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We classify effective actions for Nambu–Goldstone (NG) bosons assuming absence of anomalies.
Special attention is paid to Lagrangians invariant only up to a surface term, shown to be in a one-
to-one correspondence with Chern–Simons (CS) theories for unbroken symmetry. Without making
specific assumptions on spacetime symmetry, we give explicit expressions for these Lagrangians,
generalizing the Berry and Hopf terms in ferromagnets. Globally well-defined matrix expressions
are derived for symmetric coset spaces of broken symmetry. The CS Lagrangians exhibit special
properties, on both the perturbative and the global topological level. The order-one CS term is
responsible for non-invariance of canonical momentum density under internal symmetry, known as
the linear momentum problem. The order-three CS term gives rise to a novel type of interaction
among NG bosons. All the CS terms are robust against local variations of microscopic physics.
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I. INTRODUCTION

The low-energy physics of many-body systems is dom-
inated by collective modes of their elementary con-
stituents, such as sound waves in solids and fluids, spin
waves in (anti)ferromagnets, or Bogoliubov modes in su-
perfluids. As a rule, these can be viewed as Nambu–
Goldstone (NG) bosons of spontaneously broken contin-
uous symmetries of the system. The broken symmetries
are most conveniently encoded in a local effective field
theory (EFT) for the NG modes [1].
Terms of topological origin are ubiquitous in quan-

tum field theories for a vast range of physical systems.
In high-energy physics, a Wess–Zumino (WZ) term is
responsible for anomalous interactions of pions [2]. In
condensed-matter physics, topological actions play a de-
cisive role for the quantum Hall effect, the dynamics of
spin chains, superconductors, topological insulators and
other intriguing phenomena [3, 4].
Here and in the companion paper [5], we give a system-

atic construction of EFTs for NG bosons in the gradient
expansion, based on the strategy outlined in Ref. [6].
In the present paper, we focus on quasi-invariant La-
grangians, that is, those invariant up to a surface term.
Despite intensive research of NG bosons in quantum
many-body systems [7–10], explicit expressions for quasi-
invariant Lagrangians have only been known for a few
particular cases of interest. One of our main results here
is a complete classification, and an explicit derivation, of
such terms. The explicit solution for the leading-order
Lagrangian [8, 11], which took two decades since its orig-
inal formulation [12], follows as a simple special case.
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For internal symmetries characterized by a compact
Lie group, quasi-invariant Lagrangians are in a one-to-
one correspondence with generators of de Rham cohomol-
ogy groups of the coset space of broken symmetry [13].
In four-dimensional Lorentz-invariant systems, they in-
variably signal anomalous microscopic dynamics, and can
in principle be constructed using differential-geometric
methods [14]. We show that in some many-body sys-
tems, presence of quasi-invariant Lagrangians does not
require the broken symmetry to be anomalous. Assuming
absence of anomalies, we construct all quasi-invariant La-
grangians using only elementary field theory, without any
assumptions on spacetime geometry. These Lagrangians
can be mapped to Chern–Simons (CS) theories for unbro-
ken symmetry. Their topological nature is manifested by
robustness against local variations of microscopic physics,
and tension between manifest locality and gauge invari-
ance.

II. GAUGE-INVARIANT ACTIONS

Consider a system with a continuous internal sym-
metry group G, spontaneously broken to H ⊂ G. Its
low-energy physics can be probed by coupling the con-
served currents of G to a set of background gauge fields,
Ai

µ(x). It is captured by an EFT, defined by the action
Seff{π,A}, where πa(x) is a set of NG fields, one for each
broken generator Ta [15]. In the absence of anomalies
and upon a suitable choice of the variables πa, Seff{π,A}
becomes invariant under a simultaneous gauge transfor-
mation of the NG and background fields [6]. The lat-
ter reads TgAµ ≡ gAµg

−1 + ig∂µg
−1, where g ∈ G and

Aµ ≡ Ai
µTi. The action of symmetry on the NG fields

is defined by treating them as coordinates on the coset
space G/H [16]. They are encoded in a matrix U(π) in
some faithful representation of G, and their transforma-
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tion rule reads

U(π′(π, g)) = gU(π)h(π, g)−1, (1)

where h ∈ H . With the choice g = U(π)−1, one obtains
Seff{π,A} = Seff{0, TU(π)−1A}, which ensures that the

fields πa, Ai
µ only appear in a specific combination,

TU(π)−1Aµ = U(π)−1(Aµ + i∂µ)U(π) (2)

≡ φa
µ(π)Ta +Bα

µ (π)Tα = φµ(π) +Bµ(π).

The broken and unbroken components transform in turn
as

Tgφµ = hφµh
−1, TgBµ = hBµh

−1 + ih∂µh
−1, (3)

where h is given by Eq. (1). The effective Lagrangian
can be split into two parts, Leff[φ,B] = Linv[φ,B] +
LCS[B] [6]. The part Linv is strictly invariant under the
unbroken gauge transformation (3) and can therefore be
constructed out of covariant constituents: φµ, Gµν ≡
∂µBν −∂νBµ− i[Bµ, Bν ], and their covariant derivatives;
see Ref. [5] for more details. The part LCS depends solely
on the gauge field Bα

µ and is quasi-invariant; this is the
advertised CS Lagrangian.
The spectrum of NG bosons as well as their dominant

interactions at low energy are determined by the leading-
order Lagrangian with up to two derivatives, which we
find to be

L
LO
eff = eµαB

α
µ + eµaφ

a
µ + 1

2g
µν
ab φ

a
µφ

b
ν (4)

= −eµi ω
i
a∂µπ

a + eµj ν
j
iA

i
µ + 1

2g
µν
ab ω

a
cω

b
dDµπ

cDνπ
d.

The couplings eµi and gµνab are invariant tensors of H (and
likewise of the spacetime symmetry), that is, eµi f

i
αj = 0

and gµνcb f
c
αa+ gµνac f

c
αb = 0; f i

jk are the structure constants

of G. The functions ωi
a(π) and νji (π) in Eq. (4) are given

by U(π),

ωi
aTi ≡ −iU−1(∂U/∂πa), νji Tj ≡ U−1TiU. (5)

Finally, Dµπ
a ≡ ∂µπ

a −Ai
µh

a
i (π) is the covariant deriva-

tive of the NG field, where ha
i (π) defines an infinitesimal

shift of the NG field under the transformation g = eiǫ
iTi

in Eq. (1).
Assuming rotational invariance, eµi = eiδ

µ0 [8, 11].
Moreover, gµνab φ

a
µφ

b
ν = ḡabφ

a
0φ

b
0 − gabφ

a
rφ

b
r where r is a

spatial vector index [17]. With the particular choice
U(π) = eiπ

aTa , one then finds by a power expansion in
πa that

L
LO
eff = 1

2eif
i
ab∂0π

aπb + eiA
i
0 +

1
2g

µν
ab Dµπ

aDνπ
b + · · · .

(6)

Every pair Ta, Tb such that 1
V
〈0|[T̂a, T̂b]|0〉 = if i

abei 6= 0
(V being spatial volume) gives rise to a canonically con-
jugate pair of variables, hence one type-B NG boson [7]
with, as a rule, quadratic dispersion relation. The re-
maining πas excite one type-A NG boson each, with a
typically linear dispersion.

III. CHERN–SIMONS TERMS

Eq. (4) features the simplest example of a CS term:
eµαB

α
µ . We will now show how to construct such terms

systematically. The gauge current, defined by Jµ
α [B] ≡

δSCS{B}/δBα
µ , satisfies the current conservation, ∂µJ

µ
α+

fγ
αβJ

µ
γ B

β
µ = 0, and transforms under h ∈ H with in-

finitesimal parameters ǫα as δJµ
α = −fγ

αβJ
µ
γ ǫ

β . Due to
the latter, the current can be built solely out of covari-
ant constituents: Gα

µν and its covariant derivatives. The
Lagrangian is in turn reconstructed using

LCS[B] =

∫ 1

0

dt Bα
µJ

µ
α [tB]. (7)

It is easy to solve the covariance and conservation con-
straints on Jµ

α at the lowest orders in the gradient expan-
sion. Up to order three, the only solutions are a constant,

eµα, and cµνλαβ Gβ
νλ. Integration indicated in Eq. (7) then

leads to

L
(1)
CS = eµαB

α
µ , where eµγf

γ
αβ = 0,

L
(3)
CS = cµνλαβ Bα

µ (∂νB
β
λ + 1

3f
β
γδB

γ
νB

δ
λ),

where cµνλγβ fγ
δα + cµνλαγ fγ

δβ = 0;

(8)

cµνλαβ is antisymmetric in µ, ν, λ and symmetric in α, β.

These are all CS terms up to order four in derivatives [18].

Lorentz invariance only allows L
(3)
CS in three spacetime

dimensions, where cµνλαβ = ǫµνλcαβ [6]. Without Lorentz

invariance, L
(1)
CS is allowed, too, as well as another option

in four spacetime dimensions, cµνλαβ = ǫκµνλcκ,αβ. From

now on we will assume that only e0α ≡ eα and c0,αβ ≡ cαβ
are nonzero.
The expression (8) for the CS terms is valid for arbi-

trary, albeit local, parametrization πa of G/H around its
origin. This is sufficient for the physics of NG bosons, yet
a globally valid parametrization may be needed even at
low energy. For instance, even a weak field Ai

µ may sweep
the ground state through the whole coset space, giving

rise to a Berry phase, corresponding to L
(1)
CS [11, 19]. A

globally valid matrix expression for the CS terms can
be achieved for symmetric coset spaces, that is, such
G and H that admit an automorphism R under which
R(Tα) = Tα andR(Ta) = −Ta, and thus fa

bc = 0. Setting

U(π) = eiπ
aTa , there is a field variable that transforms

linearly under the whole group G [16],

Σ(π) ≡ U(π)2, Σ(π′(π, g)) = gΣ(π)R(g)−1. (9)

Next, use the fact that for semisimple Lie algebras
the Killing form is nondegenerate to define the dual
vector eα by eα = eβ Tr(TαTβ). The densities eα
can then be encoded in the matrix variable Q(π) ≡
U(π)(eαTα)U(π)−1 = eανiα(π)Ti. Since eαTα commutes
with all generators of H , this likewise transforms linearly
under the whole G: Q(π′) = gQ(π)g−1.
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In order to express L
(1)
CS in terms of these linearly

transforming variables, we have to extend the domain
on which the fields πa are defined [20]. With a suit-
able boundary condition on πa, the time manifold can
be compactified to a circle, S1. Provided that G/H is
simply connected, there is an interpolation π̃a(τ, x) for
τ ∈ [0, 1] such that π̃a(0, x) = 0 and π̃a(1, x) = πa(x).
The coordinates τ, t then define a unit disk, D2, and the

action associated with L
(1)
CS becomes

S
(1)
CS =

i

4

∫

ddx

∫

D2

ǫmnTr(Q∂mΣ∂nΣ
−1)

+

∫

dt ddx Tr(QA0).

(10)

Here m,n label coordinates on D2 ordered so that ǫτt =

1. This matrix form of S
(1)
CS , suitable for practical ap-

plications, generalizes expressions found before for var-
ious specific systems such as ferromagnets [21], SU(N)
ferromagnets [22], superfluid Helium [23], or SO(5) spin
chains [24].
Similar reasoning applies to the order-three CS term.

We use the factorization cµνλαβ = ǫµνλcαβ valid in three

spacetime dimensions [25] and represent the invariant
coupling cαβ by a matrix Ξ0 so that cαβ = Tr(Ξ0TαTβ).
Such Ξ0 certainly exists when H is semisimple; see also
the discussion of a concrete example in Sec. IVB. The
variable Ξ(π) ≡ U(π)Ξ0U(π)−1 now transforms linearly

just like Q(π) and allows us to rewrite the part of S
(3)
CS ,

independent of the external gauge field, in the simple
matrix form

S
(3)
CS

∣
∣
∣
A=0

= −
1

16

∫

D4

ǫkℓmn Tr(Ξ∂kΣ∂ℓΣ
−1∂mΣ∂nΣ

−1).

(11)
Here we have assumed that the spacetime can be com-
pactified to S3 and that π3(G/H) = 0 so that the NG
fields can be smoothly extended to π̃a(τ, x), defined on
the four-disk, D4. The coordinates on D4 are ordered so
that ǫτ123 = 1.
A derivation of Eqs. (10) and (11) together with their

generalization to arbitrary, not necessarily symmetric,
coset spaces is provided in Ref. [26].

A. Topological nature of Chern–Simons terms

The CS terms are singled out by our construction, but
what makes them special physics-wise? First, some of the
CS couplings may be quantized, depending on the topol-
ogy of spacetime and of the coset space G/H [20, 26].
Due to the extra spatial integral in Eq. (10), eα can only
be quantized in a finite space volume V . Likewise, cαβ
is quantized in three spacetime dimensions, or possibly
in four dimensions provided the time volume is finite. In
any case, the topological nature of the CS terms is ex-
pected to manifest in the non-renormalization of their
couplings under quantum corrections [27].

The order-one CS term has another notable conse-
quence: its contribution to canonical momentum density,
Pr = eαB

α
r , is not invariant under the internal symme-

try group G. This is known in ferromagnets as the lin-
ear momentum problem [28], which is also related to the
topology of the coset space [29]. In some systems such as
ferromagnetic metals [21] or superfluid Helium [23], the
resolution of this paradox is through the presence of gap-
less fermionic degrees of freedom, which makes the EFT
for the NG modes alone incomplete, or even ill-defined
by inducing nonlocal terms in the action [30]. Our EFT
framework makes it clear that the phenomenon is gen-
eral, suggesting that type-B NG modes associated with
unbroken charge in the ground state are always accom-
panied by other (whether NG or non-NG) gapless modes.
Another outstanding feature of all CS terms is their

insensitivity to local deformations of the system. Con-
sider a medium whose microscopic properties vary in
space. Such a variation can be taken into account in Linv

without violating G-invariance by making the couplings
coordinate-dependent. This is in general not possible for
the quasi-invariant terms though, as arbitrary coordinate
dependence of, say, eα would spoil the G-invariance of

S
(1)
CS , and likewise for the other CS terms. The most gen-

eral form of the order-one CS term compatible with the
internal symmetry is eµαB

α
µ , where eµα is now a function

of coordinates that is invariant under H and satisfies the
conservation condition ∂µe

µ
α = 0.

Finally, the CS terms cannot be written in a way that
preserves both manifest locality and gauge invariance.
Eq. (8) obviously sacrifices the latter. This can be fixed
by interpolating the fields Ai

µ to the extended base man-

ifold, D2 or D4, along with πa. The resulting expression,
however, obscures locality, being a sum of terms each of
which depends on the interpolation π̃a rather than on the
physical values of πa [26].

B. Discrete symmetries

Both the ea and the (CS) eα term in Eq. (4) break
explicitly certain discrete symmetry (not to be confused
with time reversal [11, 31]). To that end, note that the
generators can be chosen so that all those with a nonzero
vacuum expectation value are diagonal [32]. Now set
U(π) = eiπ

aTa and define a “charge conjugation” C by

CU(π) ≡ U(π)∗ = U(π)−1T . (12)

One easily finds that Cω = −ωT ; gauge covariance is
thus preserved by defining CAµ = −AT

µ . As a rule,
the two-derivative Lagrangian in Eq. (4) preserves C;
when the NG fields are irreducible under H , this fol-
lows from gabφ

a
µφ

b
ν ∝ Tr(φµφν). On the other hand,

eαB
α
0 = Tr(eαTαB0) changes sign under C since eαTα

is by assumption diagonal. The same argument applies
to the invariant term eaφ

a
0 .

C is an accidental symmetry of the two-derivative
terms, similar to the intrinsic parity in the chiral per-
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turbation theory, defined as πa → −πa [33]. Its
breaking may lead to certain “anomalous” processes
such as magnon decay into photons in two-dimensional
(anti)ferromagnets [34]. The intrinsic parity itself is pre-
served, at least for symmetric coset spaces, by the CS
terms since it leaves invariant their building block, Bα

µ .

C. Chern–Simons interactions of

Nambu–Goldstone bosons

The physical importance of the order-one terms in the
Lagrangian (4) is clear: they determine the dispersion
relations of NG bosons as well as their leading interac-

tions. On the contrary, the implications of L
(3)
CS for the

NG bosons are subtle. Suppose first that there is a G-
invariant tensor coupling Cij such that Cαβ = cαβ . Any
G-invariant Cij satisfies the identity (using the notation
ωi
µ ≡ ωi

a∂µπ
a)

ǫµνλCαβB
α
µ (∂νB

β
λ + 1

3f
β
γδB

γ
νB

δ
λ) (13)

= ǫµνλCijA
i
µ(∂νA

j
λ + 1

3f
j
kℓA

k
νA

ℓ
λ) +

1
6ǫ

µνλCijf
j
kℓω

i
µω

k
νω

ℓ
λ

− ǫµνλ
(
Caαφ

a
µG

α
νλ + Cabφ

a
µDνφ

b
λ + 1

3Caif
i
bcφ

a
µφ

b
νφ

c
λ

)

up to a surface term. This allows us to rewrite L
(3)
CS as a

sum of: (i) a CS term for Ai
µ alone plus a θ-term [second

line of Eq. (13)]; (ii) invariant terms from Linv (last line).

Therefore, L
(3)
CS does not induce any interactions among

the NG bosons. In ferromagnets L
(3)
CS is known as the

Hopf term [35].
When H is simple, cαβ is proportional to Tr(TαTβ) by

Schur’s lemma [36]; we can then define Cij by Tr(TiTj).

A necessary condition for L
(3)
CS to trigger interactions

among NG bosons is therefore that H is not simple. Ex-
panding in powers of πa then yields

L
(3)
CS

∣
∣
∣
A=0

= 1
4ǫ

µνλcαβf
α
abf

β
cdπ

a∂µπ
b∂νπ

c∂λπ
d + · · · .

(14)
While formally reminiscent of the WZ term in the chiral
perturbation theory, this interaction, hitherto unnoticed,
does not arise from anomalous microscopic dynamics.
For an example, consider the class of symmetry-breaking
patterns G1 × G2 → H1 × H2, where Hi ⊂ Gi. The
fields φa

µ, B
α
µ then split into separate contributions from

each Gi/Hi. Provided there is no singlet of H among the
broken generators, the two sets of NG fields enter sep-
arately both the leading-order Lagrangian (4) and the
order-three invariant one [37]. If, in addition, both Hi

contain a U(1) factor, a coupling cαβ mixing the two is
compatible with H-invariance. Eq. (14) then provides
the leading interaction among NG bosons from the two
coset spaces Gi/Hi. A symmetry-breaking pattern of the
above type occurs for instance in the A-phase of liquid
Helium [38]. However, the broken symmetry in this case
includes spatial rotations, not covered by the present pa-
per, which is concerned exclusively with internal symme-
tries.

IV. EXAMPLES

A. Ferromagnets

Let us illustrate the general arguments on examples,
starting with the simplest case of a spin- 12 ferromagnet.
As pointed out in Ref. [39], the nonrelativistic Pauli equa-
tion in presence of an electromagnetic field features an
G = SU(2)s×U(1)em gauge invariance. Here the SU(2)s
factor represents electromagnetic interactions of spin and

the associated gauge potentials ~Aµ are given by the elec-
tric and magnetic field intensities. The U(1)em factor, on
the other hand, describes coupling of electric charge to
the electromagnetic gauge potential Aem

µ . Spontaneous
magnetization in the ground state of a ferromagnet (cho-
sen without loss of generality to point in the z direction)
breaks the symmetry to H = U(1)s ×U(1)em.
It is common to describe the magnetization by a unit

vector ~n, related to our general notation by ~σ ·~n = Σσ3 =
Uσ3U

−1, where ~σ is the vector of Pauli matrices. The
order-one CS term (10) then takes the usual form [21]

S
(1)
CS = M0

∫

ddx

∫

D2

~n ·(∂t~n×∂τ~n)+M0

∫

dt ddx~n · ~A0,

(15)
where M0 is the spin density in the ground state. The
first term is responsible for the Larmor precession of spin
as described by the Landau–Lifschitz equation [12]. The
second term gives the Zeeman coupling of the magne-

tization to the magnetic field ~B = ~A0/µ, µ being the
magnetic moment.
Let us inspect possible order-three CS terms, restrict-

ing from now on to d = 2. Since the unbroken subgroup
H has two U(1) factors, there are three different terms,
corresponding to the independent entries of the (symmet-
ric) matrix cαβ . First, the U(1)s term B3 ∧ dB3 can be

by Eq. (13) absorbed into a CS term for ~Aµ alone. It
does not affect the perturbative dynamics of NG bosons,
as is clear from Eq. (14). It is relevant for topologically
nontrivial spin configurations though: the θ-term on the
second line of Eq. (13) is the Hopf term. Second, the
U(1)em term Aem∧dAem is independent of the NG fields,
as the Abelian gauge field Aem

µ is unaffected by the field
redefinition (2); it describes the Hall effect.
The most interesting is the mixed CS term Aem∧dB3.

By Eq. (8), this connects Aem
µ to magnons through the

current ǫµνλ∂νB
3
λ = 1

2ǫ
µνλG3

νλ [26, 40]. This is a topo-
logical current whose integral charge is, for vanishing
~Aµ, proportional to the topological winding number,
1
8π

∫
d2x ǫrs~n · (∂r~n× ∂s~n). The associated effective cou-

pling can therefore be interpreted as the electric charge
of a topological soliton, called the baby-skyrmion. In
ferromagnets, the C conjugation (12) acts as a reflection
in the tangent plane to G/H ≃ S2 at π = 0, and is
equivalent to the inversion ~n → −~n up to a finite SU(2)s
rotation. Hence both the order-one CS term and the
mixed order-three CS term are C-odd. The latter gives
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the leading contribution to the magnon decay into a pair
of photons [34].

B. Quantum Hall ferromagnets

An intriguing generalization of the above simple exam-
ple is provided by quantum Hall ferromagnets, whether
realized by multilayered ferromagnets [41] or by Landau-
level degeneracy in graphene [42]. Assuming first for sim-
plicity exact degeneracy we have G = SU(N), where N
is the total number of levels. The ferromagnetic order
parameter can be viewed as a Hermitian matrix Φ trans-
forming as Φ → gΦg−1 under G. In the ground state, Φ
reduces to

〈Φ〉 = diag(λ1, . . . , λ1
︸ ︷︷ ︸

M×

, λ2, . . . , λ2
︸ ︷︷ ︸

(N−M)×

), (16)

breaking the symmetry down to H = S[U(M) × U(N −
M)], where M is the filling factor, supposed here to
be an integer. The coset space G/H is symmetric,
the automorphism R being given by a matrix R ≡
diag(+1, . . . ,+1,−1, . . . ,−1). This allows us to de-
fine a unitary Hermitian matrix variable N ≡ ΣR =
URU−1 [43]; this generalizes the matrix variable ~σ · ~n,
used above for spin- 12 ferromagnets, which correspond to
N = 2 and M = 1.

The coset spaceG/H—the Grassmannian [44]—has di-
mension 2M(N − M), hence the ferromagnetic ground
state supports M(N − M) type-B magnon excitations.
Their dynamics is driven by the order-one CS term. This
is specified by a single effective coupling, correspond-
ing to the sole U(1) generator of H , proportional to
−N

2 R + (M − N
2 )11. According to Eq. (10), the order-

one CS term therefore reads

S
(1)
CS

∣
∣
∣
A=0

=
iM0

4

∫

d2x

∫

D2

ǫmn Tr(N∂mN∂nN ), (17)

where the parameterM0 again stands for the size of mag-
netization in the ground state.

For 2 ≤ M ≤ N − 2, the coupling cαβ encodes three
parameters, one of which can be eliminated via Eq. (13).
The remaining two parametrize the matrix Ξ0, whose
most general form compatible with the unbroken sym-
metry is Ξ0 = cR+ d11. It is now straightforward, albeit
a bit tedious, to evaluate the CS term (11) in terms of
N ,

S
(3)
CS

∣
∣
∣
A=0

= −
c

16

∫

D4

ǫkℓmn Tr(N∂kN∂ℓN∂mN∂nN ).

(18)
This form was derived in the special case M = 1 in
Ref. [34]. Since the matrix R is real and diagonal, the C
conjugation (12) amounts to N → N T . It immediately

follows that S
(1)
CS and S

(3)
CS is C-odd and C-even, respec-

tively.
Consider now a quantum Hall ferromagnet in

graphene, where approximate spin and valley symme-
tries combine into G = SU(4). At zero doping, the
lowest Landau level is half-filled, that is, M = 2. The
SU(2)s,v factors of H can be identified with spin and

valley (pseudospin) rotations. The interactions of the as-
sociated NG bosons are described by Eq. (18). In reality,
the SU(4) symmetry is only approximate. In the quan-
tum Hall regime of graphene, the most dominant explicit
symmetry breaking effects are the Zeeman splitting and
the Kekulé-type lattice distortion [45]. While the former
breaks SU(2)s and spin-polarizes the system, the latter
breaks SU(2)v. Provided that the Zeeman splitting is
negligible [46], the symmetry-breaking pattern reduces
to SU(2)s → U(1)s, which is just the well-known case of
a spin ferromagnet. Thus the coupling of the graphene
quantum Hall ferromagnet to electromagnetism in this
particular regime is identical with the case of a spin fer-
romagnet already discussed above.

V. CONCLUSIONS

In this paper, we have provided a general classification
of quasi-invariant Lagrangians for NG bosons in many-
body systems, without assuming specific spacetime sym-
metry. In addition to the practically useful explicit ex-
pressions (8), (10) and (11) for the ensuing CS terms,
we would like to stress the simplicity of the approach
advocated here, as compared to existing literature [14].
Using the ideas of general coordinate invariance, rela-
tivistic or not [47], we expect it to readily generalize
to broken spacetime symmetries. In combination with
the formalism proposed recently in Ref. [48], the method
could therefore offer a novel EFT approach to systems
such as solids [49], supersolids [50], or exotic superflu-
ids [51]. This generalization would also allow one to dis-
cuss mixing of sound with other NG modes. We plan to
address these points in our future work.
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