ ′(φ̃) = 0 (29)

Lets take a time derivative of this equation and use the
chain rule

...
φ̃0 + Ṽ ′′(φ̃)

˙̃
φ = 0 (30)

Then substituting eq. (28) into this, we see that this cor-
responds to the equation of motion for φ0 if we identify
φ̃0 as being related to φ0 in the following way

˙̃
φ0 =

φ0

t̃
(31)

where t̃ is an arbitrary (non-zero) constant with units of
time, whose value can be selected by convenience. Equiv-
alently, this relationship can be solved for φ̃0 as

φ̃0(t) =
1

t̃

∫ t

dt′ φ0(t′) (32)

Another way to see this relationship between the pump
φ0(t) that controls the adiabatic mode and the pump

φ̃0(t) that controls the isocurvature mode is as follows:
In Section V we will relate δφ‖ to the energy density
perturbation δε, and relate δφ⊥ to the number density
perturbation δn; these definitions and relationships shall
be discussed there. We find that (again ignoring Hubble
expansion for now) the linearized equations of motion for
these perturbations are

δ̈ε− 2
φ̈0

φ̇0
δ̇ε+ k2δε = 0 (33)

δ̈ni − 2
φ̇0
φ0

˙δni + k2δni = 0 (34)

where we are again in k-space. So we see quite directly
that to pass from δε to δn requires replacing φ̇0 by φ0 (up
to a multiplicative constant) in agreement with eq. (31).
In fact one can go further and construct a quadratic ac-
tion for each of these physical variables of the form

S[δ] =

∫
d4x

1

f2(t)

[
1

2
δ̇2 − 1

2
(∇δ)2

]
(35)

where f(t) ∝ φ̇0(t) for δ → δε and f(t) ∝ φ0(t) for
δ → δn, again showing the correspondence.

B. Integral Form for General Potentials

We now show how to solve for the auxiliary potential
Ṽ for any potential V . For simplicity, we assume that
the true minimum of the potential is at φ = 0. How-
ever, an extension to the tachyonic mass m2 < 0 cases is
straightforward.

Firstly, since the potential V is assumed to carry an
internal rotational symmetry, it should be some series in
φ20, rather than having any odd powers of φ0. To make
this explicit, it is useful to introduce the variable

ξ0 ≡
1

2
φ20 (36)

where the factor of 1/2 is for convenience. Using the
chain rule, eq. (28) may be rewritten as

Ṽ ′′(φ̃0)− ∂V

∂ξ0
= 0 (37)

Using the relationship (31) and the conservation of en-

ergy of the φ̃0 field, we can rewrite ξ0 as

ξ0 =
1

2
t̃2

˙̃
φ2 = t̃2(Ṽ (φ̃a)− Ṽ (φ̃0)) (38)
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where we have introduced the amplitude of the φ̃0 oscil-
lations as φ̃a. Using the chain rule, we can then rewrite
(37) as

Ṽ ′′(φ̃0) +
1

t̃2
∂V

∂Ṽ
= 0 (39)

Now this has the structure of an equation of motion for
Ṽ as a function of φ̃ driven by a potential V/t̃2. Such an
equation always possesses a first integral, which is

1

2
Ṽ ′(φ̃0)2 +

1

t̃2
V
(
t̃2(Ṽ (φ̃a)− Ṽ (φ̃0))

)
=

1

2
Ṽ ′(φ̃a)2 (40)

Now using the equation of motion evaluated at φ̃0 = φ̃a

(where
˙̃
φ0 = 0) we obtain

1

2
Ṽ ′(φ̃a)2 =

1

t̃2
V (ξa) (41)

and the relationship between the amplitudes is

Ṽ (φ̃a) =
ξa

t̃2
(42)

Inserting this into (40) allows us to construct the follow-
ing integral solution∫ Ṽ

0

dṽ√
2V (ξa)− 2V (ξa − t̃2ṽ)

=
φ̃0

t̃
(43)

Note that in the integrand, the symbol ṽ is the “dummy
variable” of integration. In principle, for a given choice
of V and amplitude φa, this integral can be performed
and inverted to find the auxiliary potential Ṽ = Ṽ (φ̃0).
It is important to note that such a potential will depend
on the choice of amplitude φa.

C. Application to Dim 4 Potentials

Let us illustrate this with the dimension 4 potentials
we analyzed in Section III. Recall that (for m2 > 0) the
potential is

V (φ) =
1

2
m2φ2 +

1

4
λφ4 (44)

When rewritten in terms of the ξ variable, this is V (ξ) =
m2ξ+λ ξ2. We substitute this into the integral solution of
eq. (43) and carry out the integral. We find the integral is
an inverse cosine. Upon inversion, the resulting auxiliary
potential for the isocurvature modes is

Ṽ (φ̃) =
m2 + λφ2a

2λ t̃2

(
1− cos(

√
2λ t̃ φ̃)

)
(45)

This representation is useful for λ > 0. While for λ < 0
we can rewrite it as

Ṽ (φ̃) =
m2 − |λ|φ2a

2|λ| t̃2
(

cosh(
√

2λ t̃ φ̃)− 1
)

(46)

Also the auxiliary field amplitude φ̃a can be determined
from the original physical field’s amplitude φa by

φ̃a =
1√
2λ t̃

tan−1

(√
2λφ2a
m2

+
λ2φ4a
m4

)
(47)

When λ < 0 this becomes an inverse hyperbolic tangent
function.

A plot of the original potential V that controls the adi-
abatic mode and the auxiliary potential Ṽ that controls
the isocurvature modes is given in Fig. 3 for λ > 0 (left
panel) and λ < 0 (right panel). We see the complemen-
tary behavior of the potentials. Compared to a quadratic
potential ∼ 1

2m
2φ2, for λ > 0, V grows more quickly and

Ṽ grows more slowly, while for λ < 0, V grows more
slowly and Ṽ grows more quickly.

For small amplitudes, φa � m/
√
|λ|, we can Taylor

expand the auxiliary potential Ṽ . For convenience we
pick t̃ = 1/m and we find

Ṽ (φ̃) =
1

2
m2φ̃2 − 1

12
λ φ̃4 + . . . (48)

Comparing eq. (44) to eq. (48) we see that the quartic
coupling λ has been effectively replaced by

λ→ −λ
3

(49)

We shall also see derive this result from a small amplitude
analysis in Part 2 [1].

V. GENERAL ANALYSIS FOR LONG
WAVELENGTH MODES

In this Section we show that the shape of the above
potentials (V and Ṽ ) rather directly determines the exis-
tence or non-existence of a large instability band at long
wavelengths. To do so we first discuss the physical struc-
ture of the modes and then prove general results about
their behavior based on pressure and density arguments.

A. Goldstone Modes

The oscillating background ~φ0(t) breaks two impor-
tant symmetries of the underlying theory. Firstly, since
it is time dependent, it breaks time translation symmetry.
Secondly, since its motion is radial, it must choose some
direction in field space and hence it breaks the internal
rotational symmetry. This has important consequences
at long wavelengths. The low energy states of the the-
ory are subject to the Goldstone theorem, which requires
that each of these broken symmetries is associated with
massless modes.

Note that the theorem applies to the low energy, or “ef-
fective” theory, which is applicable at long wavelengths.
In order to construct the effective theory, we shall have to
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FIG. 3. Potential function for the dimension 4 theory with m2 > 0. Left panel is λ > 0 and right panel is λ < 0. The blue
curves are the fundamental potentials V (φ), the red curves are the auxiliary potentials Ṽ (φ̃), and the black dashed curves are

the quadratic potentials ∼ 1
2
m2φ2. We have taken t̃ = 1/m and fixed φa to be small to define the Ṽ function.

perform a type of time averaging in order to coarse grain
the system sufficiently; we shall see this in the upcoming
Sections V B, V C.

The associated massless (or “gapless”) modes are as-
sociated with the corresponding conserved quantities.
In particular, the Goldstone mode associated with the
breaking of time translation symmetry is the energy den-
sity δε, since the integrated energy density is conserved;
this is an adiabatic mode. While the Goldstone modes
associated with the breaking of the internal rotational
symmetry are the number densities δni, since the inte-
grated number densities are conserved; these are isocur-
vature modes. We shall rigorously count the number of
these isocurvature modes and construct all these various
quantities carefully in the next subsections.

B. Adiabatic Mode δε

Let us begin be constructing the full energy density

stored in the field ~φ. It is given by

ε =
1

2
|~̇φ|2 +

1

2
|∇~φ|2 + V (~φ) (50)

where we allow for N fields and a potential V that car-
ries an internal symmetry, as before. The homogeneous
background energy density is given by

ε0 =
1

2
φ̇20 + V (φ0) (51)

where the field ~φ0 is assumed to point in a specific direc-
tion, such as eq. (7).

The first order perturbation is given by

δε =

(
φ̇0

∂

∂t
+ V ′(φ0)

)
δφ‖ (52)

We see that the energy density is some linear time de-
pendent operator acting on the parallel perturbation δφ‖
and is independent of the orthogonal perturbations δφ⊥i
at this order. Instead we shall see that δφ⊥i is relevant
for the modes of Section V C. Hence perturbations in
δφ‖ cause energy density perturbations without affecting
the relevant abundance of particle species. So this is, by
definition, an adiabatic mode.

1. Equation of Motion

We would like to construct a second order equation of
motion for the energy density perturbation δε. To do
so we take time derivatives of the expression for δε in
eq. (52). The first time derivative can be written as

δ̇ε =
(
φ̈0 + V ′(φ0)

)
˙δφ‖ +

(
δ̈φ‖ + V ′′(φ0)δφ‖

)
φ̇0 (53)

The first term in parenthesis vanishes by the equation of
motion for φ0, while the second term in parenthesis can
be simplified by the equation of motion for δφ‖. This
gives

δ̇ε = −k2φ̇0δφ‖ (54)

We now take another time derivative giving

δ̈ε = −k2φ̈0δφ‖ − k2φ̇0 ˙δφ‖ (55)
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We now use eq. (52) to eliminate φ̇0 ˙δφ‖ and the equation

of motion for φ0 to eliminate φ̈0, giving

δ̈ε+ k2(δε− 2V ′(φ0)δφ‖) = 0 (56)

This now begins to take on the form of a wave equa-
tion for δε (recall k2 → −∇2) for a massless mode, how-
ever the term V ′(φ0)δφ‖ prevents this from being pre-
cise. One way to proceed, is to now eliminate δφ‖ using
eq. (54). This leads to eq. (33) that we mentioned earlier.
However, in order to organize this properly into a wave
equation, we prefer to keep this form of the second order
equation for δε and proceed to do some form of coarse
graining, as we now describe.

2. Time Average

In this context, coarse graining means to average over
sufficiently long time scales; this loses information for
high k (high frequency modes) but allows us to probe the
long wavelength physics. To do this we perform a time
average of eq. (56) over one period of the background.

Now, in the infinite wavelength limit, δε becomes uni-
form in space and therefore it must be constant in time
since energy is conserved. This means that for sufficiently
long wavelengths, δε should be slowly varying in time
compared to δφ‖; the energy density is plotted later in
Fig. 6 where we see its slow evolution in the upper right
panel, compared to the rapid oscillations in the parallel
fluctuations in the upper left panel. Hence when we av-
erage over the rapid oscillation of the background φ0(t)
there will be negligible alteration in δε, i.e.,

〈δε〉 ≈ δε (57)

On the other hand, we have to be very careful when we
time average the term V ′(φ0)δφ‖ in eq. (56), since both
V ′(φ0) and δφ‖ are rapidly varying in time; ahead in
Fig. 6 we plot this rapid of oscillation of δφ‖ in the upper
left panel. So we have

δ̈ε+ k2(δε− 2〈V ′(φ0)δφ‖〉) = 0 (58)

Now the term that we require to time average is multi-
plied by k2. So at long wavelengths, we may evaluate
this quantity in the k → 0 limit, for otherwise we would
be tracking sub-leading corrections. In this limit, such a
quantity can only be a function of the amplitude that we
let φ fall from; this is a combination of the background
amplitude φa and a perturbation. Similarly, the energy
density itself is only a function of the amplitude in this
long wavelength limit. Hence we must be able to trade
one for the other. Using a type of “chain rule” this is

〈V ′(φ0)δφ‖〉 =
d〈V 〉
d〈ε0〉

δε (59)

where 〈V 〉 and 〈ε0〉 are the time average of the potential
and energy density evaluated on the background solution

φ0, respectively. Substituting this into (58) gives

δ̈ε+ k2
(

1− 2
d〈V 〉
d〈ε0〉

)
δε = 0 (60)

which is indeed of the form of a wave equation. Note that
by construction, the time averaged quantities in brackets
here are time and space independent.

3. Sound Speed cS

Now it is useful to express the above derivative in terms
of a more physical quantity; the time averaged pressure.
The time averaged pressure and energy density of the
background are given by

〈p0〉 =

〈
1

2
φ̇20

〉
− 〈V 〉 (61)

〈ε0〉 =

〈
1

2
φ̇20

〉
+ 〈V 〉 (62)

So the difference is

〈p0〉 − 〈ε0〉 = −2〈V 〉 (63)

A derivative with respect to 〈ε0〉 evidently gives

c2S = 1− 2
d〈V 〉
d〈ε0〉

(64)

where

c2S ≡
d〈p0〉
d〈ε0〉

(65)

is the sound speed squared. Substitution into eq. (60)
leads to the sound wave equation

δ̈ε+ c2S k
2 δε = 0 (66)

This proves that indeed the adiabatic perturbations have
a gapless spectrum, even though the field fluctuations δφ‖
generally do not.

This shows that stability or instability of δε is deter-
mined by the value of the squared sound speed c2S . If
c2S > 0, then long wavelengths modes will oscillate. On
the other hand, if c2S < 0, then long wavelengths modes
will grow exponentially. Indeed we can identify the Flo-
quet exponents as

µk = ± i cS k (67)

We see that the strength of the instability vanishes in the
k → 0 limit, but this band can still be very important at
small, but finite k, as we saw numerically in the previous
section.

Now in order to evaluate c2S we need a recipe to evalu-
ate 〈ε0〉 and 〈p0〉. It is useful to express these as functions



11

of the amplitude of oscillation φa. For the energy density
〈ε0〉 it is trivial because energy is conserved, giving

〈ε0〉 = V (φa) (68)

For the pressure 〈p0〉 it is more non-trivial since pressure
oscillates throughout the background cycle. Using (63)
we may write it as

〈p0〉 = V (φa)− 2

T (φa)

∫ T (φa)

0

dt V (φ0(t)) (69)

where T is the period of the pump and
∫ T
0
dt V is the

integrated potential over a cycle. Using the equations of
motion, they can be expressed as

T (φa) =

∫ φa

φb

dφ0
√

2√
V (φa)− V (φ0)

(70)∫ T (φa)

0

dt V (φ0(t)) =

∫ φa

φb

dφ0
√

2V (φ0)√
V (φa)− V (φ0)

(71)

where φb is the amplitude the field reaches on the other
side of its potential. For most applications, we will
consider expanding around a symmetric point, giving
φb = −φa, but if we consider the m2 < 0 case, then
the relationship is more complicated.

Then with the (time averaged) pressure and energy
density given as function of amplitude φa the sound speed
square can be computed using the chain rule

c2S =
d〈p0〉
dφa

·
(
d〈ε0〉
dφa

)−1
(72)

Since energy density is taken to be an increasing function
of amplitude, the sign of c2S is determined by the sign
of the derivative of pressure with respect to amplitude.
This leads to a very physical understanding of the fate of
the adiabatic mode: If pressure increases with amplitude,
the mode is stable. If pressure decreases with amplitude,
the mode is unstable. Furthermore, since the vacuum
energy is taken to be zero, then the pressure is zero for
zero amplitude. Hence, for small amplitudes, this can be
expressed even more simply as: positive pressure implies
stability and negative pressure implies instability.

4. Application to Dim 4 Potentials

Let us apply this formalism to the dimension 4 poten-
tials of Section III. For now we consider m2 > 0, the
vacuum energy V0 = 0, and allow λ to be either positive
or negative. The potential is then given by eq. (44). The
sign of λ should determine stability as it determines the
sign of the pressure.

We are able to express the above integrals for 〈p0〉 in
eq. (69) in terms of elliptic integrals. After doing so, we
find the following result for the sound speed as a function
of amplitude

c2S =
(2m2 + λφ2a)[m2E(ζa)− (m2 + λφ2a)K(ζa)]2

3λφ2a(m2 + λφ2a)2K(ζa)2
(73)

where

ζa ≡ −
λφ2a

2m2 + λφ2a
(74)

and K and E are the complete elliptic integrals of the
first and second kind, respectively. Note all the various
squared factors in eq. (73). This means that the sign of
c2S is determined by the sign of λ. So we see explicitly
that the sign of λ determines the sign of the pressure. For
λ > 0 and φa � m/

√
λ this expression collapses to c2S =

1/3; we shall return to this in the next subsubsection.
For general amplitudes, we plot c2S in the upper panel

of Fig. 4. We see that the sound speed (and hence the
Floquet exponent) begins at zero for zero amplitude.
This makes sense, because for small field amplitudes,
the theory is approximately matter dominated, which
has zero pressure. On the other hand, c2S moves away
from zero at finite amplitude. For λ < 0 there is a corre-
sponding instability due to the negative pressure, which
becomes arbitrarily large near the hilltop φa → φa,max.
In general we expect there to be higher order corrections
to the potential to provide a sensible model for inflation;
this will weaken the strength of this instability.

By recalling µk = ± i cS k, this result for c2S adequately
explains the presence of the thick instability band we saw
earlier in Fig. 1 for δφ‖ and λ < 0.

5. Application to Power Law Potentials

Let us now consider the case of a pure power law po-
tential

V (~φ) =
λ̂

2 q
|~φ|2q (75)

with λ̂ > 0. For this to involve ordinary operators around
φ = 0, we expect q to be an integer. However, we can
also imagine that this power law is only the behavior of
the potential at large field values, so we might allow q to

be any positive number. Indeed the coupling λ̂ may not
be the same as the leading interaction coupling λ from
expanding around small field values. In any case, the
integrals (70, 71) can be done analytically and the result
yields

c2S =
q − 1

q + 1
(76)

A plot of c2S for the power law potential is given in the
upper panel of Fig. 5. For q ≥ 1, c2S ≥ 0, and we have
stability. For example, for the quartic theory q = 2, c2S =
1/3, as is appropriate for a radiation era. On the other
hand, for 0 < q < 1 we have an instability. This would
be relevant to some models of inflation, such as “axion
monodromy models” [42, 43] where possible values of the
power include q = 1/2, 1/3.
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FIG. 4. The squared speeds as a function of amplitude φa in units of m/
√
|λ| for the dimension 4 theory with m2 > 0. Left

panel is λ > 0 and right panel is λ < 0. Upper panel is the sound speed c2S governing the stability of the adiabatic mode δε
(δφ‖). Lower panel is the speed c2I governing the stability of isocurvature modes δni (δφ⊥i).

Now assuming 0 < q < 1, we have a non-zero and real
Floquet exponent µk whose value is independent of am-
plitude in this small k approximation (since c2S is a con-
stant). But we need to know the ratio of µk to the Hub-
ble parameter H. For the power law potential (75), we

have H ∼
√
λ̂ φqa/MPl, giving µk/H ∼ MPlk/(

√
λ̂ φqa).

This ratio becomes arbitrarily large at small field am-
plitudes. However, at some point a realistic potential
should transition from this fractional power law to say
a regular quadratic potential at small field values. Lets
call the transition scale φa ∼ Λ; which acts as a cutoff on

the field theory. A toy example of this behavior is [37]

V (φ) =
m2Λ2

2 q

((
|~φ|2

Λ2
+ 1

)q
− 1

)
(77)

This implies that λ̂ will be related to the transition scale

Λ and mass m by λ̂ ∼ m2/Λ2(q−1). At the transition
regime, we obtain µk/H ∼ kMPl/(mΛ). Now the domi-
nant instability occurs when k is “small”, but parametri-
cally of the same order as m; see Fig. 1. So then we have
µk/H ∼ MPl/Λ. Hence a large instability is associated
with the transition scale satisfying MPl/Λ� 1. In fact,
by Taylor expanding around small φ, we can relate Λ to
the quartic coupling λ by Λ ∼ m/

√
|λ|. So to use the
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FIG. 5. The squared speeds as a function of the power q for a
pure power law potential. The upper panel is the sound speed
c2S governing the stability of the adiabatic mode δε (δφ‖).

The lower panel is the speed c2I governing the stability of
isocurvature modes δni (δφ⊥i).

notation of Section III, this corresponds to the statement
that r ≡

√
|λ|MPl/m� 1 for large instability.

C. Isocurvature Modes δn

In the previous section we studied the energy density;
the density associated with the conserved energy. In this
section we study the various number densities; the den-
sities associated with conserved particle numbers.

The O(N ) internal symmetry φi → Rijφ
j leads, by the

Noether theorem, to the following set of number densities

nij = φ̇i φj − φ̇j φi (78)

The integral over space ∆Nij =
∫
d3xnij is a set of

N (N − 1)/2 conserved particle numbers. For a com-

plex field (N = 2) ∆N is the number of particles minus
the number of antiparticles; this will be examined fur-
ther in Part 2 [1] with regards to its possible relation to
baryogenesis.

Now let us expand around the background ~φ0 given by
eq. (7). To leading non-zero order, we have the following
set of N − 1 linear quantities

δni = −
(
φ0

∂

∂t
− φ̇0

)
δφ⊥i (79)

with i = 1, . . . ,N − 1. Also, to leading non-zero order,
we have the following set of (N − 1)(N − 2)/2 quadratic
quantities

δnij = ˙δφ⊥i δφ⊥j − ˙δφ⊥j δφ⊥i (80)

with i, j = 1, . . . ,N − 1. This latter set of conserved
quantities will not appear in the leading order analysis
of the low lying modes. Instead the modes of interest are
the N −1 densities ni. We see that these densities ni are
given by some linear operator acting on the orthogonal
perturbations δφ⊥i and are independent of the parallel
perturbations δφ‖ at this order. Hence perturbations in
δφ⊥ cause perturbations in the relative number densities
of species without affecting the total energy density. So
these are, by definition, isocurvature modes.

1. Equation of Motion

As we did before for δρ, we would like to construct a
second order equation of motion for the number density
perturbations δni. A first time derivative gives

˙δni = φ̈0 δφ⊥i − φ0 ¨δφ⊥i (81)

Then using the equation of motion for φ0 and the equa-
tion of motion for δφ⊥i, this can be simplified to

˙δni = k2φ0 δφ⊥i (82)

We now take another time derivative and use eq. (79) to

eliminate ˙δφ⊥i. This gives the second order equation

δ̈ni + k2(δni − 2φ̇0 δφ⊥i) = 0 (83)

This result is analogous to eq. (56) that we obtained for
the energy density perturbation δε. If we use eq. (81) to
eliminate δφ⊥i in favor of δni we obtain the second order
equation for δni that we mentioned earlier in (34). But
we would like to perform a time averaging of this present
equation analogously to our time averaging of δε.

2. Time Average with Auxiliary Potential

As earlier, in order to make progress, we consider long
wavelengths. If we went to infinite wavelengths, then δni
would be constant since number densities are conserved
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by the Noether theorem. So for sufficiently long wave-
lengths, the number density should be slowly varying in
time compared to δφ⊥i; the number density is plotted in
Fig. 6 where we see its relatively slow variation in the
lower right panel, compared to the rapid oscillation in
the orthogonal field fluctuations in the lower left panel.
It is true that (for the parameters chosen) δni is growing
exponentially, but the growth rate is small compared to
the period of δφ⊥i in this long wavelength regime. So if
we time average over the period of background oscillation
we have

〈δni〉 ≈ δni (84)

We are then led to the time averaged equation

δ̈ni + k2(δni − 2〈φ̇0 δφ⊥i〉) = 0 (85)

where we must deal with rapidly oscillating factors φ̇0
and δφ⊥i; this rapid oscillation is seen in the lower left
panel of Fig. 6.

In this form it appears difficult to re-organize this into
a useful form. So this is where we make use of the corre-
spondence between δni and δε. The idea is to re-express
this in terms of the auxiliary field φ̃0 variable we intro-
duced in Section IV A. Then treat the isocurvature fluc-
tuation with respect to the potential V as analogous to
an adiabatic perturbation with respect to the auxiliary

potential Ṽ . Now let’s recall the relationship
˙̃
φ0 = φ0/t̃,

which implies

φ̇0 = t̃
¨̃
φ0 = −t̃ Ṽ ′(φ̃0) (86)

Substituting into (85) then gives

δ̈ni + k2(δni + 2 t̃ 〈Ṽ ′(φ̃0)δφ⊥i〉) = 0 (87)

This now has a similar structure to eq. (58) for the time
averaged δε. So we can again make use of a type of chain
rule to express the final time averaged quantity in terms
of the auxiliary background quantities, namely

−t̃ 〈Ṽ ′(φ̃0)δφ⊥i〉 =
d〈Ṽ 〉
d〈ε̃0〉

δni (88)

Note the negative sign here is because of the relative over-
all sign between the expression for the linearized densities
in (52) and (79). Upon substitution we have

δ̈ni + k2

(
1− 2

d〈Ṽ 〉
d〈ε̃0〉

)
δni = 0 (89)

Hence we are led to a direct correspondence between the
wave equation for δε of (60) and a wave equation for δni.

3. Isocurvature Speed cI

From this wave equation, we can identify a speed from
the auxiliary pressure p̃0 and energy density ε̃0. This

analysis goes through as in Section V B 3, so we do not
repeat all the details here. It suffices to say that there is
a type of isocurvature speed given by

c2I ≡
d〈p̃0〉
d〈ε̃0〉

(90)

with the wave equation given by

δ̈ni + c2I k
2 δni = 0 (91)

So stability of the isocurvature modes at long wave-
lengths is determined by the sign of c2I , with the cor-
responding Floquet exponent given by

µk = ± i cI k (92)

Now there is an important technical difference between
the way we need to compute the derivative of the auxil-
iary pressure in eq. (90) compared to how we computed
the derivative of pressure in eq. (65). For the adiabatic
mode, we previously made use of the chain rule to rewrite
the derivatives with respect to the pump amplitude φa of
interest in eq. (72). However, for the isocurvature modes,

we need to be careful since the auxiliary potential Ṽ ,
and hence the auxiliary pressure p̃0 and energy density
ε̃0, depend on both the field φ̃ and the amplitude itself;
even before time averaging. In order to define a physical
derivative we need to fix the theory as we vary the am-
plitude. To make the dependence on amplitude explicit,
lets write the auxiliary potential as

Ṽ = Ṽ (φ̃, φ∗a) (93)

where the amplitude φ∗a is to be treated as a fixed param-
eter of the potential when we take the derivatives. The
corresponding isocurvature speed is then given by

c2I =
∂〈p̃0〉
∂φa

·
(
∂〈ε̃0〉
∂φa

)−1 ∣∣∣∣∣
φ∗a→φa

(94)

We have replaced straight derivatives by partial deriva-
tives, since the time averaged quantities depend on both
φa and φ∗a. After taking the derivative with φ∗a fixed,
we then take the limit φ∗a → φa to obtain the correct
amplitude.

With this understanding of derivatives, we arrive at a
similar conclusion to the adiabatic mode: If the auxil-
iary pressure increases with amplitude, the isocurvature
modes are stable. If the auxiliary pressure decreases with
amplitude, the isocurvature modes are unstable.

4. Application to Dim 4 Potentials

We now illustrate this with the dimension 4 potential
we examined earlier (44). The auxiliary potential gov-
erning the isocurvature modes can be expressed as

Ṽ (φ̃, φ∗a) =
m2 + λφ∗2a

2λ t̃2

(
1− cos(

√
2λ t̃ φ̃)

)
(95)
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FIG. 6. Representative plot of the time evolution of the fluctuations in the dimension 4 potentials, with m2 > 0 and λ > 0.
Left panel are the fields (rapidly oscillating) and right panel are the densities (slowly varying). Upper panel is for the adiabatic
mode: δφ‖ and δε. Lower panel is for the isocurvature mode: δφ⊥ and δn. We have plotted each fluctuation in units of its

initial starting value and time in units of inverse mass. For definiteness, we chose a background amplitude of φa = 0.4m/
√
λ

and wavenumber k = 0.2m; this is in the regime of stability for the adiabatic mode and instability for the isocurvature mode
(see left panel of Fig. 1). For λ < 0 (not shown here) the stability structure is interchanged.

Earlier we plotted this potential in Fig. (3). For λ > 0

this potential, as a function of φ̃, rises more slowly than
a quadratic potential; this gives rise to negative pressure.
For λ < 0 it rises more quickly (it can be expressed as
a cosh function); this gives rise to positive pressure. So
the sign of λ determines stability, but, interestingly, in a
fashion opposite to that of the adiabatic mode.

We numerically carry out the integrals of this potential
to determined the time averaged auxiliary pressure 〈p̃0〉
at some amplitude φa with φ∗a held fixed. We then com-
pute the derivatives according to eq. (94) and then take
the limit φ∗a → φa. In fact since φ∗a only appears in the

overall prefactor in eq. (95), then its value cancels out of
the ratio that gives c2I . The resulting squared speed c2I is
plotted in the lower panel of Fig. 4. In the figure we see
that for λ > 0 the squared speed c2I < 0 which implies
instability, while if λ < 0 the squared speed c2I > 0 which
implies stability. We see the complementary behavior to
the adiabatic mode.

Indeed by recalling µk = ± i cI k, this result for c2I
adequately explains the presence of the thick instability
band we saw earlier in Fig. 1 for δφ⊥ and λ > 0.
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5. Application to Power Law Potentials

For pure power law potentials of the form given earlier
in eq. (75), we can determine the isocurvature speed c2I .
We do not have closed analytical forms for the auxiliary
potential Ṽ for an arbitrary power q. However, some spe-
cial cases are worth mentioning. For q = 2 we find that Ṽ
is a cosine (as discussed earlier with an additional mass
term), for q = 1 we just recover the quadratic potential,

and for q = 1/2 we find that Ṽ is a rational function of

φ̃. For q non-integer, we of course need other operators
to come into play around φ = 0; we refer the reader back
to the discussion surrounding eq. (77) for this issue.

Carrying out the procedure numerically, leads to the
value of c2I as a function of q plotted in the lower panel
of Fig. 5. We see that for q > 1 there is instability, while
for q ≤ 1 there is stability. This is precisely opposite
that of the adiabatic mode, whose result is plotted in the
upper panel. So this proves that: for an entire family
of potential functions, the stability/instability of the adi-
abatic/isocurvature modes at long wavelengths are com-
plementary. The two behaviors only agree at the trivial
point q = 1, which is just a free theory.

VI. CIRCULAR MOTION FOR BACKGROUND

In the previous sections we studied background fields
that evolved radially in field space. These radial trajec-
tories are an attractor solution for inflation and so are
strongly motivated. However, there is another class of
background solutions that is worthy of study. This is
when the background evolves circularly in field space.
For a generic potential, this is the one other form of tra-
jectory that will be periodic.

Circular motion also has some physical motivation. In
the previous section, we showed that under certain con-
ditions, namely when the pressure associated with the
auxiliary potential is negative, there are unstable isocur-
vature modes around the background radial motion. This
means that the field tends to evolve locally in an angu-
lar fashion in field space. For a complex field (two field)
this means either clockwise or anticlockwise motion at
least locally. When such motion is established, it is im-
portant to analyze its stability. For now we treat this
clockwise or anticlockwise field as homogeneous and per-
turb around it, even though generally it would have some
spatial structure. This is relevant to the production and
stability of so called Q-balls [44].

A. Background Evolution

For definiteness lets focus on two fields and organize
them into a complex scalar φ = (φ1 + i φ2)/

√
2. Now

in order to describe a potential that only depends on the
magnitude |φ| it is convenient to introduce the magnitude

as ρ =
√

2 |φ|. Using the chain rule, the equation of
motion for the background is

φ̈0 +
V ′(ρ0)

ρ0
φ0 = 0 (96)

For circular motion, we have ρ0(t) = φa; a constant
amplitude. Then the equation of motion becomes the
equation of a simple harmonic oscillator (we assume
V ′(φa) > 0) with solution

φ0(t) =
φa√

2
e−iω0t (97)

(the factor of 1/
√

2 is convenient when switching to com-
plex notation). Here the frequency of the circular orbit
is the constant

ω2
0 =

V ′(φa)

φa
(98)

This is an exact closed form solution for any potential.

B. Full Floquet Result

We expand the field around the background as φ =
φ0 + δφ and work to linear order as usual. The linearized
equation of motion for the perturbations is

δ̈φ+ k2δφ+
∂2V

∂φ0∂φ∗0
δφ+

∂2V

∂φ∗20
δφ∗ = 0 (99)

Evaluating the coefficients on the background solution
gives

∂2V

∂φ0∂φ∗0
=

1

2

[
V ′′(φa) +

V ′(φa)

φa

]
(100)

∂2V

∂φ∗20
=
e−2iω0t

2

[
V ′′(φa)− V ′(φa)

φa

]
(101)

We see that while the first coefficient is constant in time,
the second coefficient carries periodic time dependence.

The periodicity of the coefficient (101) implies that
(99) is a type of Hill’s equation. However, the time de-
pendence in this case carries a very special structure.
Since it is an exponential, we can completely remove all
time dependence in the equation of motion for the per-
turbations by introducing the new field

δψ = eiω0t δφ (102)

The equation of motion for δψ is found to be

δ̈ψ − 2iωo ˙δψ + k2δψ +

[
V ′′(φa)− V ′(φa)

φa

]
δψ + δψ∗

2
= 0

(103)
We see that all coefficients are now time independent, so
this can be readily solved.

This can be rewritten as a collection of 4 first order
differential equations. To do so, lets decompose δψ into
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real and imaginary parts δψ = (δψ1 + i δψ2)/
√

2 and lets

introduce the momentum conjugate as δπ1 = ˙δψ1 and

δπ2 = ˙δψ2. The system of equations can then be written
as the following matrix equation for δψ1 and δψ2

d

dt

 δψ1

δψ2

δπ1
δπ2

 =

 0 0 1 0
0 0 0 1
β 0 0 −2ω0

0 −k2 2ω0 0


 δψ1

δψ2

δπ1
δπ2

 (104)

where

β ≡ −k2 − V ′′(φa) +
V ′(φa)

φa
(105)

The eigenvalues of this matrix are the Floquet exponents
µk. The 2 pairs of eigenvalues are found to be

µk =

√√√√−W (φa)− k2 ±

√
W (φa)2 + 4

V ′(φa)

φa
k2 (106)

where

W (φa) ≡ 1

2

[
V ′′(φa) + 3

V ′(φa)

φa

]
(107)

So this provides an exact analytical result for the Floquet
exponent for any potential.

We evaluate this for the dimension 4 potentials as ex-
amined earlier. A plot of the result for the Floquet ex-
ponent is given in Fig. 7. We have taken the upper “+”
sign in µk, as we find this is the only exponent that can
carry an instability. In the left panel m2 > 0 and λ < 0.
In the right panel m2 < 0 and λ > 0. We also note that
if m2 > 0 and λ > 0 there is no instability. We have
plotted µk in units of the mass |m|, rather than Hubble
H. The reason for this choice is that a circular trajectory
for φ0 will only occur locally, so there is less motivation
to compare µk to H.

We see that there is at most only the first instability
band. This makes sense from the point of view of the
quantum theory in Part 2 [1], where we show that higher
bands are associated with annihilations 2φ+2φ̄→ φ+ φ̄.
Since the background here is circular, it can be thought
of as a collection of only particles (or only antiparticles)
rather than a mixture. Hence the conservation of parti-
cle number prevents annihilations from occurring. This
means an instability can only arise from particle scatter-
ing, which requires a single instability band starting at
small k.

C. Long Wavelength Limit – Sound Speed cS

We also note a peculiar feature of the instability band
in Fig. 7. For m2 > 0 we see that at high amplitudes the
Floquet exponent is non-zero even in the k → 0 limit.
For m2 < 0 we see this behavior at low amplitudes. Let

us now perform the long wavelength stability analysis to
determine where this occurs and its physical explanation.

Firstly, let us discuss the energy density perturbation
and the number density perturbation in this context. For
a complex field, it is straightforward to show that these
density perturbations are given by

δn =
√

2φa

(
ω0(δψ + δψ∗) +

i

2
( ˙δψ − ˙δψ∗)

)
(108)

δε = ω0 δn (109)

So we find that these perturbations are, at linear order,
proportional to one another. Earlier in this paper, when
we studied perturbations around a radial inflaton back-
ground, we found that these two kinds of perturbations
were linearly independent, and that their stability charts
were complementary. But when we expand around a cir-
cular background we find this new behavior. This is sim-
ple to understand as follows: We again recall that since
the background is circular, it can be viewed as purely
a collection of particles (or purely antiparticles) rather
than a mixture. So in some sense, we only have a single
type of species available, which prevents a standard type
of isocurvature behavior. This means that δn by itself no
longer describes an isocurvature perturbation. Instead
δn 6= 0 is now associated with an adiabatic mode. There
can of course still be a kind of isocurvature mode, defined
by δε = 0 (so δn = 0 too), but these are non-resonant.

This means that there is really only one important
speed that governs the behavior at long wavelengths
(since the perturbations δε and δn have the same form).
This is the sound speed c2S of the adiabatic mode asso-
ciated with pressure, as we showed earlier in Section V.
For circular motion, the energy density and pressure of
the background are given by

ε0 =
1

2
φ2aω

2
0 + V (φa) (110)

p0 =
1

2
φ2aω

2
0 − V (φa) (111)

These are time independent, so there is no need to per-
form the time averaging of the earlier sections. By recall-
ing that the squared sound speed c2S is given by taking
derivatives according to eq. (72), and by eliminating ω2

0

using eq. (98), we obtain the following analytical result
for the sound speed

c2S =
φaV

′′(φa)− V ′(φa)

φaV ′′(φa) + 3V ′(φa)
(112)

For example, if we apply this result to the dimension 4
potentials, we obtain

c2S =
λφ2a

2m2 + 3λφ2a
(113)

This result can also be obtained directly from the Flo-
quet exponent in eq. (106) by taking the small k limit
then using µk = ± i cs k. However this only works if
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FIG. 7. Contour plot of the real part of Floquet exponent µk for a circular background for dimension 4 potentials as a function
of wavenumber k and background amplitude φa. In the left panel m2 > 0 and λ < 0. In the right panel m2 < 0 and λ > 0. We
have plotted µk in units of |m|, k in units of |m|, and φa in units of |m|/

√
|λ|.

W (φa) > 0. If W (φa) < 0 then µk does not vanish when
k → 0, even for the upper “+” sign in eq. (106). Instead
the Floquet exponent approaches a k-independent value
µk →

√
2|W (φa)| in this limit. So in the W (φa) < 0

regime, the field exhibits a catastrophic instability, since
even perturbations that are themselves homogeneous
cause large instability.

To explain this feature of instability even for homoge-
neous perturbations, lets analyze the condition W (φa) <
0 more closely. Suppose we were studying a pure power
law V (φ) = λ

2qφ
2q. The catastrophic instability condition

W (φa) < 0 implies

q < −1 (114)

Now this is not normally a regime of much interest in field
theory, though it may be relevant at large field values in
special effective field theories. However, as we are cur-
rently probing homogeneous perturbations, the problem
has essentially been reduced to a central force problem of
a point particle, with distance from the origin given by
R(t) ∝ |φ(t)|. So this condition says that central poten-
tials with inverse power laws steeper than V ∼ −1/R2 are
highly unstable. Indeed if one perturbs around a circular
orbit, one either finds a particle trajectory that spirals
out to infinity or spirals in to the origin. On the other
hand, for potentials that are less steep than V ∼ −1/R2

(such as the classic −1/R potential of Newtonian gravity)
perturbations do not spiral away. The physical reason
−1/R2 is special is because it is competing with the en-
ergy coming from angular momentum, which itself scales
as +1/R2. Hence in order to have stability of the “effec-
tive potential” one needs q > −1. If we consider more

general potentials than just power laws, the generalized
criteria for stability of particle orbits is W (φa) > 0.

For dimension 4 potentials, the critical value
W (φcrit) = 0 occurs for

φcrit =

√
−2m2

3λ
(115)

This is precisely the critical value seen in Fig. 7. In the
left panel, with m2 > 0 and λ < 0, the catastrophe occurs
for φa > φcrit. While in the right panel, with m2 < 0 and
λ > 0, the catastrophe occurs for φa < φcrit. In the latter
case, it requires that the background field is orbiting on
the “inner” part of the Mexican hat potential φa < φvev.
Note that earlier in Fig. 2 we only plotted φa on the
“outer” part of the Mexican hat potential φa > φvev,
as the radial oscillations meant that it was redundant
to include the inner part separately. While for circular
orbits, these two regions are physically different.

In the case of most physical interest for us ism2 > 0. In
this case the instability in the circular background, that
occurs when λ < 0, suggests a type of collapse instabil-
ity. This can lead to the formation of so called Q-balls
[44]. These are aptly named since the global U(1) sym-
metry ensures a conserved particle number (or charge
Q) associated with these field lumps. We note that to
efficiently produce Q-balls after inflation is slightly com-
plicated. Firstly, inflation establishes radial motion for
the background. In order to obtain significant produc-
tion of particle regions and separate antiparticle regions,
we would like the isocurvature instability to be active, as
discussed earlier. This requires λ > 0. Then we would
like to examine the fate of these regions. However, they



19

will not lead to Q-balls, as this requires λ < 0 for the
collapse instability to occur. Instead one can imagine Q-
balls forming from λ < 0, even though the initial breakup
of the inflaton will be towards over densities comprising
both particles and antiparticles, i.e, adiabatic perturba-
tions. This means that in simple models with λ < 0, Q-
balls can form, but not as efficiently as one might have
naively thought otherwise. In more complicated poten-
tials, one could imagine making the isocurvature insta-
bility active right after inflation ends, breaking up the
field to particle regions and separate antiparticle regions.
Then for smaller field amplitudes, having the adiabatic
instability active on each of these regions, leading to the
formation of Q-balls. This would presumably be highly
efficient, although perhaps fine tuned. We also note that
for both single or multi-field models, related structures
can form, known as oscillons [35–37, 45]; although, unlike
Q-balls, they can annihilate away [38].

VII. CONCLUSIONS

In this paper we have presented Part 1 of a theory
of self-resonance after inflation. For multiple fields with
an internal symmetry, we have shown that the post-
inflationary modes decompose into adiabatic and isocur-
vature modes, with long wavelength modes exhibiting a
gapless spectrum as required by the Goldstone theorem.

We proved general results on the stability/instability
of long wavelength modes. We constructed a sound speed
from time averaging the background oscillations leading
to a time averaged pressure. This time averaging is a
form of coarse graining and is required to build the effec-
tive theory governed by the Goldstone modes. For posi-
tive couplings λ > 0 the pressure for the adiabatic mode
is positive and there is stability, while for negative cou-
plings λ < 0 the pressure for the adiabatic mode is nega-
tive and there is instability. For the isocurvature modes,
we developed for the first time an “auxiliary” potential
whose time averaged pressure governs its behavior. We
found that the stability structure was essentially the op-
posite that of the adiabatic modes. So for the classic
λ > 0 type of inflation modes with multiple fields, there
is large resonance in the isocurvature modes, while there
is very little resonance in the single (adiabatic) mode for
single field models.

We mainly studied radial motion of the background
inflaton field, but also considered circular motion as may
arise locally in some regions after inflation. In this other
limit, we were able to compute the evolution and Floquet
exponents analytically in closed form. This is relevant to
the possible production and stability of Q-balls. We iden-
tified a regime of catastrophe, where we saw instability
even in the k → 0 limit, and we explained this as related
to well known results of central forces.

One of the central consequences is that there is nec-
essarily an enhancement of power due to these various
instabilities, even in regimes where it was usually unex-

pected; namely for λ > 0. These scales do approach the
horizon at early times. It would be of interest to consider
any possible observational consequences of this. Ordinar-
ily these scales are far too small for direct detection, but
they may play a role in the generation of gravitational
waves [46, 47] or some other astrophysical phenomena.

Altogether we presented an important step towards a
complete theory of self-resonance after inflation in single
and multi-field models. For long wavelengths the behav-
ior is determined by the physical variables pressure and
auxiliary pressure. The Goldstone theorem organizes the
adiabatic and isocurvature modes, proving that the spec-
trum is gapless. We believe this is the first time that the
Goldstone theorem has been used in the context of self-
resonance after inflation.

It is also of great interest to have a detailed under-
standing of self-resonance from the underlying descrip-
tion of the quantum mechanics of many particles. We
do this in Part 2 [1]. This includes understanding the
long wavelength phenomena using nonrelativistic quan-
tum mechanics, the shorter wavelength phenomena using
Feynman diagrams, and the explicit quantization around
the classical background. Furthermore, we explore a
small breaking of the symmetry, as is essential to some
models of baryogenesis [39, 40].

A direction for future work is to remove the internal
symmetry of the Lagrangian. It would be interesting to
see how this alters the structure of the various modes,
and whether some analogous (“auxiliary”) pressure ar-
guments could be developed. Another possibility is to
go beyond linear theory and apply these arguments to
develop a theory of nonlinear fluid dynamics.
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VIII. APPENDIX – NON-CANONICAL
KINETIC TERMS

Here we consider a more general form of the action for
scalar fields. Firstly, we focus on a single scalar field,
but allow for higher derivative interactions. Secondly,
we focus on just the standard two-derivative action, but
allow for multiple fields with a non-trivial metric on field
space.

First let us consider a single scalar field. Earlier we
had truncated the action to just two-derivatives. Here
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we allow for higher derivatives in the scalar sector of the
theory. The most general form for the action can be
written as

S =

∫
d4x
√
−g
[
M2
Pl

2
R+K(X,φ) + . . .

]
(116)

where X ≡ − 1
2 (∂φ)2. This defines a so-called K-essence

model (the canonical case corresponds to K = X−V (φ)).
An example of this is DBI inflation [48]. Interesting
work on preheating in these non-canonical models in-
cludes Refs. [49–52]. In (116) the dots indicate higher
order gravity corrections, such as R2, R(∂φ)2, etc. We
will ignore those corrections in this analysis.

As we showed in Section V, the existence of an insta-
bility at long wavelengths is determined by a sound speed
associated with time averaging the background pressure.
The background pressure and density are given from the
stress tensor of the scalar field. We find

p0 = K(X0, φ0) (117)

ε0 = 2
∂K(X0, φ0)

∂X0
X0 −K(X0, φ0) (118)

with X0 = 1
2 φ̇

2
0. Then by time averaging over a cycle of

oscillation, we obtain the sound speed c2S as the deriva-
tive of pressure 〈p0〉 with respect to energy density 〈ε0〉.
This determines the Floquet exponent for small k, as we
described in Section V, generalized to an arbitrary K-
essence model.

If we have multiple fields, this is still the basic method-
ology to construct the sound speed of the adiabatic mode.
Furthermore, there may be a generalization of this re-
sult to an auxiliary pressure and energy density for the
isocurvature modes, but it appears cumbersome. In the
following discussion we study multiple fields, but only for
the two-derivative action.

The most general two-derivative action for multiple
fields involves a kinetic energy with some metric on field

space Gij(~φ). If we impose the internal rotational sym-

metry, this can be organized into the following form

Gij(~φ) = g1(|~φ|) δij + g2(|~φ|)φi φj (119)

where g1,2 are functions of the magnitude of ~φ. In general
this defines a type of so called “nonlinear sigma model”.

To be definite, lets consider the case of two fields, which
we express in polar co-ordinates ρ, θ. In this case, the
most general form of the action, with the internal rota-
tional symmetry, is

S =

∫
d4x
√
−g
[
M2
Pl

2
R− 1

2
(∂ρ)2 − κ2(ρ)

2
(∂θ)2 − V (ρ)

]
(120)

where we have exploited the co-ordinate freedom on field
space to express the metric in terms of a single function
κ(ρ) (the canonical case corresponds to κ(ρ) = ρ).

For radial motion in field space, the background equa-
tion of motion for ρ0(t) is standard. Furthermore, the
equation of motion for δρ is also the standard equation for
the adiabatic modes; previously expressed as δφ‖. This
can be expressed as an equation for the energy density
perturbation δε, as given earlier in eq. (33).

For the orthogonal fluctuations (isocurvature), de-
scribed here by δθ, we find the following equation of mo-
tion

δ̈θ + 2
κ̇0
κ0
δ̇θ + k2δθ = 0 (121)

Now recall from Section IV, where we studied canonical
kinetic energy, that in order to pass from the adiabatic
fluctuation to the isocurvature fluctuation, we needed to

introduce a new field φ̃0, satisfying
˙̃
φ0 = φ0/t̃. This

can be seen from comparing the coefficients of the first
derivative terms in eqs. (33, 34). Here in eq. (121), we see
that for the non-canonical kinetic energy, the appropriate
generalization is

˙̃
φ0 =

κ(φ0)

t̃
(122)

Then by following through the methods of Section IV,
one can obtain the generalization of the auxiliary poten-
tial Ṽ to the case of non-canonical kinetic energy.
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