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We argue using simple models that all successful practical uses of probabilities originate in quan-
tum fluctuations in the microscopic physical world around us, often propagated to macroscopic
scales. Thus we claim there is no physically verified fully classical theory of probability. We com-
ment on the general implications of this view, and specifically question the application of purely
classical probabilities to cosmology in cases where key questions are known to have no quantum
answer. We argue that the ideas developed here may offer a way out of the notorious measure
problems of eternal inflation.

I. INTRODUCTION

We use the concept of probability extensively in sci-
ence, and very broadly in everyday life. Many probabilis-
tic tools used to “quantify our ignorance” seem intuitive
even to non-scientists. For example, if we consider the
value of one bit which we know nothing about, we are in-
clined to assign probabilities to each value. Furthermore,
it seems natural to give it a “50-50” chance of being 0
or 1. This everyday intuition is often believed to have
deep theoretical justification based in “classical proba-
bility theory” (developed in famous works such as [1]).

Here we argue that the success of such intuition is fun-
damentally rooted in specific physical properties of the
world around us. In our view the things we call “classical
probabilities” can be seen as originating in the quantum
probabilities that govern the microscopic world, suitably
propagated by physical processes so as to be relevant on
classical scales. From this perspective the validity of as-
signing equal probabilities to the two states of an un-
known bit can be quantified by understanding the par-
ticular physical processes that connect quantum fluctu-
ations in the microscopic world to that particular bit.
The fact that we have simple beliefs about how to assign
probabilities that do not directly refer to complicated
processes of physical propagation is simply a reflection of
the intuition we have built up by living in a world where
these processes behave in a particular way. Our position
has implications for how we use probabilities in general,
but here we emphasize applications to cosmology which
originally motivated our interest in this topic. Specifi-
cally, we question a number of applications of probabili-
ties to cosmology that are popular today.

Many physicists view classical physics as something
that emerges from a fundamentally quantum world under
the right conditions (for example in systems large enough
to have negligible quantum fluctuations and with suitable
decohering behavior) without the need for new funda-
mental physics outside of the quantum theory1. Taking

1 We personally take this “fundamentally quantum” view but our

that point of view does not make the claims in this pa-
per trivial ones. Yes, in that picture “all physics is fun-
damentally quantum”, but here we focus specifically on
the origin of randomness. Consider a classical computer
well engineered to prevent quantum fluctuations of its
constituent particles from affecting the classical steps of
the computation. One could model a fluctuating classical
system on such a computer (e.g. a gas of perfect classical
billiards), but the fluctuations in such an idealized clas-
sical gas would indeed be classical ones. The appearance
of a given fluctuation would reflect information already
encoded in classical features of the initial state of the
computation and would not come from quantum fluctu-
ations of the particles making up the physical computer.
We argue that the real physical world does not contain
such perfectly isolated classical systems and that quan-
tum uncertainty, not ignorance of classical information
dominates probabilistic behavior we observe. (For the
computer example just given, the quantum uncertainties
will enter when setting up the initial state.)
In Bayesian language, the probability of a theory T

being true given a dataset D is computed by combining
the probability of D given T (“P (D|T )”) with the “prior
probability” (P (T )) assigned to T . Often P (T ) will in-
clude other data combined in a similar way. Inputting
new data over time produces a list of updated probabil-
ities. The start of such a list always requires a “model
uncertainty” (MU) prior that provides a personal state-
ment about which model(s) you prefer. Expressions for
P (D|T ) can be tested by statistical analysis of data and
good scientists (discussing well designed experiments)
should agree on how to compute P (D|T ). The MU prior
is a personal choice which is not built from a scientifi-
cally rigorous process. The quantity P (D|T ) describes
randomness in physical systems, whereas MU priors rep-
resent states of mind of individual scientists. This paper
only treats P (D|T ) probabilities, not MU priors. A fur-
ther indication of the deep differences between P (D|T )
and MU priors is that the goal of science is to produced

arguments go through for some (but not all) other interpretations
of quantum mechanics
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sufficiently high quality data (and sufficient consensus
about the theories) that which MU priors the commu-
nity are willing to take is of no consequence to the result.
On the other hand, results will always depend strongly
on at least some parts of P (D|T ).

II. THE PAGE PROBLEM

We outline the relevance of this question to cosmol-
ogy using a simple toy model. It is commonplace in
cosmology to contemplate a “multiverse” (e.g. in the
context of “eternal inflation” [2]) in which many equiva-
lent copies of a given observer appear in the theory. As
pointed out by Page [3], even if one knew the full wave-
function for such a theory it would be impossible to make
predictions about future observations using probabilities
derived from that wavefunction. The problem arises be-
cause multiverse theories are expected to contain many
copies of the observer (sometimes said to be in differ-
ent “pocket universes”) that are identical in terms of all
current data, but which differ in details of their environ-
ments that affect outcomes of future experiments (e.g.
experiments measuring neutrino masses or cosmological
perturbations). In these theories it is impossible to con-
struct appropriate projection operators to describe mea-
surements where one does not know which part of the
Hilbert space (i.e. which copy of us and our world) is
being measured. Thus, the outcomes of future measure-
ments are ill-posed quantum questions which cannot be
answered within the theory.
To illustrate this problem consider a system comprised

of two two-state subsystems called “A” and “B”. The
whole system is spanned by the four basis states con-
structed as products of basis states of the two subsys-

tems:
{

|1〉A|1〉B, |1〉A|2〉B, |2〉A|1〉B, |2〉A|2〉B
}

. For the

whole system in state |ψ〉, the probability assigned to

measurement outcome “i” can be expressed as 〈ψ| P̂i |ψ〉
for a suitably chosen projection operator P̂i. One can
readily construct projection operators corresponding to
measuring system “A” in the “1” state (regardless of the
state of the “B” subsystem):

P̂A
1 ≡

(

|1〉A|1〉BB 〈1|A 〈1|
)

+
(

|1〉A|2〉BB 〈2|A 〈1|
)

. (1)

A similar operator P̂B
1 represents measurements of

only subsystem “B”. Operators such as P̂12 ≡
|1〉A|2〉BB 〈2|A 〈1| represent measurements of both sub-
systems.
The problem arises because there is no projection op-

erator that gives the probability of outcome “1” when the
subsystem to be measured (“A” or “B”) is undetermined.
That is an ill-posed question in the quantum theory. Page
emphasizes that this kind of question apparently needs
to be addressed in order to make predictions in the mul-
tiverse, where our lack of knowledge about which pocket

universe we occupy corresponds to “A” vs. “B” not be-
ing determined in the toy model. Such ill-posed quantum
questions exist in laboratory situations as well. We tend
not to be concerned about these questions however, since
there are also plenty of well-posed problems on which to
focus our attention. Also, in the laboratory one might re-
solve the problem by adding a measurable “label” to the
setup that does identify “A” vs. “B”. But such a resolu-
tion is believed not to be possible in many cosmological
cases.
A natural response to this issue is to appeal to classical

ideas about probabilities to “fill in the gap”. In particu-
lar, if one could assign classical probabilities pA and pB
for the measurement to be made on the respective sub-
systems, then one could answer the question posed above
(the probability of the outcome “1” with the subsystem
to be measured undetermined) by giving:

p1 = pA 〈ψ| P̂A
1 |ψ〉+ pB 〈ψ| P̂B

1 |ψ〉 . (2)

Note that the values of pA and pB are not determined
from |ψ〉, and instead provide additional information in-
troduced to write Eqn. 2. Although p1 can be written
as the expectation value of P̂1 = pAP̂

A
1 + pBP̂

B
1 , the op-

erator P̂1 is not a projection operator (P̂1P̂1 6= P̂1), con-
firming that p1 does give probabilities of fully quantum
origin.
Authors who apply expressions like Eqn. 2 to cosmol-

ogy [4] do not claim this gives a quantum probability. In-
stead they appeal to classical notions of probability along
the lines we have discussed at the start of this paper.
Surely one successfully introduces classical probabilities
such as pA and pB all the time in everyday situations to
quantify our ignorance, so why should the same approach
not be used in the cosmological case?
Our view is that the two cases are completely differ-

ent. We believe that in every situation where we use
“classical” probabilities successfully to describe physical
randomness these probabilities could in principle be de-
rived from a wavefunction describing the full physical
situation. In this context classical probabilities are just
ways to estimate quantum probabilities when calculating
them directly is inconvenient. Our extensive experience
using classical probabilities in this way (really quantify-
ing our quantum ignorance) cannot be used to justify the
use of classical probabilities in situations where quantum
probabilities have been clearly shown to be ill-defined and
uncomputable. Translating the formal framework from
one situation to the other is not an extrapolation but the
creation of a brand new conceptual framework that needs
to be justified on its own2.

2 Cooperman [5] has explored the interpretation of these matters
in the context of the Positive Operator Valued Measure (POVM)
formalism. In our view this does not really resolve the problem,
since one has to introduce new probabilities equivalent to pA

and pB in an equally ad hoc way. We definitely do agree with
the connections he draws to the standard treatment of identical
particles, which we find quite intriguing.
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We are only challenging the ad hoc introduction of clas-
sical probabilities such as pA and pB. We are not criticiz-
ing the use of standard ideas from probability theory to
manipulate and interpret probabilities that have a phys-
ical origin. Of course we never know the wavefunction
completely (and thus often write states as density matri-
ces). Our claim is that probabilities are only proven and
reliable tools if they have clear values determined from
the quantum state, despite our uncertainties about it.

III. BILLIARDS

We next use simple calculations to argue that it is re-
alistic to expect all probabilities we normally use to have
a quantum origin. Consider a gas of idealized billiards
with radius r, mean free path l,average speed v̄ and mass
m. If two of these billiards approach each other with
impact parameter b, the uncertainties in the transverse
momentum (δp⊥) and position (δx⊥) contribute to an
uncertainty in the impact parameter given by:

∆b = δx⊥ +
δp⊥
m

∆t =
√
2

(

a+
h̄

2a

l

mv̄

)

(3)

where the second equality is achieved using ∆t = l/v̄ and
assuming a minimum uncertainty wavepacket of width a
in each transverse direction. The value of ∆b is mini-
mized by a =

√

h̄l/(2mv̄) ≡
√

lλdB/2. We will show
that ∆b is significant even when minimized.
The local nature of subsequent collisions creates a dis-

tribution of entangled localized states reflecting the range
of possible collision points implied by ∆b. We estimate
the width of this distribution as it fans out toward the
next collision by classically propagating collisions that
occur at either side of the range ∆b. (Neglecting ad-
ditional quantum effects increases the robustness of our
argument.) The geometry of the collision amplifies un-
certainties in a manner familiar from many chaotic pro-
cesses [6, 7]. The quantity ∆bn = ∆b(1 + (2l)/r)n gives
the uncertainty in b after n collisions.
Setting ∆bn = r and solving for n determines nQ, the

number of collisions after which the quantum spread is
so large that there is significant quantum uncertainty as
to which billiard takes part in the next collision:

nQ = − log
(

∆b
r

)

log
(

1 + 2l
r

) . (4)

For Table I we evaluated Eqn. 4 with different input pa-
rameters chosen to represent various physical situations.3

3 Raymond [8] presents similar result, applied only to actual bil-
liards. He also makes some general points about the implications
of his result that overlap with some of the points we are making
here.

Table I shows that water and air are so dominated by
quantum fluctuations that nq < 1, indicating the break-
down of Eqn. 4, but all the more strongly supporting our
view that all randomness in these systems is fundamen-
tally quantum. This result strongly indicates that if one
were able to fully model the molecules in these macro-
scopic systems one would find that the intrinsic quantum
uncertainties of the molecules, amplified by processes of
the sort we just described, would be fully sufficient to ac-
count for all the fluctuations. One would not be required
to “quantify our ignorance” using classical probability
arguments to fully understand the system. For example,
the Boltzmann distribution for one of these systems in a
thermal state should really be derivable as a feature dy-
namically achieved by the wavefunction without appeal
to formal arguments about equipartition etc.
This argument that the randomness in collections of

molecules in the world around us has a fully quantum
origin lies at the core of our case. We expect that all
practical applications of probabilities can be traced to
this intrinsic randomness in the physical world. As an
illustration, we next trace the randomness of a coin flip to
Brownian motion of polypeptides in the human nervous
system.

IV. COIN FLIP

Randomness in a coin flip comes from a lack of cor-
relation between the starting and ending coin positions.
The signal triggering the flip travels along human neu-
rons which have an intrinsic temporal uncertainty of
δtn ≈ 1ms [9]. It has been argued that fluctuations in the
number of open neuron ion channels can account for the
observed values of δtn [9]. These molecular fluctuations
are due to random Brownian motion of polypeptides in
their surrounding fluid. Based on our assessment that
the probabilities for fluctuations in water are fundamen-
tally quantum, we argue that the value of δtn realized in a
given situation is also fundamentally quantum. Quantum
fluctuations in the water drive the motion of the polypep-
tides, resulting in different numbers of ion channels being
open or closed at a given moment in each instance real-
ized from the many quantum possibilities.
Consider a coin flipped and caught at about the same

height, by a hand moving at speed vh in the direc-
tion of the toss and with a flip imparting an additional
speed vf to the coin. A neurological uncertainty in the
time of the flip, δtn, results in a change in flight time
δtf = δtn×vh/(vh+vf ). A similar catch time uncertainty

gives a total flight time uncertainty δtt =
√
2δtf . A coin

flipped upward by an impact at its edge has a rotation
frequency f = 4vf/(πd) where d is the coin diameter.
The uncertainty in the number of spins is δN = fδtt.
Using vh = vf = 5m/s and d = 0.01m (and δtn = 1ms)
gives δN = 0.5, enough to make the outcome of the coin
toss completely dependent on the time uncertainty in the
neurological signal which we have argued is fully quan-
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r (m) l (m) m (kg) v̄ (m/s) λdB (m) ∆b (m) nQ

Nitrogen at STP (Air) 1.6× 10−10 3.4× 10−07 4.7× 10−26 360 6.2× 10−12 2.9 × 10−9
−0.3

Water at body temp 3.0× 10−10 5.4× 10−10 3.0× 10−26 460 7.6× 10−12 1.3× 10−10 0.6

Billiards game 0.029 1 0.16 1 6.6× 10−34 5.1× 10−17 8

Bumper car ride 1 2 150 0.5 1.4× 10−36 3.4× 10−18 25

TABLE I. The number of collisions, (nQ from Eqn. 4) before quantum uncertainty dominates, evaluated for physical systems
modeled as a “gas” of billiards with different properties. Values nQ < 1 indicate that quantum fluctuations are so dominant
that Eqn. 4 breaks down. All randomness in these quantum dominated systems is fundamentally quantum in nature.

tum.
No doubt we have neglected significant factors in mod-

eling the coin flip. The point here is that even with all our
simplifications, we have a plausibility argument that the
outcome of a coin flip is truly a quantum measurement
(really, a Schrödinger cat) and that the 50–50 outcome of
a coin toss may in principle be derived from the quantum
physics of a realistic coin toss with no reference to clas-
sical notions of how we must “quantify our ignorance”.
Estimates such as this one illustrate how the quantum
nature of fluctuations in the gasses and fluids around us
can lead to a fundamental quantum basis for probabilities
we care about in the macroscopic world.

V. DIGITS OF π

The view that all practical applications of probabili-
ties are based on physical quantum probabilities seems a
challenging proposition to verify. As we have illustrated
with the coin flip, the path from microscopic quantum
fluctuations to macroscopic phenomena is complicated to
track. And there are endless cases to check (rolling dice,
choosing a random card etc.), most also too complicated
to work through conclusively. So arguing our position on
a case-by-case basis is certainly an impractical task.
On the other hand, our ideas are very easy to falsify.

All one needs is one illustration of a case where classical
notions of probability are useful in a physical system that
is fully isolated from the quantum fluctuations. Once the
practical value of purely classical probabilities is estab-
lished there is no reason it should not be applicable to
other situations. One idea for such a counterexample was
proposed by Carroll.4 One could place bets on, say, the
value of the millionth digit of π. Since the digits of π are
believed to be random [10] one should be able to use this
apparently purely classical notion to win bets. While on
the face of it this appears to be an ideal counterexample,
further scrutiny reveals an essential quantum role.
Let’s phrase this problem more systematically: One

expects that if you finds someone who thinks the digits
of π are not randomly distributed, you can make money
betting against them. Or equivalently, the expected pay-
out Pπ is zero if betting with someone who does think the

4 S. Carroll at the PCTS workshop on inflation (Jan 2011).

digits are random. A simple formula for such a payout is
given by

Pπ = lim
Ntot→∞

1

Ntot

∑

{i}

(

N i
π − 4.5

)

= 0 (5)

where {i} is the ensemble (of size Ntot) of the digits cho-
sen and N i

π is the actual value of the ith digit of π. The
result depends entirely on the choice of ensemble. With
enough knowledge of π one can come up with ensembles
that give any answer you like (for example that only ever
select the digit “1”), despite all the randomness “intrin-
sic” to π (and in fact because the properties of π are clas-
sical and knowable). Thus we argue that the outcomes
of such bets are all about the ensemble selected, and the
choice of the ensemble is the only source of randomness
in the entire activity.
The reason the initial idea of betting on π is so com-

pelling is that no one ever thinks an ensemble will be
chosen with attention to the actual values of the digits
of π. One can see how quantum mechanics comes in by
scrutinizing the process of coming up with ensembles. It
could be through the human neurons used in selecting
a classical random number seed5, or through something
more systematic like a roulette wheel. Again this falls in
the category where one counterexample could ruin the ar-
gument, but so far we have not found one. The bet really
is about the lack of correlation between the digit selection
and the digit value and we argue it is quantum processes
such as those discussed here that are being counted on to
create the lack of correlation that is crucial to the fairness
of the bet.
Our analysis depends crucially on seemingly “acciden-

tal” levels of quantum noise in the physical world. Our
point is that accidental or not, we count on this quan-
tum noise to produce the uncorrelated microscopic states
that lie at the heart of our understanding of randomness
and probabilities in the world around us. Extending this
understanding to domains where quantum noise cannot
play this role is not at all straightforward. Discussions
of the non-random behaviors of classical random number
generators (such as in [11]) underscore the difficulty of

5 Similarly, the involvement of neurons etc. with the initial setup
prevents the classical computer example in Sect. I from being a
counterexample.



5

even imagining a classical source of randomness with the
necessary lack of correlations.

VI. TOWARD A SOLUTION OF COSMIC

MEASURE PROBLEMS

So far we have used our ideas about probability to
critique the introduction of purely classical probabilities
into cosmological theories, which is an approach advo-
cated by others [4]. In this section we use the ideas intro-
duced here to work out our own approach to probabilities
in the multiverse. We embrace the idea advocated above,
that fundamentally classical probabilities have no place
in cosmological theories, and declare that questions that
seem to require classical probabilities for answers simply
are not answered in that theory. We are basically advo-
cating a more strict discipline about which questions are
actually addressed by a given theory.6 Then one can ask
if there are multiverse theories with sufficient predictive
power to remain viable after this discipline is imposed.
Our first assessment of this question suggests that impos-
ing this discipline may reduce or completely eliminate the
notorious measure problems of eternal inflation and the
multiverse.
One challenge one faces when exploring this matter is

the fact that most discussions of eternal inflation and the
multiverse are approached in a semiclassical manner (for
example assuming well-defined classical spatial slices of
infinite extent). A more careful attempt to identify the
full quantum nature of the picture may point to addi-
tional ways proper quantum probabilities are assigned.
We will not try to address that aspect of the question
here, and really just take a first look at the impact of
hewing to our proposed probability discipline.
A general point immediately becomes clear: We are

used to linking counting with probabilities, but such con-
nections are not always direct or relevant. Counting
up the heads and tails in a long string of coin flips is

connected with proper quantum probabilities. Starting
with our results of Sect. IV one can see that a specific
quantum probability is assigned to each different possi-
ble heads/tails count, and thus counting can be tied in to
well-defined quantum probabilities for that system. How-
ever, the fact that one cosmology may have 3 pocket uni-
verses of type A, while another may have 10100 does not
make a difference, because as we discussed in Sect. II, no
quantum probabilities can be constructed to determine
which among different (equivalent so far) observers you
might be. While these numbers (by analogy with the
flips of multiple coins) may be linked to global proper-

6 Although here we focus on cosmology, it appears that our ap-
proach is relevant to other areas where there is confusion about
about how to assign probabilities, such as the “sleeping beauty
problem”[12].

ties of the state, they cannot by used to determine which
among equivalent patches a given observer occupies.

The insight that counting of observers in itself is in-
sufficient to lead to proper probabilities leads to some
interesting conclusions. One is immediately drawn to
the question of “volume factors” that give large volume
regions more weight than small ones. To the extent that
volume factors are only a stand-in for counting observers
we regard such counting as meaningless because it cannot
be related to true quantum probabilities.

This insight also relates to the “young universe” or
“end of time” problem [13, 14], which can be sketched as
follows: If one regulates the cosmology with a time cut-
off, inflation guarantees that most pocket universes will
be produced close to the cutoff. Then the time cutoff
shows up at early times (relative to their time of pro-
duction which is under strong pressure to happen late)
for most pocket universes. This problem persists even as
one pushes the time cutoff out to infinity. But there is no
evidence that this counting has anything to do with prob-
abilities predicted by the theory which are relevant to an
observer. There is no sign that such theories are able to
assign a true quantum probability to the time when a
particular observer’s pocket universe was produced. One
is simply looking at different pocket universes, and which
one we occupy is not determined by the theory.

Our position appears to offer significant implications
for the Boltzmann Brain problem [15–17]. For our pur-
poses here, this problem is simply the case where patho-
logical observers, called Boltzmann Brains or BB’s, vastly
outnumber realistic ones. (The pathology of the BB’s is
that they match all the data we have so far, but the next
moment experience catastrophic breakdown of physical-
ity, experiencing a rapid heat death.) Again, we claim
here that counting numbers of BB’s vs realistic observers
cannot be related to quantum probabilities predicting
which an observer is more likely to experience. Thus,
as long as there is at least one realistic pocket universe,
there will be no BB problem, no matter how many BB’s
are produced in the theory.

Now let us look at this matter from a slightly different
point of view. The real problem arises when one does not
know which part of the Hilbert space one is about to mea-
sure. However, if one just takes one piece of the Hilbert
space in an eternally inflating universe, that patch alone
will have probabilities of tunneling into pocket universe
A or B, and perhaps many other outcomes as well. If one
simply traces out the rest of the Hilbert space, one will
have a density matrix for what is going on in that patch.
With that one can take expectation values of operators,
without introducing classical probabilities to determine
which pocket you are in. To the extent that the BB prob-
lem can be phrased in this way (in terms of a quantum
branching into BB’s vs realistic cosmologies in a given
patch), we expect the BB problem will remain if real-
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istic cosmologies are sufficiently suppressed7. And if all
patches are the same (as may well be the case for highly
symmetric theories such as eternal inflation) then it does
not really matter what patch you are in. The answer will
still be the same.
While we have yet to offer a rigorous demonstration,

this set of ideas seem promising to us as a way out of the
measure problems in cosmology. A more formal way to
describe this picture is that if one does consider a the-
ory with multiple possible locations for the observer, one
would be obliged to give a “prior” on which location we
occupy. These priors would look very much the same
as the classical probabilities that show up for example in
Eqn. 2. However, by viewing these probabilities as priors,
our agenda would be to reach a point where their values
do not matter to our answers8. It would appear that for
sufficiently symmetric theories, independence from these
priors would be easy to achieve. Also, if certain obser-
ables are sufficiently correlated, the measurement of one
(which itself did not have a prediction for the outcome
due to dependence on priors) could then lead to predic-
tions for the other observable. Both of these pictures out-
lined here could lead to a substantial level of predictive
power, despite the restrictions imposed by our probabil-
ity discipline.

VII. CONCLUSIONS

In summary, we have argued that all successful appli-
cations of probability to describe nature can be traced
to quantum origins. Because of this, there has not been
any systematic validation of purely classical probabili-
ties, even though we appear to use them all the time.
These matters are of particular importance in multiverse
theories where truly classical probabilities are used to
address critical questions not addressed by the quantum
theory. Such applications of classical probabilities need
to be built systematically on separate foundations and
not be thought of as extensions of already proven ideas.
We have yet to see purely classical probabilities moti-
vated and validated in a compelling way, and thus are

skeptical of multiverse theories that depend on classi-
cal probabilities for their predictive power. Fundamen-
tally finite cosmologies [18] that do not have duplicate
observers do not require classical probabilities. These
seem to be a more promising path.

We are not the only ones who regard quantum prob-
abilities as most fundamental (e.g. [19]), but there are
also opposing views9. In addition to the case already
discussed where classical probabilities are introduced in
multiverse theories to enhance predictive power (such as
in [4]), some theories insert classical ideas for other rea-
sons, often in hopes of allaying interpretational concerns
(e.g. [21, 23, 24]). The arguments presented here make
us generally doubtful of such classical formulations, since
our analysis reinforces the fundamental role of quantum
theory in our overall understanding of probabilities. Per-
haps some of these alternate theories integrate the classi-
cal ideas sufficiently tightly with the quantum piece that
the everyday tests we have discussed could just as well
be regarded as tests of the classical ideas in the alternate
theory. However, such logic seems overly complex to us,
and we prefer the simpler interpretation that the strong
connection between all our experiences with probabilities
and the quantum world means the quantum theory really
is the defining physical theory of probabilities. We have
offered suggestions that sticking only to quantum prob-
abilities to make predictions in the multiverse may not
be all that debilitating to the predictive power of mul-
tiverse theories and may actually offer a solution to the
notorious measure problems of eternal inflation.
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