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Abstract

Effective Polyakov line models, derived from SU(3) gauge-matter systems at finite chemical potential,

have a sign problem. In this article I solve two such models, derived from SU(3) gauge-Higgs and heavy

quark theories by the relative weights method, over a range of chemical potentials where the sign problem

is severe. Two values of the gauge-Higgs coupling are considered, corresponding to a heavier and a lighter

scalar particle. Each model is solved via the complex Langevin method, following the approach of Aarts

and James, and also by a mean field technique. It is shown that where the results of mean field and complex

Langevin agree, they agree almost perfectly. Where the results of the two methods diverge, it is found

that the complex Langevin evolution has a branch cut crossing problem, associated with a logarithm in the

action, that was pointed out by Møllgaard and Splittorff.
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I. INTRODUCTION

A recent article by Langfeld and myself [1] explains how to extract an effective Polyakov line

action from an underlying SU(3) lattice gauge theory, both at zero and at finite chemical potential

µ , by the “relative weights” method. The motivation is that the sign problem in the effective

theory may be more tractable than the sign problem in the underlying theory, but so far this is

only a hope. In ref. [1] it was also shown how to solve the effective theory via a mean field

approach, but mean field results are often unreliable, and therefore the utility of the effective

models for finite density investigations is still unknown. In this article I will consider several

effective theories, corresponding to gauge-Higgs and heavy quark models on the lattice, solve

those theories at finite chemical potential using both complex Langevin and mean field techniques,

and compare the results obtained from each method. It is not my intention, in this article, to

review existing approaches to the sign problem in general, or in particular to review progress in

the complex Langevin approach as applied to full QCD (see [2] for a general introduction to the

sign problem, and [3, 4] and for recent reviews of the complex Langevin approach). Instead the

focus here is on the validity of mean field theory applied to the effective Polyakov line actions

derived in [1], and the only way to check that validity is by comparison with a different and

hopefully reliable method, in this case the complex Langevin technique as applied to Polyakov

line actions by Aarts and James [5].

The effective Polyakov line action (PLA) corresponding to an underlying lattice gauge theory

is the action which results after all degrees of freedom are integrated out, under the constraint

that the Polyakov line holonomies are held fixed. It is convenient to implement this constraint in

temporal gauge, which means that the timelike links U0(xxx, t) on some particular timeslice, at t = 0

say, are fixed to the holonomies. All other timelike links are set to the unit matrix. If SP denotes

the effective action, SL the action of the underlying lattice gauge theory, and φ denotes any matter

fields, scalar or fermionic, in the theory, then1

exp
[
SP[Uxxx,U

†
xxx ]
]
=

∫
DU0(xxx,0)DUkDφ

{
∏

xxx

δ [Uxxx −U0(xxx,0)]

}
eSL . (1)

The PLA SP depends only on the Polyakov line holonomies Uxxx, and belongs to the class of SU(3)

spin models. The simplest example of this type of theory, with only nearest-neighbor couplings, is

Sspin = J ∑
x

3

∑
k=1

(
Tr[Ux]Tr[U†

x+k̂
]+ c.c.

)
+h∑

x

(
eµ/T Tr[Ux]+ e−µ/T Tr[U†

x ]
)
, (2)

which is in fact the result for an underlying SU(3) gauge theory at finite chemical potential to

leading order in a strong coupling/hopping parameter expansion. Higher orders in this expansion

can be found in [6]. At weaker gauge couplings it turns out that each SU(3) spin in the action is

coupled to very many spins in its vicinity, and not simply to the nearest neighbors [1].

The nearest-neighbor SU(3) spin model has been solved by a number of techniques, includ-

ing the dual representation [7], stochastic quantization [5], reweighting [6], and the mean field

approach [8]. For the effective PLA with quasi-local couplings the dual representation method is

not applicable, because not all terms in the action have the same sign. Reweighting, even when

supplemented by a cumulant expansion [9], is also suspect if the sign problem is really severe [10].

This leaves complex Langevin and mean field theory, and it is worth trying out both techniques.

1 Our sign convention for Euclidean actions is chosen so that the Boltzman weight is proportional to exp[+S].
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In this article I will simply write down the effective theories under consideration. How these

actions are arrived at via the relative weights method, and the details of the complex Langevin and

mean field techniques, may be found in the following references:

1. Relative Weights: The relative weights method allows one to compute the derivative

dSP/dλ with respective to some parameter λ which varies the Polyakov line holonomies

in the neighborhood of any given field configuration. By taking derivatives with respect

to Fourier components of Polyakov line configurations, it is possible to deduce SP itself.

The method was developed in a series of articles [11], and applied to theories with a finite

chemical potential in [1].

2. Complex Langevin: The complex Langevin method was applied to the nearest-neighbor

SU(3) spin model by Aarts and James [5]. The effective action SP can only depend on

two linearly independent eigenvalues of each SU(3) holonomy, denoted eiθ1(xxx) and eiθ2(xxx),

and the angles θ1,2(xxx) are the degrees of freedom which Aarts and James complexify in

the Langevin approach applied to Sspin. I follow their method closely, including the use of

adaptive step sizes described in [12], for solving the more complicated SP actions considered

here.

3. Mean Field Theory: A generalization of the usual mean field approach to the complex

action Sspin was carried out in ref. [8] by Splittorff and myself, and the method can be readily

applied to more complicated SU(3) spin models with quasi-local couplings, as explained in

[1].

What will be shown is that when the results of mean field field and complex Langevin agree, in

the cases considered here, they agree almost perfectly for such observables as Polyakov lines and

particle number density. In the case where the two methods are in strong disagreement, it is found

that the complex Langevin approach is invalidated, at the large chemical potential values, by the

appearance of a “branch cut crossing problem” in Langevin evolution. This problem refers to the

existence of a branch cut in a logarithm in the action. If Langevin evolution frequently crosses

that branch cut, this can lead to incorrect results for observables, as first noted by Møllgaard and

Splittorff [13].

II. THE MODELS

I consider two models at fixed couplings (where the effective PLA has been derived in [1]),

but variable chemical potential. The first is the gauge-Higgs system, which in temporal gauge and

finite chemical potential has the form

SL =
β

3
∑
p

ReTr[U(p)]+
κ

3
∑
x

3

∑
k=1

Re
[
Ω†(x)Uk(x)Ω(x+ k̂)

]
+

κ

3
∑

xxx,t>0

Re
[
Ω†(xxx, t)Ω(xxx, t +1)

]

+
κ

3
∑
xxx

1

2

[
eµ/T Ω†(xxx,0)U0(xxx,0)Ω(xxx,1)+ e−µ/T Ω†(xxx,1)U†

0 (xxx,0)Ω(xxx,0)
]

(3)

at β = 5.6, κ = 3.8 and κ = 3.9, and inverse temperature Nt = 6 lattice spacings in the time

direction. Here Ω(x) is an SU(3) unimodular scalar field Ω†(x)Ω(x) = 1, transforming under

gauge transformations Ω(x) → g(x)Ω(x) in the fundamental representation. At β = 5.6 there is

a crossover from “confinement-like” to “Higgs-like” behavior around κ = 4.0, where the former
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type of behavior is similar to QCD: a linear potential over a finite distance range, followed by string

breaking. In the Higgs-like region there is no linear potential over any interval. The gauge-Higgs

coupling κ = 3.9, since it is closer to the crossover, corresponds to a scalar particle which is lighter

than the scalar particle at κ = 3.8, although at both couplings the system is in the confinement-like

regime. At κ = 3.8 the effective PLA was determined to be

SP =
1

9
∑
xy

Tr[Uxxx]Tr[U†
yyy ]K(xxx− yyy)+

1

3
∑
x

{
d1eµ/T Tr[Uxxx]+d1e−µ/T Tr[U†

xxx ]
}
, (4)

where the center symmetry-breaking terms proportional to d1 are identical to those in the SU(3)

spin model. More complicated terms are certainly possible, and may become relevant at suffi-

ciently large values of µ , but they are not large enough to be detected at these couplings by the

relative weights method, at least with present statistics. For the lighter particle at β = 3.9 an

additional term was detected, and the effective action has the form

SP =
1

9
∑
xy

Tr[Uxxx]Tr[U†
yyy ]K(xxx− yyy)

+
1

3
∑
x

{
(d1eµ/T −d2e−2µ/T )Tr[Uxxx]+(d1e−µ/T −d2e2µ/T )Tr[U†

xxx ]
}
. (5)

On the other hand, the d2 dependent terms originate from double-winding terms

1

6
d2e2µ/T Tr[U2

xxx ]+
1

6
d2e−2µ/T Tr[U†2

xxx ] , (6)

as explained in [1]. Applying the SU(3) identities

Tr[U2
xxx ] = Tr[Uxxx]

2 −2Tr[U†
xxx ] , Tr[U†2

xxx ] = Tr[U†
xxx ]

2 −2Tr[Uxxx] , (7)

and neglecting the terms quadratic in Tr[U ],Tr[U†], gives (5). Although neglecting the quadratic

terms works nicely at µ = 0, in the sense that that Polyakov line correlators computed in the ef-

fective theory agree with those in the underlying gauge-Higgs theory, it leads to the unphysical

result that particle density is increasingly negative with increasingly positive µ , as we will see be-

low. Therefore we also consider the action which we would have without discarding the quadratic

terms, namely

SP =
1

9
∑
xy

Tr[Uxxx]Tr[U†
yyy ]K(xxx− yyy)+

1

3
∑
x

{
d1eµ/T Tr[Uxxx]+d1e−µ/T Tr[U†

xxx ]
}

+
1

6
∑
x

{
d2e2µ/T Tr[U2

xxx ]+d2e−2µ/T Tr[U2†
xxx ]

}
. (8)

The quasi-local kernel K(xxx− yyy) is given by the form

K(xxx− yyy) =





1
L3 ∑kkk K̃ f it(kL)e

−ikkk·(xxx−yyy) |xxx− yyy| ≤ rmax

0 |xxx− yyy|> rmax

, (9)
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model κ c1 c2 k0 b1 b2 rmax d1 d2 h

gauge-Higgs 3.8 9.77(8) 1.18(2) 1.63 6.77(17) 0.72(2)
√

41 0.0195(4) < 0.001 NA

gauge-Higgs 3.9 12.55(13) 1.69(4) 1.36 8.16(17) 0.89(2) no cutoff 0.0585(8) 0.0115(2) NA

heavy quark NA 7.15(5) 0.79(1) 1.79 6.22(14) 0.66(1)
√

29 NA NA 10−4

TABLE I. Parameters defining the effective Polyakov line action SP corresponding to (i) the SU(3) gauge-

Higgs theory at β = 5.6 on a 163 ×6 lattice with κ = 3.8,3.9 and (ii) the heavy quark model at β = 5.6 on

a 163 ×6 lattice.

where

K̃ f it(kL) =






1
2
c1 −2c2kL kL ≤ k0

1
2
b1 −2b2kL kL > k0

, (10)

and kL is the magnitude of lattice momentum.

kL = 2

√√√√ 3

∑
i=1

sin2(ki/2) . (11)

Components ki are wavenumbers on the three-dimensional lattice. At couplings β = 5.6 and

κ = 3.8,3.9 the various parameters which define the effective model are given in Table I.

The effective Polyakov line actions (4) and (5), having been determined via relative weights

with an imaginary chemical potential in the underlying lattice gauge theory, are expected to be

valid in some range of real chemical potential. But eventually, at large enough µ , terms in the ef-

fective action involving higher powers of the fugacity must become important, and thus one would

like to know at least the terms involving fugacity which are quadratic in Polyakov lines. In prin-

ciple the quadratic terms are calculable, and we have deduced one such term in (8), but ultimately

one needs all such terms, and this is left for future work. As chemical potential increases, still

more terms in higher powers of fugacity may become significant, as discussed in section II.D of

ref. [1]. For the purpose of comparing mean field and complex Langevin methods we will simply

take the Polyakov line actions in (4), (5), and (8) as given, and solve them over a wide range of

chemical potentials. The reader should be aware that at the higher end of the range of µ , the cor-

respondence between the Polyakov line models presented and the underlying gauge-Higgs lattice

gauge theory is uncertain, and may break down. For present purposes, however, which is to test

the utility of mean field methods in solving effective models at finite densities, this correspondence

is not critical.

The second model is the heavy quark model. Let ζ represent the hopping parameter for Wilson

fermions, or 1/2m for staggered fermions, and h = ζ Nt . In the limit that ζ → 0 and eµ → ∞ in

such a way that ζ eµ is finite, the lattice action simplifies drastically [14]. In temporal gauge,

exp[SL] = ∏
xxx

det
[
1+heµ/TU0(xxx,0)

]p

det
[
1+he−µ/TU†(xxx,0)

]p

exp[Splaq] , (12)

where p = 1 for four-flavor staggered fermions, p = 2N f for Wilson fermions (N f is the number

of flavors), and where the determinant refers to color indices since the Dirac indices have already

been accounted for. Splaq is the usual Wilson action of the pure gauge theory. The corresponding
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PLA SP is given by

exp[SP] = ∏
xxx

det
[
1+heµ/TUxxx

]p

det
[
1+he−µ/TU†

xxx

]p

exp[S0
P] , (13)

where determinants can be expressed entirely in terms of Polyakov line operators, using the iden-

tities

det
[
1+heµ/TUxxx

]
= 1+heµ/T Tr[Uxxx]+h2e2µ/T Tr[U†

xxx ]+h3e3µ/T ,

det
[
1+he−µ/TU†

xxx

]
= 1+he−µ/T Tr[U†

xxx ]+h2e−2µ/T Tr[Uxxx]+h3e−3µ/T , (14)

and S0
P is the effective action of the pure lattice gauge theory at the given β

S0
P =

1

9
∑
xy

Tr[Uxxx]Tr[U†
yyy ]K(xxx− yyy) , (15)

with K(xxx − yyy) defined by eqs. (9) and (10). We work with four staggered fermions (p = 1) at

β = 5.6 and h = 10−4, with inverse temperature Nt = 6. The constants needed to compute the

kernel K(xxx− yyy) in this case are given in the third row of Table I. Bringing the determinants into

the action, we have

SP =
1

9
∑
xy

Tr[Uxxx]Tr[U†
yyy ]K(xxx− yyy)+∑

xxx

{
log

(
1+heµ/T Tr[Uxxx]+h2e2µ/T Tr[U†

xxx ]+h3e3µ/T
)

+ log
(
1+he−µ/T Tr[U†

xxx ]+h2e−2µ/T Tr[Uxxx]+h3e−3µ/T
)}

. (16)

III. THE METHODS

A. The complex Langevin approach

The PLA SP inherits, from the underlying gauge theory, an invariance under local transforma-

tions

Uxxx → gxxxUxxxg†
xxx , (17)

where gxxx is a position-dependent element of the gauge group. This means that SP can depend on

holonomies only through local traces of powers of holonomies Tr[U p
xxx ]; there can be no dependence

on expressions such as Tr[UxxxUyyy], since for xxx 6= yyy this term is not invariant under (17). Equivalently,

the invariance (17) means that SP depends only on the eigenvalues eiθa(xxx) of the holonomies Uxxx. In

particular,

Tr[Uxxx] = eiθ1(xxx)+ eiθ2(xxx)+ e−i(θ1(xxx)+θ2(xxx)) . (18)

In the complex Langevin approach [5] the angles {θa(xxx),a = 1,2} are treated as the dynamical

variables, which means that, for purposes of stochastic quantization, the Haar measure

dU = dθ1dθ2 sin2

(
θ1 −θ2

2

)
sin2

(
2θ1 +θ2

2

)
sin2

(
θ1 +2θ2

2

)
(19)
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must be incorporated into the action of the effective PLA, i.e.

SP −→ S′P = SP+∑
xxx

log

{
sin2

(
θ1(xxx)−θ2(xxx)

2

)
sin2

(
2θ1(xxx)+θ2(xxx)

2

)
sin2

(
θ1(xxx)+2θ2(xxx)

2

)}
.

(20)

The prescription is then to complexify the angles,

θa(xxx) = θ R
a (xxx)+ iθ I

a(xxx) , a = 1,2 (21)

and solve the complex Langevin equation, which is a first-order differential equation in the ficti-

tious Langevin time t. Discretizing the Langevin time, tn = nε , the complex Langevin equation

is2

θ R
a (xxx, tn+1) = θ R

a (xxx, tn)+Re

{(
∂S′P[θ , tn]
∂θa(xxx, tn)

)

θ→θ R+iθ I

}
ε +ηa(xxx, tn)

√
ε ,

θ I
a(xxx, tn+1) = θ I

a(xxx, tn)+ Im

{(
∂S′P[θ , tn]
∂θa(xxx, tn)

)

θ→θ R+iθ I

}
ε , (22)

where ηa(xxx, tn) is a (real-valued) random variable satisfying

〈ηa(xxx, tn)ηb(yyy, tm)〉= 2δxxxyyyδnmδab . (23)

In solving this equation it is important to use an adaptive stepsize in order to prevent runaway

solutions, reducing ε when the magnitude of ∂SP/∂θ becomes large at any lattice site, as explained

in [12].3

There is a danger in applying the complex Langevin equation to actions which incorporate a

logarithm, as already mentioned. The problem has been pointed out by Møllgaard and Splittorff

[13]. Logarithms have a branch cut along the negative real axis in the complex plane, and if,

after complexification of the field variables, the argument of the logarithm repeatedly crosses

the negative real axis in the course of Langevin evolution, then the results for observables are

unreliable. The effective action corresponding to gauge-Higgs theory contains a logarithm of the

Haar measure, and the effective action for the heavy quark model contains, in addition, a logarithm

of the fermion determinant. The Langevin evolution of the argument of these logarithms in the

complex plane must therefore be monitored, to check that the crossings of the branch cut are

negligible.

B. Mean field theory

In mean field theory, the basic idea is to localize the part of the action which depends on

products of SU(3) spins at different sites. For the effective actions we consider here, these products

2 Note that the unconventional plus sign in front of ∂S/∂θ follows from our unconventional sign convention for the

action (see footnote 1).
3 Aarts and James [5] also implemented an improved version of the Langevin equation, to reduce the dependence on

stepsize ε . The results reported in the next section were obtained using the unimproved version (22) of the complex

Langevin equation (with an adaptive stepsize).
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are contained in the quasilocal term

S0
P =

1

9
∑
xxxyyy

Tr[Uxxx]Tr[U†
yyy ]K(xxx− yyy)

=
1

9
∑
(xxxyyy)

Tr[Uxxx]Tr[U†
yyy ]K(xxx− yyy)+a0 ∑

xxx

Tr[Uxxx]Tr[U†
xxx ] , (24)

where we have introduced the notation for the double sum, excluding xxx = yyy,

∑
(xxxyyy)

≡ ∑
xxx

∑
yyy6=xxx

and a0 ≡
1

9
K(0) . (25)

Next, following the treatment in ref. [8], we introduce parameters u,v

TrUxxx = (TrUxxx −u)+u , TrU†
xxx = (TrU†

xxx − v)+ v , (26)

so that

S0
P = J0 ∑

xxx

(vTrUxxx +uTrU†
xxx )−uvJ0V +a0 ∑

xxx

Tr[Uxxx]Tr[U†
xxx ]+E0 , (27)

where V = L3 is the lattice volume, and we have defined

E0 = ∑
(xxxyyy)

(TrUx −u)(TrU†
yyy − v)

1

9
K(xxx− yyy) ,

J0 =
1

9
∑
xxx6=0

K(xxx) . (28)

The trick is to choose u and v such that E0 can be treated as a perturbation, to be ignored as a first

approximation. In particular, 〈E0〉= 0 when

u = 〈TrUx〉 , v = 〈TrU†
x 〉 . (29)

These conditions turn out to be equivalent to stationarity of the mean field free energy with respect

to variations in u,v. After dropping E0, the action is local and the group integrations can be

carried out analytically. This means that 〈TrUx〉 and 〈TrU†
x 〉 are calculable functions of u,v, and

the conditions (29) are then solved numerically. In the case that there is more than one solution,

the solution with the minimum free energy is chosen.

Let us first consider the effective action for gauge-Higgs theory (8). After discarding the E0

term, the action becomes

SP = J0 ∑
xxx

(vTrUxxx +uTrU†
xxx )−uvJ0V +a0 ∑

xxx

Tr[Uxxx]Tr[U†
xxx ]+

1

3
∑
x

{
d1eµ/T Tr[Uxxx]+d1e−µT tr[U†

xxx ]
}

+∑
x

{
a2e2µ/T Tr[U2

xxx ]+a2e−2µ/T Tr[U2†
xxx ]

}

= ∑
xxx

(ATrUxxx +BTrU†
xxx )−uvJ0V +a0 ∑

xxx

Tr[Uxxx]Tr[U†
xxx ]+∑

x

{
a2e2µ/T Tr[U2

xxx ]+a2e−2µ/T Tr[U2†
xxx ]

}
,

(30)
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where a2 = d2/6, and we have defined

A = J0v+
1

3
d1eµ/T , B = J0u+

1

3
d1e−µ/T . (31)

Denote the mean field partition function (i.e. the partition function obtained after dropping E0) as

Zm f = exp[− fm f V/T ]. Then

Zm f = e−uvJ0V

{
exp

[
a0

∂ 2

∂A∂B

]∫
DU exp

[
ATrU +BTrU†

+a2e2µ/T TrU2+a2e−2µ/T TrU†2
]}V

, (32)

and make the rescalings

u = u′e−µ/T , v = v′eµ/T , A = A′eµ/T , B = B′e−µ/T , (33)

so that

Zm f = e−u′v′J0V

{
exp

[
a0

∂ 2

∂A′∂B′

]
I[A′,B′,a2]

}V

, (34)

where

I[A′,B′,a2] =

∫
DU exp

[
A′eµ/T TrU +B′e−µ/T TrU† +a2e2µ/T TrU2 +a2e−2µ/T TrU†2

]
. (35)

Repeating the steps in [8], which will not be reproduced here, the SU(3) group integration can be

carried out, and the result for the mean field free energy is

fm f

T
= u′v′J0 − logF [A′,B′,a2] , (36)

where

F[A′,B′,a2] = exp

[
a0

∂ 2

∂A′∂B′

] ∞

∑
s=−∞

e3sµ det
[
D−s

i j Q(A′,B′,a2)
]
. (37)

Here D−s
i j is the i, j-th component of a matrix of differential operators

Ds
i j =

{
Di, j+s s ≥ 0

Di+|s|, j s < 0
,

Di j =





(
∂

∂B′

)i− j

i ≥ j
(

∂
∂A′

) j−i

i < j
, (38)

and

Q[A′,B′,a2] =

∫
dφ

2π
exp

[
A′eµ/T eiφ +B′e−µ/T e−iφ +a2e2µ/T e2iφ +a2e−2µ/T e−2iφ

]
. (39)
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When a2 = 0 the integral can be done exactly, and gives Q[A′,B′] = I0[2
√

A′B′]. For a2 6= 0 the

integration can be carried out by expanding the integrand in a power series in A′,B′,a2, with the

result

Q[A′,B′,a2] =
∞

∑
n=0

∞

∑
m=0

∞

∑
l=0

∞

∑
k=0

A′nB′mal+k
2

n!m!l!k!
δn−m+2l−2k . (40)

The mean field free energy is stationary with respect to u,v if the following conditions are satisfied:

u′− 1

F

∂F

∂A′ = 0 ,

v′− 1

F

∂F

∂B′ = 0 . (41)

These equations also guarantee the self-consistency conditions (29), and can be solved numerically

for u,v. We then have the mean field results for 〈Tr[Uxxx]〉= u and 〈Tr[U†
xxx ]〉= v. The number density

can also be computed from the derivative of the mean field free energy with respect to chemical

potential

n =−∂ fm f

∂ µ
. (42)

There are five infinite sums in the expression for the free energy, with indices denoted

m,n, l,k,s, which are reduced to four sums by the Kronecker delta δn−m+2l−2k. These sums

must be truncated for the numerical evaluation, and then one has to check that the final answers

are insensitive to an increase in the cutoff. In practice one finds that summing over the indices

n,m, j,k from 0 to 12, and cutting off the sum over s at |s|= 6, is sufficient. It is also necessary to

expand the operator

exp

[
a0

∂ 2

∂A∂B

]
(43)

in a Taylor series and truncate the series (third order in a0 is sufficient).

For the action (4) we set a2 = 0, and use the previous expressions. Although the angular inte-

gration (39) has, in this case, the compact result Q[A′,B′] = I0[2
√

A′B′], in practice the computation

of (41) is faster using the power series expansion of Q. For the action (5), we define

A = J0v+
1

3

(
d1eµ/T −d2e−2µ/T

)
, B = J0u+

1

3

(
d1e−µ/T −d2e2µ/T

)
, (44)

and refrain from rescaling. In that case the previous formulas apply with unprimed variables, apart

from a modification

F [A,B] = exp

[
a0

∂ 2

∂A∂B

] ∞

∑
s=−∞

det
[
D−s

i j Q(A,B,a2)
]
, (45)

since the factor e3sµ in (37) comes from the rescaling.

Finally, in the case of the heavy quark model we define A = J0v, B = J0u, and carry out the

rescalings (33). Then a very similar analysis leads to the conditions

u′− 1

G

∂G

∂A′ = 0 and v′− 1

G

∂G

∂B′ = 0 , (46)
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where

G(A′,B′) =
(

a1 +a2e−µ/T ∂

∂A′ +a3eµ/T ∂

∂B′ ++a4e−2µ/T ∂ 2

∂A′2

+a5e2µ/T ∂ 2

∂B′2 +a6
∂ 2

∂A′∂B′

)p ∞

∑
s=−∞

e3µs det
[
D−s

i j I0[2
√

A′B′]
]
, (47)

and

a1 = 1+h3(e3µ/T + e−3µ/T )+h6

a2 = (h+h5)eµ/T +(h2 +h4)e−2µ/T , a3 = (h+h5)e−µ/T +(h2 +h4)e2µ/T

a4 = h3e−µ/T , a5 = h3eµ/T , a6 = h2 +h3 . (48)

Once again, the mean field conditions (46) can be solved numerically, and from the solution we

can calculate the VEV of the Polyakov lines and the number density as a function of chemical

potential.

IV. RESULTS

A. Gauge-Higgs at κ = 3.8

We begin with the gauge-Higgs model at β = 5.6,κ = 3.8, and inverse temperature Nt = 6

lattice spacings; in this case d2 = 0 in the effective actions. Figures 1(a)-1(c) compare the results

for Polyakov line expectation values 〈Tr[Uxxx]〉,〈Tr[U†
xxx ]〉 and number density obtained from the

complex Langevin equation and from mean field theory. The numerical agreement is such that the

data points derived by each method can barely be distinguished from one another.

An estimate of the severity of the sign problem is provided by a measurement of 〈eiSI 〉pq, where

SI is the imaginary part of the action, and the expectation value is taken in the “phase-quenched”

probability measure proportional (in our sign convention) to eSR , where SR is the real part of the

action. When the sign problem is severe, the expectation value of 〈eiSI 〉pq is so small that it is

difficult to distinguish statistically from zero. However, according to the cumulant expansion

〈exp[iSI]〉pq = exp

[
−

∞

∑
n=1

C2n

(2n)!

]
, (49)

where C2n is the 2n-th order cumulant. We can therefore get a very rough estimate of the severity

of the sign problem just by truncating the expansion at the second order cumulant C2 = 〈S2
I 〉pq.

There is, of course, no guarantee that higher cumulants are negligible compared to the second

order cumulant, so this truncation may not be very accurate for the observable (49); perhaps it is

within a factor of two or so in the logarithm of the observable. That is enough to judge the severity

of the sign problem as µ increases. The result for the 163 spatial volume is shown in Fig. 2.

As mentioned in the previous section, the action which is used in the complex Langevin equa-

tion contains the logarithm of the measure factor (see (20)), and it is necessary to monitor this

factor to ensure that it only rarely crosses the negative real axis. Of course, at real values of θ1,2

this measure factor is strictly positive, but that can change when θ1,2 are complexified. Since the

measure factor is in this case a product of measure factors at each lattice site, we pick an arbitrary
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FIG. 1. Comparison of Polyakov lines 〈Tr(U)〉,〈Tr(U†)〉 and number density vs. µ/T , computed via com-

plex Langevin and mean field techniques, in gauge-Higgs theory at κ = 3.8.

site xxx′ and record the value of the measure factor

Arg = sin2

(
θ1(xxx

′)−θ2(xxx
′)

2

)
sin2

(
2θ1(xxx

′)+θ2(xxx
′)

2

)
sin2

(
θ1(xxx

′)+2θ2(xxx
′)

2

)
, (50)

which is the argument of one of the logarithms in the action (20), at each Langevin time. The

result, for µ = 5 is shown in Fig. 3. We see that the measure is very strongly concentrated on

the positive side of the real axis, which suggests that crossings of the logarithm branch cut are

relatively rare events.

B. Heavy quark model

The second example is the heavy quark model described in the previous section. Figure 4

shows the comparison plot of 〈Tr[Uxxx]〉,〈Tr[U†
xxx ]〉 and number density obtained from the complex

Langevin and mean field techniques. Once again, the data points obtained from each technique are

hardly distinguishable. The saturation of number density at density=3 is the value expected from

the Pauli principle for staggered fermions.

The second-cumulant estimate for 〈eiSI 〉pq vs. µ/T is shown in Fig. 5. The sign problem is
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FIG. 2. An estimate of 〈exp[iSI ]〉pq vs. µ/T in the phase-quenched version of gauge-Higgs theory at

κ = 3.8, obtained from the second order cumulant. SI is the imaginary part of the action.
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µ/T = 5.0, evaluated at each Langevin time step. Values near the negative real axis are a negligible fraction

of the sample.

severe, although not as severe as in the gauge-Higgs example at higher chemical potentials.

When the complex Langevin equation is applied to the heavy quark model, the action contains

the logarithm of a product of integration measure and determinant factors at each site xxx on the

lattice

Arg = sin2

(
θ1(xxx)−θ2(xxx)

2

)
sin2

(
2θ1(xxx)+θ2(xxx)

2

)
sin2

(
θ1(xxx)+2θ2(xxx)

2

)

×
(
1+he−µ/T Tr[U†

xxx ]+h2e−2µ/T Tr[Uxxx]+h3e−3µ/T
)

×
(
1+heµ/T Tr[Uxxx]+h2e2µ/T Tr[U†

xxx ]+h3e3µ/T
)
. (51)

Once again we must monitor the argument of the logarithm, to check that Langevin evolution does

not entail frequent crossings of the branch cut on the negative real axis. A plot of values for Arg

obtained at each Langevin time step, at the chemical potentials µ/T = 9, is shown in Fig. 6. As in

the previous gauge-Higgs example, the argument of the logarithm is a product of factors at each

lattice site, and Fig. 4 displays the value, in the complex plane, of a particular factor associated

with an arbitrarily selected lattice site xxx = xxx′. The values seem to be strongly concentrated in a
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FIG. 4. Comparison of Polyakov lines 〈Tr(U)〉,〈Tr(U†)〉 and number density vs. µ/T , computed via com-

plex Langevin and mean field techniques in the heavy quark model. Note the saturation at high µ/T at

density=3.

region where the real part of the value is positive, so crossings of the branch cut do not appear to

be of concern in this case either.

For the application of complex Langevin equation to the heavy-dense quark model at other

lattice couplings and parameters directly in the lattice gauge theory (i.e. without consideration of

the effective Polyakov line model) see [15, 16]. For the strong coupling expansion approach to

this model, see [17, 18].

C. Gauge-Higgs at κ = 3.9

So far we have not seen any evidence of a phase transition. We now consider the gauge-Higgs

theory at β = 5.6,κ = 3.9 on a 163 × 6 lattice volume. At κ = 3.9 the gauge-Higgs system

is closer to the confinement-like to Higgs-like crossover, at around κ = 4.0, and therefore this

corresponds to a lighter scalar particle, as compared to κ = 3.8. The effective action, including

the local quadratic term, was given in (8). The mean field and complex Langevin results for

〈Tr[Uxxx]〉,〈Tr[U†
xxx ]〉 and number density are shown in Fig. 7. The apparent discontinuity in all three

observables strongly suggests a first-order phase transition at a value of µ between 2.1 and 2.2, so

we see that, in comparison to the previous two examples, a transition emerges at lighter particle
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FIG. 6. Argument of the logarithm for the heavy quark model at chemical potential µ/T = 9, evaluated

at each Langevin time step. As in the previous example, values near the negative real axis are a negligible

fraction of the sample.

masses. Once again, the difference between the mean field and complex Langevin results is barely

discernable, and both methods agree on the position of the transition. In the case of mean field

there are two solutions of eq. (22) in the neighborhood of the transition, with free energies almost

identical at the transition. Above and below the transition one chooses the solution with the lowest

free energy

One point that is worth noting is that at the higher µ values there is also more than one solution

of the complex Langevin equation, and which solution is chosen by the system depends on the

starting point of the evolution. We consider two initializations at t = 0 in Langevin time:

I: θ1(x) = θ2(x) = 0, Tr[Ux] = 3.

II: θ1(x) =−θ2(x) =
2π
3
, Tr[Ux] = 0.

At low values of the chemical potential, the choice of initialization doesn’t matter; both solu-

tions converge to the same values, as seen in a plot (Fig. 8(a)) of the lattice volume average of

Tr(Ux) at each Langevin time step (no average over time), at µ = 1.9 At higher values of µ , the

two initializations lead to different solutions, seen in Fig. 8(b) at µ = 3.0. The upper solution, with
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FIG. 7. Comparison of Polyakov lines 〈Tr(U)〉,〈Tr(U†)〉 and number density vs. µ/T , computed via com-

plex Langevin and mean field techniques, in gauge-Higgs theory at κ = 3.9 for the action SP in eq. (8),

which includes quadratic center symmetry-breaking terms.

initialization I, agrees very well with mean field theory, and in fact this initialization is used for

the Langevin data shown in Fig. 7. Then there is a question of why should we prefer the solution

I, which agrees with mean field, rather than solution II, which disagrees with mean field.

There are two reasons. First, at the higher values of µ where solution II differs from mean

field, solution II is invalidated by a branch cut problem. Fig. 9 is a plot of the argument of the

logarithm at an arbitrary site on the lattice, at each Langevin time step, for initial conditions I and

II at µ/T = 3.0. For the solution which develops from initial conditions I, the argument of the log-

arithm is mostly well away from the branch cut on the negative real axis. This is much less so for

solution II, where there are many more points near the negative real axis and, as a consequence,

there must be many crossings of the branch cut in Langevin evolution. This suggests a branch

cut crossing problem in solution II, so solution I is preferred. The second reason for preferring

solution I concerns the probability distribution of the degrees of freedom in the complex plane. It

is well known that the complex Langevin approach can fail if this probability distribution is not

sufficiently well localized in the complex plane [19]. Following ref. [5], we make a histogram

of the distribution obtained for the imaginary part of the θ1,2 angles at µ/T = 3, with the initial-

ization TrU = 3, leading to solution I, and initialization TrU = 0, leading to solution II. The two

histograms, arbitrarily normalized to unity at θI = 0, are shown in Fig. 10. We see that the distri-
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bution of the imaginary part θI of the θ1,2 angles is well localized for solution I, and very broad

and not well-localized for solution II, which indicates that the latter solution produces incorrect

results.
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FIG. 8. Dependence of Langevin evolution on initial conditions, in the gauge-Higgs model with a quadratic

symmetry-breaking term. (a) Initial conditions lead to convergent Langevin evolution, in agreement with

the mean field solution, at µ/T = 1.9. (b) Initial conditions lead to two different solutions of the Langevin

equation at µ/T = 3.0. The upper solution is in close agreement with mean field theory.
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D. Gauge-Higgs at κ = 3.9, quadratic symmetry-breaking terms neglected

For the last example we consider the action (5), which follows from (8) using the identities (7)

and dropping terms proportional to Tr[Uxxx]
2 and Tr[U†

xxx ]
2.
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FIG. 11. Comparison of Polyakov lines 〈Tr(U)〉,〈Tr(U†)〉 and number density vs. µ/T , computed via

complex Langevin and mean field techniques, in gauge-Higgs theory at κ = 3.9 for the action SP in eq. (5),

where quadratic center symmetry-breaking terms are neglected.

In contrast to the previous three examples, while the complex Langevin and mean field methods

agree quite closely for 〈TrU〉,〈TrU†〉 and particle density up to µ ≈ 2.75, they give very different

answers at µ > 2.75. The explanation of this discrepancy is explained by a plot (Fig. 12) of the

argument of the logarithm in the action, eq. (50). At the lower values of µ , the values of the

argument are well away from the negative real axis, and we deduce that crossing the logarithmic

branch cut is a rare event. However, at µ ≥ 2.75, there are many values of the argument which

lie close to the negative real axis, implying that Langevin evolution will commonly cross the

logarithmic branch cut. In that case, we can no longer trust the results derived from the complex

Langevin equation. Then the question is whether, by altering the initial conditions, one may obtain

a solution of the Langevin equation which does not have a branch cut problem. It is impossible to

explore all initial conditions, of course. Initial conditions I and II have been tried, with Tr[Ux] = 3

and Tr[Ux] = 0, respectively, along with an intermediate initialization

III: θ1(xxx) = 0.3πr1(xxx) , θ2(xxx) = 0.3πr2(xxx) ,
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where r1(xxx),r2(xxx) are linearly distributed random numbers in the range [0,1]. All three initializa-

tions run into a branch cut problem around µ = 2.75.
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FIG. 12. Argument of the logarithm for gauge-Higgs theory at β = 5.6, κ = 3.9, and chemical potentials

1.5 ≤ µ/T ≤ 3.25 (subfigures a-d), evaluated at each Langevin time step. The presence of many points near

the negative real axis is very plain at β ≥ 2.75, signaling the presence of a branch cut problem.

One other result in this example, seen in both the mean field and Langevin solutions, is that the

particle number density displayed in Fig. 11(c) can become large and negative at large µ , a result

which we consider unphysical since the chemical potential is positive. This is clear evidence that,

although the neglected quadratic symmetry-breaking terms may have a relatively small effect on

correlators at µ = 0, they cannot be ignored at finite µ . We have neglected them in this example

only for the purpose of comparing Langevin and mean field results for another action belonging

to the class of SU(3) spin models.

V. CONCLUSIONS

There are two main results. The first is that where the complex Langevin and mean field results

agree, in the cases studied so far, they agree to an extraordinary degree of accuracy. It is natural

to ask why these mean field results are so good, since the mean field method in D = 3 dimensions

is usually regarded as a rough approximation at best. A possible answer is that in the effective
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Polyakov line actions each SU(3) spin is coupled to many other SU(3) spins on the lattice, and

not merely to the nearest neighbors.4 As a consequence, the basic idea behind mean field theory,

i.e. that each spin is effectively coupled to the average spin on the lattice, may be a much better

approximation to the true situation in the effective theories than one would suppose from prior

experience with nearest-neighbor couplings.

The second result is that in the case where the complex Langevin and mean field results differ,

the difference occurs at chemical potentials where the Langevin method is clearly unreliable, due

to the appearance of the Møllgaard-Splittorff branch cut problem [13]. A possible way around the

branch cut difficulty is to complexify the SU(3) elements Uxxx,U
†
xxx , rather than the angles θa(xxx), a

strategy which is used for lattice gauge theory and which was already mentioned in [5]. In that

case the exponentiation of the measure factor is avoided, and there is no branch cut problem. This

approach is a possible direction for future work.

It is significant that the disagreement between the mean field and complex Langevin methods

only arises at values of the chemical potential where the complex Langevin method fails. Of

course, a failure of complex Langevin does not imply that the corresponding mean field results

are necessarily correct; it could be that both are wrong. At the moment we have no independent

check. What can be said at this stage is that mean field theory applied to effective Polyakov

line actions, where it has been checked against the reliable results of an alternate method, works

remarkably well. It is possible that, given the effective Polyakov line action for a gauge-matter

system obtained by relative weights, the theory can be solved without resorting to any further

numerical simulation. Of course, it is not yet known whether we can extract the effective Polyakov

line actions corresponding to gauge theories with lighter fermions in an interesting range of the

chemical potential. This will be the subject of further investigation.
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