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Abstract

The baryon vector current is computed at one-loop order in large-Nc baryon chiral perturbation

theory, where Nc is the number of colors. Loop graphs with octet and decuplet intermediate

states are systematically incorporated into the analysis and the effects of the decuplet-octet mass

difference and SU(3) flavor symmetry breaking are accounted for, giving the full result to order

O
(

p2
)

in the chiral expansion. There are large-Nc cancellations between different one-loop graphs

as a consequence of the large-Nc spin-flavor symmetry of QCD baryons. The results are compared

against the available experimental data through several fits in order to extract information about

the unknown parameters. The large-Nc baryon chiral perturbation theory predictions are in very

good agreement both with the expectations from the 1/Nc expansion and with the experimental

data. The effect of SU(3) flavor symmetry breaking for the |∆S| = 1 vector current form factors

f1(0) results in a reduction by a few percent with respect to the corresponding SU(3) symmetric

values.
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I. INTRODUCTION

Baryon semileptonic decays (BSD) have served as key source of information and tests of

the weak interactions, and through the strictures of SU(3) and chiral symmetries also of the

strong interactions. Super-allowed nuclear β decay provides the most accurate determination

of the Cabibbo angle, and hyperon semileptonic decays (HSD) provide key information on

chiral SU(3)× SU(3) symmetry and its breaking by the quark masses, and also give access

to independent determinations of the CKM matrix element |Vus|.
BSD, denoted here by B1(p1) → B2(p2) + e−(pℓ) + νe(pν), are described by the effective

Hamiltonian

HW =
GF√
2
LαJα +H.c., (1)

where Lα and Jα are the leptonic and hadronic weak currents, respectively, which possess

the V − A structure of the weak interactions, and GF is the Fermi constant. The leptonic

current is given by

Lα = ψeγ
α(1− γ5)ψνe + ψµγ

α(1− γ5)ψνµ, (2)

and the hadronic current is Jα = Vα −Aα, where

Vα = Vud uγαd+ Vus uγαs, (3)

and

Aα = Vud uγαγ5d+ Vus uγαγ5s. (4)

Vα and Aα are the weak vector and axial-vector currents, respectively, and Vud and Vus are

elements of the CKM matrix. The matrix elements of Jα between spin-1/2 baryon states

have the most general forms:

〈B2|Vα|B1〉 = VCKM uB2
(p2)

[

f1(q
2)γα +

f2(q
2)

MB1

σαβq
β +

f3(q
2)

MB1

qα

]

uB1
(p1), (5)

and

〈B2|Aα|B1〉 = VCKM uB2
(p2)

[

g1(q
2)γα +

g2(q
2)

MB1

σαβq
β +

g3(q
2)

MB1

qα

]

γ5uB1
(p1), (6)

where q ≡ p1 − p2 is the four-momentum transfer, uB1
and uB2

are the Dirac spinors of the

decaying and emitted baryons, respectively, and VCKM stands for Vud or Vus, as the case may

be. Here the metric and γ-matrix conventions of Ref. [1] are used.
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The matrix elements (5) and (6) are characterized by three form factors each, fi(q
2) and

gi(q
2), respectively, where the weak decays probe their charged components. Additional

information is of course obtained from the EM current, which is not discussed here. As

a shorthand notation, fi ≡ fi(0) and gi ≡ gi(0) will be used hereafter. For the leading

form factors, f1(0) = gV and g1(0) = gA are also used. The latter couplings are related by

Cabibbo’s theory, with the further generalization to six quarks by Kobayashi and Maskawa.

At the present level of experimental accuracy on BSD, only the form factors f1(q
2) and

f2(q
2) of the vector current and g1(q

2) and g2(q
2) of the axial vector current are involved in

electron modes, whereas the f3(q
2) and g3(q

2) contributions can be neglected because of the

small factor m2
e that comes along with them. At a more detailed level, the q2−dependence

of the leading form factors can be parametrized in a dipole form whereas the q2−dependence

of f2 and g2 can be neglected due to the q factor already present in the matrix elements (5)

and (6).

In the limit of exact flavor SU(3) symmetry f1 and f2 are predicted in terms of the

EM form factors of p and n via SU(3) transformations. The g2 form factor for diagonal

matrix elements of hermitian currents vanishes by hermiticity and time-reversal invariance.

Therefore, SU(3) symmetry yields g2 = 0 in the symmetry limit. Finally, g1 is given in

terms of the familiar couplings F and D.

The decay widths driven by vector and axial vector currents do not interfere, thus, Γ =

ΓV + ΓA. The determination of |Vus| and the mentioned form factors can be extracted

from the total decay rate R, and, to a high degree of precision, R must include radiative

corrections. The actual expression for R reads,

R = R0
(

1 +
α

π
Φ
)

, (7)

where R0 is the uncorrected decay rate and model-independent radiative corrections are

encoded in the term (α/π)Φ [1]. R0 is a quadratic function of the form factors and can be

written in the most general form as1

R0 = |VCKM|2
(

6
∑

i≤j=1

aRij fifj +

6
∑

i≤j=1

bRij (fiλfj + fjλfi)

)

, (8)

1 Strictly speaking, the model-dependence of radiative corrections can be absorbed into the leading form

factors f1 and g1 [1] so Eq. (7) should be written in terms of f ′

1 and g′1. Actually, these primed form

factors are the ones accessible to experiment.
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where the dipole parametrizations assumed for all form factors introduce six slope parameters

λfi. For the sake of shortening Eq. (8), g1 = f4, g2 = f5, g3 = f6, λg1 = λf4 , λg2 = λf5,

and λg3 = λf6 have been momentarily redefined. The analytic expressions for R0 in HSD

can be found in Ref. [2]. The short distance contributions of radiative corrections, given by

the factor Sew, can be accounted for in the usual way by defining an effective weak coupling

constant.

The |∆S| = 1 form factors f1 satisfy the Ademollo-Gatto (AG) theorem, which states that

the SU(3) symmetry breaking (SB) corrections to their SU(3) limit values are proportional

to (ms−m̂)2. One must note that this does not mean the corrections are O (p4) in the chiral

expansion. As it happens with Kℓ3 decays [3, 4], the dominant such corrections are non-

analytic in quark masses and stem from the chiral loop contributions. Those corrections, if

expanded in (ms− m̂) will behave as the AG theorem requires but with small denominators

proportional to quark masses, and therefore the non-analytic corrections are O (p2). The

analytic contributions are of course O (p4) and beyond the accuracy of the calculation in this

work. Therefore, the dominant SU(3) SB corrections to f1 calculated here are ultraviolet

finite and well defined.

In this work, the formalism of the 1/Nc expansion combined with HBChPT is used to

calculate the one-loop corrections to the baryon vector currents. The approach has been

successfully applied to compute flavor-27 baryon mass splittings [5], baryon axial-vector

couplings [6, 7] and baryon magnetic moments [8, 9], as well as to the study of Lattice QCD

results for baryon masses and axial couplings [10, 11]. Here its applicability is extended to

the analysis of one-loop corrections to the baryon vector current operator.

Consistency with the 1/Nc expansion requires that the baryon decuplet be also included

with specific couplings. Here it is shown how to carry out the calculation following the

strictures of the 1/Nc expansion, which imposes relations between the various couplings

involved. The present work will give the SU(3) SB corrections to the vector current at

the leading order of the breaking, i.e. O (p2), and represents an important step towards a

more accurate calculation where the first sub-leading SU(3) SB effects are also included.

Thus the approximations involved, which will be discussed in more detail later, are the

following: (i) The SU(3) breaking mass splittings in the baryon propagators involved in

the loop are disregarded; it will be shown that such effects are of sub-leading order in

the chiral expansion. (ii) The calculation involves the mass splittings between octet and
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decuplet baryons; in the present work the SU(3) SB in those splittings are ignored as per

(i). The SU(3) SB corrections to (i) and (ii) will be studied in detail in future work as they

will contribute to sub-leading SU(3) SB effects. (iii) The one-loop correction, as discussed

below, is proportional to Aia⊗Aib, where Aia is the axial vector current operator. The 1/Nc

expansion of Aia is truncated at the physical value Nc = 3, so in the correction there appear

up to six-body operators, which are suppressed by 1/N4
c factors. Working out to this order

is two-fold. First, the operator reductions are doable; secondly, the complete expressions

will allow a rigorous comparison with chiral perturbation theory results order by order.

Knowing that the chiral and 1/Nc expansions do not commute, an expansion scheme can be

implemented, such as the low scale or ξ expansion discussed recently in [10]. This will be

presented in the mentioned future work. The present work will serve as a reference mark

for the effects of those improvements.

The earliest computations in baryon chiral perturbation theory (BChPT) of the vector

form factors for HSD were performed in the works by Krause [12] and by Anderson and Luty

[13]. In both works the baryonic degrees of freedom involve only the spin 1/2 octet. Reference

[12] presents the calculation in relativistic BChPT to O(p2), while [13] works in HBChPT

and performs a (partially complete) O(p3) computation2. An analysis which is closest to

the one in the present work is the one by Villadoro [14], where HBChPT including both

octet and decuplet baryon degrees of freedom is used. That analysis includes (partially)

up to O(p3) corrections corresponding to subleading in 1/MB terms. Other works using

covariant BChPT with the IR regularization are by Lacour, Kubis and Meissner [15], where

a calculation to O(p3) is performed with only the octet baryons as active degrees of freedom,

and by Geng, Martin-Camalich and Vicente-Vacas [16], where in the same framework also

the decuplet baryons are included. Finally, a calculation using the 1/Nc expansion was

performed in Ref. [2], which however does not include chiral loop contributions. Since the

one-loop contributions are of upmost importance for the SU(3) breaking corrections to the

f1, the present work will provide those contributions. Indeed, due to the AG theorem, the

tree level contributions to those corrections must be O (p4), while at one-loop there are non-

analytic contributions, consistent with AG, which are O (p2), and thus dominant over the

ones in Ref. [2].

2 This reference has a sign mistake in the tadpole contributions, as pointed out in [14].
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A comparison of the works mentioned above reveal open issues in the different approaches

vis-à-vis the SU(3) breaking effects in the form factor f1, which can be summarized as

follows: i) the leading corrections O (p2) calculated with the inclusion of the decuplet in

[14] and [16] are in agreement concerning the sign, and also with the results in the present

work. However, the numerical values have significant discrepancies between the calculation

in HBChPT and the one in covariant BChPT. The calculations without the decuplet [13, 15]

give O (p2) results which are very different with each other and the ones with the decuplet

included. In particular some of the signs of the corrections are different. These disagreements

at O (p2) are partly related to the approach being used, and are a strong motivation for

further investigation on establishing which is the most realistic one. ii) the second big

problem is with the O (p3) corrections, which in all works where they have been evaluated

turn out to be inordinately large and positive in general, leading in most cases to a sign

reversal of the full correction. Since the calculations to that order are basically well defined,

because no counterterms are required, at face value this would represent a breakdown of the

low energy expansion. Except for the references where the decuplet is explicitly included,

the issue of inconsistency with the 1/Nc expansion could play a role in that power counting

problem. However, the works including the decuplet also report large O (p3) corrections,

which may indicate that the issue is even more profound. Since the O (p3) corrections will

not be evaluated in the present work, this problem will be further investigated in future

work.

The impact of SU(3) breaking effects in form factors for the extraction of |Vus| from
hyperon decays has been studied in Refs. [17, 18]. Of particular interest in that regard

is the best possible determination of the form factors f1 for extracting |Vus| through the

product |f1Vus|, which can be determined rather precisely from observables (see for example

Ref. [18]).

Important inroads are being made by Lattice QCD calculations of form factors [19–

22]. These and future results are very significant, as one will be able to test explicitly the

behavior of the vector form factor with the quark masses, and in particular understand more

accurately the SU(3) SB effects on f1, helping clarify the issues mentioned above. In the

most recent calculation of f1 in the transitions Ξ0 → Σ+ and Σ− → n Ref. [21], the SU(3)

breaking tends to produce a reduction in f1 which is very similar to what is found in the

O (p2) calculations in the present work (see Sec. V for details), and contradict the O (p3)
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calculations mentioned earlier.

The main motivation of the present work is to provide a computation of the SU(3)

breaking corrections to the form factor f1 in a framework of the chiral expansion which

is consistent with the 1/Nc expansion of QCD. As it is well known from the consistency

constraints imposed by the large-Nc limit of QCD for baryons [23], it is necessary to include

on an equal footing in the effective theory the octet and the decuplet baryons, as demanded

by the emergent spin-flavor symmetry (SU(6)) in the large-Nc limit which is a consequence

of that consistency. The interplay of these multiplets in chiral loops is often necessary

to restore the correct Nc power counting, by producing exact cancellations of otherwise

power counting violating contributions. As discussed later, this is indeed the case for some

of the one loop contributions to SU(3) breaking in f1. The present work provides the

complete O(p2) corrections to f1, leaving to a next stage the full calculation at O(p3). The

constraints of the 1/Nc expansion manifest themselves in the effective Lagrangian through

the SU(6) relations between the pseudoscalar octet and the octet and decuplet baryons, and

through the O(1/Nc) hyperfine mass splitting between octet and decuplet. Since the known

phenomenological couplings satisfy approximately those constraints, the numerical results

obtained in the work by Villadoro [14] should be expected to be approximately matched by

the results obtained here.

This article is organized as follows. In Sec. II some general aspects of baryon chiral per-

turbation theory in the 1/Nc expansion are provided. In Sec. III the tree-level contribution

of the baryon vector current is dealt with as a prelude to discuss in Sec. IV the one-loop

correction, where each Feynman diagram is individually discussed in detail. In Sec. V a

numerical analysis is performed to compare the resultant theoretical expressions against the

experimental information through several different least-squared fits. In Sec. VI the sum-

mary and concluding remarks are given. This work is complemented by three appendices.

In Appendix A all the analytical results of the loop integrals that appear in the calculation

are provided. In Appendix B the baryon operator reductions performed are listed; this way

in Appendix C some useful formulas are given in a compact form.
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II. BARYON CHIRAL PERTURBATION THEORY IN THE 1/Nc EXPANSION

The 1/Nc expansion for baryons has been discussed in detail in Refs. [5, 24, 25], thus

this section only provides a brief summary, introducing notations and conventions. In the

large-Nc limit, the lowest-lying baryons are given by the completely symmetric spin-flavor

representation of Nc quarks SU(2Nf) [24, 26]. Under SU(2)× SU(Nf ), this representation

decomposes into a tower of baryon flavor representations with spins J = 1/2, 3/2, . . . , Nc/2,

where the states with vanishing strangeness satisfy I = J . This tower is degenerate in the

large-Nc limit, and the hyperfine mass splittings ∆ between states with spin J of O (N0
c ) are

O (1/Nc). In general, corrections to the large-Nc limit of observables are expressed in terms

of 1/Nc suppressed operators [24], which leads to the 1/Nc expansion of QCD. Note however

that there are also non-analytic dependencies on the ratios mπ/∆ which are not captured

by the expansion in operators, but which emerge from the finite pieces of loop corrections

in the chiral expansion, as discussed below.

When a QCD operator is considered, for the purpose of its matrix elements between

the ground state spin-flavor multiplet of baryon states, it can be represented by a series

of effective operators organized in a power series in 1/Nc. The 1/Nc expansion of a QCD

m-body quark operator acting can then be expressed as follows [25]

Om-body
QCD =

Nc
∑

n=m

in
∑

i=1

cin
1

Nn−m
c

Oi
n , (9)

where the Oi
n constitute a complete set of linearly independent effective n-body operators.

These operators are represented by products of n spin-flavor generators J i, T a and Gia, and

the cin(1/Nc) are unknown coefficients which have an expansion, possibly non-analytic due

to loop effects, in 1/Nc beginning at order unity. These effective coefficients are determined

by the QCD dynamics, and are obtainable through phenomenological analysis or in certain

cases also Lattice QCD.

Among the most relevant QCD operators studied in the 1/Nc expansion are the Hamilto-

nian (baryon masses) [25, 27], axial [6, 7, 10, 23, 28] and vector [29] currents and magnetic

moments [8, 9, 28].

The expansion for the baryon mass operator is given by [25]

M = m0,1
0 Nc11 +

Nc−1
∑

n=1

m0,1
n

N2n−1
c

J2n + SU(3) breaking operators , (10)
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where the coefficients m0,1
n are O(ΛQCD). The first term in Eq. (10) represents the overall

spin-independent mass of the baryon spin-flavor multiplet and the remaining spin-dependent

terms constitute MHF, where HF stands for hyperfine. The SU(3) breaking pieces are

omitted here as they are not needed in the present work; they have been given in Ref. [27].

In the limit of exact SU(3) flavor symmetry, the 1/Nc expansion of the baryon axial

vector current, can be written as [25]

Aia = a1G
ia +

Nc
∑

n=2

bn
1

Nn−1
c

Dia
n +

Nc
∑

n=3

cn
1

Nn−1
c

Oia
n , (11)

where the coefficients a1, bn and cn are of order unity and the leading operators that come

along with them read3

Dia
2 = J iT a, (12)

Dia
3 = {J i, {J j, Gja}}, (13)

Oia
3 = {J2, Gia} − 1

2
{J i, {J j, Gja}}. (14)

Higher order operators are constructed from the previous ones by anticommuting them with

J2. The operators Dia
n and Oia

n have non-vanishing matrix elements only between states of

equal and different spin, respectively, so they are referred to as diagonal and off-diagonal

operators. The axial currents enter in the present calculation via the pseudoscalar-baryon

couplings in the one-loop diagrams, and up to the considered chiral order of the calculation

there is no need to include the SU(3) SB corrections to them. For details on those effects,

see [7] and references therein.

An interesting feature of the large-Nc counting scheme is the determination of the Nc

dependence of the matrix elements of the generators J i, T a and Gia. The baryon matrix

elements of J i for the low-lying baryons in the SU(6) representation are of order unity. The

Nc dependence of the matrix elements of T a and Gia is by far more subtle because it depends

on the component a and on the initial and final baryon states. Specifically, for baryons with

strangeness O (N0
c ) the matrix elements of T a (a = 1, 2, 3) and Gi8 are O (N0

c ); the matrix

elements of T a and Gia (a = 4, 5, 6, 7) are O
(√

Nc

)

; and the matrix elements of T 8 and Gia

(a = 1, 2, 3) are O (Nc) [25]. For concreteness, the naive estimate that matrix elements of T a

3 The 2-body operator Oia
2 = ǫijk{Jj , Gka} and the higher order operators Oia

2m+2 = {J2,Oia
2m} (m =

1, 2, . . .) are even under time reversal so they do not contribute to Aia.

9



and Gia are both O (Nc), which is the largest they can be, will be implemented here. This

estimate is legitimate provided the analysis is restricted to the lowest-lying baryon states,

namely, those states that make up the 56 dimensional representation of SU(6).

The scaling of the baryon masses proportional to Nc implies that an expansion in 1/Nc

naturally leads to a formulation of the effective theory in the framework of heavy baryon chi-

ral perturbation theory (HBChPT) [30]. In addition, and as mentioned earlier, the SU(2Nf)

dynamical spin-flavor symmetry in large-Nc requires that the ground state baryons appear

in a multiplet of such symmetry, namely the totally symmetric one with Nc boxes in the

Young tableaux. The chiral Lagrangian can be then constructed to satisfy the strictures of

chiral symmetry and spin-flavor symmetry, with the breaking of these symmetries expanded

in a Taylor series in quark masses and 1/Nc respectively [5].

In the baryon rest frame, the combined HBChPT and 1/Nc expansion effective Lagrangian

at lowest order is given by [5, 10, 31]:

L(1)
B

= B†
(

iD0 + g̊Au
iaGia − m0,1

2

Nc
− CHF

Nc
J2 − c1

2
Nc χ+

)

B, (15)

where B is the symmetric spin-flavor baryon multiplet with states J = 1/2, · · · , Nc/2, and

Gia are the spin-flavor generators of SU(6) with matrix elements are O (Nc), where i are

spatial indices and a are SU(3) flavor indices. The Goldstone boson pseudoscalar octet πa

resides in the unitary matrix

u ≡ exp

(

iπaλa

2F0

)

, (16)

where F0 is the pion decay constant in the chiral limit, which for the purpose of the present

work can be taken to be F0 = Fπ = 93 MeV. The chiral operators in the Lagrangian are

uµ = i(u†(∂µ − i(vµ + aµ))u− u(∂µ − i(vµ − aµ))u†)) = − 1

F0

∂iπaλa + · · · , (17)

which gives uia = (1/2) Tr (λaui), and the covariant derivative Dµ = ∂µ − iΓµ with

Γµ =
i

2
(u†(∂µ − i(v0 + a0))u+ u(∂µ − i(vµ − aµ))u

†). (18)

vµ are the sources coupling to the vector currents, namely vµ = vaµT
a/2, and similarly aµ are

sources coupling to the axial vector currents, and the quark masses reside in χ+. The low

energy constants m0,1
2 , g̊A, CHF , and c1 are O (N0

c ). As defined here, and at lowest order,

the leading order axial coupling g̊A (to be later denotation by a1) is related to the one of the

nucleon at Nc = 3 by g̊A = 6
5
gA, where gA = 1.27 is the well known nucleon axial coupling.
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At the lowest order the meson-baryon couplings are all fixed by g̊A, being entirely determined

by the corresponding axial couplings through the underlying Goldberger-Treiman relation.

The commonly used axial vector couplings are then given by F = g̊A/3, D = g̊A/2, C = −g̊A
and H = −3̊gA/2. Deviations from these values are due to effects O (1/Nc).

The vector current is affected by the SU(3) SB effects at higher orders in the chiral

expansion. The effects stemming from tree contributions appear in the chiral Lagrangian

at O (p3) for the magnetic components and for the corresponding charges, which are of the

main interest in this work, at O (p5), which is beyond the order needed in this work. Thus,

for the present calculations only the above displayed Lagrangian is needed, to which the

terms that correspond to 1/Nc corrections will be added. In particular higher order in 1/Nc

corrections to the pseudoscalar-baryon couplings, i.e. the F , D, C and H couplings, through

the corresponding corrections to the axial currents will be included. This will serve the

purpose of determining how important such corrections are for the weak decays as well as

their impact on the strong decays, which are also included in the fits.

III. THE BARYON VECTOR CURRENT AT TREE LEVEL

In order to set the stage, at this point it is convenient to outline the expansions involved

in the relevant form factors in Eqs. (5) and (6). In the rest frame of the decaying baryon,

the dominant contribution to the matrix elements of the vector current is the corresponding

charge term given by f1, which is O (p0 ×N0
c ). The sub-leading terms involve (i) the recoil

piece of the convection current, which is O (q/MB), where q is the momentum transfer

through the current which is q ∼ MB2
− MB1

∼ ms = O (p2), thus the recoil term is

O (p2/Nc), (ii) the weak magnetism terms from the term proportional to f2 and from the

spin component proportional to f1, are respectively O (qNc/ΛQCD) and O (q/MB), and thus

O (p2Nc) and O (p2/Nc) respectively, (iii) the term proportional to f3 vanishes in the SU(3)

symmetry limit, and is therefore proportional to (ms − m̂)qµ = O (p4). A similar discussion

can be done for the axial vector current, where (i) the term proportional to g1 gives matrix

elements O (p0Nc) for the spatial components of the current and O (q/MB) = O (p2/Nc) for

the time component, (ii) the term proportional to g3 is highly suppressed as O (q2/MB) =

O (p4/Nc), and (iii) g2 vanishes in the limit of SU(3) symmetry.

At q2 = 0 the baryon matrix elements for the vector current in the limit of exact SU(3)
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symmetry are simply given by the matrix elements of the associated charge or SU(3) gen-

erator. Therefore, to all orders in the 1/Nc expansion [29]:

V 0a = T a. (19)

Due to the AG theorem, tree-level corrections to the |∆S| = 1 matrix elements, first appear

to O (p4), which is beyond the order considered in this work.

The matrix elements of V 0a between SU(6) baryon states in the limit of exact SU(3)

symmetry are listed in the first row of Table I for the |∆S| = 1 processes of interest. These

particular form factors will be referred to as f
SU(3)
1 . When SU(3) breaking is taken into

account, the matrix elements of V 0a will be again given by the matrix elements of T a but

now multiplied by a factor which is given by the corresponding ratio f1/f
SU(3)
1 , as worked

out in what follows.

IV. ONE-LOOP CORRECTIONS TO THE BARYON VECTOR CURRENT

SU(3) flavor SB will be considered in the exact isospin limit. As mentioned earlier, the

leading SU(3) flavor SB corrections to the vector currents occur at one-loop order in the

chiral expansion. Previous works focused on computing one-loop corrections to other baryon

static properties [6–9] will provide some feedback, so a close parallelism with them will be

kept. Also, results of those works are used in the global analysis involving both weak and

strong decays in Sec. V.

The one-loop corrections to the baryon vector current operator are displayed in Fig. 1. All

these graphs can be written as the product of a baryon operator times a flavor tensor which

results from the loop integral. Let us recall that the pion-baryon vertex is proportional to

gA/Fπ; in the large-Nc limit, gA ∝ Nc and Fπ ∝
√
Nc, so the pion-baryon vertex scales as

√
Nc. Although the Nc dependence of each diagram can be deduced straightforwardly from

the naive Nc counting rule, the group theoretical structure for Nc = 3 will be rigorously

computed here. As for the loop integrals, they have a non-analytic dependence on mq.

The appropriate combination of diagrams, however, yields corrections that respect the AG

theorem. The overall one-loop correction is thus O ((ms − m̂)2) when expanded in a Taylor

series in the mass difference, as mentioned in the introduction.

At this point it is convenient to spell out the general chiral and 1/Nc power countings.
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Since the transitions involved are only those with initial and final baryons in the octet, the

energy transfer through the current q0 ∼MB−MB′ which, as mentioned earlier, is a quantity

of O (p2) in the chiral expansion. On the other hand the decuplet–octet HF mass splittings

∆ have a piece O (1/Nc) plus an SU(3) SB contribution ∝ (ms − m̂) = O (p2). If one works

in the linked power counting where 1/Nc = O (p) [10] or ξ expansion, one concludes that

the heavy baryon propagator can be Taylor expanded in the SU(3) breaking mass shifts.

Also the loop contributions can be expanded in powers of q0. Thus, the dominant SU(3)

SB effects on the one-loop corrections stem from the mass differences of the π, K and η

mesons involved, with the SU(3) SB effects in the baryon masses playing a sub-leading role,

appearing with an additional suppression factor O ((ms − m̂)/Λχ).

The Nc power counting of the contributions to f1/f
SU(3)
1 due to the one-loop diagrams

in Fig. 1 are summarized as follows: (i) diagram (a) gives naively an O (Nc) contribution

due to the O
(√

Nc

)

of the meson-baryon vertices, but the algebra boils down to giving a

commutator of those vertices, which is actually suppressed by a factor 1/N2
c with respect to

the naive expectation. This would mean that (a) is 1/Nc; it is however a bit more subtle

than that: the hyperfine mass splitting between octet and decuplet gives rise to additional

terms beyond the mentioned commutator, which become the actual dominant contribution

O (N0
c ) (see Section 1 for the details). Diagram (a) is therefore consistent with Nc power

counting. It should also be emphasized that removing the decuplet in the loop leads to a

contribution which violates the power counting, and thus the result is incompatible with the

1/Nc expansion. Diagram (b) is actually O (Nc), and the Nc power counting is recovered

once the wave function renormalization factor is included, leading to a contribution O (N0
c ).

This is the same cancellation that takes place in general for any one-loop contribution to an

operator which attaches to the baryon propagator. In this case also, removing the decuplet

leads to the wrong power counting. Finally, diagrams (c) and (d) are both O (1/Nc) as they

are just proportional to 1/F 2
π = O (1/Nc). In the chiral power counting, all diagrams are

O (p2).

The starting point in the analysis of the SU(3) flavor SB is that it transforms as a

flavor octet. The SU(3) SB correction to the baryon vector current is then obtained from

the tensor product of the vector current itself and the perturbation, which both transform

as (0, 8). Let us also keep in mind that the tensor product of two octet representations

can be separated into an antisymmetric and a symmetric product, (8 × 8)A and (8 × 8)S,

13



q

q

q

q

a b

c d

FIG. 1: Feynman diagrams which yield one-loop corrections to the baryon vector current. Dashed

lines and solid lines denote mesons and baryons, respectively. The inner solid lines in (a) and

(b) can also denote decuplet baryons. Although the wavefunction renormalization graphs are not

displayed, they nevertheless have been included in the analysis.

respectively, which can be written as [25]

(8× 8)A = 8 + 10+ 10, (20a)

(8× 8)S = 1+ 8 + 27. (20b)

The one-loop SB corrections to the baryon vector current will therefore fall in the SU(2)×
SU(3) representations (0, 1), (0, 8), (0, 8), (0, 10 + 10), and (0, 27). Let us proceed to

analyze each one of them separately.

A. Figure 1(a)

The one-loop contribution to the baryon vector current arising from the Feynman diagram

of Fig. 1(a) can be written as

δV c
(a) =

∑

j

AiaPjA
ibP abc(∆j). (21)

14



Here Aia and Ajb are used at the meson-baryon vertices; Pj is the baryon projector for spin

J = j [5]
iPj

k0 −∆j

, (22)

which satisfies by definition

P2
j = Pj, (23a)

PjPj′ = 0, j 6= j′, (23b)

and ∆j stands for the difference of the hyperfine mass splittings between the intermediate

baryon with spin J = j and the external baryon, namely,

∆j = MHF|J2=j(j+1) −MHF|J2=jext(jext+1). (24)

Notice that as only octet to octet weak transitions are of interest, the external baryons have

J = 1/2. In Eq. (30) the sum over spin j has been explicitly indicated whereas the sums

over repeated spin and flavor indices are understood. In this work j = 1/2

The general expressions for Pj and ∆j have been introduced in Ref. [5]. For the lowest-

lying baryons,

P 1

2

= −1

3

(

J2 − 15

4

)

, (25a)

P 3

2

=
1

3

(

J2 − 3

4

)

, (25b)

along with

∆ 1

2

=







0, jext =
1
2
,

−∆, jext =
3
2
,

(26a)

∆ 3

2

=











∆, jext =
1
2
,

0, jext =
3
2
,

(26b)

and

∆ =
3

Nc
m0,1

2 , (27)

where m0,1
2 is the leading coefficient of the 1/Nc expansion of the baryon mass operator (10).

It is important to remark that expressions (25)–(27) have been truncated at the physical

value Nc = 3.
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On the other hand, P abc(∆j) is an antisymmetric tensor which can be expressed as

P abc(∆j) = A8(∆j)if
acb + A10+10(∆j)i(f

aecdbe8 − f becdae8 − fabedec8), (28)

where facb and faecdbe8− f becdae8− fabedec8 break SU(3)as 8 and 10+10, respectively. The

integral over the loop, Ia(m1, m2,∆j, µ; 0), is contained in the tensor P abc(∆j) through

A8(∆j) =
1

2
[Ia(mπ, mK ,∆j, µ; 0) + Ia(mK , mη,∆j, µ; 0)], (29a)

A10+10(∆j) = −
√
3

2
[Ia(mπ, mK ,∆j, µ; 0)− Ia(mK , mη,∆j, µ; 0)]. (29b)

The explicit expression for Ia(mπ, mK ,∆j, µ; 0) is given in Eq. (A3)

Thus, the full contribution to the baryon vector current operator from Fig. 1(a) can be

cast into the form

δV c
(a) = P 1

2

AiaP 1

2

AibP 1

2

P abc(0) + P 1

2

AiaP 3

2

AibP 1

2

P abc(∆). (30)

Naively, it could be expected δV c
(a) to be O (Nc): two factors of the pion-baryon vertex

gA/Fπ would yield a factor Nc. However, the operator AiaPjA
jb can be decomposed as

αAiaAib + βAiaJ2Aib, where α and β are some coefficients. Next, facbAiaAib can be rewrit-

ten as (1/2)facb{Aia, Aib} + (1/2)facb[Aia, Aib]; the anticommutator vanishes whereas the

commutator of an n-body operator with and m-body operator is an (n +m − 1)-operator.

Therefore, facbAiaAib is O (Nc). For f
acbAiaJ2Aib the relation

AiaJ2Aib =
1

2
{J2, AiaAib}+ 1

4
[[Aia, J2], Aib] +

1

4
[Aia, [J2, Aib]] +

1

4
{[Aia, J2], Aib}

+
1

4
{Aia, [J2, Aib]}, (31)

can be used to verify that facbAiaJ2Aib is also O (Nc). In consequence, δV a
(a) is O (N0

c ), or

equivalently, 1/Nc times the tree level value, which is O (Nc). In actual calculations, there

will appear up to eight-body operators in the operator products on the right-hand side of

Eq. (30) if the 1/Nc expansion of Aia is truncated at the physical value Nc = 3. Because the

operator basis is complete [25], the reduction, although long and tedious, is doable.

The way these operator reductions are performed can be better seen through a sample

calculation. For the ifacbAiaAib piece, using the form of Aia of (11) truncated at Nc = 3,

one finds,

ifacbAiaAib = a21if
acbGiaGib +

1

Nc

a1b2if
acbGiaDib

2 + . . .+
1

N4
c

c23if
acbOia

3 Oib
3 , (32)
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where only some contributions are displayed for simplicity. Computing the leading order

piece is straightforward by using the SU(6) commutation relations [25], namely,

ifacbGiaGib =
i

2
facb[Gia, Gib] =

i

2
facb

(

i

4
δiifabeT e

)

=
3

8
NfT

c. (33)

The computation of all subleading pieces (at the order worked here) is possible by system-

atically using the SU(6) commutation relations along with some operator identities. The

full reductions are listed in Appendix B for the sake of completeness. The Nc dependence

is explicitly kept.

Gathering together partial results, the various contributions from Fig. 1(a) can be orga-

nized as

ifacbAiaAib =

7
∑

n=1

a8nS
c
n, (34)

and

ifacbAiaJ2Aib =

7
∑

n=1

a8nS
c
n, (35)

for the octet contribution, and

i(faecdbe8 − f becdae8 − fabedec8)AiaAib =
13
∑

n=1

b10+10

n Oc
n, (36)

and

i(faecdbe8 − f becdae8 − fabedec8)AiaJ2Aib =
13
∑

n=1

b
10+10

n Oc
n, (37)

for the 10 + 10 contribution. The coefficients a8n, a
8

n, b
10+10

n and b
10+10

n are listed in full in

Appendix C. The corresponding operator bases are:

Sc
1 = T c, Sc

2 = {Jr, Grc}, Sc
3 = {J2, T c},

Sc
4 = {J2, {Jr, Grc}}, Sc

5 = {J2, {J2, T c}}, Sc
6 = {J2, {J2, {Jr, Grc}}},

Sc
7 = {J2, {J2, {J2, T c}}},

(38)

and

Oc
1 = dc8eT e, Oc

2 = dc8e{Jr, Gre},
Oc

3 = dc8e{J2, T e}, Oc
4 = {T c, {Jr, Gr8}},

Oc
5 = {T 8, {Jr, Grc}}, Oc

6 = dc8e{J2, {Jr, Gre}},
Oc

7 = dc8e{J2, {J2, T e}}, Oc
8 = {J2, {T c, {Jr, Gr8}}},

Oc
9 = {J2, {T 8, {Jr, Grc}}}, Oc

10 = dc8e{J2, {J2, {Jr, Gre}}},
Oc

11 = dc8e{J2, {J2, {J2, T e}}}, Oc
12 = {J2, {J2, {T c, {Jr, Gr8}}}},

Oc
13 = {J2, {J2, {T 8, {Jr, Grc}}}}.

(39)
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TABLE I: Matrix elements of baryon operators: singlet case.

Λp Σ−n Ξ−Λ Ξ−Σ0 Ξ0Σ+

〈Sc
1〉 −

√

3
2 −1

√

3
2

1√
2

1

〈Sc
2〉 −3

2

√

3
2

1
2

1
2

√

3
2

5
2
√
2

5
2

〈Sc
3〉 −3

2

√

3
2 −3

2
3
2

√

3
2

3
2
√
2

3
2

〈Sc
4〉 −9

4

√

3
2

3
4

3
4

√

3
2

15
4
√
2

15
4

〈Sc
5〉 −9

4

√

3
2 −9

4
9
4

√

3
2

9
4
√
2

9
4

〈Sc
6〉 −27

8

√

3
2

9
8

9
8

√

3
2

45
8
√
2

45
8

〈Sc
7〉 −27

8

√

3
2 −27

8
27
8

√

3
2

27
8
√
2

27
8

The matrix elements of the operators Sn and On between baryon octet states are listed in

tables I and II for completeness.

All the pieces of the one-loop contribution (30) for the process Λ → p can be put together

to illustrate how the approach works for concreteness. In terms of the operator coefficients

introduced in Eq. (11), at Nc = 3 one gets

[

f
(a)
1

f
SU(3)
1

]

Λp

=

[

17

16
a21 +

3

8
a1b2 +

17

24
a1b3 +

1

16
b22 +

1

8
b2b3 +

17

144
b23

]

Ia(mπ, mK , 0, µ; 0)

+

[

9

16
a21 +

3

8
a1b2 +

3

8
a1b3 +

1

16
b22 +

1

8
b2b3 +

1

16
b23

]

Ia(mη, mK , 0, µ; 0)

+

[

−1

2
a21 −

1

2
a1c3 −

1

8
c23

]

Ia(mπ, mK ,∆, µ; 0). (40)

Similar expressions can be found for the rest of the processes of interest. In order to display

the relative Nc dependence of the different terms, in this expression and similar ones that

will follow, one simply replaces bn → (3/Nc)
n−1bn and similarly for cn.

B. Figure 1(b)

The correction to the baryon vector current arising from Fig. 1(b), along with the cor-

responding wave function renormalization graphs not displayed but nevertheless accounted
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TABLE II: Matrix elements of baryon operators: octet case.

Λp Σ−n Ξ−Λ Ξ−Σ0 Ξ0Σ+

〈Oc
1〉 1

2
√
2

1
2
√
3

− 1
2
√
2

− 1
2
√
6

− 1
2
√
3

〈Oc
2〉 3

4
√
2

− 1
4
√
3

− 1
4
√
2

− 5
4
√
6

− 5
4
√
3

〈Oc
3〉 3

4
√
2

√
3
4 − 3

4
√
2

−1
4

√

3
2 −

√
3
4

〈Oc
4〉 3

4
√
2

−3
√
3

4 − 15
4
√
2

−1
4

√

3
2 −

√
3
4

〈Oc
5〉 − 9

4
√
2

√
3
4 − 3

4
√
2

−5
4

√

3
2 −5

√
3

4

〈Oc
6〉 9

8
√
2

−
√
3
8 − 3

8
√
2

−5
8

√

3
2 −5

√
3

8

〈Oc
7〉 9

8
√
2

3
√
3

8 − 9
8
√
2

−3
8

√

3
2 −3

√
3

8

〈Oc
8〉 9

8
√
2

−9
√
3

8 − 45
8
√
2

−3
8

√

3
2 −3

√
3

8

〈Oc
9〉 − 27

8
√
2

3
√
3

8 − 9
8
√
2

−15
8

√

3
2 −15

√
3

8

〈Oc
10〉 27

16
√
2

−3
√
3

16 − 9
16

√
2

−15
16

√

3
2 −15

√
3

16

〈Oc
11〉 27

16
√
2

9
√
3

16 − 27
16

√
2

− 9
16

√

3
2 −9

√
3

16

〈Oc
12〉 27

16
√
2

−27
√
3

16 − 135
16

√
2

− 9
16

√

3
2 −9

√
3

16

〈Oc
13〉 − 81

16
√
2

9
√
3

16 − 27
16

√
2

−45
16

√

3
2 −45

√
3

16

for in the analysis, can be written as [cf. Eq. (14) of Ref. [7]]

δV c
(b) =

1

2
[Aja, [Ajb, V c]]Qab

(1) −
1

2
{Aja, [V c, [M, Ajb]]}Qab

(2)

+
1

6

(

[Aja, [[M, [M, Ajb]], V c]]− 1

2
[[M, Aja], [[M, Ajb], V c]]

)

Qab
(3) + . . . ,

(41)

where Aja and Ajb represent the meson-baryon vertices, V c denotes the insertion of the

baryon vector current operator and M is the baryon mass operator. Qab
(n) is a symmetric

tensor which encodes the loop integral; it decomposes into flavor singlet, flavor 8 and flavor

27 representations as [5]

Qab
(n) = I

(n)
b,1 δ

ab + I
(n)
b,8 d

ab8 + I
(n)
b,27

[

δa8δb8 − 1

8
δab − 3

5
dab8d888

]

, (42)
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where

I
(n)
b,1 =

1

8

[

3I
(n)
b (mπ, 0, µ) + 4I

(n)
b (mK , 0, µ) + I

(n)
b (mη, 0, µ)

]

, (43a)

I
(n)
b,8 =

2
√
3

5

[

3

2
I
(n)
b (mπ, 0, µ)− I

(n)
b (mK , 0, µ)−

1

2
I
(n)
b (mη, 0, µ)

]

, (43b)

I
(n)
b,27 =

1

3
I
(n)
b (mπ, 0, µ)−

4

3
I
(n)
b (mK , 0, µ) + I

(n)
b (mη, 0, µ). (43c)

Here I
(n)
b (m, 0, µ) represents the degeneracy limit ∆ → 0 of the general function

I
(n)
b (m,∆, µ), defined as [31]

I
(n)
b (m,∆, µ) ≡ ∂nIb(m,∆, µ)

∂∆n
, (44)

where the function Ib(m,∆, µ) is given in Eq. (A6).

The expansion contained in Eq. (41) was derived for the baryon axial vector current in

Ref. [31]; here that result is extended to the baryon vector current taking advantage of the

fact that both currents transform as flavor octets so one can reach the very same conclusions

in the discussion presented in Ref. [31]. Naively, one would expect the double commutator

alone in (41) to be O (N3
c ): one factor of Nc from each baryon current. However, there are

large-Nc cancellations between the Feynman diagrams of Fig. 1(b) provided that all baryon

states in a complete multiplet of the large-Nc SU(6) spin-flavor symmetry are included in

the sum over intermediate states and that the axial coupling ratios predicted by this spin-

flavor symmetry are used. Thus it can be proved that the double commutator in (41) is at

most O (Nc). The same behavior is observed in the second contribution in (41), so it can be

concluded that δV c
(b) is O (N0

c ) and is of the same order as δV c
(a).

The final form of δV c
(b) can be organized as

δV c
(b) =

7
∑

n=1

(

c1nS
c
nI

(1)
b,1 + d1nS

c
nI

(2)
b,1S

c
n + e1nS

c
nI

(3)
b,1

)

+

13
∑

n=1

(

c8nO
c
nI

(1)
b,8 + d8nO

c
nI

(2)
b,8 + e8nO

c
nI

(3)
b,8

)

+

9
∑

n=1

(

c27n T
c
nI

(1)
b,27 + d27n T

c
nI

(2)
b,27 + e27n T

c
nI

(3)
b,27

)

+ . . . , (45)

where the coefficients crn, d
r

n and ern and given in Appendix C. While the singlet and octet
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TABLE III: Matrix elements of baryon operators: 27 case.

Λp Σ−n Ξ−Λ Ξ−Σ0 Ξ0Σ+

〈T c
1 〉 −3

4

√

3
2 −3

4
3
4

√

3
2

3
4
√
2

3
4

〈T c
2 〉 −9

8

√

3
2

3
8

3
8

√

3
2

15
8
√
2

15
8

〈T c
3 〉 −9

8

√

3
2 −9

8
9
8

√

3
2

9
8
√
2

9
8

〈T c
4 〉 0 −3

2
3
2

√

3
2 − 3√

2
−3

〈T c
5 〉 −27

16

√

3
2

9
16

9
16

√

3
2

45
16

√
2

45
16

〈T c
6 〉 −27

16

√

3
2 −27

16
27
16

√

3
2

27
16

√
2

27
16

〈T c
7 〉 0 −9

4
9
4

√

3
2 − 9

2
√
2

−9
2

〈T c
8 〉 −81

32

√

3
2 −81

32
81
32

√

3
2

81
32

√
2

81
32

〈T c
9 〉 0 −27

8
27
8

√

3
2 − 27

4
√
2

−27
4

operator bases are listed in Eqs. (38) and (39), respectively, the 27 operator basis is

T c
1 = fa8ef 8egT g, T c

2 = fa8ef 8eg{Jr, Grg},
T c
3 = fa8ef 8eg{J2, T g}, T c

4 = ǫijkfa8e{Gke, {J i, Gj8}},
T c
5 = fa8ef 8eg{J2, {Jr, Grg}}, T c

6 = fa8ef 8eg{J2, {J2, T g}},
T c
7 = ǫijkfa8e{J2, {Gke, {J i, Gj8}}}, T c

8 = fa8ef 8eg{J2, {J2, {J2, T g}}},
T c
9 = ǫijkfa8e{J2, {J2, {Gke, {J i, Gj8}}}}.

(46)

The corresponding matrix elements are given in Table III. The singlet and octet pieces

should be subtracted off the 27 piece to have a truly 27 contribution.

The contribution of 〈δV c
(b)〉 to f1 can be readily computed. Keeping the Λ → p process
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as an example, the contribution reads
[

f
(b)
1

f
SU(3)
1

]

Λp

=

[

9

32
a21 +

3

16
a1b2 +

17

48
a1b3 −

1

4
a1c3 +

1

32
b22 +

1

16
b2b3 +

17

288
b23 −

1

16
c23

]

I
(1)
b (mπ, 0, µ)

+

[

9

16
a21 +

3

8
a1b2 +

13

24
a1b3 −

1

4
a1c3 +

1

16
b22 +

1

8
b2b3 +

13

144
b23 −

1

16
c23

]

I
(1)
b (mK , 0, µ)

+

[

9

32
a21 +

3

16
a1b2 +

3

16
a1b3 +

1

32
b22 +

1

16
b2b3 +

1

32
b23

]

I
(1)
b (mη, 0, µ)

+

[

−3

4
a21 −

3

4
a1c3 −

3

16
c23

]

∆

3
I
(2)
b (mπ, 0, µ) +

[

−3

4
a21 −

3

4
a1c3 −

3

16
c23

]

∆

3
I
(2)
b (mK , 0, µ)

+

[

−9

8
a21 −

9

8
a1c3 −

9

32
c23

]

∆2

9
I
(3)
b (mπ, 0, µ) +

[

−9

8
a21 −

9

8
a1c3 −

9

32
c23

]

∆2

9
I
(3)
b (mK , 0, µ) + . . .

(47)

Equations (40) and (47) are now added together to get
[

f
(a)
1 + f

(b)
1

f
SU(3)
1

]

Λp

=

[

17

32
a21 +

3

16
a1b2 +

17

48
a1b3 +

1

32
b22 +

1

16
b2b3 +

17

288
b23

]

H(mπ, mK)

+

[

9

32
a21 +

3

16
a1b2 +

3

16
a1b3 +

1

32
b22 +

1

16
b2b3 +

1

32
b23

]

H(mK , mη)

+

[

−1

4
a21 −

1

4
a1c3 −

1

16
c23

]

K(mπ, mK ,∆), (48)

where

H(m1, m2) ≡ 2Ia(m1, m2, 0, µ; 0) + I
(1)
b (m1, 0, µ) + I

(1)
b (m2, 0, µ), (49)

and

K(m1, m2,∆) ≡ 2Ia(m1, m2,∆, µ; 0) + I
(1)
b (m1, 0, µ) + I

(1)
b (m2, 0, µ)

+
[

I
(2)
b (m1, 0, µ) + I

(2)
b (m2, 0, µ)

]

∆

+
[

I
(3)
b (m1, 0, µ) + I

(3)
b (m2, 0, µ)

] ∆2

2
+ . . .

= 2Ia(m1, m2,∆, µ; 0) + I
(1)
b (m1,∆, µ) + I

(1)
b (m2,∆, µ). (50)

The final form of K(m1, m2,∆) recovers the full form of the function I
(1)
b (m1,∆, µ), which

was originally expanded in a power series in ∆ in Eq. (41). This is a remarkable result.

On the other hand, the explicit form of the function H(m1, m2) becomes

H(m1, m2) =
1

16π2F 2
π

[

−1

2
(m2

1 +m2
2) +

m2
1m

2
2

m2
1 −m2

2

ln
m2

1

m2
2

]

, (51)

22



which is ultraviolet finite. The function K(m1, m2,∆) can be easily constructed from

Ia(m1, m2,∆, µ; 0) and I
(1)
b (m,∆, µ) given in Eqs. (A3) and (A6), respectively; the explicit

expression will not be provided here. However, some important properties of this function

are

1. lim
∆→0

K(m1, m2,∆) = H(m1, m2),

2. lim
∆→∞

K(m1, m2,∆) = 0.

Property (2) above has some interesting physical implications. The present calculation

exploits the near degeneracy between octet and decuplet baryons. For instance, in the

loop integral Ib(m,∆, µ), Eq. (A6), the full functional dependence on the ratio mπ/∆ has

been retained. This ratio does not have to be small necessarily because the conditions for

HBChPT to be valid are mπ ≪ Λχ and ∆ ≪ Λχ. In the chiral limit ∆ ≫ mπ so the

decuplet cannot contribute to the non-analytical corrections for octet processes since these

corrections come from infrared divergences. The decuplet thus decouples in the large-Nc

limit and property (2) holds.

A further aim of the approach can be achieved by rewriting the results in terms of the

SU(3) invariant couplings D, F and C introduced in HBChPT [30, 32]. These couplings are

related to the 1/Nc expansion coefficients a1, b2, b3, and c3 at Nc = 3 as follows:

D =
1

2
a1 +

1

6
b3, (52a)

F =
1

3
a1 +

1

6
b2 +

1

9
b3, (52b)

C = −a1 −
1

2
c3, (52c)

H = −3

2
a1 −

3

2
b2 −

5

2
b3. (52d)

In the large-Nc limit the standard SU(6) ratios D : F : C : H = 1 : 2
3
: −2 : −3 result. In

the canonical example worked out so far, substituting Eqs. (52) into Eq. (48) yields
[

f
(a)
1 + f

(b)
1

f
SU(3)
1

]

Λp

=
1

8
(9D2 + 6DF + 9F 2)H(mπ, mK)

+
1

8
(D2 + 6DF + 9F 2)H(mK , mη)−

1

4
C2K(mπ, mK ,∆), (53)

which exactly matches the ones obtained within (H)BChPT: When the decuplet fields are

not explicitly retained in the effective theory but integrated out, this result agrees with
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those presented in Refs. [12, 13, 15]. When the decuplet fields are retained, there is a full

agreement with the ones presented in Ref. [14] (in that reference Fπ = 131 MeV is used).

Moreover, it can be shown that

K(mp, mq,∆) =
4

3

(

Gpq −
3

8
Hpq

)

, (54)

where the functionsHpq andGpq are given in Eqs. (22) and (31) of that reference, respectively.

Note that the coupling H does not appear in the corrections to the vector currents, but it

does in the corrections to the axial currents. Its determination is addressed in the analysis

below.

C. Figure 1(c)

The tadpole diagrams of Figs. 1(c) and 1(d) can be easily computed within the combined

approach. These diagrams do not depend on the coefficients of the 1/Nc expansion of Aia.

The loop graph 1(c) can be written as

δV c
(c) = −f caef begT gRab, (55)

where

Rab =
1

2
[Ic(mπ, mK , µ; 0) + Ic(mK , mη, µ; 0)] δ

ab, (56)

where the loop integral Ic(m1, m2, µ; q
2) in the q2 → 0 limit is given in Eq. (A20) of Appendix

A. This contribution breaks SU(3) as a flavor singlet.

D. Figure 1(d)

The Feynman diagram of Fig. 1(d) is given by

δV c
(d) = −1

2

[

T a,
[

T b, V c
]]

Sab, (57)

where Sab has the very same structure as P ab
(n) of Eq. (42), namely,

Sab = Id,1δ
ab + Id,8d

ab8 + Id,27

[

δa8δb8 − 1

8
δab − 3

5
dab8d888

]

, (58)
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where

Id,1 =
1

8
[3Id(mπ, µ) + 4Id(mK , µ) + Id(mη, µ)] , (59a)

Id,8 =
2
√
3

5

[

3

2
Id(mπ, µ)− Id(mK , µ)−

1

2
Id(mη, µ)

]

, (59b)

Id,27 =
1

3
Id(mπ, µ)−

4

3
Id(mK , µ) + Id(mη, µ). (59c)

The integral over the loop is given in Appendix A, (A22). The different flavor contribu-

tions in Eq. (57) read

(1) Flavor singlet contribution

[T a, [T a, V c]] = NfV
c. (60)

(2) Flavor octet contribution

dab8[T a, [T b, V c]] =
Nf

2
dc8eV e. (61)

(3) Flavor 27 contribution

[T 8, [T 8, V c]] = f c8ef 8egV g. (62)

The straightforward combination of loop corrections 1(c) and 1(d), for the Λ → p process,

yields
[

f
(c)
1 + f

(d)
1

f
SU(3)
1

]

Λp

=
3

8
[H(mπ, mK) +H(mK , mη)] . (63)

Equation (63) agrees with the results derived in Refs. [12, 14, 15] but differs in a global sign

with respect to the expression presented in Ref. [13].

It is also interesting to remark that Eq. (63) contributes at the same order in Nc as

Eq. (48). This assertion can be proved numerically.

E. Total one-loop correction to the baryon vector current

The baryon vector current operator V c including one-loop corrections can be organized

in a single expression as

V c + δV c = V c + δV c
(a) + δV c

(b) + δV c
(c) + δV c

(d), (64)
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where δV c
(a), δV

c
(b), δV

c
(c), and δV c

(d) are given by Eqs. (30), (41), (55), and (57). In the

large-Nc counting, each correction is suppressed at least by a factor 1/Nc with respect to

the tree-level operator V c. The loop contributions expanded in (ms − m̂) satisfy the AG

theorem.

The matrix elements of the operator V c + δV c give the actual values of the vector form

factors f1 as defined in HSD. The full expressions for the processes observed are

[

f1

f
SU(3)
1

]

Λp

= 1 +

[

3

8
+

17

32
a21 +

3

16
a1b2 +

17

48
a1b3 +

1

32
b22 +

1

16
b2b3 +

17

288
b23

]

H(mπ, mK)

+

[

3

8
+

9

32
a21 +

3

16
a1b2 +

3

16
a1b3 +

1

32
b22 +

1

16
b2b3 +

1

32
b23

]

H(mK , mη)

+

[

−1

4
a21 −

1

4
a1c3 −

1

16
c23

]

K(mπ, mK ,∆), (65)

[

f1

f
SU(3)
1

]

Σ−n

= 1 +

[

3

8
− 7

32
a21 −

1

16
a1b2 −

7

48
a1b3 +

1

32
b22 −

1

48
b2b3 −

7

288
b23

]

H(mπ, mK)

+

[

3

8
+

1

32
a21 −

1

16
a1b2 +

1

48
a1b3 +

1

32
b22 −

1

48
b2b3 +

1

288
b23

]

H(mK , mη) (66)

+

[

1

2
a21 +

1

2
a1c3 +

1

8
c23

]

K(mπ, mK ,∆) +

[

1

4
a21 +

1

4
a1c3 +

1

16
c23

]

K(mK , mη,∆) ,

[

f1

f
SU(3)
1

]

Ξ−Λ

= 1 +

[

3

8
+

9

32
a21 +

1

16
a1b2 +

3

16
a1b3 +

1

32
b22 +

1

48
b2b3 +

1

32
b23

]

H(mπ, mK)

+

[

3

8
+

1

32
a21 +

1

16
a1b2 +

1

48
a1b3 +

1

32
b22 +

1

48
b2b3 +

1

288
b23

]

H(mK , mη)

+

[

1

4
a21 +

1

4
a1c3 +

1

16
c23

]

K(mK , mη,∆), (67)
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[

f1

f
SU(3)
1

]

Ξ−Σ0

= 1 +

[

3

8
+

17

32
a21 +

5

16
a1b2 +

17

48
a1b3 +

1

32
b22 +

5

48
b2b3 +

17

288
b23

]

H(mπ, mK)

+

[

3

8
+

25

32
a21 +

5

16
a1b2 +

25

48
a1b3 +

1

32
b22 +

5

48
b2b3 +

25

288
b23

]

H(mK , mη) (68)

+

[

−1

4
a21 −

1

4
a1c3 −

1

16
c23

]

K(mπ, mK ,∆) +

[

−1

2
a21 −

1

2
a1c3 −

1

8
c23

]

K(mK , mη,∆),

and
[

f1

f
SU(3)
1

]

Σ−n

=

[

f1

f
SU(3)
1

]

Σ0p

,

[

f1

f
SU(3)
1

]

Ξ0Σ+

=

[

f1

f
SU(3)
1

]

Ξ−Σ0

, (69)

where the latter are isospin relations.

A full crosscheck of the above expressions has been performed with their counterparts ob-

tained within (heavy) baryon chiral perturbation theory [12–15], according to the guidelines

described above. The results agree order by order.

It is interesting to notice that the contribution of diagrams (c) and (d) to the ratios

f1/f
SU(3)
1 is the same for all ratios.

V. NUMERICAL ANALYSIS

An analysis of the available experimental data [33] can be performed by using the results

obtained here. In previous works [6, 7] a number of fits have been carried out to determine

the baryon axial couplings, which are given by the matrix elements of the baryon axial

current operator Akc+ δAkc. For octet baryons, the axial vector couplings are g1 normalized

in such a way that g1 ∼ 1.27 for neutron β decay. For decuplet baryons, the axial vector

couplings are denoted by g, which are extracted via Goldberger-Treiman relations from the

widths of the strong decays of decuplet to octet baryons and pions [28].

The effects related to SU(3) SB are contained in δAkc in two ways: On the one hand, at

tree level, all relevant operators which explicitly break SU(3) at leading order are included;

this contribution is loosely referred to as perturbative SB. On the other hand, in the one-loop

corrections, SU(3) SB is accounted for implicitly, since the loop integrals depend on the π,

K and η masses.
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The operator δAkc has been built up in a systematic way. In Ref. [6], δAkc was constituted

only by one-loop corrections within the combined approach, while in Ref. [7], a more refined

calculation was performed to include the effects of perturbative SU(3) SB corrections and

the effects of the baryon decuplet–octet mass splitting. The corrected axial vector current

operator actually used in the numerical analysis reads

Akc + δAkc
SB + δAkc

1L = a1G
kc + b2

1

Nc

Dkc
2 + b3

1

N2
c

Dkc
3 + c3

1

N2
c

Okc
3 +

[

d1d
c8eGke + d2

1

Nc

dc8eDke
2

+ d3
1

Nc

(

{Gkc, T 8} − {Gk8, T c}
)

+ d4
1

Nc

(

{Gkc, T 8}+ {Gk8, T c}
)

]

+ δAkc
1L, (70)

where δAkc
SB is the correction that arises from perturbative SB and δAkc

1L is the one-loop cor-

rection. Note that the loop corrections are renormalized by the counter terms corresponding

to the coefficients ai, bi, and ci. Minimal subtraction is used with renormalization scale µ.

Equation (70) was parametrized in Ref. [7] in such a way that flavor SB took place entirely in

the non-zero strangeness sector only. This involves however a bias, namely that g1 = F +D

for neutron β decay even in the presence of SU(3) SB, which corresponds to a constraint

on the counter term coefficients. That bias is avoided here by instead taking into account

SU(3) SB in the axial couplings throughout.

The scope of the numerical analyses performed in Refs. [6, 7] within these two scenarios

was limited to determining only g1 and g, because the f1’s were given at their SU(3) sym-

metric values, f
SU(3)
1 , in view of the AG theorem. The present analysis, however, is uniquely

positioned in the sense that, on the same footing as g1, the one-loop corrections to f1 within

large-Nc chiral perturbation theory have been computed, including the effects of a non-zero

baryon decuplet–octet mass splitting. Thus, the pattern of SU(3) SB for f1, which will be

referred to as f1/f
SU(3)
1 hereafter, can be evaluated.

The available experimental information for octet baryons is given in terms of the decay

rates R, the ratios g1/f1, the angular correlation coefficients αeν , and the spin-asymmetry

coefficients αe, αν , αB, A, and B. All eight decay rates and all six possible g1/f1 ratios

have been measured (the ratios g1/f1 for Σ± → Λ semileptonic decays are undefined). A

summary of this experimental information can be found in Table II of Ref. [7], along with

a detailed discussion about how this information can be matched with the one listed in

Ref. [33]. That discussion is not repeated here. For decuplet baryons, the axial couplings
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g for the processes ∆ → Nπ, Σ∗ → Λπ, Σ∗ → Σπ, and Ξ∗ → Ξπ are given in Table IX of

that reference as well. For the purposes of the present work, the experimental information

is arranged into three sets: R and g1/f1 constitute set 1; R, g1/f1 and g constitute set 2;

and g1/f1 and g constitute set 3. The latter can be enriched by adding two more pieces

of information: the g1 couplings for the Σ± → Λ semileptonic processes, which can be

obtained from their respective decay rates through a standard procedure.4 The values found

are g1 = 0.619±0.077 and g1 = 0.597±0.014 for Σ+ → Λe+ν and Σ− → Λe−ν, respectively.

In passing, it is worth mentioning that set 3 is also particularly interesting because g1 and

g are related in the large-Nc limit; in actual numerical analyses, the fits that include g yield

more stable solutions [7].

There are eight parameters to be determined in the analysis, all of them affecting directly

the g1’s. Four of them, a1, b2, b3, and c3 arise from the 1/Nc expansion of Akc alone, Eq. (11),

and the remaining four, d1, . . . , d4, come from perturbative SB, according to the discussion

provided in Sec. V.B. of Ref. [7]. For definiteness, the physical masses of the mesons and

baryons listed in Ref. [33] are used, along with ∆ = 0.231 GeV, Fπ = 93 MeV, and µ = 1

GeV. Also, the suggested values of the CKM matrix elements Vud and Vus are used as inputs.

Without further ado, a fit where SU(3) SB corrections to both f1 and g1 (to the respec-

tive orders considered here) enter into play can be performed using data set 3, which is

equivalent to using the data about g1/f1 and g. An analysis under this circumstance has

some implications. First, it has been pointed out that both g1 and g are related in the

large-Nc limit, so for a consistent analysis they should be present simultaneously. Also, the

new output can be contrasted with the equivalent one obtained in Ref. [7]. But most impor-

tantly, the use of the axial couplings only will allow one to check whether the predicted decay

rates and asymmetry and spin-angular correlation coefficients agree with the experimental

ones. This may be a crucial test of this approach. The eight-parameter fit for 12 pieces

of information yields the results labeled as Fit 1 in Table IV. First the limit f1 = f
SU(3)
1

is used (case a) to subsequently add SB effects in f1 (case b). Some interesting features

emerge from this analysis. First, the a1, . . . , c3 parameters are order one, which completely

agrees with expectations. Besides, the SB parameters d1, . . . , d4 are roughly suppressed by

4 Radiative corrections and a dipole parametrization of the axial vector form factors are two key consider-

ations [1].
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TABLE IV: Best-fit parameters for the fit presented in this work. The pertinent values of the

equivalent SU(3) couplings D, F , C, and H are also listed. The quoted errors come from the fit

only and do not include any theoretical uncertainty.

Fit 1a Fit 1b

Data set 3 3

SB in f1 5 3

SB in g1 3 3

a1 0.89(0.15) 0.95(0.14)

b2 −1.03(0.19) −1.10(0.19)

b3 1.18(0.15) 1.10(0.09)

c3 1.18(0.17) 1.07(0.15)

d1 0.52(0.12) 0.62(0.13)

d2 −0.56(0.25) −0.57(0.24)

d3 0.38(0.05) 0.39(0.05)

d4 −0.05(0.08) −0.06(0.08)

D 0.64(0.05) 0.66(0.05)

F 0.26(0.01) 0.25(0.01)

C −1.48(0.07) −1.48(0.07)

H −2.74(0.27) −2.50(0.17)

F/D 0.40(0.03) 0.39(0.02)

3F −D 0.13(0.04) 0.10(0.04)

χ2/dof 5.6/4 5.5/4

a factor of ǫ ∼ 0.3 with respect to the leading ones, which is consistent with first-order

SB. However, what is also worth mentioning is that the SU(3) invariant couplings D, F ,

C, and H reach values which are in good agreement with expectations (the coupling H still

remains a little high, but possesses the correct sign). On the other hand, Fit 1b deserves

special attention because it is where the effects of SB in f1 are evaluated. With the best-fit

parameters, the corresponding SU(3) SB pattern of f1 is displayed in Table V. This SB

pattern suggest a systematic decrease between 3.4 and 4.8% in the f1 values with respect to

their SU(3)-symmetric values in all the channels considered, which is in perfect agreement

with the expectation from second-order SB dictated by the AG theorem.

Armed with the vector and axial couplings from Fit 1b, the integrated observables for

BSD can be estimated. The overall behavior of Fit 1b is excellent in the sense that the

predicted observables are in very good agreement with their experimental counterparts.

There is no need to present new tables to display such small discrepancies.
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TABLE V: Relative contributions to the leading form factor f1 for non-vanishing ∆ obtained in

the present work. The Ξ0Σ+ and Ξ−Σ0 values are related by isospin symmetry. The correction

δ(2) computed in other works is also listed.

Process
f
(a)
1 + f

(b)
1

f
SU(3)
1

f
(c)
1 + f

(d)
1

f
SU(3)
1

f1

f
SU(3)
1

f1

f
SU(3)
1

− 1 δ(2)

Ref. [14] Ref. [15] Ref. [16]

Λp −0.026 −0.022 0.952 −0.048 −0.080 −0.097 −0.031

Σ−n −0.013 −0.022 0.966 −0.034 −0.024 0.008 −0.022

Ξ−Λ −0.025 −0.022 0.953 −0.047 −0.063 −0.063 −0.029

Ξ−Σ0 −0.016 −0.022 0.962 −0.038 −0.076 −0.094 −0.030

A variant of Fit 1b consists in removing all subleading corrections from f1 and keeping

the a1 contribution only. There are no significant changes in the best-fit parameters. The

pattern of SB in f1 varies between ±1% but the total χ2 remains practically unaltered.

One however notices that there is significant sensitivity to contributions which depend on

b2, b3 and c3, for instance up to 2% for the case of b3. Since these are 1/Nc suppressed

contributions, this may indicate a slow convergence. This is also indicative of the sensitivity

of the corrections to the values used for the couplings F , D and H , which is a source of the

disagreements mentioned earlier between different calculations.

Following the lines of Refs. [14–16], the chiral corrections to the vector form factor can

be parametrized as

f1 = f
SU(3)
1 (1 + δ(2) + . . .), (71)

where δ(2) is the leading SU(3)-breaking loop correction O (p2) and the dots stand for higher

chiral corrections computed in Refs. [14–16]. References [14] and [16] include dynamical octet

and decuplet contributions. A numerical comparison of δ(2) is displayed in Table V for the

sake of completeness. The comparison is acceptable for Refs. [14, 16]. In order to compare

with Ref. [15] on an equal footing, a fit using data set 1 should be done, dropping all the

decuplet effects. This falls in the context of BChPT without decuplet dynamical degrees

of freedom. In this case, the parameters that enter are a1 and b2, along with the four di’s.

The analysis yields a1 = 0.93± 0.01, b2 = −0.01 ± 0.07, d1 = 0.14± 0.05, d2 = 1.01± 0.31,

31



d3 = 0.31±0.06, and d4 = −0.15±0.07, with χ2 = 16/8 dof. The leading vector form factors

reduce their SU(3) symmetric values by 5% for Λ → p, Ξ− → Σ0 and Ξ0 → Σ+ processes,

and by 1.1% and 3.6% for Σ− → n and Ξ− → Λ processes, respectively. In other words, in

this very last case also an overall decrease in the symmetry pattern is also observed.

On the other hand, Lattice QCD results constitute another source to compare with.

Certainly, a direct comparison is meaningful only when relevant issues such as chiral extrap-

olation [34] are addressed. In this regard, a comparison with the most recent unquenched

Lattice QCD results in Ref. [21], where a chiral extrapolation of f1/f
SU(3)
1 for Ξ0 → Σ+

and Σ− → n gives 0.974(5) and 0.982(8) respectively, which is in qualitative agreement

with the results in Table V. In the earlier quenched calculations [19, 20] the errors are too

large to definitely conclude about the signs of those corrections. Since quenching should

give subleading in 1/Nc effects, it would be important as a test to have those calculations

revisited.

To close this section, it should be pointed out that the SB pattern of f1 observed here

opposes the one observed in Refs. [2, 29], obtained within the 1/Nc expansion alone. The

analysis presented there can be repeated by using the updated experimental information

about HSD (the data on the Ξ0 → Σ+ semileptonic decay was not available by that time)

and the current determination of |Vus|. The analysis yields a systematic reduction of the SB

pattern with respect to the one obtained on that reference. For instance, f1/f
SU(3)
1 for Λ → p

semileptonic decay is now slightly lower than one. This last remark leads to a final comment.

One cannot yet consider the theoretical issues as closed. It is most important that within

the same combined approach used to calculate the f1’s to O (p2), higher O (p3) corrections

be also computed. Naively those corrections are expect to be 30% of the corrections O (p2).

As discussed earlier, it is particularly important to investigate them because of the large

O (p3) corrections found in the previous works.

VI. SUMMARY AND CONCLUSIONS

The objective of the present work was to perform a calculation of the SU(3) breaking

corrections for the f1 form factor for different channels to O (p2) in the chiral expansion and

consistent with the strictures imposed by the 1/Nc expansion. The results are predictions,

as they are not affected by unknown parameters: they are entirely given in terms of known

32



low energy constants. It should be emphasized that having a prediction of this kind based

on a framework that respects QCD throughout is very important.

With the purpose of checking with known results in which decuplet baryons were included

with phenomenological couplings [14], higher order terms in 1/Nc were included to reproduce

those (axial vector) couplings and determine the agreement of the results with those obtained

in that reference. The results were also confronted with the experimental observables for

BSD and the strong decays of the decuplet baryons. Two different fits were carried out

in order to elucidate the relative importance of the various effects, where the summary is

presented in Table IV. The following conclusions can be derived from those results:

a) The 1/Nc corrections to the axial vector currents are very important. These are

reflected in the deviation of the relations between the couplings F , D, C and H which hold

in the SU(6) limit. Both, the strong decuplet to octet strong transitions as well as the weak

decays are sensitive to those sub-leading corrections.

b) The effects of SU(3) SB in f1 are calculable at the order considered here and turn out

to be about −5%. The hyperon weak decay observables at the current degree of accuracy

are not sensitive to those effects, endorsing the same claim made by Cabibbo, Swallow and

Winston [17]. It is noted that the 1/Nc corrections to the axial currents which determine

the vertices in the loop-diagrams do not affect significantly the correction to f1.

c) The effects of SU(3) SB on the axial vector couplings g1 are on the other hand very

important, as shown in Table V. The octet pieces of the SB are the dominant ones with

magnitudes up to 0.3, while the 27-plet pieces are much smaller, at most 20% of the octet

ones and in most cases much smaller than that. Because of the small tree level value of

the axial coupling of the transition Ξ−Λ, the subleading corrections, which include the SB

effects, turn out to be larger than the leading term. For the other cases the subleading

corrections do not exceed the expected 30% of the leading order value.

d) In the calculation of the SU(3) SB corrections to f1 it is noted that the inclusion of

the subleading in 1/Nc corrections to the meson-baryon couplings produce small deviations,

and to the current level of accuracies they are unnoticeable. Similarly, any SU(3) breaking

effects on those couplings turn out to be insignificant: they are of higher order in the chiral

expansion, but they were evaluated in order to check their insignificance.

e) Perhaps the most important reason for accurate calculations of HSD is to provide an

additional accurate extraction of |Vus|. At present the ratio of Kℓ2 to πℓ2 decay together
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with the ratio FK/Fπ from Lattice QCD and |Vud| from super-allowed β decay, and the Kℓ3

decays give the most accurate determinations. The smallness of |Vub| means that |Vus| is
very close to the unitarity limit. A test of unitarity the CKM matrix requires as accurate as

possible results for |Vus|, for which the increase in precision from HSD would be welcome.

This however will require further experimental progress in the determination of the various

HSD parameters.

The natural next step in the study of the BSD in the present framework is the calculation

in the combined framework of the ξ expansion to O (ξ3). This is the next order beyond the

one presented here. While such a complete calculation for the axial currents is already

available for two flavors, it needs to be implemented for three flavors and also for the vector

currents. This will be the objective of future work.

To close this article, it is worth quoting a sentence found in Ref. [35]: “It will take

a lot more work to see whether the 1/Nc expansion can be combined with baryon chiral

perturbation theory to analyze baryon properties in a systematic and controlled expansion.”

Two decades later, one can claim that this task is indeed possible.
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Appendix A: Loop integrals

The integrals over the loops displayed in Fig. 1 are fully discussed in this section and the

most general results needed in the present analysis are provided for the sake of completeness.

First, for the Feynman diagram displayed in Fig. 1(a), the loop integral can be written
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in the most general way as

Jµ
ij(m1, m2,∆, µ; q

2)

=
i

F 2
π

(µ2)
4−d
2

∫

ddk

(2π)d
(2k + q)µki(k + q)j

(k2 −m2
1 + iε)[(k + q)2 −m2

2 + iε](p0 − k0 −∆+ iε)
, (A1)

where m1 and k and m2 and k + q denote respectively the masses and four-momenta of the

mesons in the loop, q is the four-momentum transfer, ∆ is the baryon decuplet-octet mass

difference, and d = 4− ǫ to use dimensional regularization with scale µ. Due to the Lorentz

structure of Jµ
ij(m1, m2,∆, µ; q

2), it can be separated into temporal J0
ij(m1, m2,∆, µ; q

2) and

spatial Jk
ij(m1, m2,∆, µ; q

2) components. The former, which is the one needed here, can be

decomposed as JA(m1, m2,∆, µ; q
2)δij + JB(m1, m2,∆, µ; q

2)qiqj. In the q2 → 0 limit,

Ia(m1, m2,∆, µ; 0) ≡ lim
q2→0

JA(m1, m2,∆, µ; q
2), (A2)

where Ia is the integral associated to the one-loop correction to the baryon vector current

of Fig. 1(a) at zero recoil. Without further ado, the resultant expression reads,

32π2F 2
πIa(m1, m2,∆, µ; 0)

= −(m2
1 +m2

2 − 4∆2)λǫ −
3

2
(m2

1 +m2
2) +

28

3
∆2

+
1

3(m2
1 −m2

2)

[

(3m4
1 − 12m2

1∆
2 + 8∆4) ln

m2
1

µ2
− (3m4

2 − 12m2
2∆

2 + 8∆4) ln
m2

2

µ2

]

+
8

3

∆

m2
1 −m2

2

×






















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
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
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







































2(m2
1 −∆2)3/2

[

π

2
− tan−1

[

∆
√

m2
1 −∆2

]]

−2(m2
2 −∆2)3/2

[

π

2
− tan−1

[

∆
√

m2
2 −∆2

]]

, |∆| < m1 < m2

−(∆2 −m2
1)

3/2 ln

[

∆−
√

∆2 −m2
1

∆+
√

∆2 −m2
1

]

−2(m2
2 −∆2)3/2

[

π

2
− tan−1

[

∆
√

m2
2 −∆2

]]

, m1 < |∆| < m2

−(∆2 −m2
1)

3/2 ln

[

∆−
√

∆2 −m2
1

∆+
√

∆2 −m2
1

]

+(∆2 −m2
2)

3/2 ln

[

∆−
√

∆2 −m2
2

∆+
√

∆2 −m2
2

]

, m1 < m2 < |∆|

(A3)

where

λǫ =
2

ǫ
− γ + ln(4π), (A4)
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with γ ≃ 0.577216 the Euler constant. Without loss of generality, the condition m1 < m2

has been assumed in order to get the above result.

Now, the correction arising from the Feynman diagram displayed in Fig. 1(b) is given in

terms of the derivatives of the basic loop integral [31]

δijIb(m,∆, µ) =
i

F 2
π

(µ2)
4−d
2

∫

ddk

(2π)d
−kikj

(k0 −∆+ iε)(k2 −m2 + iε)
. (A5)

An explicit calculation yields5.

24π2F 2
πIb(m,∆, µ) = −∆

[

∆2 − 3

2
m2

]

λǫ +∆

[

∆2 − 3

2
m2

]

ln
m2

µ2
− 8

3
∆3 +

7

2
∆m2

+















2(m2 −∆2)3/2
[

π

2
− tan−1

[

∆√
m2 −∆2

]]

, |∆| < m

−(∆2 −m2)3/2 ln

[

∆−
√
∆2 −m2

∆+
√
∆2 −m2

]

, |∆| > m.

(A6)

From this function it follows that

16π2F 2
πI

(1)
b (m,∆, µ) = (m2 − 2∆2)

[

λǫ + 1− ln
m2

µ2

]

− 2∆2

−























4∆
√
m2 −∆2

[

π

2
− tan−1

[

∆√
m2 −∆2

]]

, |∆| < m

2∆
√
∆2 −m2 ln

[

∆−
√
∆2 −m2

∆+
√
∆2 −m2

]

, |∆| > m.

(A7)

4π2F 2
πI

(2)
b (m,∆, µ) = −∆

[

λǫ + 1− ln
m2

µ2

]

+























− m2 − 2∆2

√
m2 −∆2

[

π

2
− tan−1

[

∆√
m2 −∆2

]]

, |∆| < m

m2 − 2∆2

2
√
∆2 −m2

ln

[

∆−
√
∆2 −m2

∆+
√
∆2 −m2

]

, |∆| > m.

(A8)

4π2F 2
πI

(3)
b (m,∆, µ) = −λǫ −

∆2

m2 −∆2
+ ln

m2

µ2

+























∆(3m2 − 2∆2)

(m2 −∆2)3/2

[

π

2
− tan−1

[

∆√
m2 −∆2

]]

, |∆| < m

∆(3m2 − 2∆2)

2(∆2 −m2)3/2
ln

[

∆−
√
∆2 −m2

∆+
√
∆2 −m2

]

, |∆| > m.

(A9)

5 Here the sign in front of the term 7

2
∆m2 in the function Ib(m,∆, µ) has been fixed. The opposite sign,

which is incorrect, was used in Refs. [6–9, 31].
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Therefore, the function Ib(m,∆, µ) and its derivatives in the ∆ → 0 limit follow accord-

ingly; they read

Ib(m, 0, µ) =
m3

24π2F 2
π

, (A10)

I
(1)
b (m, 0, µ) =

m2

16π2F 2
π

[

λǫ + 1− ln
m2

µ2

]

, (A11)

I
(2)
b (m, 0, µ) = − m

8πF 2
π

, (A12)

and

I
(3)
b (m, 0, µ) =

1

4π2F 2
π

[

−λǫ + ln
m2

µ2

]

. (A13)

Next, for the Feynman diagrams displayed in Figs. 1(c) and 1(d), it is useful to introduce

the scalar function

Lr,m = iµ4−d

∫

ddℓ

(2π)d
ℓ2r

(ℓ2 − β + iε)m
, (A14)

where r and m are integers and β is an independent function of ℓ2. An explicit calculation

yields

Lr,m =
(−1)r−m+1

16π2

Γ(r + 2− ǫ
2
)Γ(−r +m− 2 + ǫ

2
)

Γ(m)Γ(2− ǫ
2
)

(4πµ2)
ǫ
2βr−m+2− ǫ

2 , (A15)

Now, the loop integral of Fig. 1(c) is given in chiral perturbation theory by

Iα(m1, m2, µ; q
2) =

i

F 2
π

µ4−d

∫

ddk

(2π)d
(2/k − /q)qα

[(k − q)2 −m2
2 + iε](k2 −m2

1 + iε)
. (A16)

Iα will have a piece proportional to γα and another one proportional to qα. The former is

the one related to the vector form factor f1(q
2).

By using the conventional Feynman method to combine denominators, it is easy to see

that the contribution of Iα proportional to γα can be written as

Ic(m1, m2, µ; q
2) =

1

F 2
π

∫ 1

0

dx
2

4− ǫ
L1,2, (A17)

where L1,2 can be obtained from Eq. (A15) with

β = −q2x(1− x) +m2
2x+m2

1(1− x). (A18)
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A standard calculation yields

16π2F 2
πIc(m1, m2, µ; q

2) =
1

6
(q2 − 3m2

1 − 3m2
2)λǫ −

1

12
(q2 − 3m2

1 − 3m2
2)

[

ln
m2

1

µ2
+ ln

m2
2

µ2

]

+
4

9
q2 − 7

6
(m2

1 +m2
2) +

(m2
1 −m2

2)
2

6q2
− m4

1 −m4
2

4q2
ln
m2

2

m2
1

+
(m2

1 −m2
2)

3 + [q2(q2 − 2m2
1 − 2m2

2) + (m2
1 −m2

2)
2]

3/2

12(q2)2
ln
m2

2

m2
1

+
[q2(q2 − 2m2

1 − 2m2
2) + (m2

1 −m2
2)

2]
3/2

6(q2)2

× ln

[

−q2 −m2
1 +m2

2 +
√

q2(q2 − 2m2
1 − 2m2

2) + (m2
1 −m2

2)
2

q2 −m2
1 +m2

2 +
√

q2(q2 − 2m2
1 − 2m2

2) + (m2
1 −m2

2)
2

]

.

(A19)

In the q2 → 0 limit, Ic(m1, m2, µ; q
2) reduces to

32π2F 2
πIc(m1, m2, µ; 0) = −(m2

1 +m2
2)λǫ −

3

2
(m2

1 +m2
2) +

1

m2
1 −m2

2

[

m4
1 ln

m2
1

µ2
−m4

2 ln
m2

2

µ2

]

.

(A20)

Finally, for the Feynman diagram displayed in Fig. 1(d), the integral over the loop is

Id(m,µ) =
i

F 2
π

µ4−d

∫

ddk

(2π)d
1

k2 −m2 + iε

=
1

F 2
π

L0,1, (A21)

where β = m2 in this case. A straightforward calculation yields

Id(m,µ) =
m2

16π2 F 2
π

[

−λǫ − 1 + ln
m2

µ2

]

. (A22)

Appendix B: Reduction of baryon operators

The full list of operator reductions performed in the current analysis is presented in

this appendix. For Nc = 3, there appeared operator products containing up to eight-body

operators for which the reductions turned out to be quite involved. Due to the fact that for

any SU(6) representation polynomials in the spin-flavor generators J i, T a and Gia form a

complete set of operators, the reductions were always possible. Apart from using well-known

decompositions among operators, a particularly useful identity was also used, namely,

[T a, Xb] = ifabcXc ,
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where Xb stands for any spin-0 or spin-1 flavor octet. For instance,

[T a, Aib] = ifabcAic ,

where Aib is the axial-vector current operator (11), or

[T a, [J2, Aib]] = ifabc[J2, Aic] ,

or

dabe[T c, {J2, {T a, T b}}] = if cegdgde{J2, {T d, T e}} ,

to name but a few.

For computational ease, the second and third summands of Eq. (41) can be respectively

rewritten as

{Aja, [T c, [J2, Ajb]]} = if cbe{Aja, [J2, Aje]}

and

[Aja, [[J2, [J2, Ajb]], T c]]− 1

2
[[J2, Aja], [[J2, Ajb], T c]]

=
3

2
if bce[[J2, Aje], [J2, Aja]]− if bce[J2, [[J2, Aje], Aja]] ,

where

if bce[J2, [[J2, Aje], Aja]]F ab = 0 ,

for F ab = δab, dab8, or δa8δb8.

The operator reductions performed, for arbitrary Nc and Nf , are listed below. These

expressions are to be evaluated at the physical values Nf = Nc = 3.

1. ifacbAiaAib

ifacbGiaGib =
3

8
NfT

c, (B1)

ifacb(GiaDib
2 +Dia

2 G
ib) =

1

2
Nf{Jr, Grc}, (B2)

ifacb(GiaDib
3 +Dia

3 G
ib) = (Nc +Nf ){Jr, Grc}+ 1

2
(Nf − 2){J2, T c}, (B3)
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ifacb(GiaOib
3 +Oia

3 G
ib) =

3

2
NfT

c − 3

2
(Nc +Nf){Jr, Grc}+ 1

2
(Nf + 3){J2, T c}, (B4)

ifacbDia
2 Dib

2 =
1

4
Nf{J2, T c}, (B5)

ifacb(Dia
2 Dib

3 +Dia
3 Dib

2 ) = Nf{J2, {Jr, Grc}}, (B6)

ifacb(Dia
2 Oib

3 +Oia
3 Dib

2 ) = 0, (B7)

ifacbDia
3 Dib

3 = (Nc +Nf ){J2, {Jr, Grc}}+ 1

2
(Nf − 2){J2, {J2, T c}}, (B8)

ifacb(Dia
3 Oib

3 +Oia
3 Dib

3 ) = 0, (B9)

ifacbOia
3 Oib

3 =
3

2
NfT

c − 3

2
(Nc +Nf){Jr, Grc}+ 1

2
(4Nf + 3){J2, T c}

− 5

4
(Nc +Nf ){J2, {Jr, Grc}}+ 1

4
(Nf + 5){J2, {J2, T c}}. (B10)

2. ifacbAiaJ2Aib

ifacbGiaJ2Gib =
3

4
NfT

c − 1

2
(Nc +Nf){Jr, Grc}+ 1

16
(3Nf + 8){J2, T c}, (B11)

ifacb(GiaJ2Dib
2 +Dia

2 J
2Gib) =

1

4
Nf{J2, {Jr, Grc}}, (B12)

ifacb(GiaJ2Dib
3 +Dia

3 J
2Gib) =

1

2
(Nc+Nf ){J2, {Jr, Grc}}+ 1

4
(Nf −2){J2, {J2, T c}}, (B13)
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ifacb(GiaJ2Oib
3 +Oia

3 J
2Gib) = 3NfT

c − 3(Nc +Nf ){Jr, Grc}+ 1

4
(13Nf + 12){J2, T c}

− 7

4
(Nc +Nf ){J2, {Jr, Grc}}+ 1

4
(Nf + 7){J2, {J2, T c}} ,

(B14)

ifacbDia
2 J

2Dib
2 =

1

8
Nf{J2, {J2, T c}}, (B15)

ifacb(Dia
2 J

2Dib
3 +Dia

3 J
2Dib

2 ) =
1

2
Nf{J2, {J2, {Jr, Grc}}}, (B16)

ifacb(Dia
2 J

2Oib
3 +Oia

3 J
2Dib

2 ) = 0, (B17)

ifacbDia
3 J

2Dib
3 =

1

2
(Nc +Nf){J2, {J2, {Jr, Grc}}}+ 1

4
(Nf − 2){J2, {J2, {J2, T c}}}, (B18)

ifacb(Dia
3 J

2Oib
3 +Oia

3 J
2Dib

3 ) = 0, (B19)

ifacbOia
3 J

2Oib
3 = 3NfT

c − 3(Nc +Nf ){Jr, Grc}+ 1

4
(25Nf + 12){J2, T c}

−19

4
(Nc +Nf ){J2, {Jr, Grc}}+ 1

4
(11Nf + 19){J2, {J2, T c}}

−9

8
(Nc +Nf ){J2, {J2, {Jr, Grc}}}+ 1

8
(Nf + 9){J2, {J2, {J2, T c}}}.

(B20)

3. i(faecdbe8 − f becdae8 − fabedec8)AiaAib

i(faecdbe8 − f becdae8 − fabedec8)GiaGib = 0, (B21)

i(faecdbe8 − f becdae8 − fabedec8)(GiaDib
2 +Dia

2 G
ib) = 0, (B22)
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i(faecdbe8−f becdae8−fabedec8)(GiaDib
3 +Dia

3 G
ib) = {T c, {Jr, Gr8}}−{T 8, {Jr, Grc}}, (B23)

i(faecdbe8 − f becdae8 − fabedec8)(GiaOib
3 +Oia

3 G
ib) = −3

2
{T c, {Jr, Gr8}}+ 3

2
{T 8, {Jr, Grc}},

(B24)

i(faecdbe8 − f becdae8 − fabedec8)Dia
2 Dib

2 = 0, (B25)

i(faecdbe8 − f becdae8 − fabedec8)(Dia
2 Dib

3 +Dia
3 Dib

2 ) = 0, (B26)

i(faecdbe8 − f becdae8 − fabedec8)(Dia
2 Oib

3 +Oia
3 Dib

2 ) = 0, (B27)

i(faecdbe8−f becdae8−fabedec8)Dia
3 Dib

3 = {J2, {T c, {Jr, Gr8}}}−{J2, {T 8, {Jr, Grc}}}, (B28)

i(faecdbe8 − f becdae8 − fabedec8)(Dia
3 Oib

3 +Oia
3 Dib

3 ) = 0, (B29)

i(faecdbe8 − f becdae8 − fabedec8)Oia
3 Oib

3 = −3

2
{T c, {Jr, Gr8}}+ 3

2
{T 8, {Jr, Grc}}

−5

4
{J2, {T c, {Jr, Gr8}}}+ 5

4
{J2, {T 8, {Jr, Grc}}}.

(B30)

4. i(faecdbe8 − f becdae8 − fabedec8)AiaJ2Aib

i(faecdbe8 − f becdae8 − fabedec8)GiaJ2Gib = −1

2
{T c, {Jr, Gr8}}+ 1

2
{T 8, {Jr, Grc}}, (B31)

i(faecdbe8 − f becdae8 − fabedec8)(GiaJ2Dib
2 +Dia

2 J
2Gib) = 0, (B32)
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i(faecdbe8 − f becdae8 − fabedec8)(GiaJ2Dib
3 +Dia

3 J
2Gib)

=
1

2
{J2, {T c, {Jr, Gr8}}} − 1

2
{J2, {T 8, {Jr, Grc}}}, (B33)

i(faecdbe8 − f becdae8 − fabedec8)(GiaJ2Oib
3 +Oia

3 J
2Gib)

= −3{T c, {Jr, Gr8}}+ 3{T 8, {Jr, Grc}} − 7

4
{J2, {T c, {Jr, Gr8}}}

+
7

4
{J2, {T 8, {Jr, Grc}}}, (B34)

i(faecdbe8 − f becdae8 − fabedec8)Dia
2 J

2Dib
2 = 0, (B35)

i(faecdbe8 − f becdae8 − fabedec8)(Dia
2 J

2Dib
3 +Dia

3 J
2Dib

2 ) = 0, (B36)

i(faecdbe8 − f becdae8 − fabedec8)(Dia
2 J

2Oib
3 +Oia

3 J
2Dib

2 ) = 0, (B37)

i(faecdbe8 − f becdae8 − fabedec8)Dia
3 J

2Dib
3

=
1

2
{J2, {J2, {T c, {Jr, Gr8}}}} − 1

2
{J2, {J2, {T 8, {Jr, Grc}}}}, (B38)

i(faecdbe8 − f becdae8 − fabedec8)(Dia
3 J

2Oib
3 +Oia

3 J
2Dib

3 ) = 0, (B39)

i(faecdbe8 − f becdae8 − fabedec8)Oia
3 J

2Oib
3

= −3{T c, {Jr, Gr8}}+ 3{T 8, {Jr, Grc}} − 19

4
{J2, {T c, {Jr, Gr8}}}

+
19

4
{J2, {T 8, {Jr, Grc}}} − 9

8
{J2, {J2, {T c, {Jr, Gr8}}}}

+
9

8
{J2, {J2, {T 8, {Jr, Grc}}}}. (B40)
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5. [Aia, [Aia, T c]]

[Gia, [Gia, T c]] =
3

4
NfT

c, (B41)

[Gia, [Dia
2 , T

c]] + [Dia
2 , [G

ia, T c]] = Nf{Jr, Grc}, (B42)

[Gia, [Dia
3 , T

c]] + [Dia
3 , [G

ia, T c]] = 2(Nc +Nf ){Jr, Grc}+ (Nf − 2){J2, T c}, (B43)

[Gia, [Oia
3 , T

c]] + [Oia
3 , [G

ia, T c]] = 3NfT
c − 3(Nc +Nf ){Jr, Grc}+ (Nf + 3){J2, T c}, (B44)

[Dia
2 , [Dia

2 , T
c]] =

1

2
Nf{J2, T c}, (B45)

[Dia
2 , [Dia

3 , T
c]] + [Dia

3 , [Dia
2 , T

c]] = 2Nf{J2, {Jr, Grc}}, (B46)

[Dia
2 , [Oia

3 , T
c]] + [Oia

3 , [Dia
2 , T

c]] = 0, (B47)

[Dia
3 , [Dia

3 , T
c]] = 2(Nc +Nf){J2, {Jr, Grc}}+ (Nf − 2){J2, {J2, T c}}, (B48)

[Dia
3 , [Oia

3 , T
c]] + [Oia

3 , [Dia
3 , T

c]] = 0, (B49)

[Oia
3 , [Oia

3 , T
c]] = 3NfT

c − 3(Nc +Nf ){Jr, Grc}+ (4Nf + 3){J2, T c}

−5

2
(Nc +Nf ){J2, {Jr, Grc}}+ 1

2
(Nf + 5){J2, {J2, T c}}. (B50)
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6. dab8[Aia, [Aib, T c]]

dab8[Gia, [Gib, T c]] =
3

8
Nfd

c8eT e, (B51)

dab8([Gia, [Dib
2 , T

c]] + [Dia
2 , [G

ib, T c]]) =
1

2
Nfd

c8e{Jr, Gre}, (B52)

dab8([Gia, [Dib
3 , T

c]] + [Dia
3 , [G

ib, T c]]) = (Nc +Nf)d
c8e{Jr, Gre} − {T c, {Jr, Gr8}}

+{T 8, {Jr, Grc}}+ 1

2
(Nf − 2)dc8e{J2, T e} ,

(B53)

dab8([Gia, [Oib
3 , T

c]] + [Oia
3 , [G

ib, T c]]) =
3

2
Nfd

c8eT e +
3

2
{T c, {Jr, Gr8}} − 3

2
{T 8, {Jr, Grc}}

+
1

2
(Nf + 3)dc8e{J2, T e} − 3

2
(Nc +Nf )d

c8e{Jr, Gre} ,

(B54)

dab8[Dia
2 , [Dib

2 , T
c]] =

1

4
Nfd

c8e{J2, T e}, (B55)

dab8([Dia
2 , [Dib

3 , T
c]] + [Dia

3 , [Dib
2 , T

c]]) = Nfd
c8e{J2, {Jr, Gre}}, (B56)

dab8([Dia
2 , [Oib

3 , T
c]] + [Oia

3 , [Dib
2 , T

c]]) = 0, (B57)

dab8[Dia
3 , [Dib

3 , T
c]] = (Nc +Nf)d

c8e{J2, {Jr, Gre}} − {J2, {T c, {Jr, Gr8}}}

+{J2, {T 8, {Jr, Grc}}}+ 1

2
(Nf − 2)dc8e{J2, {J2, T e}}, (B58)

dab8([Dia
3 , [Oib

3 , T
c]] + [Oia

3 , [Dib
3 , T

c]]) = 0, (B59)
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dab8[Oia
3 , [Oib

3 , T
c]] =

3

2
Nfd

c8eT e − 3

2
(Nc +Nf )d

c8e{Jr, Gre}+ 3

2
{T c, {Jr, Gr8}}

−3

2
{T 8, {Jr, Grc}}+ 1

2
(4Nf + 3)dc8e{J2, T e}+ 5

4
{J2, {T c, {Jr, Gr8}}}

−5

4
{J2, {T 8, {Jr, Grc}}}+ 1

4
(Nf + 5)dc8e{J2, {J2, T e}}

−5

4
(Nc +Nf)d

c8e{J2, {Jr, Gre}}. (B60)

7. [Ai8, [Ai8, T c]]

[Gi8, [Gi8, T c]] =
3

4
f c8ef 8egT g, (B61)

[Gi8, [Di8
2 , T

c]] + [Di8
2 , [G

i8, T c]] = f c8ef 8eg{Jr, Grg}, (B62)

[Gi8, [Di8
3 , T

c]] + [Di8
3 , [G

i8, T c]] = 3f c8ef 8egT g + f c8ef 8eg{J2, T g} − 2ǫijkf c8e{Gke, {J i, Gj8}},
(B63)

[Gi8, [Oi8
3 , T

c]]+[Oi8
3 , [G

i8, T c]] = −3

2
f c8ef 8egT g+f c8ef 8eg{J2, T g}+3ǫijkf c8e{Gke, {J i, Gj8}},

(B64)

[Di8
2 , [Di8

2 , T
c]] =

1

2
f c8ef 8eg{J2, T g}, (B65)

[Di8
2 , [Di8

3 , T
c]] + [Di8

3 , [Di8
2 , T

c]] = 2f c8ef 8eg{J2, {Jr, Grg}}, (B66)

[Di8
2 , [Oi8

3 , T
c]] + [Oi8

3 , [Di8
2 , T

c]] = 0, (B67)

[Di8
3 , [Di8

3 , T
c]] = 3f c8ef 8eg{J2, T g}+f c8ef 8eg{J2, {J2, T g}}−2ǫijkf c8e{J2, {Gke, {J i, Gj8}}},

(B68)

46



[Di8
3 , [Oi8

3 , T
c]] + [Oi8

3 , [Di8
3 , T

c]] = 0, (B69)

[Oi8
3 , [Oi8

3 , T
c]] = −3

2
f c8ef 8egT g +

1

4
f c8ef 8eg{J2, T g}+ 3ǫijkf c8e{Gke, {J i, Gj8}}

+
1

2
f c8ef 8eg{J2, {J2, T g}}+ 5

2
ǫijkf c8e{J2, {Gke, {J i, Gj8}}}. (B70)

8. if cae{Aia, [J2, Aie]}

if cae{Gia, [J2, Gie]} = −3

2
NfT

c + (Nc +Nf ){Jr, Grc} − {J2, T c}, (B71)

if cae{Dia
2 , [J

2, Gie]} = 0, (B72)

if cae{Dia
3 , [J

2, Gie]} = 0, (B73)

if cae({Oia
3 , [J

2, Gie]}+ {Gia, [J2,Oie
3 ]})

= −6NfT
c + 6(Nc +Nf ){Jr, Grc} − (5Nf + 6){J2, T c}+ 2(Nc +Nf){J2, {Jr, Grc}}

− 2{J2, {J2, T c}}, (B74)

if cae{Dia
2 , [J

2,Oie
3 ]} = 0, (B75)

if cae{Dia
3 , [J

2,Oie
3 ]} = 0, (B76)

if cae{Oia
3 , [J

2,Oie
3 ]} = −6NfT

c + 6(Nc +Nf){Jr, Grc} − (11Nf + 6){J2, T c}

+ 8(Nc +Nf){J2, {Jr, Grc}} − 1

2
(7Nf + 16){J2, {J2, T c}}

+ (Nc +Nf){J2, {J2, {Jr, Grc}}} − {J2, {J2, {J2, T c}}}. (B77)
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9. idab8f cbe{Aia, [J2, Aie]}

idab8f cbe{Gia, [J2, Gie]} = −3

4
Nfd

c8eT e +
1

2
(Nc +Nf )d

c8e{Jr, Gre} − 1

2
{T c, {Jr, Gr8}}

+
1

2
{T 8, {Jr, Grc}} − 1

2
dc8e{J2, T e}, (B78)

idab8f cbe{Dia
2 , [J

2, Gie]} = 0, (B79)

idab8f cbe{Dia
3 , [J

2, Gie]} = 0, (B80)

idab8f cbe({Oia
3 , [J

2, Gie]}+ {Gia, [J2,Oie
3 ]})

= −3Nfd
c8eT e + 3(Nc +Nf)d

c8e{Jr, Gre} − 3{T c, {Jr, Gr8}}+ 3{T 8, {Jr, Grc}}

− 1

2
(5Nf + 6)dc8e{J2, T e}+ (Nc +Nf )d

c8e{J2, {Jr, Gre}} − {J2, {T c, {Jr, Gr8}}}

+ {J2, {T 8, {Jr, Grc}}} − dc8e{J2, {J2, T e}}, (B81)

idab8f cbe{Dia
2 , [J

2,Oie
3 ]} = 0, (B82)

idab8f cbe{Dia
3 , [J

2,Oie
3 ]} = 0, (B83)

idab8f cbe{Oia
3 , [J

2,Oie
3 ]}

= −3Nfd
c8eT e + 3(Nc +Nf)d

c8e{Jr, Gre} − 3{T c, {Jr, Gr8}}+ 3{T 8, {Jr, Grc}}

− 1

2
(11Nf − 6)dc8e{J2, T e}+ 4(Nc +Nf)d

c8e{J2, {Jr, Gre}} − 4{J2, {T c, {Jr, Gr8}}}

+ 4{J2, {T 8, {Jr, Grc}}} − 1

4
(7Nf + 16)dc8e{J2, {J2, T e}}

+
1

2
(Nc +Nf)d

c8e{J2, {J2, {Jr, Gre}}} − 1

2
{J2, {J2, {T c, {Jr, Gr8}}}}

+
1

2
{J2, {J2, {T 8, {Jr, Grc}}}} − 1

2
dc8e{J2, {J2, {J2, T e}}}, (B84)
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10. if c8e{Ai8, [J2, Aie]}

if c8e{Gi8, [J2, Gie]} = −ǫijkf c8e{Gke, {J i, Gj8}}, (B85)

if c8e{Di8
2 , [J

2, Gie]} = 0, (B86)

if c8e{Di8
3 , [J

2, Gie]} = 0, (B87)

if c8e({Oi8
3 , [J

2, Gie]}+ {Gi8, [J2,Oie
3 ]})

= 3f c8ef 8egT g − 2f c8ef 8eg{J2, T g} − 6ǫijkf c8e{Gke, {J i, Gj8}}

− 2ǫijkf c8e{J2, {Gke, {J i, Gj8}}}, (B88)

if c8e{Di8
2 , [J

2,Oie
3 ]} = 0, (B89)

if c8e{Di8
3 , [J

2,Oie
3 ]} = 0, (B90)

if c8e{Oi8
3 , [J

2,Oie
3 ]}

= 3f c8ef 8egT g + f c8ef 8eg{J2, T g} − 6ǫijkf c8e{Gke, {J i, Gj8}} − 2f c8ef 8eg{J2, {J2, T g}}

− 8ǫijkf c8e{J2, {Gke, {J i, Gj8}}} − ǫijkf c8e{J2, {J2, {Gke, {J i, Gj8}}}}. (B91)

11. iface[[J2, Aie], [J2, Aia]]

iface[[J2, Gie], [J2, Gia]] = 3NfT
c − 3(Nc +Nf){Jr, Grc}+ (Nf + 3){J2, T c}, (B92)

iface[[J2, Gie], [J2,Oia
3 ]] = 6NfT

c − 6(Nc +Nf ){Jr, Grc}+ (8Nf + 6){J2, T c}

− 5(Nc +Nf){J2, {Jr, Grc}}+ (Nf + 5){J2, {J2, T c}} ,

(B93)
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iface[[J2,Oie
3 ], [J

2, Gia]] = 6NfT
c − 6(Nc +Nf ){Jr, Grc}+ (8Nf + 6){J2, T c}

− 5(Nc +Nf){J2, {Jr, Grc}}+ (Nf + 5){J2, {J2, T c}} ,

(B94)

iface[[J2,Oie
3 ], [J

2,Oia
3 ]]

= 12NfT
c − 12(Nc +Nf ){Jr, Grc}+ 4(7Nf + 3){J2, T c} − 22(Nc +Nf){J2, {Jr, Grc}}

+ (15Nf + 22){J2, {J2, T c}} − 7(Nc +Nf){J2, {J2, {Jr, Grc}}}

+ (Nf + 7){J2, {J2, {J2, T c}}}, (B95)

12. idab8f bce[[J2, Aie], [J2, Aia]]

idab8f bce[[J2, Gie], [J2, Gia]] =
3

2
Nfd

c8eT e − 3

2
(Nc +Nf)d

c8e{Jr, Gre}+ 3

2
{T c, {Jr, Gr8}}

− 3

2
{T 8, {Jr, Grc}}+ 1

2
(Nf + 3)dc8e{J2, T e}, (B96)

idab8f bce[[J2, Gie], [J2,Oia
3 ]]

= 3Nfd
c8eT e − 3(Nc +Nf)d

c8e{Jr, Gre}+ 3{T c, {Jr, Gr8}} − 3{T 8, {Jr, Grc}}

+ (4Nf + 3)dc8e{J2, T e}+ 5

2
{J2, {T c, {Jr, Gr8}}} − 5

2
{J2, {T 8, {Jr, Grc}}}

+
1

2
(Nf + 5)dc8e{J2, {J2, T e}} − 5

2
(Nc +Nf)d

c8e{J2, {Jr, Gre}}, (B97)

idab8f bce[[J2,Oie
3 ], [J

2, Gia]]

= 3Nfd
c8eT e − 3(Nc +Nf)d

c8e{Jr, Gre}+ 3{T c, {Jr, Gr8}} − 3{T 8, {Jr, Grc}}

+ (4Nf + 3)dc8e{J2, T e}+ 5

2
{J2, {T c, {Jr, Gr8}}} − 5

2
{J2, {T 8, {Jr, Grc}}}

+
1

2
(Nf + 5)dc8e{J2, {J2, T e}} − 5

2
(Nc +Nf)d

c8e{J2, {Jr, Gre}}, (B98)
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idab8f bce[[J2,Oie
3 ], [J

2,Oia
3 ]]

= −6f c8ef 8egT g − 5f c8ef 8eg{J2, T g}+ 12ǫijkf c8e{Gke, {J i, Gj8}}

+
9

2
f c8ef 8eg{J2, {J2, T g}}+ 22ǫijkf c8e{J2, {Gke, {J i, Gj8}}}

+ f c8ef 8eg{J2, {J2, {J2, T g}}}+ 7ǫijkf c8e{J2, {J2, {Gke, {J i, Gj8}}}}, (B99)

13. if8ce[[J2, Aie], [J2, Ai8]]

if 8ce[[J2, Gie], [J2, Gi8]] = −3

2
f c8ef 8egT g + f c8ef 8eg{J2, T g}+ 3ǫijkf c8e{Gke, {J i, Gj8}},

(B100)

if 8ce[[J2, Gie], [J2,Oi8
3 ]] = −3f c8ef 8egT g +

1

2
f c8ef 8eg{J2, T g}+ f c8ef 8eg{J2, {J2, T g}}

+ 6ǫijkf c8e{Gke, {J i, Gj8}}+ 5ǫijkf c8e{J2, {Gke, {J i, Gj8}}} ,

(B101)

if 8ce[[J2,Oie
3 ], [J

2, Gi8]] = −3f c8ef 8egT g +
1

2
f c8ef 8eg{J2, T g}+ f c8ef 8eg{J2, {J2, T g}}

+ 6ǫijkf c8e{Gke, {J i, Gj8}}+ 5ǫijkf c8e{J2, {Gke, {J i, Gj8}}} ,

(B102)

if 8ce[[J2,Oie
3 ], [J

2,Oi8
3 ]]

= −6f c8ef 8egT g − 5f c8ef 8eg{J2, T g}+ 12ǫijkf c8e{Gke, {J i, Gj8}}

+
9

2
f c8ef 8eg{J2, {J2, T g}}+ 22ǫijkf c8e{J2, {Gke, {J i, Gj8}}}

+ f c8ef 8eg{J2, {J2, {J2, T g}}}+ 7ǫijkf c8e{J2, {J2, {Gke, {J i, Gj8}}}}.(B103)

Appendix C: Operator coefficients

The several operator products involved in the analysis can be cast into rather compact

forms. They can be written as summations involving an operator coefficient times a cor-
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responding operator belonging to the SU(3) flavor representations 1, 8 and 27, listed in

Eqs. (38), (39) and (46) respectively.

The compact expressions are listed as follows.

ifacbAiaAib =

7
∑

n=1

a8nS
c
n, (C1)

where

a81 =
3Nf

8
a21 +

3Nf

2N2
c

a1c3 +
3Nf

2N4
c

c23 ,

a82 =
Nf

2Nc
a1b2 +

Nc +Nf

N2
c

a1b3 −
3(Nc +Nf )

2N2
c

a1c3 −
3(Nc +Nf )

2N4
c

c23 ,

a83 =
Nf − 2

2N2
c

a1b3 +
Nf + 3

2N2
c

a1c3 +
Nf

4N2
c

b22 +
4Nf + 3

2N4
c

c23 ,

a84 =
Nf

N3
c

b2b3 +
Nc +Nf

N4
c

b23 −
5(Nc +Nf )

4N4
c

c23 ,

a85 =
Nf − 2

2N4
c

b23 +
Nf + 5

4N4
c

c23 ,

a86 = 0 ,

a87 = 0 .

ifacbAiaJ2Aib =
7
∑

n=1

a8nS
c
n, (C2)

where

a81 =
3Nf

4
a21 +

3Nf

N2
c

a1c3 +
3Nf

N4
c

c23 ,

a82 = −Nc +Nf

2
a21 −

3(Nc +Nf )

N2
c

a1c3 −
3(Nc +Nf )

N4
c

c23 ,

a83 =
3Nf + 8

16
a21 +

13Nf + 12

4N2
c

a1c3 +
25Nf + 12

4N4
c

c23 ,

a84 =
Nf

4Nc
a1b2 +

Nc +Nf

2N2
c

a1b3 −
7(Nc +Nf)

4N2
c

a1c3 −
19(Nc +Nf)

4N4
c

c23 ,

a85 =
Nf − 2

4N2
c

a1b3 +
Nf + 7

4N2
c

a1c3 +
Nf

8N2
c

b22 +
11Nf + 19

4N4
c

c23 ,

a86 =
Nf

2N3
c

b2b3 +
Nc +Nf

2N4
c

b23 −
9(Nc +Nf)

8N4
c

c23 ,

a87 =
Nf − 2

4N4
c

b23 +
Nf + 9

8N4
c

c23 .
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i(faecdbe8 − f becdae8 − fabedec8)AiaAib =

13
∑

n=1

b10+10

n Oc
n, (C3)

where

b10+10

1 = 0 ,

b10+10

2 = 0 ,

b10+10

3 = 0 ,

b10+10

4 =
1

N2
c

a1b3 −
3

2N2
c

a1c3 −
3

2N4
c

c23 ,

b10+10

5 = − 1

N2
c

a1b3 +
3

2N2
c

a1c3 +
3

2N4
c

c23 ,

b10+10

6 = 0 ,

b10+10

7 = 0 ,

b10+10

8 =
1

N4
c

b23 −
5

4N4
c

c23 ,

b10+10

9 = − 1

N4
c

b23 +
5

4N4
c

c23 ,

b10+10

10 = 0 ,

b10+10

11 = 0 ,

b10+10

12 = 0 ,

b10+10

13 = 0 .

i(faecdbe8 − f becdae8 − fabedec8)AiaJ2Aib =
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