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The case of heavy quark propagation in dense extended matter is studied in the multiple scattering
formalism of the higher twist energy loss scheme. We consider the case of deep inelastic scattering off
a large nucleus. The hard lepton scatters off a heavy quark fluctuation within one of the nucleons.
This heavy quark then propagates through the dense medium, multiply scattering off the gluon
field of the remaining nucleons in its path. We consider the fictitious process where a heavy quark
propagates through the nucleus without radiation. Invoking Soft-Collinear Effective Theory power
counting arguments, we consider the case of a “semi-hard” heavy-quark where the mass is of the order
of the out-going momentum and larger than the transverse momentum imparted per unit length due
to scattering. In this limit, it is found that longitudinal momentum exchanges (quantified by the
transport coefficient ê) have a comparable effect on the off-shellness of the propagating quark, as the
transverse momentum exchanges (quantified by q̂) which constitute the leading cause of off-shellness
for propagating light quarks or gluons. Consequences of this new hierarchy for the propagation of
the heavy quark in dense matter are discussed.

PACS numbers: 12.38.Mh,12.38.-t,12.38.Cy

I. INTRODUCTION

With the advent of hard sector observables at the
LHC [1, 2], the medium modification of high energy
jets has become one of the forefront topics of re-
search. The observed suppression in the light flavor
sector, especially the dependence on the transverse
momentum of the observed hadrons, is now well
understood within a factorized perturbative QCD
(pQCD) based approach [3]. However, the heavy
quark sector has remained a bit of a mystery: There
is an observed large suppression, both at the Rela-
tivistic Heavy-Ion Collider (RHIC) and at the Large
Hadron Collider (LHC).

Simple minded extensions of the formalism ap-
plied to light quarks have yielded theoretical results
that are in moderate agreement with experimental
measurements [4–7]. The agreement with measure-
ments of the nuclear modification factor and the az-
imuthal anisotropy of non-photonic leptons (from
the decay of open heavy flavor hadrons) at RHIC
is found to improve with increasing transverse mo-
mentum (pT ) of the detected lepton. At the LHC,
one is not restricted to leptons from the decay of D
and B hadrons, but instead has access to the nuclear
modification factors of both D and B hadrons sepa-
rately. The accuracy and pT range of the new mea-
surements of heavy-quark suppression at the LHC,
along with the fact that the medium is now both
larger and denser calls for a more sophisticated ap-
proach. It is the object of this paper to lay the
ground work for such an approach based on pQCD,
in particular, we will incorporate power-counting
techniques borrowed from Soft-Collinear-Effective-

Theory (SCET) [8–11] to address the issue.

This paper extends the effort started in Refs [12–
18] which systematically extends the next-to-leading
twist set up of Refs. [19, 20] to a scattering re-
summed formalism for light and (in this paper)
to heavy-flavors. While gluon radiation from the
heavy-quark will not be considered, the scatterings
of the heavy quark will engender both longitudinal
and transverse momentum transfer, leading to the si-
multaneous appearance of transverse diffusion, and
longitudinal drag and straggling [14, 18]. While sim-
ilar calculations have appeared for a light quark, the
surprise in this case is the importance of longitudinal
transfers codified by ê to the stimulated off-shellness
of the heavy-quark. This turned out to be important
to the specific case of “semi-hard” heavy-quarks: a
terminology that will be made clear in the subse-
quent sections.

To this end, we consider the theoretically well de-
fined case of heavy-quark production and propaga-
tion in Deep-Inelastic Scattering on a large nucleus
(A-DIS), where the produced heavy quark propa-
gates through the dense extended and confined nu-
clear medium. The remaining sections are organized
as follows: in Sec. II, we will setup the basic formal-
ism of DIS on a large nucleus where the hard virtual
photon strikes a heavy-quark created due to high
Q2 fluctuations inside a proton. In Sec. III, we con-
sider the multiple scattering of the produced hard
quark and introduce power-counting scales similar
to SCET. In Sec. IV, we introduce the factorization
of the final state scattering from the initial parton
distribution function (PDF) followed by gradient ex-
pansion of the hadronic tensor and its resummation.
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We offer concluding discussions and an outlook in
Sec. V.

II. DEEP INELASTIC SCATTERING AND

INTRINSIC HEAVY FLAVOR.

In this section, the formalism for the scattering of
the heavy-quark will be set up, within the framework
of DIS on a nucleus. The propagation of the heavy-
quark will be factorized both from the initial hard
scattering which produces the outgoing heavy-quark
as well as from the many soft matrix elements which
appear in the subsequent multiple scattering.
Consider the deep-inelastic scattering of a virtual

photon with a heavy quark off a nucleon, within a
large nucleus with mass number A. The nucleus
possess a momentum P = pA, with p the average
momentum of a nucleon in this nucleus. A frame
is considered where the exchanged virtual photon
has no transverse momentum, and has momentum
components,

q ≡ [q+, q−, q⊥] =

[

−−q2
2q−

, q−, 0, 0

]

. (1)

We are interested in the reaction,

e(L1) +A(p) −→ e(L2) + JQ( ~l ) +X, (2)

where, e(L1) [e(L2)] represents the incoming (outgo-
ing) electron with momentum L1 (L2), A(p) repre-

sents the incoming nucleus and JQ( ~l ) represents the
outgoing jet which contains one heavy quark Q with
mass M . Since there are no valence heavy-quarks
within the nucleon, to produce a jet containing a
single heavy-quark, the virtual photon will have to
strike a heavy quark from within the sea of the nu-
cleon, i.e., from a QQ̄ fluctuation. As a result, the
outgoing remnants of the nucleon, denoted by the
X in the equation above, will contain a Q̄. It is of
course equally likely that the Q̄ will be struck by
the virtual photon and the remnants of the proton
will contain the quark Q; this will make very little
difference to our discussion of multiple scattering of
the hard parton as it passes through a nucleus. In
this article, we will not discuss the dynamics of the
production of the heavy quark, containing it within
a parton distribution function. We high-light the
power counting of the momentum components. We
consider a quark mass M ≫ ΛQCD and a final out-
going quark momentum which is larger, but of the
order of the quark mass. In the frame where the
proton is boosted by a large factor γ = 1/λ in the
‘+′ direction, we have the momentum components
of the incoming heavy quark as,

pQ =
[

p+Q, p
−
Q, ~pQ⊥

]

≡
[√

2γM,
M

2γ
√
2
, 0

]

. (3)

We assume that the quark, anti-quark fluctuation is
almost stationary in the proton rest frame and thus
~pQ⊥ → 0. The reader should note that the boost
factor γ is simply a alternate variable to p+Q and
carries no extra information other than the relation
between a large p+

Q
and a small p−

Q
.

The momentum components of the incoming pho-
ton are assumed to be,

q =

[

−
√
2γM +

M2

2q−
, q− − M

2γ
√
2
, 0

]

. (4)

In the equation above, we are assuming that γM ≫
M ∼ q− ≫ M/γ. Thus we have, −q2 ≃ Q2 ≃
2
√
2γMq−. As a result, we obtain the final out-

going quark to have momentum components

(pQ + q) ≃
[

M2

2q−
, q−, 0

]

. (5)

For concreteness, we may consider M <∼ q− ∼
√
λQ

for slow heavy quarks.

A. Power Counting and the small λ parameter

Power corrections to hard processes in vacuum are
generally suppressed in the presence of a hard scale
Q2 ≫ ΛQCD. However, there exist scenarios where
power corrections to the operators with higher twist
may be enhanced and become non-negligible com-
pared to the leading process. To explore this pos-
sibility, in this discussion, we have introduced the
dimensionless small parameter λ. We assume that
the scaling variable λ is so chosen that perturbation
theory may be applied down to momentum transfer
scales at or above λ2Q. This is a concept borrowed
from soft collinear effective theory (SCET) [8–11],
and constitutes the power counting variable: Terms
that are sub-leading in λ will be dropped, similar to
[15],

λ0 ≫
√
λ≫ λ≫ λ

3
2 . (6)

As mentioned above, in the remainder of this paper,
we will consider the case of a heavy quark with a
momentum p ∼

√
λQ and massM ∼

√
λQ. The off-

shellness of the hard virtual photon Q is the hardest
scale in the problem and hard momentum compo-
nents are expected to scale as

√
λQ. Softer momen-

tum components may scale as λQ or even λ2Q. The
meaning of

√
λ is an intermediate suppression factor

that may not be neglected. Note that at this level
of approximation, there is no shift in the Bjorken
variable xB , given as

xB =
Q2

2p+q−
∼ Q2

[Q/
√
λ]
√
λQ

. (7)
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Thus O(xB) ∼ 1, i.e., xB is a large momentum ratio.

B. Mass modification to hadronic tensor

We may express the differential cross section to

produce a hard parton with 3-momentum ~l ≡ l−, l⊥
in the DIS on a large nucleus as,

EL2
dσ

d3L2dl−d2l⊥
=

αe

2πs

1

Q4
Lµν

dWµν

dl−d2l⊥
, (8)

where, the Mandelstam variable, s = (p+ L1)
2. All

terms that contain the wave-functions of the incom-
ing and outgoing leptons are included in the leptonic
tensor,

Lµν =
1

2
Tr[ 6L1γµ 6L2γν ]. (9)

The entire strongly interacting part of the cross sec-
tion is included in the hadronic tensor, defined as

Wµν =
∑

X

(2π)4δ4(q+PA−pX)

×〈A; p|Jµ(0)|X〉〈X |Jν(0)|A; p〉

= 2Im

[∫

d4yeiq·y〈A; p|Jµ(y)Jν(0)|A; p〉
]

(10)

The initial state of the incoming large nucleus, with
A nucleons and an averagemomentum p per nucleon,
is represented by the ket |A; p〉. The final uniden-
tified hadronic or partonic state is defined as |X〉.
The sum (

∑

X) runs over all possible hadronic states
and Jµ is the hadronic current (Jµ = QQψ̄Qγ

µψQ,
where QQ is the charge of the heavy-quark of fla-
vor Q in units of the electron charge e). Factors of
the electromagnetic coupling constant have already
been extracted and included in Eq. (8).
Ignoring all power corrections of the order of

ΛQCD/Q as well as factors of the heavy quark mass,
the hadronic tensor may be expressed as (we also
take the average over initial states and sum over fi-
nal states to obtain)

WA
0

µν
= CA

p Wµν
0 = CA

p

2π

2Q2

∑

Q

Q2
Q fQ(xB) (11)

× Tr [ 6pQγµ(6pQ+ 6q)γν ]
=
∑

Q

Q2
QC

A
p 2π

[

gµ−gν+ + gµ+gν− − gµν
]

×
∫

dy−

2π
e−ixBp+y− 1

2
〈p|ψ̄(y−)γ+ψ(0)|p〉.

In the absence of quark mass corrections, the only
surviving components of the hadronic tensor are

WA
0

⊥⊥
. However the situation is different for the

case of heavy quarks. Here the components of the
hadronic tensor can be expressed as follows,

WA
0

µν

M

= CA
p Wµν

0M (12)

≃ CA
p

2π

2Q2

∑

Q

Q2
Q fQ(xB)

× Tr [(6pQ) γµ (6pQ+ 6q) γν ]

≃ CA
p

2π
√
2γM

2Q2

[

−4q−gµ
⊥
gν⊥ +

4M2

q−
gµ+g

ν
+

]

×
∑

Q

Q2
Q

∫

dy−

2π
e−ixBp+y− 1

2
〈p|ψ̄(y−)γ+ψ(0)|p〉.

In the equation above, all terms suppressed by
powers of λ have been neglected. We have two lead-
ing components of the hadronic tensor W⊥⊥ and
W++. In the subsequent sections, we will consider

both the hadronic tensor components, WA
0

⊥⊥
and

WA
0

++
and investigate how they evolve in the fi-

nal state propagation of the heavy quark. Radiation
will be ignored. In all cases, the initial state parton
distribution function and hard cross section will be
defined as above. The focus will be only on the final
state 3-momentum distribution of the heavy quark,
which, in the case without any final state scatter-
ing will possess a narrow width and can be approx-
imated as a delta function, i.e.,

dWA
0

µν

dl−d2l⊥
=WA

0

µν
φ0(l

−, l⊥)

=WA
0

µν
δ(l− − q−)δ2(l⊥) . (13)

In the subsequent sections, we will consider only the
modification to the final state momentum distribu-
tion φ(l−, l⊥).

III. MULTIPLE SCATTERING AND FINAL

STATE POWER COUNTING.

In the preceding section, the final state momen-
tum distribution of the outgoing heavy-quark has
been identified and factorized from the hard cross
section. In this section, the propagation of this
quark without radiation will be considered. This
is by no means a physical process. High momentum
partons produced in hard processes are most often
produced far off their mass shell i.e., with a consider-
able virtuality µ2, which, though small compared to
the forward energy of the quark, is still much larger
than Λ2

QCD. The hard parton tends to shed this
large virtuality through a series of gluon emissions.
The emitted gluons are also virtual and will radi-
ate further leading to the development of a partonic
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cascade. Each parton in this cascade will engen-
der multiple scattering while radiating a gluon (or
splitting into a quark antiquark pair). In order to
incorporate the effect of multiple scattering on the
development of a cascade, the propagation of single
partons in a medium, without emission, has to be
clearly understood [12, 14, 15, 18]. As the struck
heavy quark propagates through the nucleus, it will

scatter off the dense gluon field within nucleons in its
path. Every scattering engenders an extra factor of
the strong coupling constant αs. As will be shown
later, every scattering also contains an integration
over the location of where the scattering took place.
In a large nucleus (A ≫ 1), these length integrals
give large factors that counter the suppression due
to the appearance of factors of αs.

AP AP

p′0

0 y′1 y′2 y′m yn y2 y1 y0

p0

q q

p′1 p′2 p′m pn p2 p1

q1q2qnq′1 q′2 q′m lq

FIG. 1. A heavy-quark produced in DIS on a nucleon inside a large nucleus. The produced quark then propagates
through the remaining nucleus multiply scattering off the soft gluon field of the nucleons behind the struck nucleon.

In order to remain consistent with previous calcula-
tions, we will denote pQ as p0 in the remainder of this
paper. Thus the incoming heavy quark possesses a
momentum, p0 such that,

p0 ≡
[

p+0 ,
M2

2p+0
+ δp−0 , 0, 0

]

(14)

=

[

xBp
+,

M2

2xBp+
+ δp−0 , 0, 0

]

.

In the equation above, p−0 =M2/(2p+0 )+δp
−
0 , where

M2/2p+0 ∼ λ3/2Q and δp−0 ∼ λ2Q is considered as a
small correction. The incoming virtual photon has
momentum components

q ≃
[

− Q2

2q−
+
M2

2q−
, q−, 0, 0

]

, (15)

with Q2 ≃ 2γMq− and thus the final outgoing heavy
quark has momentum components,

q1 = p0 + q

≃
[

xBp
+ − Q2

2q−
+
M2

2q−
, q−, 0, 0

]

. (16)

In the equation above, we have ignore the small cor-
rections from p−0 . Note that, the vanishing trans-
verse components of the virtual photon are a choice

of coordinate system, whereas the vanishing compo-
nents of the incoming quark are an approximation.
Insisting that the outgoing quark is close to mass
shell, this yields xB (identical to x0, defined later)
as given in Eq. (7).

The relevant Feynman diagram is shown in Fig. 1.
This describes the hard scattering processes when a
virtual photon strikes a heavy quark off the nucleus
with momentum p′0 (p0 in amplitude) at space-time
point y′0 = 0 (y0 in complex conjugate amplitude).
It is then scattered back through the nucleus with
momentum q′1 (q1 in the complex conjugate ampli-
tude). While propagating through the large nucleus,
the heavy quark scatters with the the gluon fields in-
side the nuclear medium at space-time points y′j with
0 < j < m (yi for the complex conjugate amplitude
with 0 < i < n). All calculations will be carried out
in A− = 0 gauge. The choice of gauge controls the
power counting of the gluon vector potentials. In
each scattering, the “semi hard” heavy quarks accu-
mulates momenta p′j (pi in the complex conjugate).
Momentum conservation, at each vertex, enable one
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to assign various momenta as follows (See Fig. 1):

qi+1 = qi + pi = q +

i
∑

j=0

pj = q + ki,

q′i+1 = q′i + p′i = q +

i
∑

j=0

p′j = q + k′i, (17)

where we have defined new momentum variables, for

convenience, as ki =
∑i

j=0 pj, and k′i =
∑i

j=0 p
′
j ,

which denote the ‘total’ momentum exchanged be-
tween the propagating heavy quark and the nuclear
medium. The hadronic tensor now can be written
as,

WAµν
mn =

∑

Q

Q2
Qg

n+m 1

Nc
Tr





(

n
∏

i=1

T ai

)





1
∏

j=m

T a′

j









∫

d4lq
(2π)4

(2π)δ+(l2q −M2)

∫

d4y0e
iq·y0

×
(

n
∏

i=1

∫

d4yi

)





m
∏

j=1

∫

d4y′j





(

n
∏

i=1

∫

d4qi
(2π)4

e−iqi·(yi−1−yi)

)

e−ilq·(yn−y′

m)





m
∏

j=1

∫

d4q′j
(2π)4

e−iq′j ·(y
′

j−y′

j−1)





× 〈A|ψ̄(y0)γµ
(

n
∏

i=1

γ · qi +M

q2i −M2 − iǫ
γ · Aai(yi)

)

γ · lq





1
∏

j=m

γ ·Aa′

j (y′j)
γ · q′j +M

q′j
2 −M2 + iǫ



 γνψ(0)|A〉. (18)

For further simplifications, we will now change the
integral variables qi+1 → pi and q

′
j+1 → p′j, and will

incorporate one additional exchanged momentum pn
inside the complex conjugate amplitude by bringing
the following δ-function,

1 =

∫

d4pn
(2π)4

(2π)4δ4(lq − q − pn). (19)

A. Mass Modifications

Mass modifications to the case of a light quark
occur from two sources:

• The spin structure of the propagators specified
by the numerators of the propagators

• The pole structure of the propagators, as spec-
ified by the denominators of the propagators.

We will go for a power counting analysis to both of
them in the following,

Numerators of the propagators: The sum over spins
in the numerator of each quark propagator has a fac-
tor ofM . This is an obviousM dependent correction

compared to the case of mass-less quarks. However,
to include factors ofM require that there be at least
2 factors ofM in the trace (else we will have an odd
number of γ matrices) and, secondly, each factor be
either preceded or followed by a γ⊥ ·A⊥, as

Tr
[

. . . γ−A+Mγ−A+ . . . γ−A+Mγ−A+. . .
]

= 0.

This is due to the fact that in light-cone coordinates
{γ+, γ+} = {γ−, γ−} = 0. As a result, the first
non-vanishing correction, from M dependent terms
in the numerator, yields an additive contribution to
the heavy-quark hadronic tensor, of the following
form:

δWµν
Q ∝Tr [. . . γ⊥A⊥M . . . γ⊥A⊥M . . .]∼λ2Wµν

Q .

In the equation above Wµν
Q

is the leading contribu-
tion to the heavy-quark hadronic tensor. The overall
factor of λ2 is due to the appearance of two factors
of A⊥ which scale as λA+, in A− = 0 gauge [15, 17].

Denominator of the propagators: To simplify the
denominator, consider the denominator of the first
propagator in Eq. (18), where q1 = q+ p0. This can
be expressed as

q21 −M2 = −Q2 + 2q+p−0 + 2q−p+0 . (20)
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Contour integration on p+0 will set p+0 = (Q2 −
2q+p−0 )/(2q

−). Even if the incoming quark were on

mass shell, p−0 = M2/(2p+0 ), a term of order λ3/2Q

and thus negligible compared to q− ∼ λ1/2Q.

The fate of the remaining denominators, on con-
tour integration, can now be easily surmised. For
example, the second propagator yields the relation,

q22 −M2 = (q1 + p1)
2 −M2

= 2p+1 p
−
1 − p1

2
⊥ + 2p+1 (q

− + p−0 )

+ 2p−1 (q
+ + p+0 ). (21)

As in previous calculations with light quarks in
Refs. [12, 14, 18], we will assume that all rescat-
tering of the produced quark with the soft gluons off
the medium engender momentum exchanges where
p⊥ ∼ λQ and p− ∼ λ2Q, with p+ is fixed by the
requirement that the propagating quark be close to
its mass shell. Neglecting all but the lowest power
of λ, we obtain,

p+1 = p−1
q+ + p+0
q− + p−0

− p1
2
⊥

q− + p−0
. (22)

Comparing with the results for p+i in Refs. [12, 14,
18], the above equation represents a remarkable de-
parture from the case of a light quark. In this case
of the heavy quark, if p−i ∼ λ2Q, p+i is comparably
controlled by p−i and pi⊥. If p−i ∼ λ2Q then both
terms on the right hand side of Eq. (22) are present.
Thus p+i ∼ λ3/2Q, and depends, non-negligibly, on
the value of the longitudinal exchange p−i . In the
case of a light quark, p+i was dominantly controlled
by pi

2
⊥/(2q

−) (with sub-leading corrections from p−i )
and in that case p+i ∼ λ2Q.

As a result of the above considerations, the (+)-
components of all the exchanged gluons off which
the heavy-quark scatters can be of the order of λ2Q
or even as high as λ3/2Q. This implies that if the
heavy-quark goes off shell and radiates a pertur-
batively resolvable radiation, it can go off shell by
δq ∼ λ2Q. Since the two light-cone components of
the heavy-quark momentum are of the order

√
λQ,

the radiation pattern (and the energy loss) from a
heavy- quark driven off shell by scattering may be
somewhat different than for a light quark and gluon.

In the subsequent section, Eq. (18) will be ex-
panded in a power series in λ, where we will find that
the leading terms in the series expansion will yield
both a transverse diffusion equation and a longitudi-
nal drag equation, and not just a diffusion equation
as in the case of a light quark [12].

We now study the structure of the denominator of
an arbitary propagators. For the heavy-quark line

after ith scattering, we have,

q2i+1 −M2

= (q + ki)
2 −M2

= 2p+q− [x̄i − xB − x̄Di + xB ȳi] (23)

where we have introduced some momentum fraction
variables and defined a few new variables. These
have been defined purely for convenience,

x̄i =
i
∑

j=0

xj , xj =
p+j
p+
, (24)

xB =
Q2

2p+q−
, (25)

x̄Di =
(ki⊥)

2

2p+q−
=

i
∑

j=1

xDi, (26)

xDi =

pi⊥
2
+ 2pi⊥ ·

i−1
∑

j=0

pj
⊥

2p+q−
, (27)

ȳi =

i
∑

j=1

yj, yj =
p−j
q−
. (28)

For all cases where the mass M scales with a higher
power of λ than λQ, the modifications to the case
of massless quark traversing an extended nuclear
medium is suppressed by a factor of λ2. We seek
only the largest corrections ∝ λ0 compared to the
propagation of a light quark in an extended medium.
Leading corrections to the propagation of a heavy
quark occur for the case when the mass M ∼ Q or
M ∼ q− ∼

√
λQ, i.e. the mass is of the order of the

largest momentum component. Note: this is not the
non-relativistic limit where M ≫ p and p ∼ Q. We
refer to this regime whereM ∼ p as the intermediate
momentum region. If Q always refers to the hard-
est scale in the problem, then the high momentum
regime is when M ∼ λQ, and the low momentum
regime (equivalent to the non-relativistic regime) is
where M ∼ Q/λ. Physically speaking, the interme-
diate momentum regime for a b-quark corresponds to
a total energy E ∼M ; the high energy regime corre-
sponds to the region where E ≫ M . It is the inter-
mediate momentum regime where all the somewhat
surprising results regarding heavy-quark energy loss
have been measured and this is the regime, that we
will study in greater detail.
We recall that the exchanged momenta with

the medium have momentum components k ≡
[k+, k−, ~k⊥] ∼ [λ3/2, λ2, λ]Q. As such, these are
somewhat removed from the scale of the mass of the
heavy quark. As a result, we separate the terms
containing the mass of the heavy-quark from the re-
maining terms and re-write the entire set of propa-
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gator denominators (both cut and uncut lines) as,

Dq =
2π

(2p+q−)n+m+1
(29)

×∏n−1
i=0

(

1

x̄i − xB(1 +
xM

x0
) + xB ȳi − x̄iD − iǫ

)

× δ

[

x̄n − xB

(

1 +
xM
x0

)

+ xB ȳn − x̄nD

]

×∏m−1
j=0





1

x̄′j − xB

(

1 + xM

x′

0

)

+ xB ȳ′j − x̄′jD + iǫ



 .

In so doing, we have retained the leading correc-
tions in λ coming from the longitudinal momentum
loss experienced by the heavy quark from exchanged
gluons with non-negligible k−i . The leading effect
on the offshellness, due to the presence of mass, is
from the terms ȳi, which are absent in the mass-
less case. Note that in the denominator the term

xM/x0 ∼ λ≪ 1 can be ignored.

In the high energy (Q→ ∞) and collinear (λ→ 0)
limit, we may approximate [13],

〈 ψ̄(y) Ô ψ(0) 〉 ≈ γ−

2
〈 ψ̄(y) γ

+

2
Ô ψ(0) 〉.(30)

As, A+ ∼ λ2Q and A⊥ ∼ λ3Q, in A− = 0 gauge [17],
we approximate,

γ ·A(y) ≈ γ−A+(y). (31)

Though we have retained, in Eq. (29), the order
λ2 corrections to the propagators, nonetheless we
neglect contributions to the vertices from A⊥ in
Eq. (31). However, retained them in the denomina-
tors as the order λ2 terms are the leading terms in
the denominators of the propagators. With all these
simplifications, structure of the numerator will be as
follows,

〈A|ψ̄(y0)γµ
(

n
∏

i=1

γ · (qi +M) γ · Aai(yi)

)

γ · lq





1
∏

j=n′

γ ·Aa′

j (y′j) γ · (q′j +M)



 γνψ(0)|A〉

= 〈A|ψ̄(y0)
γ+

2

(

n
∏

i=1

A+ai(yi)

)





1
∏

j=n′

A+a′

j (y′j)



ψ(0)|A〉

× Tr





γ−

2
γµ

(

n
∏

i=1

γ · (qi +M) γ−

)

γ · lq





1
∏

j=n′

γ− γ · (q′j +M)



 γν



 . (32)

Following qi+1 = q + ki = q +
∑i

j=0 pi, the trace
now becomes,

T = Tr

[

γ−

2
γµ

(

n
∏

i=1

γ · (q + ki−1)γ
−

)

(33)

× γ · (q + kn)





1
∏

j=m

γ−γ · (q + k′j−1)



 γν



 ,

where γ · (q + ki) = γ+(q− + k−i ) + γ−(q+ + k+i ) −
~γ⊥ · ~k⊥i . As {γ−, γ−} = 0 the term in γ · (q + ki)
containing a γ− vanishes in the trace.

We now obtain,

T =

(

gµ
⊥
gν⊥ − M2

(q−)2
gµ+g

ν
+

)

(

2q−
)n+m+1

.(34)

In the equation above, we have ignored the sup-
pressed factors of xM as well as those of p−0 . While
such terms have been dropped from the numerator,
they will remain in the denominators and in the over-
all δ-function until the contour integrations are car-
ried out and the denominators expanded in λ. This
is done, to clearly demonstrate that these terms are
sub-leading in the determination of the pole struc-
ture and in the ensuing expansion.
One now obtains the contribution to the hadronic

tensor from the term with m scatterings in the am-
plitude and n scatterings in the complex conjugate
as (with both leading projections),
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WAµν
mn =

∑

q

Q2
Q gn+m 1

Nc
Tr





(

n
∏

i=1

T ai

)





1
∏

j=m

T a′

j









∫

d3lq
(2π)3

(2π)3δ3(~lq − ~q − ~kn)

×
(

n
∏

i=0

∫

dy−i

∫

d3yi

)





m
∏

j=1

∫

dy′
−

j

∫

d3y′j





(

n
∏

i=0

∫

dxi
2π

∫

d3pi
(2π)3

)





m−1
∏

j=0

∫

dx′j
2π

∫

d3p′j
(2π)3





×
(

n
∏

i=0

e−ixip
+(y−

i
−y′−

m)e−i~pi·(~yi−~y′

m)

)





m−1
∏

j=0

eix
′
jp

+(y′−

j −y′−

m)ei~p
′

j ·(~y
′

j−~y′

m)





× (2π)δ(−xBτM + x̄n − ∆̄n)

(

n−1
∏

i=0

1

−xBτM + x̄i − ∆̄i − iǫ

)





m−1
∏

j=0

1

−xBτM + x̄′j − ∆̄′
j + iǫ





×
(

− gµ⊥gν⊥ +
M2

(q−)2
gµ−gν−

)

〈A|ψ̄(y0)
γ+

2

(

n
∏

i=1

A+ai(yi)

)





1
∏

j=m

A+a′

j (y′j)



ψ(0)|A〉, (35)

where using the delta function (2π)δ(l+q − q+ − k+n )

one can now able to perform the integration over l+q .
Integration variables have also been changed for con-

venience, p+i → xi = p+i /p
+, p+

′

j → x′j = p+
′

j /p+.
In the equation above,

τM = 1 + xM/x0 ≃ 1,

∆̄i =

i
∑

j=1

∆j = x̄Di − xB ȳi,

∆̄′
i =

i
∑

j=1

∆′
j = x̄′Di − xB ȳ

′
i. (36)

While the factor τM will eventually be set to unity,
we retain it in the next few expressions. We have
introduced additional notations for convenience: ~p =
(p−, ~p⊥) and ~y = (y+, ~y⊥), with ~p·~y = p−y+−~p⊥·~y⊥.

The end delta function which constrains cut line
to be on shell is needed to integrate over xn,

x̄n = τMxB + ∆̄n . (37)

i.e.,

xn = −x̄n−1 + τMxB + ∆̄n

= −
n−1
∑

i=1

xi + τMxB + ∆̄n . (38)

Now the (+)-component of the phase factor is as
follows,

Γ+ = e−i(τMxB+∆̄n)p
+y−

n

(

n−1
∏

i=0

e−ixip
+(y−

i
−y−

n )

)

× ei(τMxB+∆̄′

m)p+y′−

n′





n′
−1
∏

j=0

eix
′
jp

+(y′−

j −y′−

m)





= Γ+
nΓ

+
m. (39)

Two phase factors Γ+
n and Γ+

m, respectively, are re-
lated to xi integration and the x′j integration. The
rest of the integration may now be performed, simi-
lar to [18] (over the two momentum fractions xi and
x′j). Starting from the propagators that are attached
to the cut line one proceeds to the initial hard scat-
tering electromagnetic vertex which will produce a
string of θ-functions that mimics the fact that the
heavy quark is traveling from y−n−1 to y−n an so on.
After performing all integrations over the internal

quark momentum components and taking the Dirac
trace of the factors in the numerator, the expression
for the hadronic tensor, Combining both the leading
projections, is as follows,
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WAµν
mn

=
∑

q

Q2
Q gn+m 1

Nc
Tr





(

n
∏

i=1

T ai

)





1
∏

j=m

T a′

j









∫

d3lq
(2π)3

(2π)3δ3(~lq − ~q − ~kn)

×
(

n
∏

i=0

∫

dy−i

∫

d3yi

)





m
∏

j=1

∫

dy′
−

j

∫

d3y′j





(

n
∏

i=0

∫

d3pi
(2π)3

)





m−1
∏

j=0

∫

d3p′j
(2π)4





(

n
∏

i=0

e−i~pi·~yi

)





m
∏

j=1

ei~p
′

j ·~y
′

j





× e−ixBp+y−

0

(

n
∏

i=1

e−i∆ip
+y−

i

)





m
∏

j=1

ei∆
′
jp

+y′−

j



 in(−i)m
(

n
∏

i=1

θ(y−i − y−i−1)

)





m
∏

j=1

θ(y′
−

j − y′
−

j−1)





×
(

−gµν
⊥

+
M2

(q−)2
gµ−gν−

)

〈A|ψ̄(y0)
γ+

2

(

n
∏

i=1

A+ai(yi)

)





1
∏

j=m

A+a′

j (y′j)



ψ(0)|A〉. (40)

From the above expression of WAµν
mn its evident

that when M ∼
√
λQ (q− ∼

√
λQ), the two tensor

projectionsWA⊥⊥
mn andWA++

mn are of same order. In
the subsequent section we will expand it as a series
in the small scattering momenta around the hard
part of the above expression.

IV. FACTORIZATION, GRADIENT

EXPANSION AND RESUMMATION

After performing all integrations over the internal
quark momentum components and taking the Dirac

trace of the factors in the numerator, the expression
for the hadronic tensor, Combining both the leading
projections, is as follows,

Cp0,p1···pn
= ACA

p

(

ρ

2p+

)n

, (41)

here ρ being the parton density inside the large nu-
cleus, and the factor 1/(2p+) is require for the nor-
malization of partonic state. One may now make an
average over the colors of the gauge fields and quark
fields, leading components of the hadronic tensor will
now become,

WAµν
nn =

∑

q

Q2
q

(

−gµν
⊥

+
M2

(q−)2
gµ−gν−

)

A CA
p

(

ρ

2p+

)n

g2n
(

CF

N2
c − 1

)n

×
∫

d3lq
(2π)3

(2π)3δ3(~lq − ~q − ~kn)

∫

dy−0

∫

d3y0

∫

d3p0
(2π)3

e−i~p0·~y0e−iτxBp+y−

0 〈p|ψ̄(y0)
γ+

2
ψ(0)|p〉

×
(

n
∏

i=1

∫

dy−i

∫

dy′
−

i θ(y
−
i − y−i−1)θ(y

′−

i − y′
−

i−1)

)(

n
∏

i=1

∫

d3yi

∫

d3y′i

∫

d3pi
(2π)3

∫

d3p′i
(2π)3

× e−i~pi·~yiei~p
′

i·~y
′

ie−i∆ip
+y−

i ei∆
′

ip
+y′−

i 〈p|A+(yi)A
+(y′i)|p〉

)

, (42)

where the integrating variable dp′0 have been
changed to dp′n. Exploiting the homogeneity ap-
proximation, the expression should be further elu-
cidated by the following transformation of variables
(yi, y

′
i) → (Yi, δyi),

Yi = (yi + y′i)/2, δyi = yi − y′i. (43)

It is now possible to perform the integration over
the phase factor, which now depends only on the

average values ~Yi, which produce the delta function

δ3(~pi−~pi) that actually fix the momentum fractions
xDi = x′Di. Since both δy−i and δy−i−1 belongs to
the nucleon size (smaller compared to the size of the
large nucleus ∼ Y −), we may simplify product of
θ-functions as,

θ(y−i − y−i−1)θ(y
′−

i − y′
−

i−1) = θ(Y −
i − Y −

i−1).(44)
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The time-ordered product of θ-functions is now as
follow,

n
∏

i=1

∫ L−

0

dY −
i θ(Y

−
i − Y −

i−1) =

n
∏

i=1

L−

∫

0

dY −
i

n!
, (45)

where extent of the nuclear size is expressed by L−.
These terms, on integration, yield a factor of (L−)

n

and cause the overall length enhancement of the pro-
cess. Finally we obtain the leading components of
the differential hadronic tensor for n scatterings both
in the amplitude and complex conjugate as,

dWAµν
nn

d3lq
=
∑

q

Q2
q

(

−gµν
⊥

+
M2

(q−)2
gµ−gν−

)

ACA
p

∫

dy−0 e
−ixBp+y−

0 〈p|ψ̄(y0)
γ+

2
ψ(0)|p〉

× 1

n!

n
∏

i=1

(

∫ L−

0

dY −
i

∫

dδy−i

∫

d3δyi

∫

d3pi
(2π)3

ρ

2p+
g2

CF

N2
c − 1

e−i~pi·δ~yi〈p|A+(δyi)A
+(0)|p〉

)

×
(

n
∏

i=1

e−i∆ip
+δy−

i

)

δ3

(

~lq − ~q −
n
∑

i=1

~pi

)

=
(

WAµν
0⊥ +WAµν

0L

)

φn. (46)

In the equation above,WAµν
0⊥ andWAµν

0L represent the leading order hadronic tensors without any rescattering
of the produced heavy quarks. They are given as,

WAµν
0⊥ =

(

−gµ⊥gν⊥
)

CA
p

∑

q

Q2
q

∫

dy−0 e
−ixBp+y−

0 〈p|ψ̄(y0)
γ+

2
ψ(0)|p〉, (47)

and for the leading light-cone projection as,

WAµν
0L =

(

gµ−gν−
M2

(q−)2

)

CA
p

∑

q

Q2
q

∫

dy−0 e
−ixBp+y−

0 〈p|ψ̄(y0)
γ+

2
ψ(0)|p〉. (48)

The factor φn in Eq. (46) represents the piece from n-scattering on the outgoing heavy quark in the final
state. This contains both the “hard-part” which contains factors of the momentum of the heavy-quark, as
well as the “soft-part” which contains phase factors and nucleon matrix elements.

A. Resummations

To carry out the resummation, we will assume the hadronic tensor is analytic around ~pi = 0. We will
Taylor expand it around the soft exchanged momenta assuming the collinear/eikonal approximations,

H(q−, p+, p−0 , p
α
i ) =

n
∏

i=1



(H)~p1···~pn=0 + pαi

(

∂

∂pαi
H

)

~p1···~pn=0

+
1

2
pαi p

β
i

(

∂

∂pαi

∂

∂pβi
H

)

~p1···~pn=0

+ · · ·



 .(49)

In the above expansion, the α, β represents both “−” and “⊥”. Terms up to the second order have been
retained for simplicity. The first terms (the term without any derivative) generally are gauge corrections
for the diagrams with lower number of scatterings. After transforming the exchanged momentum into the
appropriate derivatives over position, it is straightforward to perform the integrations over ~pi and δ~yi [18]. It
will essentially result in spatial moments of the two gluon field products such as 〈A+(δy−, δ~y⊥)δy

−A+(0)〉.
The transverse projection of the differential hadronic tensor now reads as,

dWAµν
nn⊥

d3lq
=WAµν

0⊥

1

n!

(

n
∏

i=1

∫ L−

0

dY −
i

[

−DL1
∂

∂p−i
+

1

2
DL2

∂2

∂2p−i
+

1

2
DD2∇2

pi⊥

]

)

δ3

(

~lq − ~q −
n
∑

i=1

~pi

)

~p1···~pn=0

.(50)
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The hard sector transport coefficients DL1, DL2 and DT2 are defined as,,

DL1 = g2
CF

N2
c − 1

∫

dy−
ρ

2p+
〈p|i∂−A+(y−)A+(0)|p〉

(

n
∏

i=1

e−i∆̄ip
+δy−

i

)

,

DL2 = g2
CF

N2
c − 1

∫

dy−
ρ

2p+
〈p|∂−A+(y−)∂−A+(0)|p〉

(

n
∏

i=1

e−i∆̄ip
+δy−

i

)

,

DT2 = g2
CF

N2
c − 1

∫

dy−
ρ

2p+
〈p|∂⊥A+(y−)∂⊥A

+(0)|p〉
(

n
∏

i=1

e−i∆̄ip
+δy−

i

)

. (51)

These three coefficients DL1, DL2 and DD2 are connected to longitudinal energy loss rate ê, longitudinal
momenta diffusion rate ê2 and transverse momenta diffusion rate q̂. Its is also worth mentioning that, while
for light quark ∆̄ ∼ x̄D ∼ λ2, for the ‘semi hard’ heavy quark ∆̄ ∼ x̄D−xB ȳi ∼ λ

3
2 . As such, the hard sector

transport coefficients of a heavy-quark sample somewhat higher values of momentum fraction x than light
quark transport coefficients. This supports the notion that heavy quark and light quark transport coefficients
need not yield the same numerical value. The above definitions of all the hard sector transport coefficients
are not truly gauge-invariant. The manifestly gauge invariant hard sector transport coefficients can only be
realised with the incorporation of higher order much softer terms where k⊥ ≪ λQ. The summation over
such ultra soft gluon incorporation eventually leads to the emergence of Wilson links between the the gluon
field operators. This will renders the operator product gauge invariant.
We have now resummed over an arbitrary number of multiple scatterings,

dWAµν
⊥

d3lq
=

∞
∑

n=0

dWAµν
n⊥

d3lq
=WAµν

0 φ(L−, l−q ,
~lq⊥), (52)

where the final state quark distribution function is defined as φ(L−, l−q ,
~lq⊥),

φ=

∞
∑

n=0

1

n!

(

n
∏

i=1

∫ L−

0

dY −
i

[

−DL1
∂

∂p−i
+

1

2
DL2

∂2

∂2p−i
+

1

2
DT2∇2

pi⊥

]

)

δ(l−q − q− − p−0 ) δ
2(~lq⊥). (53)

The heavy quark momentum distribution function, after the full multi-scattering resummation reads,

φ(L−, l−q ,
~lq⊥)= exp

(

L−

[

DL1
∂

∂l−q
+

1

2
DL2

∂2

∂2l−q
+

1

2
DT2∇2

lq⊥

])

δ(l−q − q− − p−0 ) δ
2(~lq⊥), (54)

where the derivatives over pi have been transformed to the derivatives over lq.

The momentum distribution function φ(L−, l−q ,
~lq⊥) for the final outgoing heavy quark is the unique

solution of the following diffusion equation,

∂φ

∂L−
=

[

DL1
∂

∂l−q
+

1

2
DL2

∂2

∂2l−q
+

1

2
DT2∇2

lq⊥

]

φ(L−, l−q ,
~lq⊥). (55)

Above mentioned differential equation describes the time evolution of the momentum distribution profile of
propagating heavy quark which suffers multiple soft scatterings in the passage of its transport through a
nuclear matter. The three terms in the above diffusion equation represent the contributions from longitudinal
momentum change and longitudinal momentum diffusion, and the transverse momentum diffusion. The

delta function initial condition: φ(L− = 0, l−q ,
~lq⊥) = δ(l−q − q−)δ2(~lq⊥), provied the following solution for

the distribution fuction φ,

φ(L−, l−q ,
~lq⊥) =

1√
2πDL2L−

exp

[

−
(l−q − q− +DL1L

−)2

2DL2L−

]

1

2πDT2L−
exp

[

−l2q⊥
2DT2L−

]

. (56)

One may now identify,

〈l−q 〉 = q− −DL1L
−, (57)

〈(l−q )2〉 − 〈l−q 〉2 = DL2L
−,

〈l2q⊥〉 = 2DT2L
−. (58)

The coefficients DL1, DL2 and DT2 are related to
longitudinal drag rate ê = dE/dt, longitudinal strag-
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gling rate ê2 = d(∆E)2/dt, and the transverse mo-
mentum diffusion rate q̂ = d(∆pT )

2/dt as

ê = DL1,

ê2 = DL2/
√
2,

q̂ = 2
√
2DT2. (59)

A similar set of arguments may be used to simplify
the (++)-projection of the hadronic tensor. At this
order of approximation, we obtain the longitudinal
projection of the hadronic tensor from an arbitrary
number of scatterings as,

dWAµν
L

d3lq
=

∞
∑

n=0

dWAµν
nL

d3lq
=WAµν

0L φ(L−, l−q ,
~lq⊥),(60)

V. CONCLUSIONS

The subject of heavy quark energy loss is not yet
settled and requires more detailed analysis [21, 22].
In this work, the propagation of a single ‘semi-hard’
heavy quark in a dense nuclear medium has been
studied. The formalism is an extension of the higher
twist framework that includes medium induced mul-
tiple scatterings. In this formalism the higher twist
corrections are magnified by the large extent of the
nucleus. They are then resummed to obtain the
temporal evolution for the momentum distribution
of the probe. Both transverse broadening as well
as the longitudinal drag and longitudinal diffusion,
have been studied simultaneously.
We have focussed on the specific case of “semi-

hard” quarks where the mass and momentum scale
asM,p ∼

√
λQ. In this work we have applied SCET-

Glauber scaling based momentum power counting
whenever required. It shows that the longitudi-
nal momentum transfers and the transverse momen-
tum transfers have a comparable effect on the off-
shellness of the heavy-quark. This implies that lon-

gitudinal transfers, not only lead to the drag and
diffusion, similar to light flavors, but will also no-
ticeably affect the radiative loss. The calculation of
this novel effect, will be carried out in a future effort.
Here we focussed on whether the drag and diffusion
experienced by heavy-flavors can be cast in the same
form as for light flavors; this is indeed the case.

An evolution equation for the temporal develop-
ment of the heavy-quark momentum distribution
have been derived. All three leading transport co-
efficients involved are connected to the longitudi-
nal drag, longitudinal straggling and transverse mo-
mentum diffusion coefficient. The general struc-
ture of the transport coefficients for the semi-hard
heavy quarks appear to be similar to those for light
quarks (or even those for a fast heavy-quark). How-
ever, a closer analysis indicates that semi-hard heavy
quarks, scattering off the nucleon, sample a larger
value of x than do light quarks or gluons. As such,
the values of the transport coefficients for such par-
tons may not be the same as those used for light
flavors. As a corollary, the energy loss of semi-hard
heavy-quarks yield a direct window into the x depen-
dence of jet transport coefficients. The combined ef-
fect of all the three hard sector transport coefficients
on the gluon bremsstrahlung spectrum off the heavy
quark will be explored in a future effort.
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