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Residual errors in shear measurements, after corrections for instrument systematics and atmo-
spheric effects, can impact cosmological parameters derived from weak lensing observations. Here
we combine convergence maps from our suite of ray-tracing simulations with random realizations of
spurious shear. This allows us to quantify the errors and biases of the triplet (Ωm, w, σ8) derived
from the power spectrum (PS), as well as from three different sets of non-Gaussian statistics of
the lensing convergence field: Minkowski functionals (MF), low–order moments (LM), and peak
counts (PK). Our main results are: (i) We find an order of magnitude smaller biases from the
PS than in previous work. (ii) The PS and LM yield biases much smaller than the morphological
statistics (MF, PK). (iii) For strictly Gaussian spurious shear with integrated amplitude as low as
its current estimate of σ2

sys ≈ 10−7, biases from the PS and LM would be unimportant even for
a survey with the statistical power of LSST. However, we find that for surveys larger than ≈ 100
deg2, non-Gaussianity in the noise (not included in our analysis) will likely be important and must
be quantified to assess the biases. (iv) The morphological statistics (MF,PK) introduce important
biases even for Gaussian noise, which must be corrected in large surveys. The biases are in different
directions in (Ωm, w, σ8) parameter space, allowing self-calibration by combining multiple statistics.
Our results warrant follow-up studies with more extensive lensing simulations and more accurate
spurious shear estimates.
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I. INTRODUCTION

Weak gravitational lensing (WL) offers one of the most
promising cosmological probes (see pedagogical reviews
by [1–3], as well as a recent review of WL in the con-
text of other cosmology probes [4]). Results from the
first large observational surveys, such as COSMOS [5]
and CFHTLenS [6], obtained interesting constraints with
the technique, and found constraints generally compati-
ble with the accepted ΛCDM cosmology. Ongoing sur-
veys such as the Dark Energy Survey (DES) [7] and Hy-
per Suprime-Cam (HSC) [8], and future surveys such as
LSST [9] and Euclid [10] will greatly improve these con-
straints.
Most of the attention to date has focused on utiliz-

ing the power spectrum of the cosmic shear (or equiv-
alent two-point functions, such as the angular correla-
tion function). However, in recent years, the strongly
non-Gaussian nature of the WL disortion field on small
(∼arcminute) angular scales have been increasingly con-
sidered. Non-Gaussian features can, in principle, allow
more information to be extracted from the same datasets,
using higher-order statistics. The proposed beyond-
Gaussian statistics have included the one-point function
(e.g. [11, 12]), the bispectrum (e.g. [13, 14]), skewness
and higher moments (e.g. [15–17]), shapelets and flex-
ions (e.g. [18, 19]), the abundance [20–23] and clustering
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[24] of peaks, and Minkowski functionals [17, 25–30].

Many of these higher-order statistics have recently
been detected in large WL datasets. The third-order
moments of the aperture mass have been measured in
COSMOS and found to modestly tighten constraints on
Ω and σ8 [31]. In the CFHTLenS survey, moments up
to fourth order [32], the number counts and correlation
functions of peaks [33], three-point correlations functions
[34], and Minkowski functionals [35] have all been mea-
sured. The latter two statistics have also been shown to
tighten cosmological constraints compared to using two-
point statistics alone.

The recent progress in utilizing non-Gaussian statis-
tics motivates us to study the impact of systematic er-
rors on these statistics. A vast body of work exist on
the impact and mitigation of systematic errors for the
PS and the correlation functions (e.g. [36, 37], but the
analogous effort has not yet been made to compute the
impact of the same errors on non-Gaussian statistics. Ex-
ceptions include recent studies which considered the ef-
fect of uncorrelated galaxy shape, instrumental and at-
mospheric measurement errors on peak counts [38], and
the impact of masking [39], as well as photo-z errors and
additive and multiplicative shear errors [35] on the MFs.
In this paper, we extend these previous works, and we
study the confidence limits and the biases of cosmolog-
ical parameters, arising from residual systematic errors
in shear measurements. These errors (herafter referred
as“spurious shear”), which are left after correcting for
the point spread function (PSF), are small, but are corre-
lated between different directions on the sky. In general,
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there is no reason to expect the spurious shear to obey
Gaussian statistics.
This paper is a first step towards quantifying the im-

pact of spurious shear on four sets of weak lensing statis-
tics PS, MF, LM, and PK, in a uniform fashion, using a
restriced suite of ray-tracing simulations (the “Inspector
Gadget Suite #1”, hereafter IGS1). In this first study,
another major simplifying assumption, which we will re-
lax in future work, is that the spurious shear is Gaussian.
Thus, the goal of the present paper is to quantify the im-
pact of noise whose power spectrum is different from that
of random, uncorrelated shape noise.
The rest of this paper is organized as follows. In § II,

we give an overview of the statistical formalism we use
to compute the parameter constraints and biases from
each observable. In § III, we discuss the log-linear model
spurious shear power spectrum that based on published
estimates by [40]. Our results are then presented in
§ IV. We first use lensing power spectra computed semi-
analytically with the public code NICAEA [41] to vali-
date our simulations and to compare errors and biases
from the PS to previous work. We then use the simula-
tions to compute errors and biases from the non-Gaussian
statistics (LM,MF,PK). In § V, analyze the properties
and effects of spurious shear which [42] derived from
a detailed simulation of the LSST instrument, focusing
on non-Gaussianities and deviations from the published
power spectrum on small angular scales. In § VI, we dis-
cuss our results and their limitations more generally, and
propose several future improvements. Finally, in § VII,
we summarize our conclusions and the implications of
this work.

II. FORMALISM

A. Observables

In this section we give a brief overview of the cosmo-
logical probes we use to calculate the constraints on the
ΛCDM cosmological parameters. Weak lensing probes
are based on the idea that, given a galaxy at redshift z (or
equivalently at comoving distance χ(z)), the dark matter
density fluctuations δ between that galaxy and observers
on Earth will generate distortions in the observed galaxy
shape. These shape distortions are parametrized by the
convergence κ, which is related to the magnification, and
by the two components of shear (γ1, γ2), which are related
to the ellipticity. As already widely suggested in the liter-
ature (see for example [1]), we can probe the convergence
field κ measuring its power spectrum Pl, which is directly
related to the power spectrum of the fluctuations in the
3D gravitational potential Φ(x)

P z1z2
l =

π2l

2

∫ ∞

0

dz
dχ

dz

gz1(z)gz2(z)

χ3
PΦ

(

l

χ
, z

)

. (1)

Here PΦ(k, z) is the gravitational potential power spec-
trum and gzi(z) is a redshift weight function that depends

on the redshift distribution of galaxies in the redshift bin
zi; the power spectrum is a quadratic descriptor of the
convergence field κ and hence one can consider single red-
shift correlators P z

l or double redshift correlators P z1z2
l

(which reduce to single redshift correlators if z1 = z2),
which are the ones that are used in the first part of the
analysis. Equation (1) tells us that Pl is essentially a
projection of the gravitational potential power spectrum
along the line of sight. Additional cosmological probes
for the convergence field κ that we consider in this paper
are all real space statistics, namely a particular class of
low–order moments (LM), Minkowski functionals (MF)
and peaks (PK). These additional probes might be par-
ticularly useful for constraining cosmological parameters
since the κ field is heavily non-Gaussian, and will contain
information beyond the power spectrum (see for exam-
ple [14, 21, 22] for some proposed methods of extract-
ing non-Gaussian information from weak lensing data).
The moments we consider consist of the set of the two
quadratic moments σ2

0 = 〈κ2〉 and σ2
1 = 〈|∇κ|2〉, three

cubic moments (S0, S1, S2) and four connected quartic
moments (K0,K1,K2,K3), see [17, 28]. Minkowski func-
tionals (V0(ν), V1(ν), V2(ν)) are topological descriptors of
the convergence field: V0 is related to the area of the ex-
cursion set {κ > νσ0}, V1 to the length of its boundary
and V2 to its genus characteristic (see [43, 44]). Pertur-
bative expansions of the Minkowski functionals in terms
of the moments of the convergence have been studied in
[28, 45], but have been shown not to converge with suf-
ficient accuracy in [17]. Finally, the peak statistic N(ν)
counts the number of local maxima of amplitude νσ0 in
the convergence field. The efficiency of this statistic in
constraining cosmology has been studied in [20, 23]. In
this work, we study the effect of spurious shear on the
constraints obtained from these cosmological probes.

B. Power spectrum: lensing tomography formalism

To compare with previous work and check our simula-
tions, we use the public code NICAEA [41] to compute
the κ (convergence) cross power spectrum P

zizj
l . If we

restrict ourselves to the quasi-Gaussian l modes (typi-
cally l . few×103), we have a good model for the power
spectrum covariance matrix, and we can build a Fisher
matrix (see, e.g. [46]),

Fαβ =
fsky
2

∑

z1,2,3,4

lmax
∑

l=lmin

(2l + 1)P z1z2
l,α W z2z3

l P z3z4
l,β W z4z1

l

(2)
that can be then used to compute marginalized con-
straints for the parameters

e(pα) =
√

(F−1)αα. (3)

Here P
zizj
l,α is the derivative of the power spectrum with

respect to the cosmological parameter pα, fsky is the frac-
tion of sky covered by the survey and Wl is the inverse
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of the power spectrum covariance matrix

W
zizj
l =

(

P
zizj
l +N

zizj
l + S

zizj
l

)−1
. (4)

In eq. (2), and throughout the rest of this paper, we
adopt the Einstein summation convention over repeated
indices (i.e. there is an implied summation over redshift
bins). The inverse has to be calculated with respect to
the redshift indices. Here we consider three main con-
tributions to the covariance matrix, namely the signal
itself (Pl), the galaxy shape noise (Nl) and an additional
source of spurious shear due to the instrument and the
atmosphere (Sl). We model the galaxy shape noise as a
redshift-dependent, uncorrelated white noise component
N

zizj
l = Nziδ

zizj , with amplitude (see [47])

Nz =
(0.15 + 0.035z)2

n(z)
(5)

where n(z) is the galaxy density per unit redshift per unit
solid angle. One can compute the total galaxy density per
unit solid angle as

ng =

∫ zmax

zmin

dn(z)

dz
dz. (6)

We use the normalization ng = 30 arcmin−2 (see be-
low). The model for the spurious shear Sl is instrument–
dependent, and will be discussed in § III. For the moment
we will consider a redshift–independent spurious shear
power spectrum S

zizj
l = Slδ

zizj . If ignored, the spuri-
ous shear can introduce a bias b(pα) in the cosmological
parameters, which can be quantified as

b(pα) =
fsky
2

F−1
αβ

∑

z1,2,3

lmax
∑

l=lmin

SlW
z1z2
l W z2z3

l P z3z1
l,β (7)

This is the tomographic generalization of the method
used in [40] to compute the parameter biases for a single–
redshift galaxy sample. In this work we compare the
marginalized errors e, to the biases b to see in which
conditions the latter are important, under the assump-
tion that the spurious effects are purely Gaussian, are
redshift–independent, and are well described by a power
spectral density Sl.

C. Beyond the power spectrum: the nonlinear

statistics

In this section, we describe the formalism to go beyond
the power spectrum and calculate the marginalized errors
and the biases on the cosmological parameters using the
nonlinear statistics measured from the IGS1 simulations.
Unlike the analytical power spectrum calculations, we do
not have a good theoretical model for either the expecta-
tion values of our nonlinear observables (LM, MF, PK)
or for their covariance matrix, so we are forced to mea-
sure it from the simulations. The cosmological N-body

simulations of large-scale structures and ray-traced weak
lensing maps used in this paper are the same as those in
our earlier work [17, 23, 27]. We refer the reader to these
publications for a full description of our methodology;
here we review the main features.

A total of 80 CDM-only N-body runs were made with
the IGS1 lensing simulation pipeline. Our suite of 7 cos-
mological models includes a fiducial model with param-
eters {Ωm = 0.26, ΩΛ = 0.74, w = −1.0, ns = 0.96,
σ8 = 0.798, h = 0.72}, as well as six other models. In
each of these six models, we varied one parameter at a
time, keeping all other parameters fixed at their fiducial
values; we thus have WL maps in variants of our fidu-
cial cosmology with w = {−0.8,−1.2}, σ8 = {0.75, 0.85},
and Ωm = {0.23, 0.29}. Note that in the last case, we set
ΩΛ = {0.77, 0.71} to keep the universe spatially flat.

To produce the N-body simulations, we first created
linear matter power spectra for the seven different cos-
mological models with CAMB [48] for z = 0, and scaled
them back to the starting redshift of our N-body simula-
tions at z = 100 following the linear growth factor. Using
these power spectra to create initial particle positions,
the N-body simulations were run with a modified ver-
sion of the public N-body code GADGET-2 [49] and its
accompanying initial conditions generator N-GenIC. We
modified both codes to allow the dark energy equation of
state parameter to differ from its ΛCDM value (w 6= 1),
as well as to compute WL-related quantities, such as co-
moving distances to the observer, at each simulation cube
output. Each simulation contains 5123 CDM particles in
a box size of (240h−1comoving Mpc)3, allowing a mass
resolution of 7.4× 109h−1M⊙.

In each of the six non-fiducial cosmological models, we
ran 5 strictly independent N-body simulations (i.e. each
with a different realization of the initial conditions). To
minimize the differences between two cosmologies arising
from different random realizations, the initial conditions
for each of those five simulations were matched across the
cosmologies quasi-identically. This entails recycling the
same random number when drawing mass density modes
from the power spectrum for each cosmology (note that
the power spectra themselves of course differ across the
cosmologies). In the fiducial cosmology, we ran 50 strictly
independent simulations – the first set of 5 to match the
other cosmologies quasi-identically as mentioned above,
and an additional set of 45 to improve the statistical ac-
curacy of the predictions in the fiducial cosmology (es-
pecially the covariance matrices). In each cosmology we
generated 1000 pseudo-independent 12 deg2 maps of κ, γ1
and γ2 using the ray–tracing algorithm in [50]; in this pa-
per we focus on the κ maps.

Measurements of observables from the simulations re-
quire binning for both the power spectrum and the topo-
logical statistics. The finite size of the maps we use, θmap

forces power spectral modes which differ by less than
2π/θmap to be grouped in the same l bin, and the con-
tinuous nature of the V0(ν), V1(ν), V2(ν) (MF) and N(ν)
(PK) statistics requires the threshold ν to be discretized
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in finite intervals in order to make the Fisher matrix cal-
culations tractable. The effects of binning choices on our
results is investigated in § IVD (see also [17] for refer-
ence). We refer as Or

i to the set of observables measured
in each realization r of the fiducial cosmology, where the
index i can range from 1 to the number of bins Nbins

chosen for the PS, MF and PK statistics, and from 1 to
9 for the LM statistic (to include all nine moments, no
binning is required for the LM statistic). Given the IGS1
ensemble of R = 1000 realizations, we can measure the
average and covariance matrix of the observables

〈Oi〉 =
1

R

R
∑

r=1

Or
i , (8)

and

Cij =
1

R− 1

R
∑

r=1

(Or
i − 〈Oi〉)(Or

j − 〈Oj〉). (9)

We use the non–fiducial simulated maps to measure
the finite–difference derivatives of the observables vector
Xiα ≡ 〈Oi〉,α = ∂〈Oi〉/∂pα. We fit each realization for
the cosmological parameters pα using a χ2 minimization
as in [17]

δprα = prα − p0α = (XiC
−1
ij Xj)

−1
αβ(Xk,βC

−1
kl )(Or

l − 〈Ol〉)
= Mαl(O

r
l − 〈Ol〉), (10)

where p0α are the fiducial cosmological parameters and
Mαl is a shorthand for

Mαl ≡ (XiC
−1
ij Xj)

−1
αβXkβC

−1
kl . (11)

Note that the IGS1 simulations are limited to variation
of the triplet pα = (Ωm, w, σ8).
If the average 〈Oi〉 and derivatives X that we use to

build the model are computed using the maps without
spurious shear (i.e. with just galaxy shape noise added),
then the estimator (10) is biased, and the amount of bias
(in the small bias limit) is given by

b(pα) = Mαi(〈OS
i 〉 − 〈Oi〉), (12)

and OS are the observables calculated from the simula-
tions with spurious shear included. We can also quantify
the parameter covariance matrix

Pαβ = 〈δprαδprβ〉 = MαiMβjC
S
ij (13)

where CS is the covariance matrix of the observables cal-
culated with spurious shear effects included. We can then
calculate the marginalized parameter constraints as

e(pα) =
√

Pαα . (14)

One should note that, if we set CS = C, equation (13)
reduces to the usual Fisher matrix expression.

III. MODELING SPURIOUS SHEAR

In this section, we give a description of how we model
the spurious shear that contaminates the actual lensing
signal. We distinguish two types of additive systematic
errors: uncertainties due to the shape measurement tech-
nique, and atmospheric and instrumental effects which
can distort the recorded galaxy images. Additive effects
due to measurement techniques are usually modelled as
a white noise source (see [36]) and hence almost indistin-
guishable from intrinsic galaxy shape noise; the net effect
of this kind of additive systematic is to decrease the ef-
fective galaxy number density of the survey. Reference
[38] considered the effect of uncorrelated shape measure-
ment, instrumental and atmoshperic errors on shear peak
statistics for LSST. In this work, we concentrate on the
correlated atmospheric and instrumental (mainly due to
optics) effects, which we call spurious shear, following
[42]. Unlike shape measurement errors, spurious shear
is correlated between pixels. Its power spectral shape
has been fitted by a log-linear model (see [40, 42]). We
perform our analysis on convergence maps, i.e. on the
E mode of the shear, and we model the spurious shear
correlations by means of a power spectral density of the
form

SEE,l ≡ Sl =
A

l(l + 1)

∣

∣

∣

∣

1 + n log

(

l

l0

)∣

∣

∣

∣

(15)

with l0 = 700 and (A, n) kept as adjustable parame-
ters. For simplicity, we restrict ourselves to the case
where the spurious shear is purely Gaussian, and is
fully characterized by the power spectrum of equation
(15). This assumption will likely have an important ef-
fect on the results we obtain using the nonlinear statis-
tics (LM,MF,PK) which are particularly sensitive to non-
Gaussianities. We discuss this issue further in § V below.

To have a sense of the orders of magnitude, we display
in Figure 1 the power spectra calculated with NICAEA,
separating the signal contribution from those of shape
noise and spurious shear. In § V we find that the log-
linear model is not a good description of the actual LSST
simulated atmospheric maps on scales smaller that ∼ 3′.
For the moment, we will ignore this complication; we will
investigate the effects of this small–scale departure from
the log-linear model in § V below. Figure 1 shows that,
for an integrated spurious shear power spectrum with
σ2
sys = 4× 10−7 (the expression for σ2

sys can be found in
equation (18), and this particular value has been chosen
according to [40, 42]), the power in spurious shear is much
smaller than the shape noise.

For the simulation analysis of the nonlinear statistics,
we generateR = 1000 noise maps in Fourier–space, which
are random realizations of the power spectrum of equa-
tion (15), and FFT invert them (using the FFTW3 C
library [51]) to create the real space noise maps that we
add to the simulated convergence maps.
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FIG. 1. One of the diagonal components of the convergence
cross power spectrum P zz

l with z = 1.95; the plot displays
pure signal Pl (blue), signal shape noise Nl (red) added using
a total galaxy density ngal = 30arcmin−2 (which fixes the
normalization in equation (17)), and spurious shear Sl (green)
with spectral index n = 0.7, with normalization σ2

sys = 4 ×
10−7. For reference we also plotted the total convergence
cross spectrum in black

IV. RESULTS

A. Analytical results with NICAEA

The purpose of this subsection is to illustrate some
analytical results we obtained using the power spectrum
code NICAEA: the goal is to compare these analytical
results to the full numerical ones, which can give an es-
timate of the IGS1 simulations’ accuracy. We begin by
computing parameter errors and biases semi-analytically,
so that we can compare our results with previously pub-
lished work.
We consider a flat ΛCDM model with 7 cosmolog-

ical parameters, which can have the two alternative
parametrizations

p1α = (Ωmh2,ΩDE , w0, w1, σ8,Ωbh
2, ns)

p2α = (Ωm, w0, w1, h, σ8,Ωb, ns).
(16)

The former is easier to deal with when including Planck
priors in the analysis, while the latter is necessary to
make a comparison with [40].
We consider a galaxy distribution with exponential

tails as in [40, 47]

n(z) ∝ zα exp

[

−
(

z

z0

)β
]

(17)

in which the peak redshift scale is z0 and the parameters
α, β are chosen to match observations. We divide the

−1.4 −1.3 −1.2 −1.1 −1.0 −0.9 −0.8 −0.7 −0.6

w0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

w
1

FIG. 2. Comparison between our error calculations on the
doublet (w0, w1) (solid black ellipse) with a 5% step used
for calculating the derivatives, and the LSST figure of merit
(dashed ellipses) with no systematics (green), optimistic ad-
ditive systematics (blue) and pessimistic additive systematics
(red) as published in [53]. Planck priors ∆α were added, re-
sulting in an effective Fisher matrix F∆

αβ = Fαβ +∆−1
α δαβ

galaxies into redshift bins zi and use NICAEA to com-
pute the convergence cross power spectrum P

zizj
l ; we

subsequently apply equations (2) – (7) to compute the
biases and marginalized constraints on the cosmological
parameters.

1. Comparison with LSST figure of merit

Before proceeding to calculate the cosmological con-
straints and biases, we investigated the importance of
the choice of the step δpα used to calculate the deriva-
tives P

zizj
l,α , since in general the errors and biases will de-

pend on it. We developed an iterative method in which
we start choosing an initial step (20% variations in the
parameters), compute the 1σ marginalized errors with
equation (3) and use these errors as the new steps to com-
pute P

zizj
l,α . This ensures that the final constraints we ob-

tain are based on models for which the observables were
actually computed in the Fisher derivatives. In practice
we find that only a few iterations are necessary in order
to get convergent results. A sample of our marginalized
constraints after 30 iterations can be found in Table I on
the top.
A comparison with the LSST figure of merit for the

(w0, w1) doublet is displayed in Figure 2 (in order to
make this comparison, we have added Planck priors, see
[52] for reference). The survey specifications used for the
comparison are the same as in Table I top, and we lim-
ited ourselves to the case in which Sl ≡ 0 (no spurious
shear). The figure shows that our results agree with the
published systematic–free curve within a factor of ∼ 2.
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2. Bias estimation

In this section we study the effect of introducing a
log-linear spurious shear as in equation (15), with an in-
tegrated amplitude of σ2

sys = 4× 10−7 defined as

σ2
sys =

1

2π

lmax
∑

l=lmin

lSl. (18)

We proceed as in [40] switching to the p2α parametrization
of equation (16) and setting the survey specifications to
the ones found in their paper; a complete overview of the
survey assumptions and results we obtained with this
framework can be found in Table I. It is worth noticing
that the biases in Table I are about an order of magnitude
smaller than the ones that [40] found. The origin of this
factor of 10 difference is unclear. However, we note that
[40] quotes unphysically large marginalized errors on h
(∆h = 17) and Ωb (∆Ωb = 4) in their Table 1. While the
origin of these large errors is also unclear, we suspect it
may be related to the larger values of the biases they find.
The computation of the bias involves manipulating the
same matrices as those in computing the marginalized
errors, and the large h and Ωb errors could increase the
biases in other parameters through degeneracies.

B. Comparison between NICAEA and simulations

The purpose of this subsection is to compare the ana-
lytical results obtained with the NICAEA to the numer-
ical results obtained from the simulations.

1. Bias and error comparison

We compare the parameter constraints obtained from
the convergence power spectrum (PS), using both the
simulated maps and NICAEA. For this comparison, we
focus on l modes between 500 ≤ l ≤ 5000, with a bin step
δlbin = 100 (roughly corresponding to the l resolution of
the maps δlpix = 2π/θmap), consider a single source plane
at zs = 2, and we do not add any spurious shear (just
galaxy shape noise). Since in this section we analyze
the power spectrum statistic only, we do not smooth the
maps, because the conclusions for the PS statistic are
independent of smoothing scale. We then apply equa-
tions (11)-(14), with Ol = Pl, and the covariance matrix
approximated as diagonal

Cth
ll′ =

P 2
l

l + 1/2
δll′ . (19)

Note that with this choice of covariance matrix equa-
tions (11) and (14) are the same as equations (7) and
(3) in the limit of no tomography, with only one red-
shift bin and fsky = 1. Note also that this expres-
sion for the covariance matrix is correct only when we

have full sky coverage, so that for each mode l there are
2l + 1 identically distributed submodes. In a more real-
istic case, when we consider finite patches of sky of size
θmap, we are limited by the size of the pixel in Fourier

space δlpix = 2π/θmap =
√

π/fsky. The size of the bins
we use to probe the power spectrum, which we call δlbin
must be comparable with this number. This gives us a
number of submodes Nsub(l), for each l mode, with

Nsub(l) ≈
πlδlbin
δl2pix

(20)

which will result in a measured covariance matrix

Cmeas
ll′ =

P 2
l

Nsub(l)
δll′ ≈

δl2pix
πδlbin

P 2
l

l
δll′ . (21)

The results of this comparison are shown in Table II, and
they are scaled in a way that takes into account the fact
that

Cmeas
ll′ ≈

δl2pix
πδlbin

Cth
ll′ . (22)

The results obtained with NICAEA and the simulations
are in good agreement, especially when we mitigate the
degeneracy between Ωm and σ8 by considering the pa-
rameter combination σ8Ω

0.5
m . The discrepancy in the w

bias is large (a factor of ∼ 20), and might be related to
the inaccuracies in the w derivative that we see in Figure
3 at high l which we will discuss in the next section. Be-
cause of degeneracies between parameters, an inaccuracy
in even one of the power spectrum derivatives can affect
the constraints on the remaining parameters. However,
we note that the w bias is very small, well below the
errors from any foreaseable Weak Lensing experiment.

2. Simulation inaccuracies and degeneracies

Confidence intervals for the parameters (Ωm, w, σ8) ob-
tained from NICAEA and from the simulations are shown
in Table II. The differences between the simulations and
NICAEA could be due to an inaccuracy in measuring the
derivativesX from the simulations, or to noise in the sim-
ulated covariance matrix. We test these two hypotheses
and conclude that the main source of the difference is the
inaccuracy in measuring the power spectrum derivatives.
Figure 3 shows a comparison between the power spec-
trum derivatives calculated with NICAEA and measured
from the IGS1 simulations; we also quantified the nu-
merical fluctuations in the covariance matrix measuring
the dimensionless quantity 〈

√
l∆Pl/Pl〉 which, according

to the Gaussian prediction should have an expectation
value over l of order of

√
πδlbin/δlpix ≈ 6. We found our

prediction to be consistent with the measurements up to
∼ 10% random numerical noise when spacing multipoles
l ∈ [500, 5000]. We calculate biases and parameter con-
straints by inserting into equations (11)-(13), alternately
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Survey assumptions 1

(α, β, z0, fsky , ng) = (2, 1, 0.7, 0.35, 30 arcmin−2), z ∈ [0, 3], l ∈ [50, 3000]

ns w1 w0 Ωbh
2 σ8 ΩDE Ωmh2

Fiducial 1.0 0.0 -1.0 0.021 0.9 0.7 0.147

Error 0.020 0.17 0.043 0.0009 0.0059 0.0032 0.0090

Survey assumptions 2

(α, β, z0, fsky , ng) = (2, 1.5, 0.64, 0.44, 35 arcmin−2), z ∈ [0, 4], l ∈ [10, 20000]

Ωm w0 w1 h σ8 Ωb ns

Fiducial 0.28 -0.95 0.0 0.7 1.0 0.046 1.0

Bias 4.4×10−5 6.5×10−4 −2.7×10−3 −4.1×10−5 −5.0×10−5 1.1×10−4 2.1×10−4

Error 0.0087 0.14 0.59 0.12 0.011 0.019 0.034

TABLE I. Fiducial values used for the parametrizations p
(1)
α (top) and p

(2)
α (bottom), along with marginalized errors (top and

bottom) and biases (bottom) calculated with equations (3,7), for a sample value of n = 0.7.

Survey Assumptions 3

n(z) = ngδ(z − 2), ng ≫ 1, l ∈ [500, 5000]

Ωm w σ8 σ8Ω
0.5
m

NICAEA

b(pα) 2.46× 10−5 −2.29× 10−3 8.57 × 10−6 2.37 × 10−5

e(pα) 0.035 0.10 0.055 0.0021

Simulations

b(pα) 2.3× 10−5 −1.3× 10−4 1.23 × 10−5 2.43 × 10−5

e(pα) 0.023 0.11 0.036 0.0028

TABLE II. Bias and marginalized errors comparison on the parameters using the power spectrum computed with the code
NICAEA and the IGS1 simulations. In the calculations with NICAEA we used 45 linearly spaced modes between 500 ≤ l ≤ 5000,
while in the simulations we chose 45 linearly spaced l bins in the same interval. The maps were not smoothed and a single
source plane at redshift z = 2 was considered. For simplicity, no galaxy shape noise was added and no Gaussian smoothing
was applied to the maps

the covariance matrices C and the derivatives tensors
X measured from the simulations and those calculated
semi-analytically with NICAEA. We find that choosing
one particular method of measuring the covariance ma-
trix has a negligible effect on the parameter constraints,
whereas switching the analytically calculated derivatives
with those inferred from the simulations has a large ef-
fect.
These inaccuracies have an important effect especially

in the presence of degeneracies, like the well known
(Ωm, σ8) one. To limit the effects of this degeneracy, in-
stead of constraining both Ωm and σ8, we constrain the
combination σ8Ω

γ
m. We choose γ such that the variation

δ(σ8Ω
γ
m) given by

δ(σ8Ω
γ
m) = Ωγ

mδσ8 + γσ8Ω
γ−1
m δΩm (23)

corresponds to the minor axis of the (Ωm, σ8) likelihood
confidence contour (which has the shape of an ellipse,
within our framework). We identify the directions of the
ellipse axes by computing the eigenvectors of the parame-
ter covariance matrix: we find that regardless of whether
we use the power spectra from NICAEA or the ones mea-

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

l

10-11

10-10

10-9

10-8

X
lp

Ωm

w

σ8

FIG. 3. Power spectrum derivatives measured from the sim-
ulations (solid) and from NICAEA (dashed) for the three pa-
rameters Ωm (blue), w (green) and σ8(red). The agreement
is good overall, but the noise visible on the plot causes signif-
icant inaccuracy in the calculated bias for w.
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sured from our simulations, we obtain the same value
γ = 0.5. We display the constraints on the σ8Ω

0.5
m com-

bination as a fourth column in Table II, which shows
good agreement between the NICAEA and IGS1 errror
contours.

C. Results from simulations: the nonlinear

statistics

We use the IGS1 set of simulated maps to evaluate the
biases and marginalized errors (through equations (12)
and (14)) on the parameter triplet (Ωm, w, σ8) using, in
addition to the power spectrum (PS), the three nonlinear
statistics (LM,MF,PK). The results are outlined in Table
III and Figures 4 and 5. One of the main conclusions that
we draw from our results is that the marginalized con-
straints are comparable for all the different statistics, al-
though the best among the nonlinear statistics, the MFs,
deliver constraints that are a factor of ∼ 2 better than
those from the PS. We also note that, even though the
PS appears to be the less constraining statistic, it also
appears to have a much smaller bias than the morpho-
logical statistics (MF,PK). Also note that the LM statis-
tic is much less biased than the topological ones. The
main reason for this is that the spurious shear consid-
ered introduces large scale correlations that can affect
the topology of the excursion set, but has virtually no
effect on higher-than-quadratic point statistics, such as
the skewness S0 = 〈κ3〉.

D. Robustness check: number of bins

In this section we check how our results depend on
the number of bins for the PS, MF and PK statistics.
Note that when we specify Nbins for MF, the observables
vector is 3Nbins long because there are 3 MFs. The be-
havior of the biases b(pα) and marginalized errors e(pα)
as a function of Nbins for the parameters (w, σ8Ω

0.5
m ) is

shown in Figure 6. The main conclusion we draw from
this plot is that our results are stable and reach a plateau
for Nbins ≈ 200. For the the MF statistic they start to
increase for a larger number of bins due to numerical in-
stabilities. A similar behavior has already been observed
in [17].

V. LSST SPURIOUS SHEAR

[42] used an LSST instrument simulation (which relies
on the extensive efforts of [54][55]) to calculate the spuri-
ous shear expected for LSST due to atmospheric effects,
stochastic optics errors, tracking errors, and counting
statistics. They used an LSST instrument specific code
to simulate optical aberrations on galaxy shapes; their
simulated fields of view are approximately 2◦ × 2◦. The
catalogs that we analyze describe the residual distortions

after PSF corrections with polynomial fits. The stochas-
tic piece of the spurious shear correlation decreases ap-
proximately with the inverse of the effective number of
exposures with which each field of view is probed.
We use the 20 spurious shear maps which [42] gener-

ated to study the effect of spurious shear. These maps
consist of a list of galaxies, with sky angular positions θθθi
and additive spurious shear components γ1,2

i ≡ γ1,2(θθθi),
where the shear components γ1,2 are a measure of the
residual ellipticity distortion that the atmosphere and
instrument imprint on the galaxy images. [42] analyzed
these maps computing the two–point angular correlation
function ξ+(θ), defined as

ξ+γγ(θ) = 〈γ1(θθθi)γ
1(θθθj) + γ2(θθθi)γ

2(θθθj)〉, (24)

where the averaging is performed over all galaxy pairs
separated by an angular distance |θθθi − θθθj | = θ. Since
the shear γγγ is a two component spin 2 field, however,
ξ+γγ alone does not characterize it completely, even in the
Gaussian case. One can construct an independent shear
two point function ξ−γγ with a different quadratic spin
combination to recover the missing information content.
Instead of using a real–space approach, we adopt the

analogous EB mode decomposition, which has been
widely used to characterize the CMB polarization. This
technique decomposes the Fourier–transformed shear
field γ1,2(l) into its E and B components. Following [1]
we compute

E(l) =
(

l2x−l2y
l2x+l2y

)

γ1(l) +
(

2lxly
l2x+l2y

)

γ2(l)

B(l) =
(

−2lxly
l2x+l2y

)

γ1(l) +
(

l2x−l2y
l2x+l2y

)

γ2(l)
(25)

from which we calculate the power spectral densities
SEE , SBB and the cross power SEB. This decomposi-
tion is particularly useful since, for a pure lensing shear
signal Pκ = PEE , PBB = PEB = 0 (note that we use the
notation P for the signal and S for the spurious shear).
Because of this, a non–null B detection can be attributed
to systematics leading to the possibility of correction.
The E and B mode spectral densities contain the same

information as the real space correlation functions ξ±γγ , in
particular

ξ+γγ(θ) =

∫ ∞

0

ldl

2π
[SEE(l) + SBB(l)]J0(lθ) (26)

where J0 is the zeroth order Bessel function of the first
kind. Moreover in this fashion it is easy to model the
additive convergence systematics, since Pκ = PEE .
We extract information about the E and B mode

spurious spectral densities by analyzing the 20 simu-
lated maps. For simplicity, we used the provided cat-
alogs to construct pixelized shear maps γ1,2

P (p) (with
p = (nxθpix, nyθpix), n = 1...Npix) using a pixelization
smoothing procedure

γ1,2
P (p) =

∑

q

∑

i γ
1,2(θθθi)δq,θθθiWθG(|p− q|)

∑

i δq,θθθi
(27)
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Survey Assumptions 4

n(z) = ngδ(z − 2), ng = 15 arcmin−2, l ∈ [100, 2× 104], νMF ∈ [−2, 2], νpk ∈ [−2, 5]

Ωm w σ8 σ8Ω
0.5
m

Power spectrum

b(pα) 4.0× 10−6 −2.69 × 10−4 2.5× 10−5 1.5× 10−5

e(pα) 0.060 0.43 0.10 0.014

Minkowski

b(pα) 0.0026 0.037 −0.0024 8.31× 10−4

e(pα) 0.038 0.20 0.056 0.013

Moments

b(pα) −2.8× 10−5 −0.0011 4.7× 10−5 4.0× 10−6

e(pα) 0.065 0.32 0.089 0.011

Peaks

b(pα) 0.009 0.026 3.2× 10−4 0.0016

e(pα) 0.044 0.25 0.060 0.018

Moments + Power spectrum

b(pα) 3.2× 10−5 −6.43 × 10−4 −3.38× 10−5 7.24× 10−6

e(pα) 0.048 0.26 0.071 0.012

TABLE III. Bias and marginalized errors (for a 3◦ × 3◦ field of view) on the parameters using different sets of descriptors.
We used the 9 moments, 350 linearly spaced bins between 100 ≤ l ≤ 2 × 104 for the power spectrum, 175 linearly spaced
bins in [−2σ, 2σ] for the MFs and 350 linearly spaced bins in [−2σ, 5σ] for the peaks. The maps were smoothed with a
Gaussian smoothing kernel of scale θG = 1′, and a single source plane at redshift z = 2 was considered. A galaxy density
n(z = 2) = 15 arcmin−2 has been assumed.

−0.10 −0.05 0.00 0.05 0.10
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FIG. 4. Confidence contours corresponding to Table III.

where the first sum is over pixels, the second sum is over
the galaxies in the catalog and the Kronecker δ symbol
is defined as

δp,θθθi =

{

1, if θθθi falls in p

0, otherwise
(28)

The smoothing kernel has been chosen to be a Gaussian,

WθG(θ) =
1

2πθ2G
exp

(

− θ2

2θ2G

)

, (29)

with a scale parameter θG = 1′; the pixel size has been
chosen as θpix ≈ 0.2′, and each map has a total of
Npix = 512 pixels per side (which corresponds roughly
to a 2◦ × 2◦ field of view). The details of the smoothing
procedure do not matter when we restrict ourselves to
angular scales larger than θG = 1′, or equivalently to l
modes smaller than lmax ≈ 2 × 104. Using Fast Fourier
Transforms (FFT), we measured an average over cata-
logs of the E and B modes power spectral densities. Fig-
ure 7 shows that these are consistent with a statistically
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FIG. 5. Error contours in the (w, σ8Ω
0.5
m ) plane

isotropic spurious shear, with equal amount of power in
the E and B channels and a weak EB correlation. We
quantified this correlation measuring the correlation co-
efficient γEB(5000) ≈ 0.1 where

γEB(l) =
PEB(l)

√

PEE(l)PBB(l)
. (30)

We also plot the individual components of the E and B
mode power spectra in Figure 8. We find that the log-
linear model in equation (15) is not a good description
of the measured E mode power spectrum, failing both
at small and large l. In particular, we believe that the
excess feature that appears at θ . 3′ in the angular cor-
relation function in Figure 8 is due to the damping of the
spurious shear power spectrum at high l. The spurious
shear excess on . 3 arcmin scales can be attributed to
the inability of the polynomial fits to capture the vari-
ation of the PSF on small scales. Because of this our
results, which include the treatment of this larger small-
scale noise, are very conservative. [42] do not reproduce
this excess feature with the log-linear model since this
model is scale free and decreases too slowly at high l.
We introduced a damping scale in the model through

an analytical description of the measured E mode spuri-
ous shear power spectrum that is piecewise log-linear for
l ≤ 3300 and has an exponential damping for l > 3300.

Sl =















A0

l(l+1)

[

n0 log
(

l
l0

)

+ 1
]

, if 0 < l ≤ 700

A1

l(l+1)

[

n1 log
(

l
l0

)

+ 1
]

, if 700 < l ≤ 3300
A2 log l
l(l+1) exp

[

−b(log l − µ)2
]

, if l ≥ 3300

(31)
We found the best fit parameters for this model to

be (A0, n0, A1, n1, A2, b, µ) = (3.17 × 10−5, 1.36, 1.6 ×
10−4, 7.54, 4.4 × 10−5, 15.37, 3.41). We also quantified
the order of magnitude of the spurious shear squared
amplitude as σ2

sys ≈ 3.6 × 10−5. This reduces to

σ2
sys ≈ 10−7 once we divide it by the number of expo-

sures Nexposures = 368.

The fitting formula we obtained provides an accurate
fit to the power spectrum of the spurious shear, and can
be used to investigate the impact of the spurious shear.
However, we caution that its parametrization is ad-hoc,
and it cannot be used directly in obtaining Bayesian best
fits to data (see [56]).

Since we want to study the scale–dependence of the
cosmological parameter biases, we use a linear interpola-
tion of the measured E power spectrum in Figure 8 to
generate our Gaussian mock spurious shear maps. The
damping of the noise at high l can in principle have an
effect on the bias values we obtain in § IV. In Table IV we
see that the biases induced by spurious shear calculated
from the LSST instrument simulation maps (“LSST sim-
ulation”) for the morphological statistics (MF,PK) are
smaller than for the “Log-linear” model of Table III. This
is a result of two opposing factors. The amplitude of σ2

sys

measured from the maps, scaled with the number of ex-
posures, is smaller than assumed in III. However, the
damped noise power spectral shape (31) has more power
on large scales, l . 3300, with respect to the simple log-
linear one, and the bias on the parameters seems to come
mainly from this large scale component. We also see that
if we increase σ2

sys by a factor of 10, the biases obtained
with the PS statistics scale linearly as expected, while
deviations from a simple linear scaling are observed for
the other statistics. The bias in the morphological statis-
tics, though small, needs to be further reduced for sur-
veys with the statistical power of LSST. In the future, in
addition to already described analysis enhancements, we
could use the fact that the spurious shear power in the E
and B are similar, to correct for these sources of contam-
ination in the signal. Treating the noise as a Gaussian
random field with known power spectral shape, maxi-
mum likelihood denoising procedures on the convergence
maps become possible (see [57] for an example of maxi-
mum likelihood denoising of CMB polarization maps).

In Table V, we investigate the non-Gaussianities in the
spurious shear maps, measuring a set of 9 cubic and quar-
tic moments of the spurious shear E mode. The first col-
umn in the Table shows the values of the skewness and
kurtosis moments, averaged over the twenty independent
2 × 2deg2 LSST noise maps. The second column shows
the equivalent quantities measured from mock Gaussian
maps. The results show that non-Gaussianities in the
spurious shear are not small, and in particular the kurto-
sis moments measured from the spurious shear maps are
much larger than those introduced in our mock (Gaus-
sian) spurious shear realizations. Nevertheless, for a sur-
vey with a size comparable to the cumulative area of the
twenty LSST noise maps (80deg2), we do not expect these
non-Gaussianities in the spurious shear to affect our re-
sults significantly. This is because the skewness and the
kurtosis are still much smaller than the non-Gaussianities
in the lensing signal. Furthermore the non-Gaussianity
in the skewness is modest, while the the kurtosis mo-
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FIG. 6. Biases (left panel) and marginalized errors (right panel) on w (solid) and σ8Ω
0.5
m (dashed) as a function of Nbins for

the three statistics PS (green), MF (blue) and PK (red).
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FIG. 8. Left panel: the E and B mode power spectral densities of the spurious shear measured from the LSST instrument
simulation, SEE (blue), SBB(green), |ReSEB| (red). We fitted the parameters (A0, n0, A1, n1, A2, b, µ) as in equation (31)
(keeping l0 = 700.0 fixed) to the measured E power spectrum profile; the black dashed line corresponds to the best fit model
parameters. Right panel: spurious shear angular correlation function ξ+γγ(θ) calculated from the E and B power spectra as in
(26); the solid and dashed lines refer to positive and negative values respectively.

Survey Assumptions 4

n(z) = ngδ(z − 2), ng = 15 arcmin−2, l ∈ [100, 2× 104], νMF ∈ [−2, 2], νpk ∈ [−2, 5]

Ωm w σ8

Power spectrum

Log-linear 4.0× 10−6 −2.69× 10−4 2.5× 10−5

LSST simulation −6.22× 10−5 2.94 × 10−4 1.32 × 10−4

LSST simulation ×10 −7.51× 10−4 0.0025 0.0015

Minkowski Functionals

Log-linear 0.0026 0.037 −0.0024

LSST simulation 0.0020 0.025 −0.0014

LSST simulation ×10 0.007 0.055 −0.0068

Moments

Log-linear −2.8× 10−5 −0.0011 4.7× 10−5

LSST simulation 1.09× 10−5 −3.96× 10−4 −7.60× 10−6

LSST simulatiion ×10 −2.84× 10−5 −4.72× 10−3 1.26 × 10−4

Peaks

Log-linear 0.009 0.026 3.2× 10−4

LSST simulation 0.0011 0.018 2.9× 10−4

LSST simulation ×10 0.0026 0.046 4.0× 10−4

TABLE IV. Comparison for the bias values on the parameter triplet (Ωm, w, σ8) using three different models for the LSST
spurious shear: “Log-linear” refers to the log-linear model with (A,n, l0) = (10−6.6, 0.7, 700), with the normalization σ2

sys =
4× 10−7, repeated from Table IV. “LSST simulation” refers to the power spectrum measured from the maps of [42] divided by
Nexposures = 368, “LSST simulation × 10” refers to the same model but with the amplitude σ2

sys increased by a factor of 10.

ments do not add significant cosmological information
to that already captured by the skewness moments (see
again [17]). However, the scaling of this conclusion to
larger surveys is not possible without computing the non-
Gaussianities of the LSST noise in correspondingly larger

maps.
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Moment Value (20 LSST realizations) Value (20 gaussian mock realizations) Value (20 lensing signal realizations)

S0 1.68× 10−2 5.8×10−3 1.0

S1 3.67× 10−3 −3.2×10−3 −1.4

S2 1.87× 10−2 2.5×10−3 −0.57

Kc
0 1.38× 10−1 −1.3×10−2 2.7

Kc
1 −6.91× 10−1 8.3×10−3 −4.4

Kc
2 −4.55 6.9×10−4 −78.0

Kc
3 7.48 −3.2×10−3 150.0

TABLE V. Values of cubic (S) and quartic (K) moments (see [17] for the precise definitions) measured from spurious shear
maps, from LSST simulations [42], our mock Gaussian spurious shear maps, and from the actual lensing signal from IGS1
simulations.

Survey Assumptions 5

n(z) = ng(δ(z − 1) + δ(z − 2)), ng = 15 arcmin−2, l ∈ [100, 2× 104], νMF ∈ [−2, 2], νpk ∈ [−2, 5]

Ωm w σ8 σ8Ω
0.5
m

Power spectrum

b(pα) 5.2× 10−5 −1.65 × 10−4 1.0× 10−4 9.2× 10−5

e(pα) 0.028 0.31 0.042 0.010

Minkowski

b(pα) 0.0025 0.022 -0.0014 0.0011

e(pα) 0.035 0.21 0.047 0.012

Moments

b(pα) 1.1× 10−4 1.6×10−4 −1.8× 10−4 −2.95 × 10−5

e(pα) 0.037 0.26 0.044 0.0093

Peaks

b(pα) 0.0017 0.022 -0.0011 7.3× 10−4

e(pα) 0.039 0.23 0.054 0.017

Moments + Power spectrum

b(pα) 3.81 × 10−5 −9.22 × 10−5 −9.36× 10−5 −2.03 × 10−5

e(pα) 0.027 0.22 0.038 0.0093

TABLE VI. Same as Table III, but with redshift tomography using two redshifts (zs,1, zs,2) = (1, 2); a galaxy angluar density
n(zs,1) = n(zs,2) = 15 arcmin−2 has been assumed

Ωm w σ8

Minkowski

Bias 0.0011 0.015 −6.0× 10−4

Error 0.052 0.26 0.076

Peaks

Bias 4.0× 10−4 0.021 0.0012

Error 0.055 0.28 0.069

TABLE VII. Biases and marginalized errors on the
(Ωm, w, σ8) triplet calculated considering only peaks with
ν > νpk

m = 1 and excursion sets with ν > νMF
m = 1 for

Minkowski functionals

VI. DISCUSSION

The results presented above can be divided into three
main parts, which we now discuss in turn. In the first
part, we estimate the constraining power and associated
bias on the cosmological parameters using only the con-
vergence power spectrum statistic, which we calculate
using the public code NICAEA [41]. In this case we do
not have a strict limit on the cosmological parameters
we can consider and hence have the freedom to consider
the full set of ΛCDM cosmological parameters (in either
of the two parametrizations p1,2α ), and to consider arbi-
trary variations of their numerical values. This freedom
allows us to perform stability checks on our Fisher anal-
ysis, such as varying the stepsizes for the finite differ-
ence derivatives. When we adopt an iterative approach
to determine the optimal stepsize, the results converge
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after few iterations; these results are a factor of 1.5 dif-
ferent compared to taking finite differences using fixed
20% stepsizes.

We are also able to compare some of our results on
bias and marginalized constraints with previous pub-
lished work. We reproduced exactly the initial conditions
and assumptions in [40] and, by performing the same cal-
culations, we find somewhat different values both for the
biases and marginalized constraints (which we list in Ta-
ble I bottom). In particular we find that our calculated
biases are a factor of ∼10 smaller that the ones in [40].

The second part of this work focuses on bridging the
gap between a NICAEA-like semi-analytical approach,
and a full numerical one, using simulated convergence
maps which were created from a suite of ray–tracing N-
body simulations. The IGS1 set of simulated maps is
limited in the cosmological parameters we are able to
vary, i.e. only the (Ωm, w, σ8) triplet, by the step sizes
for the finite difference derivatives which are of order of
20%, and by the underlying galaxy distribution assumed
in ray–tracing. We limit ourselves to the case where all
the source galaxies lie on a single redshift plane at zs = 2.
The simulated fields of view are approximately 3◦ × 3◦,
with a pixel resolution of 0.1′, which limits us to to an l
range of [102, 2×104], with l bins which must be sized at
least δlbin ∼ 100.

In order to compare the results of the simulations to
the ones obtained with NICAEA, in practice we restrict
ourselves to the l range [500, 5000] to avoid both the
large–scale modes that have little constraining power,
and the heavily nonlinear small–scale modes. Table
II shows a comparison between the marginalized errors
and biases obtained, under the same conditions, with a
NICAEA semi-analytical approach and with fully numer-
ical methods. We immediately see that there are some
discrepancies in the (Ωm, σ8) marginalized constraints,
which we attribute to limitations in the simulations. In
particular Figure 3 shows the presence of numerical in-
accuracies in the power spectrum derivatives measured
from the simulated maps. These inaccuracies have a large
impact on the (Ωm, σ8) doublet, because of its intrinsic
degeneracy. We tried to mitigate the effect of this degen-
eracy by restricting our forecasts to the σ8Ω

0.5
m parameter

combination, which corresponds to the minimum vari-
ance direction in the (Ωm, σ8) likelihood plane; the effect
of this mitigation can be seen in the last column of Table
II, which shows better agreement between the NICAEA
and fully numerical approaches.

In the third part of this work, we estimate the impact of
spurious shear on the nonlinear statistics that we consider
in addition to the power spectrum: moments (LM), peak
counts (PK) and Minkowski functionals (MF). Because
of the complicated analytical structure of these statis-
tics, a NICAEA–like semi-analytical approach is not yet
possible, though it might be in the future as emulation
software is being developed. For now we are forced to
restrict ourselves to the IGS1 simulated maps. Table III
shows the effect of the spurious shear on the three non–

linear statistics. Constraints derived from the moments
and from the power spectrum have bias ≪ marginalized
errors for (w, σ8Ω

0.5
m ). In the ideal case that the spurious

noise remained Gaussian, and the biases were indepen-
dent of survey size, they would remain negligible even for
a survey with the statistical power of LSST (scaling the
errors by a factor of 1/40). However, as discussed above,
this scaling is unlikely to hold and needs to be verified by
quantifying non-Gaussianities in the noise in larger noise
maps.

When the moments are combined with the power spec-
trum, the constraints are tightened by almost a factor
of 2. However, the morphogical statistics (MF,PK) suf-
fer from important biases, which need to be corrected
for before applying to surveys of the statistical power of
LSST.

Redshift tomography may reduce bias, since the spuri-
ous shear is a constant, redshift independent, addition to
the shear which cannot easily mimic the redshift depen-
dence of the true cosmological lensing signal. We find,
for example, that combining only two redshifts (which
are the only ones available in the IGS1 simulation suite)
decreases the bias of σ8Ω

0.5
m calculated from peaks by a

factor of ∼2, accompanied by a 10% decrease in the bias
of w. This redshift combination, however, shrinks the
errors too making the ratio b/e worse in some cases, as
shown in Table VI. Another possible way to reduce bias
is to restrict the application of the morphological statis-
tics to higher peaks, κ > νpkm σ0, and higher excursion sets
Σ = {κ > νMF

m σ0} for the Minkowski Functionals, where
one can hope that the spurious shear does not have im-
portant effects. Such investigation has been performed
in Table VII, which shows that some improvement in the
|b/e| ratio can be obtained by imposing a modest low–
threshold νm.

Including a more complete set of tomographic bins,
additional cosmological parameters, Planck priors and si-
multaneous fitting MF,PK, LM and PK constraints along
with self–calibration must be addressed in future work,
but is not possible with the limited simulation set we
are working with. New simulations with a more realistic
galaxy redshift distribution and a much larger number of
realizations to permit simultaneous analysis of multiple
statistics and redshifts are required.

We performed a robustness check to make sure our re-
sults are free from numerical instabilities which mainly
arise from not having enough realizations to estimate a
too large covariance matrix. This robustness check is
distinct from the ones we performed in the comparison
between NICAEA and the simulations. In those com-
parisons we kept the number of bins fixed and studied
the simulation inaccuracies; this robustness check on the
other hand shows that with too many bins the covariance
matrix becomes singular and the resulting errors become
bigger than the ones that those due to a misestimation
of the derivatives.

Figure 6 suggests an optimal number of bins to adopt,
so that the marginalized errors reach a plateau and do not
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blow up due to the covariance matrix becoming singular
for a too largeNbins. A similar behavior has already been
observed in [17].
As an interesting and timely application of our meth-

ods, we explored their implications for the published [42]
simulations of LSST data. We determined the biases in
cosmological parameters implied by the published spu-
rious shear. Analyzing the statistical properties of the
LSST simulated spurious shear, we found that its skew-
ness is very small (O(10−3)), and hence we do not expect
it to affect our conclusions on the parameter biases.One
should note that this value refers to a simulated sky cov-
erage of ∼ 80deg2, and for a larger survey the noise non-
Gaussianity is not known yet. Since this could affect our
conclusions, this will need investigated when noise simu-
lations covering larger areas become available.
We performed an E/B mode decomposition of the

LSST simulated spurious shear, and found that the
amount of power in the E and B channels is very sim-
ilar, and we hope that this result can be used in the
future to correct for this kind of systematic. One should
note, however, that the equations in (25) are only exact
for full sky coverage, and corrections have to be applied
on the small l multipoles due to the finite field of view
of the simulations. Nevertheless, we do not expect our
main conclusion, namely PEE ∼ PBB to be affected by
these window effects; moreover, we take into account the
increased variance of the small multipoles in our cosmo-
logical parameter inferences. We also find an excess in
the small angle spurious shear correlation function, with
respect to the assumed log–linear model, which can be
mitigated in the future by more accurate PSF model-
ing. Accuracy of PSF modeling has already proved to be
an important issue when analyzing existing weak lensing
surveys, such as CFHTLens [6], in which ∼ 25% of the
dataset had to be removed due to PSF contamination of
the galaxy shear; removing this data resulted in changes
to the shear correlation function of nearly a factor of ∼ 2
on large scales.

VII. CONCLUSIONS

In this work we investigate the effects of spurious
correlated shear errors on weak lensing statistics, an-
alyzing their effects on the four cosmological probes
(PS,MF,LM,PK) in ray–tracing simulations in a unified
fashion. Important pioneering work in this direction has
already been done by [38] and by [35, 39]. Our main goal
here is to have a full comparative analysis of the effect of
spurious shear on all our cosmological probes, both the

Gaussian (power spectrum) and non-Gaussian ones (mo-
ments, peak counts and Minkowski functionals). This
paper should be considered a first step in this sense, and
the main results of this analysis can be summarized as
follows:

• Using the power spectrum code NICAEA, we were
able to calculate the Fisher forecasts on biases and
errors on a set of 7 ΛCDM cosmological parameters;
we found that, assuming the same level of spurious
shear, the biases on the parameters are a factor of
10 smaller than found in previous work [40].

• Assuming a log–linear spurious shear described by
the power spectral shape in equation (15), the
power spectrum (PS) and moments (LM) give less
biased parameter fits than the morphological de-
scriptors (MF,PK). However, non-Gaussianity in
the noise (not included in our analysis) will likely
be important and must be quantified to assess the
biases.

• Our results highlight the need for more exten-
sive lensing simulations and more accurate spurious
shear estimates. A possible theoretical improve-
ment that could greatly help our investigation is
the development of emulation software (NICAEA-
like) that would allow a semi–analytical treatment
of the nonlinear statistics. We hope to address this
need in the future.
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