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Abstract

We study the kinematic cusps and endpoints of processes with the “antler topology” as a way

to measure the masses of the parity-odd missing particle and the intermediate parent at a high

energy lepton collider. The fixed center of mass energy at a lepton collider makes many new physics

processes suitable for the study of the antler decay topology. It also provides new kinematic

observables with cusp structures, optimal for the missing mass determination. We also study

realistic effects on these observables, including initial state radiation, beamstrahlung, acceptance

cuts, and detector resolution. We find that the new observables, such as the reconstructed invariant

mass of invisible particles and the summed energy of the observable final state particles, appear

to be more stable than the commonly considered energy endpoints against realistic factors and are

very efficient at measuring the missing particle mass. For the sake of illustration, we study smuon

pair production and chargino pair production within the framework of the minimal supersymmetric

standard model. We adopt the log-likelihood method to optimize the analysis. We find that at

the 500 GeV ILC, a precision of approximately 0.5GeV can be achieved in the case of smuon

production with a leptonic final state, and approximately 2GeV in the case of chargino production

with a hadronic final state.

PACS numbers: 13.85.Rm, 13.66.Hk
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I. INTRODUCTION

With the monumental discovery of the Higgs boson at the LHC [1], all of the fundamental

particles in the standard model (SM) have been discovered. The SM as an effective field

theory can be valid up to a very high scale. Nevertheless, there are strong indications that

the SM is incomplete. Certain observed particle physics phenomena cannot be accounted for

within the SM. Among them, the discovery and characterization of the dark matter (DM)

particle may be one of the most pressing issues.

The existence of dark matter has been well established through a combination of galactic

velocity rotation curves [2], the cosmic microwave background [3], Big Bang nucleosynthe-

sis [4], gravitational lensing [5], and the bullet cluster [6]. As a result of these observations,

we know that dark matter is non-baryonic, electrically neutral and composes roughly 23%

of the energy and 83% of the matter of the universe.

Among the many possibilities for dark matter [7], weakly interacting massive particles

(WIMPs) are arguably the most attractive because of the so-called WIMP miracle: to get

the relic abundance right, a WIMP mass is roughly

MWIMP <∼
g2

0.3
1.8 TeV, (1)

which miraculously coincides with the new physics scale expected from the “naturalness”

argument for electroweak physics. Therefore, there is a high hope that the search for a dark

matter particle may be intimately related to the discovery of TeV scale new physics.

Direct searches of weak scattering of dark matter off nuclear targets in underground labs

have been making great progress in improving the sensitivity to the DM mass and couplings,

most recently by the XENON [8], LUX [9] and SuperCDMS [10] collaborations. WIMPs

can also be produced at colliders either directly in pairs or from cascade decays of other

heavier particles. Since a WIMP is non-baryonic and electrically neutral, it does not leave

any trace in the detectors and thus only appears as missing energy. In order to establish a

DM candidate convincingly, it is ultimately important to reach consistency between direct

searches and collider signals for the common parameters of mass, spin and coupling strength.

It is very challenging to determine the missing particle mass at colliders due to the under-

constrained kinematical system with two missing particles in an event. It is particularly

difficult at hadron colliders because of the unknown partonic c.m. energy and frame. There

exist many attempts to determine the missing particle mass at the LHC, such as endpoint
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FIG. 1. The antler decay diagram of a heavy particle D into two visible particles a1 and a2 and

two invisible particles X1 and X2 through on-shell intermediate particles B1 and B2.

methods [11], polynomial methods [12], MT2 methods [13], and the matrix element method

[14]. Recently, we studied the “antler decay” diagram [15], as illustrated in Fig. 1 with a

resonant decay of a heavy particle D into two parity-odd particles (B1 and B2) at the first

step, followed by each Bi’s decay into a missing particle Xi and a visible particle ai. We

found that a resonant decay through the antler diagram develops cusps in some kinematic

distributions and the cusp positions along with the endpoint positions determine the missing

particle mass as well as the intermediate particle mass [15–17].

In this article, we focus on lepton colliders [18–21], in which the antler topology applies.

The initial state is well-defined with fixed c.m. energy and c.m. frame. This allows various

antler processes without going through a resonant decay of a heavy particle D. We consider

kinematic variables such as the angle and the energy of a visible particle for the mass

determination. We also show that the invariant mass of two invisible particles, which can be

indirectly reconstructed using the recoil mass technique, is crucial for the mass measurement

and the SM background suppression. The energy sum of the two visible particles or of the

two invisible particles will also be shown to be equally powerful. At a linear e+e− collider,

the available beam polarization can additionally be used to suppress the SM background

and enhance the sensitivity of the mass measurement.

Two common methods of the missing mass measurement have been studied in the liter-

ature for e+e− collisions:

1. The lepton energy endpoints in cascade decays [22];

2. The photon energy endpoint in the direct WIMP pair production associated with a
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photon [23].

In comparison, we find that our results from the antler topology can be at least comparable

to the energy endpoint method and do much better than the single photon approach. For

the sake of illustration, we will concentrate on the minimal supersymmetric standard model

(MSSM) and consider the scenario where the lightest neutralino χ̃0
1 is the lightest super-

symmetric particle (LSP) and, therefore, stable in the framework of a R-parity conserving

scenario. We consider two MSSM processes that satisfy the antler topology: pair produc-

tion of scalar muons (smuons) and that of charginos. In order to be as realistic as possible

with the kinematical construction, we analyze the effects of the initial state radiation (ISR),

beamstrahlung, acceptance cuts, and detector resolutions on the observables. We adopt

the log-likelihood method based on Poisson statistics to quantify the precision of the mass

measurements. We find that this method optimizes the sensitivity to the mass parameters

in the presence of these realistic effects.

We note that the scanning through the pair production threshold could give a much more

accurate determination for the intermediate parent mass [24]. With this as an input, one

could improve the measurement of the missing particle mass by the energy endpoint method

or by the Antler technique. However, the threshold scan would require a priori knowledge

of the intermediate particle mass, and would need more integrated luminosity to reach such

a high sensitivity [24]. Our proposed method does not assume to know any masses, and our

outputs would benefit the design of the threshold scan.

The rest of the paper is organized as follows. In section II, we review the kinematic cusps

and endpoints of antler processes. We present the analytic expressions for six kinematic

variables in terms of the masses. For a benchmark scenario, we first show smuon pair

production as an example of massless visible particles in section III. We reproduce the

expected kinematical features numerically and illustrate the effects of the acceptance cuts

on the final state observable particles. Other realistic effects including full spin correlation,

SM backgrounds, ISR, beamstrahlung, and detector resolutions are considered. Adopting

the log-likelihood method based on the Poisson probability density, we quantify the accuracy

with which the missing particle mass measurement may be determined in section IIID. In

section IV, chargino pair production is studied, as an example of massive visible particles

with a hadronic final state. In section V, we give a summary and draw our conclusions.
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R1 : ηB <
ηa
2 R2 :

ηa
2 < ηB < ηa R3 : ηa < ηB

mmin
aa 2ma 2ma cosh(ηB − ηa)

m
cusp
aa 2ma cosh(ηB − ηa) 2ma cosh ηB

mmax
aa 2ma cosh(ηB + ηa)

TABLE I. The cusp and endpoints of the invariant mass distribution maa in the three regions of

c.m. energy and parameter space.

II. CUSPS AND ENDPOINTS OF THE ANTLER PROCESS

We start from a state with a fixed c.m. energy
√
s, which produces two massive particles

B1 and B2, followed by each B’s decay into a visible particle a and an invisible heavy particle

X , as depicted in Fig. 1. In e+e− collisions, it is realized as

e+e− → B1 +B2, (2)

B1 → a1 +X1, B2 → a2 +X2.

For simplicity, we further assume that B1 and B2 (X1 and X2) are identical particles to each

other:

mB1
= mB2

≡ mB, mX1
= mX2

= mX . (3)

The kinematics is conveniently expressed by the rapiditiies ηj (equivalent to the speed β =

|~p |/E), which specifies the four-momentum of a massive particle j from a two-body decay

of i → j + k in the rest frame of the parent particle i as p
(i)
j = mj

(

cosh ηj , p̂
(i)
j sinh ηj

)

.

In general, the kinematics of Eq.(2) is determined by three rapidities of the intermediate

particle B, the visible particle a, and the missing particle X , given by

cosh ηB =

√
s

2mB

, cosh ηa =
m2

B −m2
X +m2

a

2mamB

, cosh ηX =
m2

B −m2
a +m2

X

2mXmB

. (4)

Note that in the massless visible particle case (ma = 0) the rapidity ηa goes to infinity.

We find the distributions of the following six kinematic variables informative:

maa, mrec, cosΘ, Ea, Eaa, EXX . (5)

(i) maa distribution: maa is the invariant mass of the two visible particles. This distribution

accommodates three singular points: a minimum, a cusp, and a maximum. Their positions
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are not uniquely determined by the involved masses. They differ according to the relative

scales of masses. There are three regions [16]

R1 : ηB <
ηa
2
, R2 :

ηa
2

< ηB < ηa, R3 : ηa < ηB. (6)

The cusps and endpoints in the three regions are given in Table I. The minimum endpoint

is the same for R1 and R2 but different for R3. The cusp is the same for R2 and R3, which

is different for R1. The maximum endpoints are the same for all three regions. The absence

of a priori knowledge of the masses gives us ambiguity among R1, R2, and R3. For example

we do not know whether the measured mmin
aa is 2ma or 2ma cosh(ηB − ηa).

In the massless visible particle case, however, three singular positions are uniquely deter-

mined as

mmin
aa = 0 , (7)

mcusp
aa = mB

(

1− m2
X

m2
B

)

e−ηB ,

mmax
aa = mB

(

1− m2
X

m2
B

)

eηB .

According to the analytic function for the maa distribution [15], the maa cusp is sharp only

when the B pair production is near threshold, i.e., when 0.443
√
s < mB < 0.5

√
s.

(ii) mrec distribution: The invariant mass of two invisible particles, denoted by mrec, can be

measured through the relation

m2
rec ≡ m2

XX = s− 2
√
s (Ea1 + Ea2) +m2

aa. (8)

The mrec distribution is related to the invariant mass distribution of massive visible particles

because of the symmetry of the antler decay topology. It also has three singular points,

mmin
rec , m

cusp
rec , and mmax

rec . Their positions are as in Table I, with replacement of ma → mX

and ηa → ηX .

(iii) Ea distribution: The energy distribution of one visible particle in the lab frame also

provides important information about the masses. If the intermediate particle B is a scalar

particle like a slepton, its decay is isotropic and thus produces a flat rectangular distribution.

Two end points, Emin
a and Emax

a , are determined by the masses:

Emax,min
a =

√
s

4

(

1− m2
X −m2

a

m2
B

)

(

1± βB

√

1− 4m2
am

2
B

(m2
B +m2

a −m2
X)

2

)

, (9)
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where βB is defined by

βB =

√

1− 4m2
B

s
. (10)

Note that if mB ≪
√
s/2 or mX ≈ mB, then Emin

a can be very small, even below the

experimental acceptance for observation.

(iv) Eaa distribution: The distribution of the combined energy of the a1a2 system, Eaa ≡
Ea1 + Ea2 , is triangular, leading to three singular positions, Emin

aa , Ecusp
aa , and Emax

aa , which

are in terms of masses

Emax,mix
aa = 2ma cosh(ηa ± ηB), (11)

Ecusp
aa = 2ma cosh ηa cosh ηB.

For ma = 0, we have simpler expressions as

Emax,mix
aa

∣

∣

ma=0
=

√
s

2

(

1− m2
X

m2
B

)

(1± βB), (12)

Ecusp
aa |ma=0 =

√
s

2

(

1− m2
X

m2
B

)

.

(v) EXX distribution: Although the energy of one invisible particle is not possible to mea-

sure, the sum of two invisible particle energies can be measured through

EXX ≡ EX1
+ EX2

=
√
s−Eaa. (13)

The distribution of EXX is a mirror image of the Eaa distribution, which is triangular with

a sharp cusp.

(vi) cosΘ distribution: Here Θ is the angle between the momentum direction of one visible

particle (say a1) in the c.m. frame of a1 and a2 and the c.m. moving direction of the pair

in the lab frame. For ma 6= 0, the cosΘ distribution does not present a sharp cusp or

endpoint [16]. If ma = 0, however, the distribution has a simple functional form as

dΓ

d cosΘ

∣

∣

∣

∣

ma=0

∝











1

sin3Θ
, for |cosΘ| < βB,

0, otherwise,

(14)

which accommodates two pronounced peaks where the cusp and the maximum endpoint

meet at cosΘ = ±βB.
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III. MASSLESS VISIBLE PARTICLE CASES: SMUON PAIR PRODUCTION

For the massless observable particles a1 and a2, we now present the general feature based

on the previous discussions and demonstrate the observable aspects for the missing mass

measurements at the ILC. Throughout this paper, we choose to show the results for the

c. m. energy
√
s = 500GeV.

A. The kinematics of cusps and endpoints

A lepton collider is an ideal place to probe the charged slepton sector of the MSSM.

To illustrate the basic features of cusps and endpoints at the ILC, we consider smuon pair

production. In principle, the scalar nature of the smuon can be determined by the shape

of the total cross section near threshold and the angular distributions of the final muons

[25]. There are two kinds of smuons, µ̃L and µ̃R, scalar partners of the left-handed and

right-handed muons respectively. A negligibly small mass of the muon suppresses the left-

right mixing and thus makes µ̃L and µ̃R the mass-eigenstates. The smuon pair production

in e+e− collisions is via s-channel diagrams mediated by a photon or a Z boson. Since the

exchanged particles are vector bosons, the helicities of e+ and e− are opposite to each other,

and only two kinds of pairs, µ̃+
Rµ̃

−
R and µ̃+

L µ̃
−
L , are produced. If the lightest neutralino χ̃0

1 has

a dominant Bino component, µ̃R predominantly decays into µχ̃0
1. The decay of µ̃L → µχ̃0

1

is also sizable. At the ILC, the process e+e− → µ̃Rµ̃R/µ̃Lµ̃L → µχ̃0
1 + µχ̃0

1 has a substantial

rate. The final state we observe is

e+e− → µ+µ− + /E. (15)

This is one good example of the antler process. However, we note that the leading SM

process, W+W− production followed by W → µνµ, is also of the antler structure.

For illustrative purposes of the signals, we consider two benchmark points for the MSSM

parameters, called Case-A and Case-B, as listed in Table II. These two cases have the same

mass spectra, except for the µ̃L mass. In Case-A, µ̃L is too heavy for the pair production

at
√
s = 500GeV. We have a simple situation where the new physics signal for the final

state in Eq. (15) involves only µ̃Rµ̃R production. In Case-B, the µ̃L mass comes down close

to the µ̃R mass, with a mass gap of about 10 GeV. In this case with mµ̃R
≃ mµ̃L

, the cross
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Label µ̃R µ̃L χ̃0
1 χ̃0

2 χ̃0
3 χ̃0

4 χ̃±
1 χ̃±

2

Case-A (Case-B) 158 636 (170) 141 529 654 679 529 679

Case-C − − 139 235 504 529 235 515

TABLE II. Illustrative SUSY mass spectrum for Case-A, Case-B (as introduced in Sec. IIIA) and

Case-C (as introduced in Sec. IV). All of the masses are in units of GeV.

section of µ̃Rµ̃R production is compatible with that of µ̃Lµ̃L production. This is because

the left-chiral and right-chiral couplings of the smuon to the Z boson, say gLµ̃µ̃Z and gRµ̃µ̃Z

respectively, are accidentally similar in size:

gLµ̃µ̃Z =
−1 + 2 sin2 θW
2 sin θW cos θW

≈ −0.64, gRµ̃µ̃Z =
sin θW
cos θW

≈ 0.55. (16)

In Case-B, three signals from µ̃Rµ̃R, µ̃Lµ̃L, and W+W− all have the same antler decay

topology. The goal is to disentangle the information and achieve the mass measurements of

µ̃R, µ̃L, and χ̃0
1.

It is noted that the LHC searches for slepton direct production does not reach enough

sensitivity with the current data yet [26] and would be very challenging in Run-II as well

for the parameter choices under consideration, due to the small signal cross section, large

SM backgrounds, and the disfavored kinematics of the small mass difference. On the other

hand, once crossing the kinematical threshold at a lepton collider, the slepton signal could

be readily established.

In Table III, we list the values of various kinematic cusps and endpoints for the five

variables discussed above. The mass spectra of the µ̃Rµ̃R antler and the W+W− antler

apply to both Case-A and Case-B, while that of µ̃Lµ̃L applies only to Case-B. With the

given masses, all of the minimum, cusp, and maximum positions are determined. They

are considerably different from each other, indicating important complementarity of these

kinematic variables.

In Fig. 2, we show the normalized distributions of (a) mµµ, (b) mrec, (c) cosΘ, (d) Eµ,

and (e) Eµ+ + Eµ− for µ̃Rµ̃R, µ̃Lµ̃L, and W+W− production at the ILC with a c.m. energy

of 500GeV. To appreciate the striking features of the distributions, we have only considered

the kinematics here. The full results including spin correlations, initial state radiation (ISR),

beamstrahlung, and detector smearing effects will be shown, beginning in section 3.3. First,

the maa distributions for µ̃Rµ̃R, µ̃Lµ̃L, and W+W− production do not show a clear cusp.
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√
s 500GeV

Production channel µ̃Rµ̃R µ̃Lµ̃L W+W−

input (mB ,mX) (158, 141) (170, 141) (mW , 0)

| cos Θ|max 0.77 0.73 0.95

(mmin
µµ ,m

cusp
µµ ,mmax

µµ ) (0, 12, 91) (0, 21, 137) (0, 13, 487)

(mmin
rec ,m

cusp
rec ,mmax

rec ) (408, 445, 488) (363, 413, 479) (0, 13, 487)

(Emin
µ , Emax

µ ) (6, 46) (11, 69) (7, 243)

(Emin
µµ , E

cusp
µµ , Emax

µµ ) (12, 52, 92) (21, 79, 137) (13, 250, 487)

TABLE III. The values of various kinematic cusps and endpoints as seen in Fig. 2, for the mass

parameters in Table II. All of the masses and energies are in units of GeV.

This is because the c.m. energy is too high compared with the intermediate mass to reveal

the maa cusp, which would become pronounced when mB > 0.44
√
s [15]. For B = µ̃R, a

sharp maa cusp requires
√
s <∼ 360GeV. On the contrary, the mrec distributions for µ̃Rµ̃R

and µ̃Lµ̃L in Fig. 2(b) are of the shape of a sharp triangle. This is attributed to the massive

X . For W+W− production, the missing particles are massless neutrinos, therefore, the maa

distribution is the same as the mrec distribution.

The cosΘ distributions of µ̃Rµ̃R, µ̃Lµ̃L, and W+W− in Fig. 2(c) present the same func-

tional behavior, proportional to 1/ sin3Θ. There are two sharp points where the cusp and

the maximum merge, which correspond to ±| cosΘ|max. The µ̃Rµ̃R and µ̃Lµ̃L processes have

similar values of | cosΘ|max, while the W+W− process peaks at a considerably larger value.

Figure 2(d) shows the energy distribution of one visible particle µ. The distributions for the

smuon signals are flat due to their scalar nature, while the flat distribution for the W+W−

channel is artificial due to the neglect of spin correlation. We will include the full spin effects

from section IIIC and on.

In principle, the two measurements of Emin
µ and Emax

µ can determine the two unknown

masses mB and mX . However the minimum of Ea can be below the detection threshold

as in the µ̃R case of Emin
µ ≃ 5.8GeV. One may thus need another independent observable

to determine all the masses. In addition, over-constraints on the involved masses are very

useful in establishing the new physics model.
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e+e− → µ+µ−/E,
√
s = 500 GeV
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e+e− → µ+µ−/E,
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s = 500 GeV
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FIG. 2. The normalized distributions of (a) mµµ, (b) mrec, (c) cosΘ, (d) Eµ and (e) Eµ+ + Eµ−

for the three cases in Table III, i.e., for µ̃Rµ̃R, µ̃Lµ̃L and W+W− production at
√
s = 500GeV.

Here we consider only the kinematics without spin correlations.

The distribution of Eµµ(≡ Eµ+ +Eµ−) in Fig. 2(e) is different from the individual energy

distribution: the former is triangular while the latter is rectangular. For µ̃Rµ̃R and µ̃Lµ̃L, the

Eaa distributions are localized so that the pronounced cusp is easy to identify. For W+W−,

however, the Eaa distribution is widespread.

In order to further understand the singular structure, we examine four representative

configurations in terms of (cos θ1, cos θ2), where θ1 and θ2 are the polar angle of a1 and a2
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in the rest frame of their parent particles B1 and B2, respectively. The correspondence of

each corner to a singular point is as follows:

1D configuration maa mrec Eaa EXX

(i)
a2⇐= B2←− e+e−• B1−→ a1=⇒ max min max min

(ii)
a2=⇒ B2←− e+e−• B1−→ a1⇐= cusp max min max

(iii)
a2=⇒ B2←− e+e−• B1−→ a1=⇒ min cusp cusp cusp

(iv)
a2⇐= B2←− e+e−• B1−→ a1⇐= min cusp cusp cusp

(17)

B. The effects of acceptance cuts

In a realistic experimental setting, the previously discussed kinematical features may be

smeared, rendering the cusps and endpoints less effective for extracting the mass parameters.

We now study the effects of the acceptance cuts.

We first explore the effects due to a missing transverse momentum (/pT ) cut, which is

essential to suppress the dominant SM background of e+e− → e+e−µ+µ− with the outgoing

e+e− going down the beam line and not detected. Obviously, the /pT cut removes some

events, reducing the event rate. In addition, the /pT cut does not apply evenly over the

distribution. The positions of the cusp and endpoints can be shifted in some cases.

In Fig. 3, we show the effects of a /pT cut on the distributions of mµµ, mrec, cosΘ, Eµ, and

Eµµ. We normalize each distribution by the total cross section without other kinematic cuts.

First, the mµµ distributions with various /pT cuts are shown in Fig. 3(a) for
√
s = 500GeV

and in Fig. 3(f) for
√
s = 350GeV. The mµµ cusp in the higher c.m. energy case does

not present a notable feature while the lower energy case with
√
s = 350GeV has a more

pronounced cusp shape. With a /pT > 10GeV cut, the maa distribution retains its triangular

shape, but starts to lose the true cusp and maximum positions. The shift is a few GeV.

If /pT > 20GeV, the sharp cusp is smeared out and the mmax
µµ position is shifted by about

10GeV. In both cases, the mmin
µµ remains intact. The mrec distribution in Fig. 3(b), on the

contrary, keeps its triangular shape even with a high /pT cut. It is interesting to note that

the /pT cut shifts the mmin
rec and mmax

rec while keeping the mcusp
rec position fixed. Figure 3(e)

presents the distribution of the summed energy of the two visible particles, which are still

triangular after the /pT cut. The cusp position is retained, but the minimum and maximum
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FIG. 3. Case-A for e+e− → µ̃Rµ̃R → µ+µ− + /E. Effects due to various /pT cuts on (a) mµµ, (b)

mrec, (c) cosΘ, (d) Eµ, and (e) Eµ++Eµ− distributions without spin-correlation and other realistic

effects at
√
s = 500GeV. Each distribution is normalized by the total cross section. Panel (f) for

the mµµ distribution is set to 350 GeV for comparison.

positions are shifted.

We note that /pT cut does not affect the positions of the variables mmin
µµ , mcusp

rec , and Ecusp
µµ

appreciably, which all correspond to the kinematical configurations (iii) and (iv) in Eq. (17).

Here the two visible particles (a1a2) move in the same direction, and two invisible particles
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FIG. 4. Case-A for e+e− → µ̃Rµ̃R → µ+µ− /E. Effects due to various Ea cuts on the (a) mµµ, (b)

mrec, (c) cosΘ, (d) Eµ, and (e) Eµ++Eµ− distributions without spin-correlation and other realistic

effects at
√
s = 500GeV. Each distribution is normalized by the total cross section without any

other acceptance cut. Panel (f) for the mµµ distribution is set to 350 GeV for comparison.

(X1X2) move also in the same direction, opposite to the a1a2 system. A /pT cut would not

change the system configuration. In contrast, for the configurations (i) and (ii) in Eq. (17),

a1 and a2 are moving in the opposite direction, and a cut on the X1X2 system alters the

individual particle as well as the configuration appreciably.
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The least affected variable is the cosΘ distribution in Fig. 3(c). The | cosΘ|max positions

remain the same, and the /pT cut removes the data nearly evenly all over the distribution.

Figure 3(d) shows the Eµ distribution under the /pT cut effects. Similar to the case of cosΘ,

the /pT cut reduces the whole rate roughly uniformly, and the box-shaped distribution is still

maintained.

Figure 4 presents the five kinematic distributions with the effects of the Ea cut. The

normalization is done with the total cross section without any cut. Two mµµ distributions

are presented, one for
√
s = 500GeV in Fig. 4(a) and the other for

√
s = 350GeV in

Fig. 4(f). Both retain its maximum position after the Ea cut. However, the mµµ cusp

position is shifted by a sizable amount, approximately 10 GeV for Ea > 15GeV cut at
√
s = 350GeV. This behavior is the same for the Eµµ distribution in Fig. 4(e). The mrec

distribution in Fig. 4(b) behaves oppositely: the maximum and cusp positions are shifted

while the minimum position is retained. Therefore, the Ea cut does not change the one-

dimensional configuration (i) of Eq. (17).

The cosΘ distributions under the Ea cuts are shown in Fig. 4(c). The locations of

| cosΘ|max remain approximately the same, but the sharp cusps are reduced somewhat.

Finally the Ea distribution in Fig. 4(d) shows the expected shift of its minimum into the

lower bound on Ea. Note that some data satisfying Ea > Ecut
a are also cut off, since the Ea

cut has been applied to both of the final leptons. In summary, the acceptance cut distorts

the kinematic distributions, and shifts the singular positions. When we extract the mass

information from the endpoints, these cut effects must be properly taken into account.

C. Mass measurements with realistic considerations

1. Backgrounds and simulation procedure

For our signal of e+e− → µ+µ− + /E, there are substantial SM backgrounds. The main

irreducible SM background is W boson pair production, e+e− → W+W− → µ+νµµ
−ν̄µ.

The next dominant mode is ZZ production, e+e− → ZZ → µ+µ−νiν̄i where νi denotes a

neutrino of all three flavors. The W+W− background is larger than the ZZ background by

a factor of about 20. In the following numerical simulation, we include the full SM processes

for the final state µ+µ−νν̄.
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Another substantial SM background is from e+e− → e+e−µ+µ− where the outgoing e+

and e− go down the beam pipe and are missed by the detectors. It is mainly generated by

Bhabha scattering with the incoming electron and positron through a t-channel diagram.

This background could be a few orders of magnitude larger than the signal. However, a

cut on the missing transverse momentum can effectively remove it. The maximum missing

transverse momentum in this background comes from the final electron and positron, each

of which retains the full energy (
√
s/2 each) and moves within an angle of 1◦ with respect

to the beam pipe (at the edge of the end-cap detector coverage). As a result, most of these

background events lie within

(/pT )beam line e+e− . 3× 250GeV× sin (1◦) ≃ 15GeV. (18)

We thus design our basic acceptance cuts for the event selection

Basic cuts: Ea ≥ 10GeV, /pT ≥ 15GeV, (19)

| cos θcmℓ | ≤ 0.9962, maa ≥ 1GeV, mrec ≥ 1GeV.

The angular cut on θcmℓ requires that the observed lepton lies within 5◦ from the beam

pipe. This angular acceptance and the invariant mass cut on the lepton pair regularize

the perturbative singularities. We also find that the /pT cut removes the background from

e+e− → e+e−τ+τ− [29].

In principal, the full SUSY backgrounds should be included in addition to the µ̃R and µ̃L

signal pair production. There are many types of SUSY backgrounds. The dominant ones

are the production of χ̃0
1χ̃

0
j≥2 followed by the heavier neutralino decay of χ̃0

j≥2 → ℓ+ℓ−χ̃0
1.

However, their contributions are negligible with our mass point and event selection.

At the ILC environment, it is crucial to consider the other realistic factors in order to

reliably estimate the accuracy for the mass determination. These include the effects of ISR,

beamstrahlung [30] and detector resolutions. For these purposes, we adopt the ILC-Whizard

setup [31], which accommodates the SGV-3.0 fast detector simulation suitable for the ILC

[36].

2. Case-A: µ̃Rµ̃R pair production

For the mass spectrum in Case-A, Fig. 5 presents a full simulation of the five kinematic

distributions at
√
s = 500GeV with the basic cuts in Eq. (19). The solid (red) line denotes
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FIG. 5. Case-A for e+e− → µ̃Rµ̃R → µ+µ− /E. Basic acceptance cut on the (a) mµµ, (b) mrec,

(c) cosΘ, (d) Eµ, and (e) Eµ+ +Eµ− distributions with spin-correlation and other realistic effects.

The c.m. energy is set to
√
s = 500GeV for all distributions. The solid (red) line denotes our

signal of the resonant production of a µ̃R pair. The dashed (blue) line is the total event including

our signal and the SM backgrounds.

our signal of the resonant production of a µ̃Rµ̃R pair. The dashed (blue) line is the total

distribution including our signal and the SM backgrounds.

The mµµ distribution from our signal in Fig. 5(a) does not reveal the best feature of the

antler process. Its cusp is not very pronounced and its maximum is submerged under the
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dominant Z pole. As discussed before, this is because the c.m. energy of 500 GeV is too

high compared with the smuon mass. On the contrary, the mrec distribution in Fig. 5(b)

separates our signal from the SM backgrounds well. A sharp triangular shape is clearly seen

above the SM background tail. This separation is attributed to the weak scale mass of the

missing particle X . If X were much lighter such as MX ≃ 10GeV, the cusp position in the

mrec distribution of the signal would be shifted to a lower value and thus overlap with that

of the large W+W− background.

Figure 5(c) presents the cosΘ distributions with the W+W− background and the µ̃Rµ̃R

signal. However, the highest point of cosΘ (the cusp location) is shifted from the location

of the | cosΘ|max in Table III, by about 2 ∼ 3%. This is from the kinematical smearing due

to ISR and beamstruhlung effects.

Figure 5(d) shows the muon energy distribution, which consists of two previously box-

shaped distributions. Our signal distribution, which is expected to be flat for a scalar

boson, is distorted by ISR. The SM background, mainly the W+W− background, shows

a more tilted distribution, which has additional effects from spin correlation. The reason

for the tilted distribution toward higher Eµ is that the W+W− production has the largest

contribution from the production ofW−
L W+

R mediated by a t-channel neutrino [33]. HereW−
L

(W+
R ) denotes the left-handed (right-handed) negatively (positively) charged W boson. W−

L

has the left-handed coupling of ℓ−L -ν̄R-W
−
L so that the decayed ℓ−L moves along the parent

W− direction and the ν̄ in the opposite direction. The ℓ− tends to have higher energy.

Even though the Eµ distribution is not flat both for the signal and the backgrounds, their

maximum positions are the same as predicted in Table III. However, the minimum position

for the W+W− distribution is below the acceptance cut while the minimum for the µ̃Rµ̃R

signal is approximately the same as the cut. The measurement of these minima becomes

problematic. As a result, the other kinematic observables discussed here are essential in the

measurement of these masses.

Finally Figs. 5(e) presents the energy sum of two visible particles. The distribution for our

signal is triangular and separated from the SM backgrounds. Even in the full and realistic

simulation, the cusps and endpoints of the signal are very visible. In fact, the signal part of

the distribution takes a very similar form to that of mrec.

Understanding those kinematic distributions of our signal is of great use to suppress the
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FIG. 6. Case-A for e+e− → µ̃Rµ̃R → µ+µ− /E. The effect of an additional cut of mrec > 350GeV

on the (a) mµµ, (b) mrec, (c) cosΘ, (d) Eµ, and (e) Eµ+ +Eµ− distributions with spin-correlation

and other realistic effects. The c.m. energy is set to
√
s = 500GeV for all distributions. The solid

(red) line denotes our signal of the resonant production of a µ̃R pair. The dashed (blue) line is the

total differential cross section including our signal and the SM backgrounds.

SM background. For example, we apply an additional cut of

mrec > 350GeV, (20)

and present the distributions of the same five kinematic variables in Fig. 6. Our signal,

denoted by the solid (red) lines, remains intact since mmin
rec = 408GeV for µ̃Rµ̃R. On the

other hand, a large portion of the SM background is excluded. The antler characteristics of
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our signal emerge in the total distributions. We can identify all of the cusp structures.

3. Case-B: production of µ̃Rµ̃R and µ̃Lµ̃L

We now consider the more complex Case-B, where three different antler processes (µ̃Rµ̃R,

µ̃Lµ̃L, and W+W−) are simultaneously involved. In Fig. 7, we present five distributions for

Case-B at
√
s = 500GeV. Here, the mrec > 350GeV cut has been applied to suppress the

main SM backgrounds from W+W−. The solid (red) line is the µ̃Rµ̃R signal, the dotted

(purple) line is from µ̃Lµ̃L. Finally, the dashed (blue) line is the total differential cross

section including our two signals and the SM backgrounds. Note that the total rate for

µ̃Rµ̃R is compatible with that for µ̃Lµ̃L.

In Fig. 7(a), we show the mµµ distributions. As expected from the previous analyses, the

µ̃Rµ̃R signal leads to a cusp structure, while µ̃Lµ̃L and W+W− do not due to the specific

mass and energy relations. On the contrary, the mrec distribution for µ̃Rµ̃R denoted by the

solid (red) curve and that for µ̃Lµ̃L by the dotted (purple) curve do show a triangle: see

Fig. 7(b). The SM background is well under-control after the stringent cuts. The challenge

is to extract the hidden mass information from the observed overall (dashed blue) curve as

a combination of the twin peaks. It is conceivable to achieve this by a fitting procedure

based on two triangles. Instead, as done below, we demonstrate another approach by taking

advantage of the polarization of the beams.

Figure 7(c) presents the cosΘ distribution. The visible cosΘ cusp is usually attributed to

the lighter intermediate particles (µ̃R in our case). A larger | cosΘ|max comes from a smaller

mB with a given c.m. energy. We see that, with our parameter choice, µ̃Rµ̃R and µ̃Lµ̃L lead

to a similar value of | cosΘ|max, which differ by about 5%.

The Eµ distribution, with the energy endpoint in Fig. 7(d), is known to be one of the

most robust variables. Two box-shaped distributions are added to create a two-step stair.

Although ISR and beamstrahlung smear the sharp edges, the observation of the two maxima

should be quite feasible. On the other hand, the determination of Emin
µ could be more

challenging if the acceptance cut for the lepton lower energy threshold overwhelms Emin
µ for

µ̃Rµ̃R, and makes it marginally visible for µ̃Lµ̃L.

Finally, we present the energy sum distribution of two visible particles in Figs. 7(e). The

individual distribution from µ̃Rµ̃R and µ̃Lµ̃L production leads to impressive sharp triangles,
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FIG. 7. Case-B for e+e− → µ̃Lµ̃L, µ̃Rµ̃R → µ+µ− /E. The additional cut of mrec > 350GeV is

included. We show the (a) mµµ, (b) mrec, (c) cosΘ, (d) Eµ, and (e) Eµ+ + Eµ− distributions

with spin-correlation and other realistic effects. The c.m. energy is set
√
s = 500GeV for all

distributions. The solid (red) line corresponds to µ̃+
Rµ̃

−
R, the dotted (purple) line to µ̃+

L µ̃
−
L . The

dashed (blue) line is the total differential cross section including our signal and the SM backgrounds.

as those in Fig. 7(b). The challenge is, once again, to extract the two unknown masses

from the observed summed distribution. We next discuss beam polarization as a way to

accomplish this.
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FIG. 8. Case-B for e+e− → µ̃Lµ̃L, µ̃Rµ̃R → µ+µ− /E. Effects of an additional cut ofmrec > 350GeV

and polarizations Pe− = +80% and Pe+ = −30% on the (a) mµµ, (b) mrec, (c) cosΘ, (d) Eµ, and

(e) Eµ+ + Eµ− distributions with spin-correlation and other realistic effects. The c.m. energy is

set to
√
s = 500GeV for all distributions. The solid (red) line corresponds to µ̃+

Rµ̃
−
R, the dotted

(purple) line to µ̃+
L µ̃

−
L . The dashed (blue) line is the total differential cross section including our

signal and the SM backgrounds.

All of the distributions show that the two entangled new physics signals as well as the SM

backgrounds limit the precise measurements of the cusps and endpoints. The polarization
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of the electron and positron beams can play a critical role in disentangling this information.

The current baseline design of the ILC anticipates at least 80% (30%) polarization of the

electron (positron) beam. By controlling the beam polarization, we can suppress the SM

backgrounds and distinguish the two different signals. For the µ̃Rµ̃R signal, our optimal

setup is Pe− = +80% and Pe+ = −30%, denoted by e−Re
+
L , while for the µ̃Lµ̃L signal we

apply Pe− = −80% and Pe+ = +30% denoted by e−Le
+
R.

Figure 8 shows how efficient the right-handed electron beam is at picking out the µ̃Rµ̃R

signal. For the suppression of the SM backgrounds, we apply the cut of mrec ≥ 350GeV.

As before, the solid (red) line corresponds to µ̃+
Rµ̃

−
R, the dotted (purple) line to µ̃+

L µ̃
−
L . The

dashed (blue) line is the total differential cross section including our signal and the SM

backgrounds. The nearly right-handed electron beam suppresses the SM background as

well as the µ̃Lµ̃L signal. Only the µ̃Rµ̃R signal stands out. The main SM background is

through the resonant W+W− production. The left-handed coupling of e-νe-W is suppressed

by the right-handed electron beam. Another interesting feature is that the Z-pole in the

mµµ distribution is also very suppressed. A significant contribution to the Z-pole is from

e+e− → νeν̄eZ process where Z is via WW fusion. Again the left-handed coupling of the

charged current is suppressed by the right-handed electron beam.

The advantage of the cusp is clearly shown here. Its peak structure is not affected.

However, the endpointsmmin
rec , E

min
µ , and Emax

µµ do overlap with the backgrounds, although the

right-handed polarization removes a large portion of the SM backgrounds. We also observe

that mmax
rec , Emax

µ , and Emin
µµ are not contaminated. In summary, the mass measurement of µ̃R

and χ̃0
1 through the cusps and endpoints is well benefitted by the right-handed polarization

of the electron beam.

The left-handed µ̃Lµ̃L signal is more difficult to probe since its left-handed coupling is

the same as the SM background. In Fig. 9, we set Pe− = −80% and Pe+ = +30% with the

additional cut of mrec > 350GeV. From the mµµ distribution, we see that the Z-pole is still

strongly visible and the round mcusp
µµ for the µ̃Lµ̃L signal is very difficult to identify. The

total mrec distribution in Fig. 9(b) does not show the sharp triangular shape of the antler

decay topology either. The individual triangular shapes of the µ̃Rµ̃R and µ̃Lµ̃L signals along

with the SM background are combined into a rather featureless bump-shaped distribution.

Although there is a peak point, it is hard to claim as a cusp. The cosΘ distribution in

Fig. 9(c) shows one of the most characteristic features of the antler topology. Two sharp
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FIG. 9. Case-B for e+e− → µ̃Lµ̃L, µ̃Rµ̃R → µ+µ− /E. Effects of an additional cut ofmrec > 350GeV

and polarizations Pe− = −80% and Pe+ = +30% on the (a) mµµ, (b) mrec, (c) cosΘ, (d) Eµ, and

(e) Eµ+ + Eµ− distributions with spin-correlation and other realistic effects. The c.m. energy is

set to
√
s = 500GeV for all distributions. The solid (red) line corresponds to µ̃+

Rµ̃
−
R, the dotted

(purple) line to µ̃+
L µ̃

−
L . The dashed (blue) line is the total event including our signal and the SM

backgrounds.

cusps appear, which correspond to the µ̃Lµ̃L signal.

24



The total Eµ distribution in Fig. 9(d) does not provide quite a clean series of rectangular

distributions. The mixture of different contributions from µ̃Rµ̃R, µ̃Lµ̃L and W+W− along

with the smearing makes reading the maximum points more difficult. The Emin
µ position of

the µ̃Lµ̃L signal, which is near the kinematic cut, is mixed with the SM backgrounds and

the µ̃Rµ̃R signal. Finally, the total Eµµ distribution loses the triangular shape of the µ̃Lµ̃L

signal: see Fig. 9(e). Nevertheless the peak position coincides with the cusp position for

both energy sum distributions. We can identify them with the cusps.

D. The mass measurement precision

In order to estimate the achievable precision of a measurement of the masses in the

presence of realistic effects, we analyze the distributions we have discussed here using the

log-likelihood method based on Poisson statistics. A benefit of a log-likelihood analysis is

that it compares the full shape of the distribution, not just the position of the cusps and

endpoints which, as we have seen, can be smeared and even moved due to realistic collider

effects. For our log-likelihood calculation, since we have shown that the background can be

almost totally removed by appropriate cuts, we focus on comparing one signal to another

with different masses for the smuon and neutralino.

We calculate the log-likelihood as

LL(N ; ν) = 2
∑

i

[

Ni ln

(

Ni

νi

)

+ νi −Ni

]

(21)

where νi is the expected number of events in bin i with the masses set according to Case-A

and Ni is the number of events expected in bin i for the alternate mass point. For each

distribution, we use 50 bins. We take the integrated luminosity to be 100 fb−1 and find that

the number of signal events is sufficiently large that the probability distribution of the log-

likelihood approximates well a χ2 distribution. We then find that the 95% confidence level

value for each log-likelihood is LL95% = 67.5. We scan over the masses of the smuons and

neutralinos in steps of 0.25GeV, calculate the log-likelihood for each mass point, and plot the

contour where it is equal to 67.5 in Fig. 10 for four kinematical variables assuming Case-A.

These are the 95% confidence lines for each kinematical variable considered separately.

Considering the kinematics variables of mµµ (red), mrec (blue), cosΘ (green), and Eµ

(purple), we present the 95% C.L. allied contours in the parameter space of (∆mχ̃0
1
,∆mµ̃R

)
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FIG. 10. For Case-A for e+e− → µ̃Rµ̃R → µ+µ− /E, the 95% C.L. contours for the precision of the

mass measurement in the parameter space of (∆mχ̃0
1
,∆mµ̃R

). An additional cut of mrec > 350GeV

on the distributions with spin-correlation and other realistic effects are included. The c.m. energy

is set to
√
s = 500GeV for all distributions and the integrated luminosity is 100 fb−1.

in Fig. 10. All the variables are roughly equally good at measuring the two masses, leading

to an accuracy of approximately ±0.5GeV (for clarity of the presentation, we have left out

the contours for Eµµ and Erec).

We also find that our kinematical variables are very sensitive if we vary one mass pa-

rameter with the other fixed. However, the determination for the two masses is correlated,

as seen from Fig. 10 with a linear band rather than a closed ellipse in the plotted region.

This is due to the fact that the cusps and endpoints depend on the masses mainly as a ratio

rather than independently, as can be seen in Eqs. (7), (10), and (12). The ellipse shape of

the contour will become manifest when extending to larger regions.

We have also considered the effect of combining these measurements in a joint test-

statistic including a calculation of the correlation between these variables. The magnitude

of the correlation is quantified by the ratio of the off-diagonal term to the diagonal term

of the covariance matrix. We found that the correlation among mrec, Eµ and cosΘ was

negligible (the off-diagonal terms of the covariance matrix was a few percent or smaller
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compared to the diagonal terms), the correlation between mrec and Eµµ was small but non-

negligible (the off-diagonal term was approximately 8% of the diagonal terms), and Eµµ

and Erec were fully correlated as expected (the off-diagonal term was the same size as the

diagonal term). However, we did not find appreciable improvement in the precision of the

mass measurements by combining the log-likelihoods. This is due partly to the correlation

between these variables, partly to the differences in how the log-likelihood depends on each

of these variables, and partly to the properties of the χ2 distribution when test statistics

with a large number of degrees of freedom are combined as we briefly explain in Appendix

A.

IV. MASSIVE VISIBLE PARTICLE CASE: CHARGINO PAIR PRODUCTION

It is quite likely that the DM particles will be accompanied by other massive observable

final states in the decay process. Although the nature of the cusps is similar to the pre-

vious discussions, the characteristic features and their observability may be different. An

important example of this type of kinematics is in chargino pair production followed by the

chargino’s decay into a W and a χ̃0
1. This process is a typical antler process, which is dif-

ferent from the smuon pair production in that the visible particle W is massive. In order to

fully reconstruct the kinematics of the W , we consider the case where the W boson decays

hadronically. Our signal event selection is

e+e− → χ̃+
1 χ̃

−
1 →W+W−χ̃0

1χ̃
0
1 → jj, jj + χ̃0

1χ̃
0
1. (22)

For illustrative purposes, we consider the Case-C in Table II.

For the LHC searches of gaugino production, there is no sensitivity with the current data

yet [27] for the parameter choices under consideration, due to the disfavored kinematics of

the small mass difference and the large SM backgrounds. The upcoming Run II at 13 TeV

will likely reach the sensitivity to cover this parameter region [28]. It is thus exciting to

look forward to the LHC outcome. Should a SUSY signal be observed at the LHC, it would

strongly motivate the ILC experiment to further study the SUSY property and to determine

the missing particle mass as proposed in this work.

The distributions of the invariant mass of W+W− and χ̃0
1χ̃

0
1 follow the same characteristic

function where now the visible particle W is massive. The cusp and endpoint positions of
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√
s Channel (mB ,mX ,ma) (mmin

WW ,m
cusp
WW ,mmax

WW ) (mmin
rec ,m

cusp
rec ,mmax

rec )

500 χ̃+
1 χ̃

−
1

(235, 139,mW ) (161, 171, 221) (279, 296, 338)

(Emin
W , Emax

W ) (Emin
WW , E

cusp
WW , Emax

WW ) (Emin
XX , E

cusp
XX , Emax

XX )

(81, 111) (162, 190, 221) (278, 309, 338)

TABLE IV. The values of various kinematic cusps and endpoints for the mass parameters in the

Case-C. All the masses and energies are in units of GeV.

these distributions can be obtained from Table I. The cosΘ distribution for the massive

visible particle case does not present a sharp cusp or endpoint. The EW distribution has

a minimum and a maximum as in the massless visible particle case. The distribution of

EWW = EW+ + EW− also accommodates the maximum, cusp and minimum. In Table IV,

we present the values of the cusps and endpoints for Case-C.

The reconstruction of the variables mWW , mrec, and EWW is straightforward in terms

of the jets and the known collision frame. In order to reconstruct EW and cosΘ, we split

the jets into two pairs and require each pair to reconstruct an invariant mass near mW .

We then note that due to the symmetry of the antler decay topology, the EW+ and EW−

distributions are equal to each other and the cosΘ distribution is symmetric with respect to

an interchange of W+ and W−. As a result, the EW and cosΘ distributions can be obtained

by averaging the distributions for each W .

In addition to our basic cuts outlined in Eq. (19), we have applied the following cuts

∆Rjj ≡
√

(∆ηjj)
2 + (∆φjj)

2 ≥ 0.4 , (23)

|mjj −mW | < 5ΓW , mrec > 120GeV ,

where the jet separation ∆Rjj is between all pairs of jets, mjj is only between pairs of jets

identified with the W , and the mrec > 120GeV cut removes most of the remaining SM

background. Again, we adopt the standard simulation packages ILC-Whizard setup [31],

including the SGV-3.0 fast detector simulation suitable for the ILC [36].

In Fig. 11, the solid (red) lines denote our chargino signal. The dotted (blue) lines

give the total differential cross section including our signal and the SM backgrounds. The

SM backgrounds are computed through the full two-to-six processes e+e− → jjjjνν̄ which

includes the full spin correlation.
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FIG. 11. Case-C for e+e− → jj, jj+/E with an additional cut of mrec ≥ 120GeV and |mjj−mW | <

5ΓW . We show the (a) mjjjj, (b) mrec, (c) cosΘ, (d) Ejj, and (e) Ejjjj distributions with spin-

correlation and other realistic effects. The c.m. energy is set to
√
s = 500GeV for all distributions.

The solid (red) line denotes our signal of the resonant production of a chargino pair. The dashed

(blue) line is the total differential cross section including our signal and the SM backgrounds.

Figures 11(a) and (b) show the invariant mass distributions of four jets and two invisible

particles, respectively. Realistic effects smear the sharp mjjjj and mrec distributions signif-

icantly. In particular, the locations of mmin
jjjj and mmin

rec are shifted to lower values by about

20 GeV from the expected values with kinematics alone in Table IV. This is mainly due to

detector smearing. The mcusp
jjjj and mmax

jjjj are respectively in agreement with the mcusp
WW and
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FIG. 12. Case-C for e+e− → jj, jj + /E, the 95% C.L. contours for the precision of the mass

measurement in the parameter space of (∆mχ̃0
1
,∆mχ̃±

1

). The additional cuts of mrec ≥ 120GeV

and |mjj − mW | < 5ΓW are included in the distributions as well as spin-correlation and other

realistic effects. The c.m. energy is set to
√
s = 500GeV for all distributions and the integrated

luminosity is 100 fb−1.

mmax
WW values in Table IV but are significantly smeared. The mcusp

rec and mmax
rec are larger by

about 10 GeV than the expected values. As commented earlier, the cosΘ distribution in

Fig. 11(c) does not have a sharp cusp even before including realistic effects.

Figure 11(d) presents the Ejj distribution which is significantly smeared and the sharp

edges are no longer visible due to jet energy resolution effects. The expected values of Emin
W

and Emax
W cannot be read from this distribution. In Fig. 11(e), we show the distribution

of Ejjjj. The expected triangular shapes can be seen but the sharp features are smeared

due to the realistic considerations. Their minimum and maximum positions are moved

to approximately 10 GeV lower and higher values, respectively, while the cusp position

identified with the peaks remains near the expected values.

We perform a log-likelihood analysis for the massive visible particle case and present

the 95% C.L. contours for the mass measurement of χ̃0
1 and χ̃±

1 in Fig. 12. Remarkable

is that mrec leads to the most precise mass measurement, not the commonly considered

variable EW , especially on the missing particle mass. The EW measurement leads to about

30



∆mχ̃0
1
≃ ±4 GeV precision while the mrec improves into ±2 GeV. This is due to the

fact that the cusp peak position is more stable with respect to detector smearing effects,

compared with the sharp energy endpoint. The intermediate chargino mass precision is

about 2 GeV both by EW and mrec. The mass measurement precision is not as good as that

of the smuon pair production, because of inferior hadronic four jet measurement here.

To appreciate the improvement for the missing mass measurement with our antler ap-

proach, we have compared it with the standard “mono-photon” signal, e+e− → γ /E [23, 34].

Although this is the most model-independent method, the measurement of the endpoint in

a slowly-varying Eγ spectrum results in rather poor sensitivity. Besides the potential model-

dependence of the signal cross section, we find that the background e+e− → γνν̄ is about

100 times larger than the signal for the benchmark point of Ref. [34]. We have performed

the log-likelihood analysis and find that the best accuracy for the lightest neutralino mass

determination would be no better than about 50GeV.

V. SUMMARY AND CONCLUSIONS

WIMP dark matter below or near the TeV scale remains a highly motivated option. To

convincingly establish a WIMP DM candidate, it is ultimately important to reach consis-

tency between direct searches and collider signals for the common parameters of mass, spin

and coupling strength [35].

Through the processes of antler decay topology at a lepton collider, e+e− → B1B2 →
X1a1 + X2a2, we studied a new method for measuring the missing particle mass (mX)

and the intermediate particle mass (mB ): the cusp method. With this special and yet

common topology, we explored six kinematic experimentally accessible observables, maa,

mrec ≡ mXX , cosΘ, Ea, Eaa and Erec ≡ EXX . Each of these distributions accommodates

singular structures: a minimum, a cusp and a maximum. Their positions are determined

by the kinematics only, i.e., the masses of B, a, X and
√
s, providing a powerful method to

measure the particle masses mB and mX . We presented the analytic expressions for their

positions in terms of their masses in section II. We chose to study the accuracy for the mass

determination at a lepton collider with three benchmark scenarios in the framework of the

MSSM, as listed in Table II, and named Case-A, Case-B, and Case-C.

Case-A is the simplest illustration where only a right-handed smuon (µ̃R) pair is kine-
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matically accessible. Case-B is slightly more complicated since both right-handed and left-

handed (µ̃L) smuon pairs can be produced. We consider the clean leptonic final state of

µ+µ−/E from the smuon decays. By presenting the signal kinematics, we first confirmed the

analytic expressions numerically in Fig. 2. We showed that, except for maa, due to an an-

ticipated kinematical reason, all the other variables yield the pronounced features of a cusp

distribution. Although the SM background e+e− → W+W− → µ+νµµ
−ν̄µ also results in

the antler topology, the positions of the cusps are significantly different due to the massless

missing particles, the neutrinos. This difference is used to separate the SM background

very efficiently. Furthermore, we pointed out that the experimental acceptance cuts on the

observable leptons may change the positions and the shapes of the cusps in a systematic

and predictable way, as seen in Figs. 3 and 4.

Through a full simulation including spin correlation, the SM backgrounds, and other

realistic effects, we studied how much of the idealistic features of the cusps and endpoints

survive, and how well the cusp method determines the missing particle mass for a 500

GeV ILC. We found that the inevitable experimental effects of ISR, beamstrahlung and

detector resolutions not only distort the characteristic distributions but also shift the cusp

and endpoint positions, as seen in Figs. 5, 6 and 7. The beam polarization may be used

to effectively separate the final state µ̃Rµ̃R and µ̃Lµ̃L, as shown in Figs. 8 and 9. To

optimize our statistical treatment, we exploited the log-likelihood method based on the

Poisson probability function. The precisions for the mass measurement with various variables

in Case-A were shown in Fig. 10. The accuracy could reach approximately ±0.5 GeV for

smuon pair production, and was comparable for the muon energy endpoint Eµ and the cusp

in mrec, Eµµ or EXX .

In Case-C, we studied the chargino pair production with χ̃±
1 → W±χ̃0

1. We focused on the

hadronic decay W → jj in order to effectively reconstruct the kinematics, and to explore the

detector effects on the hadronic final state. The poor energy resolution for the hadronic final

state of the W decay smears the cusp and endpoint quite significantly, as shown in Fig. 11.

We found that the mrec, Ejjjj and Erec cusps are more stable than the energy endpoint Ejj

against realistic experimental effects, and thus provided a more robust mass determination

reaching approximately ±2 GeV. In the previous section, we also made a comparison with

the other proposed methods for determining the missing mass at a lepton collider. We see

the merits of our approach.
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Under the clean experimental environment and well-defined kinematics, a future high en-

ergy lepton collider may take advantage of the antler decay topology and provide an accurate

determination for the missing particle mass consistent with the WIMP DM candidate.
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Appendix A: Log-likelihood combination

We have found that combining the log-likelihoods for our kinematic variables did not

significantly improve the achievable accuracy of the mass measurement. The reason for this

was a combination of the correlation between the variables, the slight differences in how the

log-likelihood depended on each kinematic variable, and how the combination is affected by

having a large number of bins in each log-likelihood, as we will now explain.

We have found that the log-likelihood for the variables mµµ, mrec, Eµ, Eµµ and Erec

depends approximately quadratically on the mass difference ∆m, where ∆m is defined to

be along the diagonal line with negative slope in Fig. 10,

LL = αkv (∆m)2 , (A1)

where αkv is a constant to be determined for each kinematic variable. We will consider the

optimal situation where the kinematic variables are completely uncorrelated and αkv is the

same for each kinematic variable and set αkv = α. In this case, the joint test statistic is the

sum of the N individual test statistics

tN = Nα (∆m)2 . (A2)

If the number of bins n is large (which is a good approximation in our case with 50 bins

for each log-likelihood), then the individual log-likelihoods and the joint test-statistic are

well-approximated by Gaussian distributions with mean µN = Nn and standard deviation

σN =
√
2Nn, where the individual log-likelihoods have µ1 = n and σ1 =

√
2n. This means
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that the joint test-statistic gives a 2σN measurement in the mass difference as

Nα (∆m)22σN
= Nn + 2

√
2Nn (A3)

while that for an individual log-likelihood has N = 1. Solving this for ∆m gives

(∆m)2σN
=

√

n

α
+

2

α

√

2n

N
. (A4)

If we take the ratio of this with an individual log-likelihood measurement, we have

(∆m)2σN

(∆m)2σ1

=

√

n + 2
√

2n/N

n+ 2
√
2n

, (A5)

where α has dropped out. We can use this formula to note a few things. First of all, we see

that the maximum improvement in the sensitivity achievable asymptotically approaches 0 for

the large number of bin n limit, independent of the number of log-likelihoods N combined in

this way. Second, for n = 50 bins, the maximum improvement in the combined measurement

sensitivity is 14.5% in the limit that the number of combined log-likelihoods, N , approaches

infinity. Third, if we only combine N = 2 or 3 log-likelihoods, the maximum sensitivity

improvement is only 4.3% and 6.2%, respectively. This is in the best case scenario where all

the variables are uncorrelated and each αkv is identical. In the realistic cases in this paper,

the sensitivity improvement from combination is no more than a few percent.
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