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Strong gravitational lensing forms multiple, time delayed images of cosmological sources, with the
“focal length” of the lens serving as a cosmological distance probe. Robust estimation of the time
delay distance can tightly constrain the Hubble constant as well as the matter density and dark
energy. Current and next generation surveys will find hundreds to thousands of lensed systems but
accurate time delay estimation from noisy, gappy lightcurves is potentially a limiting systematic.
Using a large sample of blinded lightcurves from the Strong Lens Time Delay Challenge we develop
and demonstrate a Gaussian Process crosscorrelation technique that delivers an average bias within
0.1% depending on the sampling, necessary for subpercent Hubble constant determination. The fits
are accurate (80% of them within 1 day) for delays from 5–100 days and robust against cadence
variations shorter than 6 days. We study the effects of survey characteristics such as cadence, season,
and campaign length, and derive requirements for time delay cosmology: in order not to bias the
cosmology determination by 0.5σ, the mean time delay fit accuracy must be better than 0.2%.
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I. INTRODUCTION

Strong lensing time delay cosmography is a promising probe that has developed rapidly in the last few years.
In 2012, two strong lens time delay distances, combined with then-current cosmic microwave background (CMB)
data, demonstrated as much constraining power on dark energy density and spatial curvature as then-current baryon
acoustic oscillation distance data [1]. In 2013, a single time delay distance combined with CMB data determined
the Hubble constant to 7% in a dark energy model (wCDM), while CMB data alone nearly filled its prior [2]. A
Hubble Space Telescope program to more than double the number of precisely modeled time delay lens systems is
now underway [3].
The two main cosmological advantages that strong lensing time delay distances bring are: 1) sensitivity to the

Hubble constant H0, since the time delay distance is a dimensionful quantity, measured from an observable time
delay, and 2) excellent complementarity with other probes when constraining dark energy properties such as time
varying equation of state [4, 5]. On top of this, the time delay distance is a geometric quantity, independent of the
details of the growth of structure or galaxy bias. For further discussion of time delay distances as a cosmological
probe, see [6].
Currently, the main observational challenges for the use of time delay distances are finding a large sample of lensed

systems, photometrically monitoring them every few days over a period of several years, and following them up
spectroscopically to establish redshifts and with high resolution imaging to model the lens galaxy mass distribution.
The first issues will become moot with the current and next generation of wide field, time domain surveys such as Dark
Energy Survey (DES; [7]) and the Large Synoptic Survey Telescope (LSST; [8]). Likewise spectroscopic redshifts can
be obtained efficiently with new multiobject spectrographs such as DESI [9] and PFS [10]. High resolution imaging
may become easier as the HST time becomes less oversubscribed, the more powerful JWST is in operation, and ground
based adaptive optics develops further.
The major analysis challenges are the robust estimation of the actual time delays between images, derived from

noisy, gappy lightcurves, and the modeling of the lens mass distribution and the mass along the line of sight. We
concentrate on the first of these, and indeed it is the focus of a series of Strong Lens Data Challenges [11, 12]. The
mass modeling is also developing rapidly [1, 13–17] and all three sources of uncertainty must be reduced together to
obtain time delay distances with 5% or better precision and subpercent accuracy.
In Sec. II we describe our application of the Gaussian Process statistical technique to time delay estimation. We

review the Time Delay Challenge metrics in Sec. III and present our original blinded analysis. Section IV describes
improvements to the statistical methodology and their results. We discuss cosmological requirements on accuracy to
obtain next generation constraints on the Hubble constant and dark energy in Sec. V and conclude in Sec. VI.

II. GAUSSIAN PROCESS TECHNIQUE

We employ Gaussian Process (GP) regression to estimate the time delays between the multiple image lightcurves of
a strongly lensed source. GP is commonly used as a robust and fairly model-independent technique for reconstructing
an underlying function from noisy measurements. In GP regression, the underlying function is not parametrized but
instead a complete set of possible curves is fitted to the data points. The curves are constructed from a mean function,
describing the average behavior of the function, and a covariance kernel imposing a Gaussian correlation between the
data points and serving to describe the fluctuation of those points around the mean function. The covariance function
is characterized by a set of hyperparameters which control the amplitude and length of the correlation between the
data points.
Our data here are the lightcurve magnitude measurements of multiple images of a source. (We should emphasize

that here our focus is extracting accurate time delays, not modeling the intrinsic lightcurve of the source.) While
the measurements are made on the same underlying intrinsic lightcurve, there is a time delay between each pair of
the observed lightcurves, and that is what we want to determine. We quantify the time delays with a set of ∆ti
parameters and fit them to data together with the GP hyperparameters of our kernel function. As described in detail
in [18], the kernel function includes different terms: the GP kernel (as described above) that describes the intrinsic
variability of the source (generally a quasar); a separate microlensing kernel that accounts for the (longer term)
variations in magnitude due to microlensing (from substructure in the lensing galaxy and along the line of sight); and
a nugget term, an additional constant variance in measurements that acts as a zero lag dispersion accounting for e.g.
misestimated measurement noise or scatter due to the finite realization nature of the data.
To fit the parameters, we utilize the GP likelihood [19]:

2 lnL(Y |~θ) = −Y TK−1Y − ln |K| −Nd ln 2π, (1)
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where Y is the vector of magnitude data, with Nd the total number of data points, ~θ represents the fit parameters,
e.g. time delays, and |K| is the determinant of the kernel K, giving a complexity penalty. The full kernel K is the
sum of the three components, each an Nd×Nd matrix: the GP kernel, the microlensing kernel, and the nugget matrix
(a diagonal matrix),

K = KAGN +Kµ + σ2

n I . (2)

The data vector, Y , is a vector of length Nd with blocks containing the magnitude data points of each lightcurve.
For the mean function, we adopt a constant value in this analysis as a good choice that preserves the distribution

of data points, and hence any distinct features in the intrinsic source lightcurve, a necessary element in recovering
accurate time delay by matching the observed lightcurves. We have tested other mean functions, including smoothing
techniques, and found they did not perform as well, since they often remove the features we are trying to fit.
For the intrinsic lightcurve covariance, we adopt two kernels, a damped random walk (DRW), which is often used

to model the intrinsic quasar/active galactic nucleus (AGN) light curve [20–22],

k(ti, tj) = σ2 e−|ti−tj |/l , (3)

and a Matern function with index 3/2 commonly used in statistics [19]:

k(ti, tj) = σ2

(
1 +

|ti − tj |
√
3

l

)
e−|ti−tj |

√
3/l . (4)

In the above ti and tj are measurement times, the hyperparameter σ adjusts the amplitude of the kernel and l
functions as a correlation length. For the microlensing kernel, which is smoother, we use a squared exponential.
We use Minuit [23] as the likelihood minimizer, and also independently validate our fits from a Monte Carlo analysis.

The use of two kernels, two optimizers, and variations of priors allow us to crosscheck our results and determine their
robustness. All hyperparameters are marginalized over. The GP code is parallel and optimized to handle a large
number of systems autonomously in an efficient manner.

III. TIME DELAY CHALLENGE – BLIND RESULTS

The Strong Lens Time Delay Challenge (TDC) [11, 12] provided the opportunity for the first systematic study
of the current capabilities of the community in measuring time delays through a set of several thousand simulated
lightcurves. The goal has been to evaluate whether the available methods were able to achieve the criteria required
for handling next generation data and provide a diagnostic tool for improvements, and also to investigate the impact
of different observational and systematic factors on the results.
For the TDC simulated data [24], an “Evil Team” generated LSST-like lightcurves, including noise and systematics,

without revealing the process or true time delay, and released the blinded data. The intrinsic AGN light curves were
constructed from a DRW stochastic process and then different observational, photometric and systematic noise com-
ponents were implemented progressively [11, 12]. First, microlensing contributions were added based on a simulated
star magnification map for LSST. The dominant statistical noise contribution, sky brightness, was then included
through a Gaussian random noise. On top of that, additional flux errors were implemented in the form of three types
of “evilness” contaminating some of the simulated systems.
The main challenge (TDC1) consists of five rungs to cover a range of different observational strategies, namely,

monitoring cadence and its dispersion, individual season length, and full campaign length. The details are summarized
in Table I of [12].
The TDC proposed in advance the following criteria (metrics) to evaluate the performance of methods:

• Submitted fraction, f :

f ≡ Nsub

N
(5)

the fraction of the total number of systems N for which time delays were estimated.

• Goodness of fit:

χ2 =
1

fN

∑

i

(
∆̃ti −∆ti

σi

)2

(6)
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where ∆ti is the true time delay value for system i, and ∆̃ti and σi are the estimated time delay and its
uncertainty.

• Accuracy (or bias):

A =
1

fN

∑

i

∆̃ti −∆ti
|∆ti|

. (7)

This metric is important for getting an unbiased estimation of time delay distances and propagates directly into
accurate determination of cosmological parameters. We discuss the cosmological requirements in Sec. V; TDC1
had a goal of A < 0.2% [11] for next generation surveys.

• Precision:

P =
1

fN

∑

i

σi

|∆ti|
(8)

which quantifies the fractional uncertainty in the time delays.

To estimate the time delays, we first run our GP code on the TDC data and fit the model parameters using both
kernels and both optimizers. We then pass or reject each system, based on the consistency of fits and their likelihoods,
and then assign a final best fit time delay and uncertainty. Finally, we rank our systems and give them confidence
classes based on a set of selection criteria, a combination of the degree of consistency of estimated time delays from
different kernels/minimizers, likelihoods, and reduced χ2.
For TDC1, we produced six different samples, with the main three representing progressively inclusive fit confidence,

e.g. gold, silver, bronze: Lannister, Targaryen, and Baratheon. In addition, we studied other selection criteria: a
conservatively selected sample (Tully) and one with tighter error assignment (Stark). We also developed an outlier
detection algorithm to identify and remove catastrophic outliers through imposing controlled priors, and also an
analysis of the best fit parameters for the selected systems. The Freefolk sample was the result of such analysis. The
details of the statistics for these samples can be found in [12].
Our effort has been mainly focused on two aspects: developing an automated method that can handle the large

number (∼ 5000) of future strong lens systems, fast and efficient with minimum human labor requirements; and
optimizing for the accuracy of the fits as a critical metric for using strong lensing time delays as an unbiased, robust
cosmological distance probe.
After the deadline for the submission of TDC results, we revisited our code to study alternate mean functions and

realized that our original step to “prewhiten” the lightcurves had not been fully implemented as intended. We made
this correction, keeping everything else the same, so now the magnitude shift hyperparameter only has to account for
residual shifts. This resulted in a significant improvement in the performance of our method. For example, for our
leading blind submission of Stark the average fit success fraction for the harder rungs 1-4 climbed from f ≈ 0.18 to
f ≈ 0.33.
In the next section, we demonstrate that our results are accurate well below TDC requirements for the A metric,

and with reasonable precision (P ), fraction (f) and goodness of fit (χ2).

IV. IMPROVEMENTS TO TIME DELAY ESTIMATION

A. Criteria

To this point, we have followed the code output blindly, and used the TDC framework criterion of χ2
i < 10 to

cut significant outliers. However, χ2 requires knowledge of the true time delay and so is not suitable for actual
cosmological use. Therefore we now add some intelligence to the code, while maintaining uniform treatment for all
systems.
The first condition considered is basic, and indeed could have been applied from the beginning if we had not wanted

to test the fitting code in its purest form.

• Fit uncertainty: If the fit cannot deliver an uncertainty smaller than 4 days, i.e. σ(∆̃t) < 4 days, then remove
the system.
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The second condition involves the accuracy. This is intended to clip extreme outliers. Since we will not know the
true time delay, we cannot use it directly. However, we can identify outliers, not from the unknown true cosmology
but from the cosmology derived from the global fit of all the time delay distances. That is, we compare a system
against its peers. This statistical technique is frequently used in astrophysics, for example with supernova distance
[25]. We take a very loose clipping, corresponding roughly to 4σ:

• Global outlier: If the fit deviates by more than 20% from the truth, i.e. |∆̃t−∆t|/|∆t| > 0.2, then remove the
system.

Since the global accuracy is good, and TDC1 provides no redshift information to derive a cosmology, we here take
the global fit cosmology (and hence ∆t in this expression) to be the truth.
We emphasize that the crucial uncertainty σ here is not that of the time delay estimation but of the entire time

delay distance estimation, i.e. the cosmology estimation, including the uncertainties from other effects such as lens
mass modeling and line of sight convergence. We take that the final uncertainty for the time delay distance of a system
used for cosmology will be of order 5%; thus a 20% deviation in the time delay (translating into a 20% deviation in
the distance, aside from contributions and covariances from the other quantities) will clearly stand out.
Those are the only two conditions we impose on our fits. We do not cut in χ2 or for time delays shorter than 10

days.

B. Baseline results

Now we can examine the statistics for our improved set of fits, using the correct mean function treatment and the
two conditions. Table I summarizes the evaluation metrics by rung.

Rung f χ2 P A
0 0.48 1.07 0.0578 -0.0005
1 0.36 1.11 0.0617 -0.0010
2 0.31 1.14 0.0854 -0.0000
3 0.29 1.67 0.0688 -0.0019
4 0.36 1.92 0.0909 -0.0036
Avg 0.36 1.36 0.0717 -0.0014
Avg[3d] 0.36 1.22 0.0669 -0.0008

TABLE I. Time delay estimation metrics are given for each rung of the challenge, and averaged over either all systems used or
all systems with mean 3 day cadence (rungs 0-3).

On average about one-third of the systems can be used robustly for time delay cosmology. Given that LSST will
find of order 103−4 systems [26] and we will be limited by followup observationally and by modeling uncertainties
theoretically, such a fraction is quite acceptable. The fits achieve a mean accuracy, i.e. the bias with respect to the
true time delay, of 0.14%; we address the cosmology requirements for this in the next section. The mean statistical
precision is 7.2% and is seen to be improved by more data in the lightcurve, either a longer season (rung 0) or longer
monitoring campaign (rung 1). It can also be reduced by the square root of the number of systems. We return to the
precision in Sec. IVD.
Apart from the effect of the number of lightcurve points, the major effect is that the six day cadence of rung 4

performs noticeably worse than the three day cadence rungs. The last row of Table I, with only the three day cadence
rungs, shows that the mean accuracy metric improves by almost a factor two, and that the precision for rung 4 is also
significantly worse. Fixing the average cadence to three days, we see that rung 3 (with a 3± 1 day cadence) has some
advantage over rung 2 (fixed 3 day cadence), as its cadence variation allows some sampling on shorter time scales; we
discuss this further below.
It is useful to look at the full distributions to find more subtle effects. First we consider whether there is any bias

in estimation for time delays of different lengths. Figure 1 plots the histograms of the deviation of fit from truth for
four ranges of time delays. The distributions are well peaked around zero and fairly symmetric. The longest time
delays have the broadest distribution but fractionally are comparable, i.e. a 2 day offset in a 60 day time delay is like
a 0.5 day offset in a 15 day time delay.
To study the effect of cadence and other survey characteristics, we investigate the distributions of results for different

rungs of the challenge. Figure 2 demonstrates that for all rungs the time delay estimation has negligible bias and
is highly peaked around zero deviation from the truth. For all rungs except rung 4, the ratio of the peak to the
shoulders, i.e. the height of the zero bin vs the next bins, is ∼ 2.5; however rung 4 with twice as long an average
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FIG. 1. The distribution of the difference between the fitted time delay and the truth is plotted for four ranges of true time
delay t ≡ |∆t|. No bias is apparent, and the distributions are well peaked.

cadence gives a ratio of ∼ 1.5, being more dispersed though still unbiased. This indicates that loosening the cadence
from three days to six could impact the cosmology results. Over rungs 0-3, the fit offset is less than 0.5 (1.0) days for
∼ 62% (∼ 82%) of the systems; for rung 4 the numbers are 52% and 75% respectively.

While our main focus is on accurate fits, we can also examine the impact of survey characteristics on statistical
uncertainty of the fits. Figure 3 shows the distributions for the various rungs. The number of data points play a
larger role here: rungs 0 and 1, with twice as many lightcurve points, have smaller uncertainties. There is also some
difference between rungs 2 and 3, where rung 2 keeps a strict three day cadence while rung 3 varies it between two
and four days. Rung 3 has a tighter distribution of fit uncertainties, hinting that such variation can be advantageous,
with the occasional tighter cadence presumably allowing better crosscorrelations between the images at some points
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FIG. 2. The distribution of the difference between the fitted time delay and the truth is plotted for the five sets of survey
characteristics corresponding to the Challenge rungs. No bias is apparent, and the distributions are well peaked, though the
result of rung 4 with six day cadence is noticeably broader.

in the monitoring. Rung 4, with the six day cadence, has a distribution of fit uncertainties that is noticeably shifted
to longer values. While rungs 0 and 1 have fit uncertainties less than 0.5 (1.0) days for ∼ 30% (∼ 60%) of the systems,
rung 4 has them for only 7% and 32% of the systems. Rung 3 has an advantage over rung 2, with 21% vs 15% (59%
vs 47%) fit to better than 0.5 (1.0) days.
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FIG. 3. The distribution of the time delay fit uncertainty is plotted for the five sets of survey characteristics corresponding
to the Challenge rungs. The lowest uncertainty is seen for those cases with more lightcurve points. A longer average cadence
is deleterious, while a somewhat smaller advantage comes from having occasional rapid cadence observations for fixed average
cadence.

C. Short Time Delays

Note that short time delays, while difficult to measure precisely, can be useful. Short delays arise from either small
time delay distance (low redshift) or small difference in Fermat potential, with the latter due to either very symmetric
image configuration or small image separation. Low redshift lenses are crucial for Hubble constant determination; [5]
found that the estimation of H0 degrades by 55% without zl < 0.3 lens systems (while higher redshift lenses are more
useful for the dark energy equation of state; also see the systematics study in Sec. V). They are easier to follow up
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and model as well, with little line of sight mass convergence. Symmetric images can be useful as well and are similarly
good for modeling systematics. Small image separations, however, are more difficult to follow up due to the limited
number of pixels for the modeling and possibly blending of the quasar and lens light in the spectroscopy. Future data
challenges including image information will be useful in investigating short delay systems in more detail.

D. Variations

The accuracy metric shows excellent results, with bias at only the 0.1% level. We can explore some variations
in the conditions to see whether the precision can be improved. For example, if we impose the auxiliary condition

that σ(∆̃t)/|∆̃t| < 0.15 (note this is not the precision since we use the fit ∆̃t, not the truth, and so this is a blind
selection), i.e. removing fits that are not well constrained, then the average precision becomes 5.6%, with the average

fraction of systems fit reduced to 0.325. Using σ(∆̃t)/|∆̃t| < 0.1 improves the precision further to 4.5%, with the
fraction decreasing to 0.28. In current work we have focused on obtaining unbiased results; future work will address
improvements in uncertainty estimation.

Recall that in [5] only 150 lens systems were used to project cosmological constraints, and this had strong leverage.

If we use only 150 systems in a given rung, choosing those with lowest σ(∆̃t)/|∆̃t|, then we obtain precisions ranging
from 1.6% (rung 0) to 3.5% (rung 4). The average accuracy over all rungs is −0.11%, and over the four rungs with
three day mean cadence is −0.02%.

Figure 4 shows the improvement in the fit uncertainty. Now rung 1 has 60% (89%) of fits within 0.5 (1.0) days,

using the 150 systems with lowest σ(∆̃t)/|∆̃t|, compared to the previous 30% (61%) for all systems in the rung. For
rung 3 the numbers are 37% (83%), compared to the previous 21% (59%). Table II summarizes the statistics for the
time delay estimation averaged over the rungs.

Average P A
All rungs 0.027 -0.0011
3 day cadence 0.025 -0.0002

TABLE II. Time delay estimation statistics are presented for the 150 time delays with lowest σ(∆̃t)/|∆̃t| in each rung, averaged
over either all rungs or all rungs with mean 3 day cadence (rungs 0-3).

V. COSMOLOGICAL REQUIREMENTS ON ACCURACY

In this section we aim to quantify requirements on the accuracy of the time delay estimation in order for the time
delay distance to be a robust cosmological probe. Requirements on precision can be traded off against more systems,
since this is a statistical uncertainty, but an actual bias in the time delay, and hence time delay distance, can mislead
our cosmological conclusions.

We adopt the combination of cosmological probes used in [5]: a strong lensing survey giving 1% distance measure-
ments in each of six lens redshift bins from zl = 0.1–0.6, together with a midrange supernova survey out to z ≈ 1
and Planck-quality CMB information on the distance to last scattering and the physical matter density Ωmh2. Such
a combination was calculated in [5] to deliver estimation of Ωm to within 0.0044, the reduced Hubble constant h to
0.0051, or 0.7%, and the dark energy equation of state today w0 to 0.077 and its time variation wa to 0.26.

A bias in the time delay ∆t leads to a bias in the time delay distance D∆t of the same fractional magnitude. If
there were no redshift variation of the bias, and the only cosmological constraint came from strong lensing alone,
then this would show up purely as an offset δh in the derived Hubble constant, of the same fractional magnitude
since the Hubble constant sets the distance scale. If we wanted a 1% accurate Hubble constant measurement from
strong lensing, we would need to ensure that the time delay bias A was under 0.01. However, in the presence of other
cosmological information, from supernovae and CMB, this simple mapping no longer holds. Moreover, the bias A
may well be redshift dependent.

The current Time Delay Challenge does not yet incorporate cosmological information in the supplied lightcurves,
i.e. there are no lens or source redshifts or image geometries assigned. This is planned for a future challenge. However,
we might expect that higher redshift lens systems suffer from increased photometric noise and microlensing, which
would affect the time delay estimation, as well as lens modeling (e.g. velocity dispersion measurement) and line of



10

FIG. 4. The distribution of the time delay fit uncertainty is plotted for the 150 time delay estimations with lowest σ(∆̃t)/|∆̃t|
(solid) compared to all (dashed), for rung 1. The set of 150 (which may be sufficient for cosmology leverage) has a significantly
more precise distribution.

sight mass uncertainties. Therefore we take a phenomenological model of the bias

A(z) = A0

(
1 + zs
2.05

)n

. (9)

where A0 is the amplitude, normalized to the midrange of the source redshift zs distribution, and n allows us to
vary the redshift dependence of the bias. Recall we took bins of lens redshift from zl = 0.1–0.6, and we assume for
simplicity zs = 3zl (see [5] for further discussion) so the midrange of zs = 0.3–1.8 gives the 1 + zs normalization of
2.05.
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To propagate the offset in time delay, and hence time delay distance, to the bias on the cosmological parameters
we employ the standard Fisher bias formalism [27, 28]. The parameter bias is

δpi = (F−1)ij
∑

z

∂D∆t

∂pj

1

σ2(D∆t)
∆D∆t , (10)

where F is the Fisher matrix (here for the combined probes) and for simplicity we take a diagonal noise matrix. Note
that A = ∆D∆t/D∆t. The parameter bias will scale linearly with the amplitude A0.
Figure 5 plots the cosmology bias of an inaccuracy with A0 = 0.01 for various redshift dependences n. Note

the nearly equal and opposite behavior of Ωm and h, and w0 and wa, due to their strong covariances. A redshift
independent bias (n = 0) indeed mostly affects the Hubble constant (and Ωm from its covariance), while one that
increases rapidly with redshift predominantly affects wa, since it requires a high redshift lever arm to see the dark
energy equation of state time dependence.
Figure 6 visualizes the cosmology bias caused by such a 1% bias in time delay estimation, for the case of n = 2.

The dark energy equation of state parameters are misestimated such that the derived joint values barely lie within
the 1σ joint confidence contour of the true model, or conversely the true model barely lies within the derived 1σ joint
confidence contour. To avoid such incorrect cosmological conclusions, the time delay must be fit more accurately.
To impose a time delay accuracy systematic requirement based on controlling cosmological bias, we need to specify

in which parameter we are interested and what is the redshift dependence of the systematic. The latter is unknown
(though future data challenges may inform this). For example, if the fit bias is proportional to the inverse signal to
noise, then this goes as inverse square root of the image flux, or as the luminosity distance. Over the redshift range
of interest, in a universe close to ΛCDM the angular diameter distance is roughly constant with redshift, and so the
luminosity distance goes as (1 + z)2. Thus one might guess n = 2 is roughly reasonable. We will also be interested
in all the cosmological parameters, not just the Hubble constant, say, so we use Fig. 5 in a rule of thumb sense to
say that a bias amplitude A0 = 0.01, over a reasonable range of n, leads to a roughly 1σ parameter shift on some
cosmological parameter.
We would like the bias to be a small fraction of the statistical uncertainty of the cosmological parameter, σ(p). In

the presence of both statistical uncertainty and bias, one can use the statistical quantity of the risk,

R =
√
(δp)2 + σ2 = σ

√
1 + (δp/σ)2 . (11)

We might ask that the risk increase the error over the statistical contribution by no more than 20%, corresponding
to δp/σ < 0.66. Since A0 = 0.01 gave δp/σ ≈ 1, then this implies we want A0 < 0.0066.
The time delay estimation is not the only contribution to the systematic error budget, however; there is also lens

modeling, line of sight mass convergence, etc. so we adopt that the time delay bias – being the most accessible to
control – should be less than 1/3 of the total systematic A0. Putting this all together we find the requirement that

A∆t .
0.01

3

(δp/σ)desired
(δp/σ)A0=0.01

(12)

. 0.0022 . (13)

We see from Table I that our GP time delay estimation method can satisfy this requirement, except in the case of the
six day cadence (rung 4).

VI. CONCLUSIONS

The time delay distance from strong gravitational lensing multiple images provides a unique, dimensional probe
of cosmology. It is directly sensitive to the Hubble constant and has strong complementarity with other probes
in determining dark energy characteristics. With new generations of surveys, hundreds to thousands of time delay
systems will be found. We investigated one of the leading current sources of uncertainty for this cosmological probe:
time delay estimation from noisy, gappy lightcurve data.
Using a Gaussian Process statistical technique we have demonstrated control of systematic bias at the 0.1% level

(with precisions at 2.7% for a cosmologically useful data set). The analysis was originally carried out on the blind
mock data of the Strong Lens Time Delay Challenge. We have implemented an efficient, completely automated
pipeline for fitting thousands of lightcurve systems, with delays from 5-100 days.
The Time Delay Challenge provided data sets with different combinations of mean cadence, cadence variation,

season length, and campaign length, allowing us to study their influence on the fits. We find that the number of data
points is the most significant influence for delays from 5-100 days, but this can come from either longer seasons or
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FIG. 5. Bias in time delay estimation propagates into cosmological parameter bias, with amplitude depending on the size of
the misestimation (here A0 = 0.01 and we use the combination of probes mentioned in the text) and its redshift dependence,
here taken as having power law index n. The parameter bias δp as a fraction of the parameter uncertainty σ(p) is plotted vs n
for the various cosmological parameters.

campaigns of more years. For the rare delays of 100 days or more, sufficiently long seasons are crucial. Lengthening
the mean cadence raises the systematic bias, with the average three day cadence delivering 0.08% accuracy but a six
day cadence degrading this to 0.36%. For a fixed mean cadence, sampling that allows some shorter time monitoring
improves the precision.

We investigated the cosmology parameter bias induced by systematic time delay misestimation. Depending on the
redshift dependence of the systematic, the major effect is either on the Hubble constant or dark energy equation of
state. As a rule of thumb, a 1% total systematic amplitude gives a 1σ shift in the cosmology. Taking into account the
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FIG. 6. The 68% joint confidence contour for the dark energy parameters w0 and wa gets shifted by a 1% time delay estimation
bias such that the true cosmology (cosmological constant, marked by x) is near the edge of the contour. The biased value
(marked by the square) falsely implies a time varying dark energy.

other error contributions this implies that the time delay accuracy requirement should be at the 0.2% level so as not
to significantly bias cosmology. The GP fitting technique has demonstrated results sufficient to pass this requirement.

Further improvements are under study. For example, seasons could be weighted by noise to remove periods of bad
weather or particularly egregious microlensing. Our GP method delivers the full distributions of hyperparameters,
and these could be used to study both the intrinsic variability of the quasar source and the microlensing. The only
data provided in the challenge were the lightcurves; future studies could fold in image characteristics and other lens
system information.
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