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Abstract

We report on a calculation of the vector current contributions to the electroweak production of top

quark pairs in e+e− annihilation at next-to-next-to-leading order in Quantum Chromodynamics.

Our setup is fully differential and can be used to calculate any infrared-safe observable. The real

emission contributions are handled by a next-to-next-to-leading order generalization of the phase-

space slicing method. We demonstrate the power of our technique by considering its application

to various inclusive and exclusive observables.
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1. Introduction

Continuum electroweak production of top quark pairs at future linear colliders is of con-

siderable interest because it allows for a precise measurement of the top quark forward-

backward asymmetry. This observable is of particular importance because it is expected

to severely constrain anomalous couplings which could potentially appear in the top quark

sector [1]. In the near future, due to the extremely clean environment expected at proposed

e+e− colliders, it should be possible to measure the top quark forward-backward asymmetry

to a precision of approximately 1% [2].

At an e+e− collider, top quark pairs are primarily produced via the electroweak process

e+e− → γ∗/Z∗ → tt̄ . (1)

In this paper, we shall only concern ourselves with the next-to-next-to-leading order (NNLO)

radiative corrections to the above process in Quantum Chromodynamics (QCD) mediated

by an off-shell photon (γ∗). In other words, we treat the vector current contributions to the

production of a top-antitop pair. Complete results including the axial-vector contributions

(i.e. that due to off-shell Z boson exchange) will be presented elsewhere.

The calculation of QCD radiative corrections to heavy-quark pair production in e+e−

annihilation has a long history. Full next-to-leading order (NLO) QCD corrections were

first computed in ref. [3] and, a short time later, NLO electroweak effects were considered

in ref. [4]. NLO QCD corrections to top quark pair production including the subsequent

top quark decays were presented in ref. [5] and NLO QCD corrections to top quark spin

correlations were computed in refs. [6] and [7]. Total cross sections are known to NNLO in

the threshold expansions [8–12] and high-energy expansions [13–17]. Results for the forward-

backward asymmetry are also known in the small mass approximation [18–20]. In the near

future, the threshold cross section at NNNLO will also be available [21–23]. Somewhat

surprisingly, although a great deal of theoretical progress has been made over the years, exact

NNLO QCD calculations for fully differential e+e− → tt̄ observables remain a challenge and

are still missing from the literature.

A fully differential NNLO QCD calculation is naturally split up into three distinct parts,

depending on the number of particles that appear in the final state relative to leading or-

der: a) purely virtual two-loop or squared one-loop corrections, b) one-loop, single-emission
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real-virtual corrections, and c) double-emission double-real corrections. For e+e− → tt̄,

significant progress has been made in recent years towards the calculation of each of these

three pieces. NLO QCD corrections to heavy quark pair production in association with

one additional jet were computed in refs. [24–28]. The two-loop heavy quark form factor

was first obtained in refs. [29–31] and then confirmed some time later by an independent

calculation [32]. In fact, for quite some time, the only outstanding problem was to con-

struct an efficient framework for the combination of the ingredients described above into an

infrared-safe Monte Carlo event generator.

For generic processes, this is highly non-trivial due to the fact that, in phase space

regions where soft and/or collinear limits are approached, the real-virtual and double-real

contributions develop soft and/or collinear divergences which must be extracted before a

Monte Carlo integration over phase space can be carried out. At NLO, this is relatively

straightforward to do and both phase-space slicing [33–39] and subtraction [40–45] techniques

which solve the problem were worked out long time ago. However, as is clear from the

massive amount of literature on the subject [46, 47, 58–111], analogous techniques at NNLO

are considerably more complicated to develop and complete solutions took much longer to

emerge. For example, in the important case of massless dijet production, it took more

than a decade for the first physical predictions to appear [46, 47] from the time that the

relevant two-loop virtual amplitudes were first calculated [48–57]. As a result of significant

theoretical efforts during the past decade, a number of important “benchmark processes”

are now known to NNLO [46, 47, 96, 103, 104, 110].

The goal of this paper is to study fully differential NNLO QCD corrections to e+e− → tt̄

using a higher-order generalization of the phase-space slicing method. While we constrain

ourselves in this paper to present results for the vector current contributions by themselves,

the formalism developed here can, if desired, readily be used to calculate the contributions

coming from the exchange of an off-shell Z boson. This paper is organized as follows. In

Section 2, we describe our calculational method in detail. In Section 3, we present numerical

results for various inclusive and differential observables and, whenever possible, compare

them to the existing literature. Finally, we conclude in Section 4.
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2. Phase-space slicing at NNLO

We explain in detail our generalization of phase-space slicing method in dealing with the

specific process e+e− → tt̄ at NNLO. As mentioned before, there are three distinct parts

contribute to the cross section at O(α2
s),

σ(2) =

∫
dΦtt̄,0

∑

spin,color

[
2ℜ
(
M(0)

e+e−→tt̄

(
M(2)

e+e−→tt̄

)∗)
+
∣∣∣M(1)

e+e−→tt̄

∣∣∣
2
]

+

∫
dΦtt̄,1

∑

spin,color

[
2ℜ
(
M(0)

e+e−→tt̄g

(
M(1)

e+e−→tt̄g

)∗)]

+

∫
dΦtt̄,2

∑

spin,color

[∣∣∣M(0)
e+e−→tt̄gg

∣∣∣
2

+
∣∣∣M(0)

e+e−→tt̄qq̄

∣∣∣
2
]
, (2)

where

dΦtt̄,n =
1

2s× 22

(
dD−1pt

2Et(2π)D−1

)(
dD−1pt̄

2Et̄(2π)D−1

)

×
n∏

i=1

(
dD−1pi

2Ei(2π)D−1

)
(2π)Dδ(D)

(
Q− pt − pt̄ −

n∑

i=1

pi

)
(3)

is the phase space volume element in D = 4 − 2ǫ dimension, divided by the flux factor

and initial state spin average factor. Here s = Q2 = (pe+ + pe−)
2 is the center-of-mass

energy square. M(i)

e+e−→tt̄... denotes the i-loop amplitude for e+e− → tt̄ plus zero, one, or

two additional massless partons. Note that when
√
s > 4mt, the channel for the production

of tt̄tt̄ is open. However, these additional contributions are themselves infrared finite due

to the mass of top quark, and can be dealt with separately. In the following discussion,

we will neglect these contributions. Also for the vector contributions, we only consider

diagrams with top quarks coupling directly to photon. The diagrams with photon coupling

to a bottom or light quarks and the top quark produced via gluon splitting are numerically

small [112, 113]. Though the bottom triangle diagrams are needed and must be included to

cancel the axial anomaly in the axial vector case [16, 31].

The first, second, and third terms on the RHS of Eq.(2) represent respectively the double-

virtual, real-virtual, and double-real contributions. The double-virtual contributions contain

explicit quadratic poles in ǫ, originating from loop corrections when the gluons are soft.

Thanks to Bloch-Nordsieck and Kinoshita-Lee-Nauenberg theorem, the infrared divergences

will be canceled by those in the real-virtual and double-real contributions. However, such

cancellation is non-trivial because the infrared divergences in the real-virtual and double-real

4



contributions can only be made explicit after phase space integral. It is therefore necessary

to perform the phase space integral inD dimension to regulate potential infrared divergences.

This fact makes the calculation of real-virtual and double-real contributions difficult.

The singular region in the phase space is relatively simple for the real-virtual corrections,

where the matrix elements are singular only when the energy of the final state gluon ap-

proaches zero. For the double-real contributions the singular region is much more involved.

First, the matrix elements are singular in the double un-resolved region, where the energies

of both the final state partons approach zero. Second, the matrix elements are also sin-

gular even in the single un-resolved region, where only one of the final state gluon is soft,

or the final state massless partons become collinear. Fortunately, the singularities due to

single un-resolved region is well understood, as they are the same one encounters in NLO

QCD calculation. We therefore only need to deal with the double un-resolved region. To

isolate the phase space singularities in this region, we introduce a phase-space slicing pa-

rameter τ , which is proportional to the total energy of QCD radiations in the final state,

τ = 2(
√
s − (Et + Et̄))/(

√
s(1 − 4m2

t/s)). Physically, when τ is non-zero, there is at least

one massless parton in the final state with finite energy. We can divide the phase space into

two slices using the theta function,

σ(2) = σ
(2)
I + σ

(2)
II , (4)

where σ
(2)
I =

∫
dσθ(δE−τ) is the soft-virtual part, and σ

(2)
II =

∫
dσθ(τ −δE) is the hard part,

and δE is the cut-off parameter. There are still phase space singularities in both σI and σII .

However, the phase space singularties in σII belong to the well understood one, because

there is at most one massless parton in the final state whose energy can approach zero. We

can therefore straight-forwardly calculate σII using any existing NLO infrared subtraction

method. On the other hand, the soft-virtual part, σI , contains double un-resolved region,

whose calculation needs additional efforts. An exact calculation for σI is difficult. However,

if we choose δE to be small and ignore terms of O(δE), we can calculate σI using matrix

elements in the soft limit, and also expanding the phase space volume in the soft limit.

Such approximation leads to enormous simplification and makes the analytical calculation

feasible. We explain in detail the calculation of the soft-virtual part and hard part below.
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2.1. The soft-virtual part

2.1.1. Factorization of the radiation-energy distribution

We can write the soft-virtual part as an integral over radiation-energy distribution,

σ
(2)
I =

∫ δE

0

dτ
dω

dτ

dσ(2)

dω
, (5)

where ω is twice the energy of final state QCD radiations, ω = 2(
√
s−Et−Et̄). The factor of

2 here is introduced by convention. Ignoring power suppressed terms in ω/mt, we can write

the distribution for dσ/dω in small ω in a factorized form using the language of effective

theory. dσ(2)/dω is simply the O(α2
s) corrections to this distribution. We start from the full

distribution in QCD,

dσ

dω
=
∑

t,t̄,X

(2π)4δ(4)(Q− pt − pt̄ − pX)δ(ω − 2E(X))Lµν

∑

ij

〈0|Jµ†
i |tt̄X〉〈tt̄X|Jν

j |0〉 , (6)

where X denotes gluons and light quarks in the final state, and E(X) denotes the energy

of X . We do not include additional top-quark states in X because they give rise to finite

corrections and can be incorporated into our numerical results separately in a simple way.

The summation over final states in Eq. (6) becomes integral over D-dimensional phase space

measure in dimensional regularization. For example, for two-gluon final state X = gg, we

have

∑

t,t̄,gg

(2π)4δ(4)(Q− pt − pt̄ − pX)
dim.reg.−−−−→

∫
dΦtt̄,2 , (7)

where dΦtt̄,2 is defined in Eq. (3). The lepton tensor includes only vector contributions from

virtual photon exchange,

Lµν = −2e2

s

(
gµν −

2(pe
+

µ pe
−

ν + pe
+

ν pe
−

µ )

s

)
, (8)

where e is the QED coupling, and pe
+

µ and pe
−

µ are the four momentum of positron and

electron. The production of top-quark pair via virtual photon exchange is described by two

QCD currents,

Jµ
1 = −ieQtΨ̄(pt)γ

µΨ(pt̄), Jµ
2 =

eQt

2mt
Ψ̄(pt)σ

µν(pt + pt̄)νΨ(pt̄) , (9)
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where Qt = 2/3 is the electric charge number of top quark, and σµν = i
2
[γµ, γν ]. Note that

Eq. (6) is exact to leading order in electroweak interaction, and all orders in QCD interac-

tions. It is also an exact distributions for ω. Calculation of Eq. (6) in perturbative QCD

requires the calculation of both virtual corrections and phase space integral. Unfortunately,

exact calculation of phase space integral is difficult beyond NLO. Certain approximation is

needed in order to proceed. Since we are only interested in the energy distribution in the soft

region, we can expand Eq. (6) to leading power in ω/mt. Then the momentum conservation

delta function factorizes as

∑

t,t̄,X

(2π)4δ(4)(Q− pt − pt̄ − pX) ≃
∑

t,t̄

(2π)4δ(4)(Q− pt − pt̄)
∑

X

(10)

in the region where ΛQCD ≪ ω ≪ mt. The physics of such factorization is that as long

as the energy of QCD radiations is small, they can hardly change the trajectory of heavy

quark. The short-distance interaction which produces the top-quark pair can not resolve the

activities of soft QCD radiations, therefore have tree-level like kinematics. We can describe

the top quark and antitop quark by heavy quark fields hv(y) and hv̄(y), labeled by the

velocity of the heavy quarks, pt = mtv, pt̄ = mtv̄. The QCD currents in Eq. (9) can then be

matched to currents in Heavy Quark Effective Theory (HQET),

J µ
1 = −ieQtC1(v, v̄)h̄vγ

µhv̄, J µ
2 =

eQt

2
C2(v, v̄)h̄vσ

µν(v + v̄)νhv̄ , (11)

where the corresponding Wilson coefficients C1(v, v̄) and C2(v, v̄) can be obtained from the

calculation of QCD form factor for heavy quark pair production. At leading power in HQET,

the heavy quark field only interacts with gluons via eikonal interaction,

Lint = h̄v(y)gv · As(y)hv(y) + h̄v̄(y)gv̄ · As(y)hv̄(y) (12)

Such eikonal interactions can be absorbed into Wilson lines by a field redefinition [116],

(hv(y))
† = (h(0)

v (y))†(Yv(y))
†, hv̄(y) = Yv̄(y)h

(0)
v̄ (y) , (13)

where

(Yv(y))
† =P exp

(
ig

∫ ∞

0

dz · A(vz + y)

)

Yv̄(y) =P exp

(
−ig

∫ ∞

0

dz · A(v̄z + y)

)
(14)
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are the path-ordered and anti path-ordered Wilson lines. The decoupled heavy quark field

h
(0)
v (x) no longer interacts with gluon, but still annihilate the top quark field. The hadronic

tensor now has a factorized form,

∑

X

δ(ω − 2E(X))
∑

ij

〈0|J µ†
i |tt̄X〉〈tt̄X|J ν

j |0〉

=Hµν
∑

X

〈0|Y †
v Yv̄|X〉δ(ω − 2E(X))〈X|Y †

v̄ Yv|0〉 , (15)

where the summation is over all unrestricted massless final states. For example, for two-

gluon final state with momentum p1 and p2, we have

∑

X

dim.reg.−−−−→
∫

dD−1p1
2E1(2π)D−1

∫
dD−1p2

2E2(2π)D−1
(16)

Hµν is the hard function,

Hµν =
2∑

i,j=1

〈0|J (0),µ†
i |tt̄〉〈tt̄|J (0),ν

j |0〉 , (17)

and J (0),µ
i is the decoupled HQET current, with hv,v̄(y) replaced by h

(0)
v,v̄(y). Summing over

the top quark spin and color 1, the hard function can be evaluated explicitly,

Hµν = Nc

2∑

i,j=1

Ci(v, v̄)C
∗
j (v, v̄)h

µν
ij , (18)

with

hµν
11 =e2Q2

t

(
−2sgµν + 4(pµt p

ν
t̄ + pνt p

µ
t̄ )
)
, (19)

hµν
12 =hµν

21 = 2e2Q2
t

(
−sgµν + (pµt + pµt̄ )(p

ν
t + pνt̄ )

)
, (20)

hµν
22 =e2Q2

t

(
−2sgµν +

(
2− s

2m2
t

)
(pµt p

ν
t̄ + pνt p

µ
t̄ ) +

(
2 +

s

2m2
t

)
(pµt p

ν
t + pµt̄ p

ν
t̄ )

)
(21)

Nc = 3 is the number of color in QCD. The matrix element of the Wilson lines defines the

soft function for tt̄ production,

S =
1

Nc

∑

X

〈0|Y †
v Yv̄|X〉δ(ω − 2E(X))〈X|Y †

v̄ Yv|0〉 , (22)

1 It should be noted that our formalism also allows full spin dependence for heavy quark, since the eikonal

approximation preserves spin.
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The summation is over all possible QCD final states. We have chosen the normalization

such that at LO the soft function is δ(ω). The calculation for soft function is much easier

than the exact phase space integral, thanks to the eikonal approximation.

We can now write down a factorized formula for the radiation-energy distribution in

top-quark pair production,

dσs.v.

dω
=

1

8s

∫
d3pt

2Et(2π)3

∫
d3pt̄

2Et̄(2π)3
(2π)4δ(4)(Q− pt − pt̄)LµνH

µνS(x, ω) , (23)

where we have also included the initial state flux and spin average factor. The variable x is

defined as

x =
1−

√
1− 4m2

t

s

1 +

√
1− 4m2

t

s

(24)

For fixed mt, x → 0 is the high energy limit, while x → 1 is the threshold limit. Eq. (23) is

only valid at leading power in ω. The soft function is fully differential in the top and antitop

momentum, but inclusive in the QCD radiations. This is not a problem as we will use this

formula only in the limit of small ω, where the QCD radiations can not be resolved by any

reasonable experimental measurement.

The phase space integral in Eq. (23) becomes trivial. Integrating out the azimuthal angle

dependence of top quark, we obtain

d2σs.v.

dω d cos θt
= H(cos θt, mt, s)S(x, ω) , (25)

where

H(cos θt, mt, s) =
1

8s

∫
d3pt

2Et(2π)3

∫
d3pt̄

2Et̄(2π)3

× (2π)4δ(4)(Q− pt − pt̄)δ

(
cos θt −

pt · pe

|pt||pe|

)
LµνH

µν (26)

The soft function is a distribution in ω. It is often convenient to perform a Laplace trans-

formation,

d2σ̃s.v.

dκ d cos θt
=

∫ ∞

0

dω exp
(
− ω

eγEκ

) d2σs.v.

dω d cos θt

≡H(cos θt, mt, s)s̃(x, Lκ) , (27)
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where Lκ = ln(κ/µ). The renormalized soft function depends on κ only through terms of

the form Ln
κ, where n is a positive integer. It is therefore possible to invert the Laplace

transformation in close form [117],

d2σs.v.

dτ d cos θt
= H(cos θt, mt, s) lim

η→0

[
s̃ (x, ∂η)

(√
s(1− 4m2

t/s)

µ

)η
1

τ 1−η

exp(−γEη)

Γ(η)

]
, (28)

where we recall that τ = ω/(
√
s(1− 4m2

t/s)). Eq. (28) is interpreted as first expanding in η

as a taylor series within the square bracket, using the well-known plus-distribution expansion

1

τ 1−η
=

δ(τ)

η
+

1

[τ ]+
+ η

[
ln τ

τ

]

+

+O(η2) , (29)

then taking the η → 0 limit.

2.1.2. Hard function from QCD heavy quark form factor

The Wilson coefficients defined in Eq. (11) can be obtained from the QCD heavy quark

form factor. The latter has been computed for the vector contributions, axial contributions,

and anomaly contributions by Bernreuther et.al [29–31]. The vector contributions have been

computed independently later in ref. [32], confirming previous results.

In ref. [29], the vector contributions to heavy quark form factor are given to two loops

in QCD. The results are expressed in terms of two dimensionless scalar form factors, F̂1(x)

and F̂2(x),

−ieQtū(pt)

(
F̂1(x)γ

µ +
1

2mt
F̂2(x)iσ

µν(ptν + pt̄ν)

)
v(pt̄) (30)

Here the scalar form factors are related to those computed in Eq. (57) and (58) of ref. [29]

by an additional renormalization,

F̂i(x, α
Nl
s ) = Fi(x, α

Nf
s (αNl

s )) , i = 1, 2 , (31)

where

α
Nf
s (αNl

s ) = αNl
s

[
1 +

8

3
TRNh

αNl
s

4π

(
−1

2
LH + ǫ

(
L2
H

4
+

1

24
π2

))
+

ǫ

12

(
αNl
s

4π

)
β
(Nf )
0 π2

]
,

(32)

with Nf = Nl +Nh. Nl = 5 is the number of light quark flavor, and Nh = 1 is the number

of heavy quark flavor. TR = 1/2 in QCD, LH = ln(m2
t/µ

2). The QCD beta function for Nf
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quark flavor is given by

β
(Nf )
0 =

11

3
CA − 4

3
TR(Nl +Nh) (33)

where CA = 3 in QCD. Unless otherwise specified, we will denote αNl
s as αs below. Note that

F̂i(x) and Fi(x) only differ starting from two loops. The origin for such difference is that in

ref. [29], the renormalization of strong coupling is performed in MS scheme, running with

Nf flavors. Also the authors of ref. [29] include a factor Γ(1 + ǫ) exp(ǫγE) in the coupling

renormalization, where Γ(z) is Euler’s Gamma function, and γE = 0.577216 . . . . However,

we choose to perform the calculation with αs running with Nl flavors, and also without the

additional factor Γ(1 + ǫ) exp(ǫγE). The decoupling of heavy quark flavor is realized by

the second term on the RHS of Eq. (32) [118–121], while the third factor gets rid of the

additional factor Γ(1 + ǫ) exp(ǫγE) through to O(α2
s) [122].

The scalar form factors are functions of x. Writing them as an expansion in as =

αs(µ)/(4π),

F̂i(x) = F̂
(0l)
i (x) + asF̂

(1l)
i (x) + a2sF̂

(2l)
i (x) +O(a3s) , (34)

we have at LO in QCD

F̂
(0l)
1 (x) = 1, F̂

(0l)
2 (x) = 0 (35)

Using the additional renormalization relation in Eq. (31), the one-loop and two-loop form

factors can be read off from ref. [29]. These form factors are UV finite but IR divergent. To

calculate the Wilson coefficients defined in Eq. (11), one needs to calculate the form factors

in the effective theory. The Wilson coefficients are simply the differences of the form factor

in QCD and the form factor in effective theory. In dimensional regularization with external

state onshell, the form factors in the effective theory at one loop and beyond vanish because

they involve only scaleless integral. Since the IR divergences in the QCD calculation and

effective theory calculation must match, it implies that the UV divergences in the effective

theory calculation are exactly the negative of the IR divergence in the QCD calculation.

Therefore, renormalization of the UV divergences in the effective theory is simply amount

to performing an IR subtraction to the form factor in QCD,

Ci(x) = lim
ǫ→0

[
ZH,iF̂i(x)

]
, i = 1, 2 , (36)
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where the IR subtraction factor is defined such that Ci(x) is order by order finite, i.e., ZH,i

absorbs only the ǫ poles in F̂i(x). For the convenience of reader, we give below the explicit

expression for Ci(x) at one loop, as derived from the QCD form factors in ref. [29]. We have

checked that using ref. [32], we get the same Wilson coefficients.

The one-loop Wilson coefficients are

C
(1l)
1 (x) =CF

[
LH

((
2

x+ 1
− 2

x− 1
− 2

)
H(0, x) + 2

)
+

(
− 4

x+ 1
+

2

x− 1
+ 3

)
H(0, x)

+

(
− 2

x+ 1
+

2

x− 1
+ 2

)
H(0, 0, x) +

(
− 4

x+ 1
+

4

x− 1
+ 4

)
H(1, 0, x)

− 8ζ2
x− 1

+
8ζ2
x+ 1

− 4(2ζ2 + 1)

]
+ iπCF

[
LH

(
2

x+ 1
− 2

x− 1
− 2

)

+

(
− 2

x+ 1
+

2

x− 1
+ 2

)
H(0, x) +

(
− 4

x+ 1
+

4

x− 1
+ 4

)
H(1, x)

+
2

x− 1
− 4

x+ 1
+ 3

]
(37)

C
(1l)
2 (x) =2CF

(
− 1

x− 1
− 1

x+ 1

)
(H(0, x) + iπ) , (38)

where CF = 4/3 in QCD. The imaginary part in the Wilson coefficients results from ana-

lytical continuation of the form factors from spacelike to timelike kinematics. The function

H(~w, x) is harmonic polylogarithm (HPL) introduced in ref. [123]. We use hplog [124] for

the numerical calculation of HPLs in this work. The Mathematica file for the two-loop

Wilson coefficients can be found in the arXiv submission of this paper.

2.1.3. Perturbative expansion of the radiation-energy distribution through to NNLO

To expand the equation for radiation-energy distribution in Eq. (28) in αs, we also need

the soft function to NNLO, which have been computed only recently [125]. The Laplace

transformed soft function has the generic form

s̃(x, Lκ) = 1 + as

(
Lκ γ

s
0(x) + c1(x)

)
+ a2s

[
L2
κ

(
1

2

(
γs
0(x)

)2
− β0γ

s
0(x)

)

+Lκ

(
c1(x)

(
γs
0(x)− 2β0

)
+ γs

1(x)
)
+ c2(x)

]
+O

(
a3s
)
. (39)

through to O(α2
s), where β0 is the LO QCD beta function with Nl light flavor only,

β0 =
11

3
CA − 4

3
TRNl , (40)
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and γs
0(x) and γs

1(x) are the well-known cusp anomalous dimension [126–128]. We reproduce

them here for the sake of completeness

γs
0(x) = −8CF

[
1 +

1 + x2

1− x2
H(0, x)

]
(41)

γs
1(x) =

160

9
CFNlTR

[
1 +

1 + x2

1− x2
H(0, x)

]
(42)

+CACF

[
−392

9
+ 16ζ2

1 + 9x2

1− x2
+ 16

(1 + x2)
2

(1− x2)2

(
2H(0, x)

(
H(0,−1, x)−H(0, 1, x)

)

−4H(0, 0,−1, x) + 4H(0, 0, 1, x)− ζ(3)
)
+ 32

1 + x2

1− x2

(
H(0, x)

(
H(−1, x)−H(1, x)− 67

36

)

−H(0,−1, x) +H(0, 1, x)

)
− 32

3

x2(1 + x2)

(1− x2)2
H3(0, x)− 32x2

1− x2
H2(0, x)

+16ζ2
(1 + x2) (1 + 9x2)

(1− x2)2
H(0, x)

]
.

The soft function is largely fixed by the renormalization group equation it obeys [126]. The

genuine two-loop corrections to the soft function are summarized by the scalar function

c2(x), which is first computed in ref. [125] 2. With all these results at hand, we can write

down the radiation-energy distribution through to NNLO, up to power-correction terms in

τ . Writing H(cos θt, mt, s) as an expansion in as, H(cos θt, mt, s) = H0+ asH1+ a2sH2+ · · · ,
the results are

d2σ
(1l)
s.v.

dτ d cos θt
= [(c1(x) + LHγ

s
0)H0 +H1] δ(τ) + 2γs

1(x)H0
1

[τ ]+
(43)

d2σ
(2l)
s.v.

dτ d cos θt
=
[1
2
H0L

2
Hγ

s
0 (γ

s
0 − β0) + LH (H0 (c1(x)γ

s
0 − β0c1(x) + γs

1) +H1γ
s
0)

+H0

(
c2(x) +

1

3
π2β0γ

s
0 −

1

3
π2 (γs

0)
2

)
+H1c1(x) +H2

]
δ(τ)

+
[
H0LH

(
2 (γs

0)
2 +H0 (2c1(x)γ

s
0 − 2β0c1(x) + 2γs

1)− 2β0γ
s
0

)
+ 2H1γ

s
0

] 1

[τ ]+

− 4H0γ
s
0 (β0 − γs

0)

[
ln τ

τ

]

+

(44)

This is the main results for the soft-virtual part.

2 Note that results presented in ref. [125] are given in terms of generalized polylogarithms, G(· · · ;x),

with weight alphabet drawn from {−1, 0, 1}. They are related to HPLs by a simple relation, G(~w;x) =

(−1)n1H(~w, x), where n1 is the number of occurance of alphabet 1 in the weight vector ~w.

13



2.2. The hard part

The hard part σ
(2)
II consists of the real-virtual corrections, e+e− → tt̄g at one loop,

and the double-real corrections, e+e− → tt̄gg(qq̄) at tree level. As mentioned above, the

infrared divergences in this part only involve single unresolved limit, thus can be extracted

using standard NLO subtraction technique. In this paper we employ the massive version

of dipole subtraction method [129]. The one-loop real-virtual calculation is carried out by

the automated program GoSam2.0 [130] with loop integral reductions from Ninja [131, 132]

and scalar integrals from OneLOop [133, 134]. Since σ
(2)
II is IR finite, it can be compared

directly to the NLO QCD calculation of e+e− → QQ̄g, e.g., ref. [25], and shows very good

agreements.

Once the soft-virtual part and hard part are known, the full corrections are simply the

sum of them. The soft-virtual part has born kinematics in the final state, since the QCD

radiations are soft and have been integrated out. Its numerical implementation is therefore

trivial. The hard part is nothing but the usual NLO QCD corrections to the process e+e− →
tt̄g, as described above. We believe this is the most important advantage of phase-space

slicing method, because its numerical implementation is no more difficult than a typical

NLO calculation.

However, the drawback of phase-slicing method is also clear. In principle, the sum of

the soft-virtual part and hard part is independent of the arbitrary cut-off parameter δE

in the limit of δE → 0. Furthermore, since we will approximate the kinematics of the

soft part as born kinematics in our numerical calculation, δE needs to be small for such

approximation to hold. In realistic calculation, such a limit can never be reached in the

hard part. Nevertheless, our formalism is exact in the hard part, and include all the leading

singular dependence of δE in the soft-virtual part, such that the sum only depends mildly

on δE . To estimate the form of the subleading term missing in the soft-virtual part, we note

that an exact τ distribution in small τ should have the following form

dσ(2)

dτ
= A(x)

[
ln τ

τ

]

+

+
B(x)

[τ ]+
+ C(x)δ(τ) +D(x) ln τ + subleading terms (45)

Our calculation includes exact results for the first three coefficients, A(x), B(x) and C(x),

but not D(x). Integrating over the fourth term over τ gives

D(x)

∫ δE

0

dτ ln τ ≃ D(x)δE ln δE + subleading terms in τ (46)

14



We therefore expect the leading missing δE dependence in the sum of the soft-virtual part and

hard part is proportional to δE ln δE at NNLO. To minimize the impact of such contributions,

we have to choose very small cut-off parameter δE . This is not a problem for the soft-virtual

part, as δE dependence there is analytical. For the hard part, choosing extremely small δE

leads to finite but very large corrections, comparing to the corrections to the sum. Thus

there has to be delicate cancellation of large corrections between the soft-virtual part and

hard part. A possible improvement would be including also the subleading terms D(x) ln τ

in the calculation. Such “next-to-eikonal corrections” have been considered before in Drell-

Yan production through to NNLO [135, 136]. It would be interesting to calculate D(x) along

the same line.

3. Numerical results

We present our numeric results in this section. As mentioned before, we use two-loop

running of the QCD coupling constants with Nl = 5 active quark flavors and αs(MZ) =

0.118. We choose the GF parametrization scheme [138] for the EW couplings with MW =

80.385GeV, MZ = 91.1876GeV, Mt = 173GeV, and GF = 1.166379 × 10−5GeV−2 [139].

The renormalization scale is set to the center of mass energy
√
s unless otherwise specified.

The production cross sections due to virtual photon exchange through to NNLO in QCD

can be expressed as

σNNLO,γ = σLO,γ

(
1 + ∆(1),γ +∆(2),γ

)
, (47)

where ∆(1,2),γ denote respectively the O(αs) and O(α2
s) QCD corrections. The O(α2

s) cor-

rections ∆(2),γ can be further decomposed according to color factors, i.e., the Abelian con-

tributions, the non-Abelian contributions, the light-fermionic contributions, and the heavy-

fermionic contributions. Alternative notation used in [8, 16, 17] follows

σNNLO,γ = σµ+µ−,γ

(
R(0) +

αs(µ
2)

π
CFR

(1) +

(
αs(µ

2)

π

)2

R(2)

)
, (48)

with σµ+µ−,γ be the cross section of muon pair production, and

R(2) = C2
FR

(2)
A + CACFR

(2)
NA + CFTRNlR

(2)
lF + CFTRR

(2)
hF , (49)

depends only on r = 2mt/
√
s. The four contributions in Eq. (49) are denoted by “CF”,

“CA”, “Nl”, and “Nh” respectively in the following figures and discussions. Analytical
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results for R(2) are presented for production near threshold [8, 9] or in the high-energy

expansions [16, 17] with which we compare our numerical results. Note that for the O(α2
s)

results on inclusive cross sections or R(2) in below we include the real corrections with four

top-quark final states, which are also present in above calculations of high-energy expansions.

We do not include those four-top contributions in the differential distributions since they

could be measured separately.

3.1. Inclusive cross sections

As usual in phase-space slicing method, ∆(2),γ depends only weakly on the cut-off param-

eter δE and approaches the genuine O(α2
s) corrections when δE is small enough. Fig. 1 shows

∆(2),γ as functions of δE for different collision energies. For each of the energy choices, ∆(2),γ

receives contributions from below the cut-off ∆
(2),γ
1 (soft-virtual part), and above the cut-off

∆
(2),γ
2/3 (hard parts). Each of the three parts depends strongly on δE with variations as large as

30% for example for
√
s = 500GeV. However, their sum, ∆(2),γ remains almost unchanged

when δE varies between 10−2 and 10−4 as demonstrated in Fig. 1. For production near the

threshold, e.g.,
√
s = 350GeV, the dominant contribution to the O(α2

s) corrections is from

the two-loop virtual corrections as included in ∆
(2),γ
1 . The remaining dependences of ∆(2),γ on

δE are further plotted in Fig. 2. Here in δ∆(2),γ we have subtracted the high energy expansion

results [16, 17] from our numerical results for comparison. The solid lines are scattering plots

and the dashed lines are fitted curves assuming δ∆(2),γ = f0+f1δE ln δE +f2δE , where fi are

constants independent of δE . The fitted coefficients are f0,1,2 = {0.4555,−0.00025, 0.0037},
{0.00005,−0.0050, 0.044}, and {−0.00003, 0.016, 0.066} for the three collision energies re-

spectively. Note that the f0 term represents difference of our numerical results in the limit

of δE → 0 (genuine O(α2
s) corrections) with the high energy expansion results. f1 and f2

terms are the systematic errors due to finite δE choices. Assuming δE = 2 × 10−4, the f1

and f2 terms are estimated to be less than 10−4 for above collision energies. Thus choos-

ing δE = 2 × 10−4 should be sufficient for a realistic calculation. The smallness of f0 for
√
s = 500 and 1000 GeV indicates a very good agreements of our numerical results with the

high energy expansion ones.

Fig. 3 shows detailed comparison of our numerical results with the threshold [8, 9] and

high-energy expansion results [16, 17] in a wide range of energy. The cut-off parameter is
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chosen as δE = 2×10−4. We present the comparisons both for the O(α2
s) corrections as well

as their ratios. It can be seen that our full results works well in the entire energy region

considered, i.e., approaching the threshold results for lower energies and the high-energy

expansions on the other end. However, one may notice the differences between the high-

energy expansion results and ours for
√
s > 1000 GeV in the ratio plot. The differences

are due to the power corrections we mentioned earlier. For
√
s > 1000 GeV, the O(α2

s)

corrections are at per mile level as a result of large cancellation between soft-virtual part

and hard part. However, no such large cancellation exist for the power correction terms.

This is because we are only neglecting power correction terms in soft-virtual part, not in

hard part. Therefore, in general the power corrections are proportional to the LO cross

sections and depend on threshold behaviors of dσ(2)/dτ as shown in Eq. (45). Furthermore,

the power corrections contain logarithmic terms of the form ln(s/m2
t ), which become large as

s increased. For
√
s < 1000 GeV, which is the energy range phenomenologically important,

the power corrections are negligibly small for the chosen cut-off parameter and our results

are accurate. For
√
s > 1000 GeV, power corrections become important and a smaller cut-

off parameter is needed to suppress them. That requires much more CPU times in order

to control the MC integration errors which is not worth considering the smallness of the

absolute corrections.

Further comparisons for the ratios are presented in Figs. 4-5 as functions of r for differ-

ent color structures. The left end of each plot, with r ∼ 0.17, corresponds to a collision

energy of 2 TeV. Besides the high-energy and threshold expansions, we also include into

comparison results from Padé approximation for which the analytical expressions are avail-

able for Abelian R
(2)
A and non-Abelian R

(2)
NA pieces in Ref. [137]. The Padé approximation

is an interpolation based on the existed results in different limits and works for the entire

energy range. Again we can see good agreement of our results with the high-energy and

threshold expansions in the corresponding limit, and also the Padé approximation in the

entire energy region for r > 0.4. The kinks in the Abelian contributions are due the fact

that R(2) crosses zero at that point. The deviation of our results for r < 0.4 again are due to

the power corrections. It is understood that the power corrections are different for different

color structures. Especially, they are negligible for “Nh” part since there is no logarithmic

enhancement as seen in Eq. (44). We have checked that if we choose larger or smaller values

of δE , our curves do get farther or closer to the high-energy expansion or Padé approxima-
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tion curves for r < 0.4. The small differences between the Padé approximation [137] and

high-energy expansion results [16, 17] are due to that the former one is based on expansion

with less terms in m2/s.

We further show reduction of the scale variations by including the O(α2
s) corrections in

Fig. 6. We vary the renormalization scale µr around the nominal choice µr =
√
s by a factor

of 10 downward and 4 upward. The scale dependence have been reduced significantly for
√
s = 500 and 1000 GeV, e.g., from 6% at the NLO to 1% at the NNLO for a collision

energy of 500 GeV. The NNLO results still show a large scale dependence near production

threshold due to the large corrections and require resummations for further improvements.

3.2. Differential distributions

We can calculate fully differential distributions up to NNLO in QCD based on the phase-

space slicing method. At LO, there is only one non-trivial kinematic variable, which we

can choose either as cosine of the scattering angle between the final-state top quark and

the initial-state electron cos θt, or transverse momentum of the top quark with respect to

the beam pT,t. Similar as the inclusive cross section, we can define the O(αs) and O(α2
s)

corrections for each kinematic bin, ∆
(1),γ
bin and ∆

(2),γ
bin , in analogy to Eq. (47). The results are

shown in Fig. 7 for cos θt and 8 for pT,t distributions with collision energies of 350, 500, and

1000 GeV. For each of them we plot the O(α2
s) corrections with two different δE choices,

10−3 and 5 × 10−4. By comparing those two results we can see very good stabilities of the

O(α2
s) distributions for δE small enough ∼ a few 10−4, similar as the inclusive cross sections.

As can be seen from Fig. 7, both the O(αs) and O(α2
s) corrections are flat for

√
s = 350

GeV where they are dominated by virtual corrections. The cos θt distribution is symmetric

in forward and backward region for pure photon contributions. For
√
s = 500 GeV, the

O(α2
s) corrections are slightly larger in region of | cos θt| ∼ 1 than central region, and are

about 13% of the O(αs) corrections in size. The O(α2
s) corrections for cos θt distribution are

totally negligible comparing to the O(αs) ones for
√
s = 1000 GeV.

The transverse momentum distributions in Fig. 8 show a different feature comparing to

the angular distribution since they are also affected by the energy spectrum of the top quark.

The real corrections pull the energy spectrum to the lower end and thus the pT,t distribution

as well. As shown in Fig. 8, both the O(αs) and O(α2
s) corrections start as positive in low
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pT and then decrease to negative values near the kinematic limits. The O(α2
s) corrections

show a relatively larger impact in the pT,t distribution.

Besides, we can also investigate distributions like, ∆φtt̄, difference of azimuthal angles of

top and antitop quark, and their invariant mass, mtt̄. Since they are both a delta function

at the LO, our O(α2
s) corrections are effectively NLO for those observables. We plot the LO

distributions together with the O(αs) and O(α2
s) corrections in Fig. 9. The corrections have

been rescaled for comparison. For bins with vanishing cross sections at the LO, we have

compared our O(αs) and O(α2
s) corrections with the calculations of QQ̄ + jet production

up to NLO in [25] and found very good agreement.

4. Conclusion

To conclude, we have presented a fully differential NNLO QCD calculation for the photon

exchange contributions to electroweak top quark pairs production at e+e− colliders. Our

calculations are based on a NNLO generalization of the phase-space slicing method. Similar

methods were introduced some time ago to compute the Nl-dependent contributions to the

total cross section [114, 115]. To the best of our knowledge, the results presented in this

paper for the rest of the color structures are new. Let us emphasize that we present various

differential distributions as well at NNLO for the first time. Whenever possible, we have

compared our results to existing analytical calculations. We find complete agreement with

the known results, both in the threshold [8–11] and in the high-energy regimes [13–17].

Although their calculation was beyond the scope of this work, the Z exchange contributions

can be straightforwardly derived using the phase-space slicing technique discussed in this

paper. The Z exchange contributions are of fundamental phenomenological importance and

will be treated in a future publication.

Inspired by the successful application of qT subtraction method of Catani and Grazz-

ini [72], recently there has been some interest and progress in applying the phase-space

slicing method to NNLO QCD calculations. For instance, top quark decay [99], Drell-Yan

production [140], and Higgs production [141] have all been studied in schemes very similar to

the one described in this work. This paper demonstrates that phase-space slicing can also be

used to calculate top quark production processes, albeit at e+e− colliders. Our calculation

shows that fully differential NNLO corrections in e+e− annihilation are not much harder to
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obtain than typical NLO corrections to QCD processes once a good IR-safe observable has

been defined and the corresponding hard and soft functions are known. In future work, it

would be interesting to apply the phase-space slicing method to other NNLO QCD calcula-

tions relevant to the physics of future linear colliders and to generalize the method to allow

for the treatment of parton-initiated processes.
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bin for different

collision energies and different δE choices.
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FIG. 8: NLO and NNLO corrections in different pT,t bins, ∆
(1),γ
bin and ∆

(2),γ
bin , for different

collision energies and different δE choices.
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FIG. 9: Differential distribution, dσ/dmtt̄ on left, dσ/dφtt̄ on right, at the LO, O(αs)

(multiplied by 4), and O(α2
s) (multiplied by 10).
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