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Abstract

We study the response of a class of topological systems to electromagnetic and

gravitational sources, including torsion and curvature. By using the technology of

anomaly polynomials, we derive the parity-odd response of a massive Dirac fermion in

d = 2 + 1 and d = 4 + 1, which provides a simple model for a topological insulator.

We discuss the covariant anomalies of the corresponding edge states, from a Callan-

Harvey anomaly-inflow, as well as a Hamiltonian spectral flow point of view. We also

discuss the applicability of our results to other systems such as Weyl semi-metals.

Finally, using dimensional reduction from d = 4 + 1, we derive the effective action for

a d = 3 + 1 time-reversal invariant topological insulator in the presence of torsion and

curvature, and discuss its various physical consequences.
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1 Introduction

Strong bonds between high-energy and condensed matter physics have been formed through

the study of quantum field theory anomalies. Naively, anomalies simply represent the break-

ing of a classically preserved symmetry through quantum effects, but once one digs deeper

one realizes the deep connections between anomalies, topological transport phenomena, bulk-

boundary correspondence, and fermion representations that lie at the heart of some of the

most interesting, and experimentally relevant, physical phenomena. With the discovery of

topological insulators and topological phases of matter, anomalies have moved to the fore-

front of condensed matter physics[1, 2]. Many old ideas from high-energy physics, for instance

[3, 4] etc., have been repurposed and extended to explain properties of exotic materials that

are being measured in experimental groups all over the world[5, 6, 7, 1, 8, 9, 10, 11]. One

example is the connection between the bulk Hall conductivity in 2+1-d electron gasses in the

quantum Hall state and the anomalous properties of the 1+1-d chiral fermion edge states at

the boundaries of the samples[12, 13, 14]. This type of bulk-boundary connection between

bulk transport properties and anomalous transport of the gapless edge degrees of freedom

underlies most of the interesting properties of topological phases of matter. In fact, each

different field theory anomaly gives rise to a different type of transport phenomenon, for

example, electrical or thermal transport. In recent years, there has also been a great deal

of progress in understanding anomaly induced transport phenomena in hydrodynamics (see

for instance [15, 16, 17, 18] and references therein).

By now there exists a mapping between most known quantum field theory anomalies (gauge

and gravitational) and associated condensed matter phenomena in space-time dimensions

d ≤ 4 [19, 20]. However, the role played by space-time torsion in anomaly physics is still

poorly understood – a notable example is the anomaly in the global chiral symmetry of

3 + 1− d fermions exposed to torsion [21]. This anomaly implies the non-conservation of the

chiral current when certain arrangements of dislocations and strain forces are applied to chiral

fermions; it has also been the source of some controversy in high energy physics, the reason

for which we will recount below. While dislocations and strain forces are not commonplace

in our outward universe, they are ubiquitous in condensed matter systems. For example,

effects of this anomaly should be seen if dislocations and strain are present in Weyl semi-metal

materials, which have an electronic structure consisting of an even number of chiral fermions

in 3+1-d[22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 26, 36, 37]. Related effects

will also appear in the response properties of time-reversal invariant topological insulators.

Thus, while high-energy physicists may not ever have to worry about resolving the torsion
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anomaly puzzle in order to describe the fundamental properties of the Universe,1 condensed

matter physicists should be concerned because it is something that can be measured.

The goal of the present work is to resolve many of the uncertainties surrounding torsional

anomalies by studying them in three explicit contexts analogous to the work done by Nielsen

and Ninomiya for the Adler-Bell-Jackiw anomaly in crystals[40], and also the work of Qi-

Hughes-Zhang on the response properties of topological insulators[19]. The three systems

that we will study are the boundary of a 4+1-d topological insulator which can harbor a

single chiral fermion on its boundary[19], Weyl semi-metals in which an even number of

chiral fermions must be present so that the total chirality vanishes, and 3+1-d time-reversal

invariant topological insulators which contain no chiral fermions, but exhibit related response

properties due to the dimensional reduction. In recent work [41] we were able to resolve a

similar problem in 2+1-d fermionic insulators whereby torsional terms in the effective action

of time-reversal breaking topological insulators were shown to correspond to Hall viscosity

transport (see [42, 43, 44, 45, 46, 47, 48, 49, 41, 50, 51] and the review [52] for a detailed

exposition to Hall viscosity in various systems) along with concomitant anomalies on the

interface between topological phases, and we will now apply our techniques to the 3+1-d

case.

This article is organized as follows: in Section 2 we will review the idea of torsion, how

fermions couple to it, and its appearance in the d = 3 + 1 chiral anomaly. Then in Section

3 we will carefully derive the “Chern-Simons-like” parity-odd effective actions for massive

Dirac fermions coupled to background curvature and torsion. In particular, we re-derive the

response action for 2+1-d time-reversal breaking topological insulators and then present our

main result which is the response action for the 4+1-d topological insulator. The 4+1-d

case might seem irrelevant at first sight from a condensed matter perspective, but this is

not so; it can be used to study torsion effects on chiral fermions by studying the boundary

anomalies, and also the response of 3+1-d time-reversal invariant topological insulators by

dimensional reduction. This is what we do next – in Section 4, we will carry out the 5-d bulk

to 4-d boundary Callan-Harvey anomaly in-flow calculation[3] paying careful attention to

the role of torsion, and in Section 5 we will give more microscopic Hamiltonian spectral flow

arguments for the different anomaly types which illustrate the microscopic behavior of real

material systems under the influence of torsion. From here we will discuss some consequences

for Weyl semi-metals in Section 6. Then in section 7, we dimensionally reduce the d = 4 + 1

parity-odd effective action to discuss some consequences for the 3+1-d time-reversal invariant

1However, as we will see below, the role of torsion in anomaly inflow mechanisms suggests that it should

play a role in some braneworld or holographic constructions [38, 39].
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topological insulator. We will end with some final discussion and conclusions.

2 Review of Torsion and the Torsion Contribution to

the Chiral Anomaly

2.1 Informal preliminaries

In classical general relativity, torsion is simply taken to vanish, so that the geometric degrees

of freedom can be captured solely by the metric tensor — torsion can be regarded as a

violation of the equivalence principle. In more general formulations of general relativity,2

the types of matter usually considered provide no source for torsion, so even if it were

allowed, one would find that it vanishes by equations of motion. If torsion is allowed, there

is no natural choice for a (spin) connection, and both the metric (or more precisely, the

frame) and the connection must be provided independently to specify a unique geometry.

Condensed matter physics is not governed by general relativity. Nevertheless, it is often

useful to formulate various concepts in geometric terms. Recently, in condensed matter,

effects that are essentially connected to torsion have been brought to the forefront and include

things like the Hall viscosity in Chern insulators[47, 41], low-energy transport properties in

topological phases [53], and the properties of dislocations and disclinations in topological

phases[54, 55, 56, 57, 58, 59, 60]. Torsion is most intuitively interpreted as the field strength

tensor of the gauge potentials that encode translation invariance. A magnetic flux line of

torsion is simply a dislocation, i.e., a particle encircling the torsional magnetic flux will be

translated by an amount bA (where A = 0, 1, 2 . . . D) which is the generalized Burgers’ vector

of the dislocation. The time component b0 is the amount of translation in time,3 and the

spatial components ba are the traditional Burgers’ vector translation in space. Thus, to each

torsional flux line we must associate a d-vector of fluxes bA instead of just a scalar flux for

the U(1) electromagnetic field. Since dislocations play a pivotal role in many aspects of the

theory of crystalline solids, and in quantum-ordered crystals like charge density waves, the

role of torsion must be carefully considered in condensed matter systems.

2Here we refer to the first order formalism, in which the action of general relativity (the Palatini action

for example) is regarded as depending on independent frame and connection variables. Details will be given

below.
3One can envision a spatial Burgers’ vector as a lattice dislocation. A temporal Burgers’ vector arises,

for example, in the presence of vorticity.
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If we only consider flat space without space-time curvature, we need only introduce geo-

metric variables called co-frame fields eA to describe torsion. Each eA = eAµdx
µ (where

µ = t, x, y, z, . . . and A = 0, 1, ..., d− 1) is a 1-form vector potential with a label given by A.

In flat space we can choose a gauge where the spin connection 1-forms ωABµ dxµ ≡ 0 so that

the components of the torsion tensor are

TAµν = ∂µe
A
ν − ∂νeAµ , (1)

that is, TA is the field-strength 2-form for the gauge potential eA. As an example, if we

have a dislocation-line localized at the origin in the xy-plane then TAxy = bAδ(x)δ(y). The

generalized Burgers’ vector bA of the localized dislocation is the torsion magnetic flux from

each eA potential, or equivalently the circulation of eA around the dislocation in the xy plane

bA =

∫
d2x εijTAij =

∮
eA (2)

To make contact with more familiar condensed matter notation we note that the co-frame

fields are simply a re-packaging of conventional elastic variables based on the displacement

vector uA (where we allow for a time-displacement as well). In terms of the displacement

vector the co-frame fields are (to linear order in displacements)

eAµ = δAµ −
∂uA

∂xµ
(3)

where the spatial components wai = ∂iu
a are known conventionally as the distortion tensor[61].

The undeformed system is represented by the orthonormal frames eAµ = δAµ which exist at

every point in space-time.

Similarly, lattice disclinations can be viewed as sources of curvature – traversal around a

disclination results in rotation. This effect can be encoded in link variables ωabi . Promoting

this to space-time, we have the set of spin connection 1-forms (valued in so(d− 1, 1)) ωAB =

ωAµ;Bdx
µ which are gauge potentials for local Lorentz invariance. The field strength RA

B for

the spin connection is referred to as the curvature. In fact, the spin connection can be grouped

with the translation gauge potentials eA to form a kind of Poincaré gauge structure.4 We

4Formally, this can be seen by considering the coupling of a Dirac fermion (or any tensor) to a background

frame and spin connection. The covariant derivative ∇A generates translations, and the commutator of

translations takes the form

[∇A,∇B ] = −TCAB∇C +RCD;ABJ
CD, (4)

where T is torsion, R curvature and J the generator of Lorentz transformations acting on the Dirac spinor.

The commutator has an interpretation in terms of traversing a ‘closed’ path, the result being a translation

(if torsion is present) or a (Lorentz) rotation (if curvature is present). The standard relations between eA,

ωAB and TA, RAB will be given below in the following subsection.
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refer the reader to Ref. [41], and references therein, for more discussion about the connection

between the field-theory variables and conventional elasticity theory.

Now we will move on to discuss the well-known chiral anomaly. In 1+1-d, charged chiral

fermions in the presence of an electric field will not conserve chiral charge. This effect is

captured by the anomalous Ward identity for the chiral (axial) current:

∂µj
µ
5 =

q2

4π
εµνFµν (5)

where q is the U(1) charge. This is problematic in the sense that it goes against all classical

physical intuition about charge conservation. There are two common ways in which this

problem is resolved: (i) if the chiral fermion appears as the low-energy description of a

real 1+1-d material then it must always appear with its anti-chiral partner (a consequence

of the Neilsen-Ninomiya no-go theorem (fermion doubling))[62] or (ii) the chiral fermion

appears as the low-energy description on the boundary of a 2+1-d system, and the anti-

chiral partner appears on the opposite boundary. In this case the total chiral charge of the

two chiral fermions is passed back and forth through the 2+1-d bulk. One can show in case

(ii) that when an electric field is applied parallel to the chiral edge state there is a bulk

current perpendicular to the applied electric field/edge, and the boundary chiral anomaly

is attached to a bulk Hall effect; this is an example of the Callan-Harvey effect[3] and it

appears in any 2D electron system exhibiting the integer quantum Hall effect. In case (i)

the U(1) axial charge is locally conserved but it can be converted between the low-energy

left-handed (left-moving) and right-handed (right-moving) branches in the presence of an

applied electric field. In this case there is no notion of a perpendicular Hall current since

both chiral and anti-chiral fermions exist in the same local region of space.

We note that because the frame field, and subsequently, the torsion 2-form, carry an extra

Lorentz index A, there is no Lorentz invariant contribution to the 1+1-d chiral anomaly from

torsion. For a real crystalline material or a fluid at finite density, both of which naturally

break Lorentz invariance, it is possible to generate a term of the form ∂µj
µ
5 ∼ θAε

µνTAµν for

some field θA arising from the source of Lorentz violation. For example, this type of anomaly

might be generated if we have left and right handed chiral fermions with different velocities,

which is allowed in a condensed matter setting. For 1+1-d fermions different velocities means

the density of states of the left and right movers are different, which can lead to a physically

measurable consequence. We will not consider these effects in what follows, though they

could appear in low-dimensional condensed matter materials and would be interesting to

study in future work.

In 3+1-d, the next dimension that supports chiral fermions, there is also a chiral anomaly in
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the presence of background electromagnetic fields, however it is only present when parallel

electric and magnetic fields are applied. This is captured by the anomalous Ward identity

∂µj
µ
5 =

q3

32π2
εµνρσFµνFρσ =

q3

4π2
~E · ~B. (6)

One can think of the anomaly as a two-step process in which one first turns on a uniform

magnetic field and then a parallel electric field. The magnetic field will produce Landau

levels in the low-energy chiral fermions, and there will be one Landau level that disperses

chirally along the direction of the magnetic field. This dispersive Landau level is identical

to a degenerate set of 1+1-d chiral fermions along the direction of the magnetic field, one

chiral branch for each magnetic flux quantum. At this point the problem has been reduced

back to decoupled copies of the 1+1-d case, and one can proceed by applying an electric

field as the second step. The electric field will induce a non-conservation of charge for each

1+1-d chiral branch. The resolution of the non-conservation of chiral charge is solved using

one of the two mechanisms presented earlier. Using the nomenclature from recent condensed

matter literature, one would say that chiral fermions occurring from case (i) appear in a

Weyl semi-metal material[22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35] and from case

(ii) one would state that the chiral fermions appear at the boundary of a 4+1-d topological

insulator state[19].

It is well-known that in addition to the electromagnetic contributions to the anomalous chiral

conservation law, new terms are generated when the space-time in which the chiral fermion

resides is curved or has torsion. As shown, for instance in [63, 21], the Ward identity is

modified in the presence of curvature and torsion to5

∂µj
µ
5 =

q3

32π2
εµνρσFµνFρσ +

q

192π2
εµνρσ

1

4
R ab
µνR

cd
ρσ ηadηbc + CNY . (7)

where R ab
µν is the Riemann curvature tensor and the Nieh-Yan term[64] is given by

CNY =
q

32π2`2
εµνρσ

(
ηabT

a
µνT

b
ρσ − 2Rab;µνe

a
ρe
b
σ

)
(8)

with ` being a length scale. The consequences of the first term are well understood, and even

the curvature dependent term has recently come under investigation in a condensed matter

setting[20, 65], however the microscopic origin, and a clear condensed matter interpretation

of the third term has not been considered. The coefficients of the first two terms are dimen-

sionless and universal, while the Nieh-Yan term has a dimensionful coefficient, related to a

UV scale[21]. The reason the coefficients have different properties is that the components of

5These expressions should be taken to be schematic; the precise results will be presented later in the

paper.
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the co-frame eAµ are dimensionless and do not have the conventional natural units of L−1 be-

fitting the components of a connection. Thus, the torsion field (1) only has units of L−1 and

the anomalous Nieh-Yan term needs a coefficient with units ~/L2 so that the entire term has

the units of action when integrated over a space-time region. Usually, anomaly coefficients

have a topological origin and are quantized as an integer multiplying fundamental constants.

The Nieh-Yan term however has units, is sensitive to UV scales, and thus has no apparent

universal interpretation.

In this article we have not set out to address the Nieh-Yan term from a fundamental perspec-

tive, but instead we will provide a regularized derivation and a condensed matter interpreta-

tion of the consequences of this and other new torsional contributions to anomalies. Indeed,

we do find that one can interpret the Nieh-Yan term as a contribution to the chiral anomaly,

and its effects could possibly be observed, for example, in Weyl semi-metals.6 A related effect

also appears in the response of 3+1-d time-reversal invariant topological insulators to torsion

where an axion-induced Nieh-Yan term gives rise to a surface Hall viscosity[66]. Before we

get to these results, we will review the warm-up problem of the 2+1-d topological insulator

that was covered in Refs. [47, 41] and then step up to the 4+1-d topological insulator. While

considering 4+1-d may be a stretch for condensed matter minded readers, we can use two

different properties of this system to study lower-dimensional systems that are relevant to

experiments. We can first consider the gapless boundary modes of the 4+1-d topological

insulator which will be standard 3+1-d chiral fermions as would be found in the bulk of a

Weyl semi-metal, and second, we can dimensionally reduce the 4+1-d insulator to obtain a

time-reversal invariant strong topological insulator in 3+1-d using the framework set forth

by Ref. [19].

2.2 Formal preliminaries

Before proceeding, we present here a brief introduction to the mathematical details of tor-

sional gravity, fermions coupled to torsion, the corresponding symmetries, etc. (see [67, 41]

for more details). As mentioned previously, conventionally, gravity is described in terms of

the metric 2-tensor g = gµνdx
µ⊗dxν on space-time. However, in order to couple fermions to

6In the context of topological insulators, the significance of UV scales is somewhat subtle. As we review

below for example, the UV scale of an edge theory is related to a gap scale in the bulk. Thus, it is possible

that anomalies depending on the UV scale in an edge theory have simple interpretations (by anomaly inflow)

in terms of physics in the bulk. We expect that the same physics can arise in high energy theory, for example

in brane-world scenarios, if either side of a brane corresponds to distinct topological phases. This possibility,

as far as we are aware, has not been considered in the literature.
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gravity, it is essential that we use the first order formalism. In this language, we introduce

the co-frame, a local basis of 1-forms eA(x) = eAµ (x)dxµ on space-time, such that

g = ηAB e
A ⊗ eB. (9)

The corresponding basis of tangent vector fields dual to the co-frame is called the frame

eA(x). In going from the metric to the co-frame, we have introduced a redundancy in our

description, namely the local Lorentz gauge symmetry

eA(x) 7→ ΛA
B(x)eB(x) (10)

where Λ is an SO(1, d−1) matrix, ΛT ·η ·Λ = η, with η the constant Minkowski metric. Note

that the local Lorentz transformation is not a space-time coordinate transformation, but a

rotation/boost of the local orthonormal frame. In order to maintain covariance under this

gauge symmetry, we must therefore introduce a connection 1-form ωAB, which transforms

under local Lorentz transformations as

ωAB 7→
(
Λ · ω · Λ−1 − dΛ · Λ−1

)A
B
. (11)

The connection ωAB is often referred to as the spin connection. Loosely speaking, we may

think of eA and ωAB as gauge fields corresponding to local translations and local Lorentz

rotations respectively. As has been mentioned above, the field strength 2-form corresponding

to the co-frame

TA = deA + ωAB ∧ eB (12)

is called Torsion, while the field strength 2-form for the spin connection

RA
B = dωAB + ωAC ∧ ωCB (13)

is called Curvature.7 Both torsion and curvature transform covariantly under local Lorentz

transformations, TA 7→ (Λ · T )A, RA
B 7→ (ΛT · R · Λ)AB. In standard discussions of general

relativity, the torsion 2-form is set to zero. As a consequence, the spin connection is then

uniquely determined in terms of the co-frame, and is called the Levi-Civita connection,

denoted herein by ω̊AB. However, the gravitational fields we will consider in this paper will

be non-dynamical, and will be treated as background fields which determine the geometry in

7In a coordinate basis of 1-forms dxµ, the component forms of these expressions read

TAµν = ∂µe
A
ν − ∂νeAµ + ωAµ Be

B
ν − ωAν BeBµ (14)

RABµν = ∂µω
A
ν B − ∂νωAµ B + ωAµ Cω

C
ν B − ωAν CωCµ B . (15)

The Riemann tensor Rλρµν = eAρ e
λ
BR

A
Bµν can be expressed in terms of the Christoffel symbols in the usual

way, but in the presence of torsion, the Christoffel symbol is not symmetric in its lower indices.
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which the fermions propagate. As such, we will not set torsion to zero. There are two ways

to view this: first, we might want to consider lattice systems, say, in which dislocations and

disclinations are present. These are sources of torsion and curvature respectively, and so we

would not want to set either to zero. Second, even in the absence of torsion or curvature in a

given state of matter, we can regard eA and ωAB as sources for distinct operators. Thus, we

can regard what we are doing in terms of a generating functional for correlation functions that

determine transport properties, and as such we would have no reason to impose restrictions

on sources (or their derivatives). This point is especially important in the present discussion,

because Dirac/Weyl fermions carry spin, and as such the co-frame and the spin connection

couple to independent fermion operators, namely the stress current and the spin current

respectively. Thus, we will regard eA and ωAB as independent background fields, and treat

them on an equal footing. However, we will find it notationally convenient to organize things

in terms of the Levi-Civita connection occasionally. For future use, we also define the 3-form

H =
1

3!
HABC e

A ∧ eB ∧ eC ≡ ηAB e
A ∧ TB. (16)

In fact, as will become clear in the following sections, the macroscopic properties of the

fermionic models we consider, organize themselves in terms of an “effective” repackaged spin

connection ω
(c)
µ;AB =

(
ω̊µ;AB − c

2
Hµ;AB

)
, for some constant c. Let us now move on to describe

the coupling of fermions to the frame and the spin connection.

The Dirac action in the presence of background gravity in d = D+ 1 space-time dimensions

may be written as8

S[ψ; e, ω] =
1

D!

∫
εA1...Ade

A1 ∧ . . . ∧ eAD ∧
[

1

2
ψγAd∇ψ − 1

2
∇ψγAdψ − eAdmψψ

]
(17)

=

∫
ddx det e

[
1

2
ψγA∇eA

ψ − 1

2
∇eA

ψγAψ −mψψ
]

(18)

where the Lorentz and gauge covariant derivative of the Dirac spinor is given by9

∇ψ = dψ +
1

4
ωABγ

ABψ + qAψ. (19)

Here we have also introduced a background electromagnetic (i.e. U(1)) connection A, with

q being the fermion charge. In odd space-time dimensions, the mass m is real, and its sign

will play a central role in determining the character of the resulting insulating state. The

8We have written the action in this way, because it is this form for which the action is strictly real (not

just up to a total derivative). This is crucial if we wish to study the system on a geometry with a boundary

or other defects.
9γ’s with multiple indices correspond to anti-symmetrized quantities, e.g. γAB = 1

2 (γAγB − γBγA).
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classical equation of motion for the spinor field involves the Dirac operator

D/ = γAeµA

(
∂µ + qAµ +

1

4
ωµ;BCγ

BC +Bµ

)
(20)

where B ≡ 1
2
TB(eA, eB) eA. The B term arises upon integration by parts in deriving the

equations of motion, and we note that it enters in such a way that it looks like it corresponds

to an additional gauge field.10 It is not of course independent of the spin connection, but

does vanish with the torsion. Another way to write the Dirac operator is in terms of the

Levi-Civita connection

D/ = γAeµA

(
∂µ + Aµ +

1

4
ω̊µ;BCγ

BC

)
− 1

4

1

3!
HABCγ

ABC . (21)

The Dirac action shown above corresponds to ‘minimal coupling’ of the frame and spin

connection to the fermions. There is in fact another invariant term that we could add to the

action ∫
ddx det(e) HABC ψ̄γ

ABCψ. (22)

Although it is ‘non-minimal’, it occurs at the same order in power counting as the other

terms in the action. Its inclusion has the effect of shifting the coefficient of the H term in

the Dirac operator, as in equation (21). Thus, there is a ‘torsional charge’ qT , and we take

the Dirac operator to be

D/ = γAeµA

(
∂µ + Aµ +

1

4
ω̊µ;BCγ

BC

)
− qT

4

1

3!
HABCγ

ABC . (23)

Physically, qT can be thought of as the strength of the torsional coupling. While in the

present case it is possible to absorb the torsion coupling into the definition of H, this is not

true in general, because different species of fermions might have different coupling strengths.

The Dirac theory has background diffeomorphism and local Lorentz gauge symmetry. In

order to explore these, we begin by defining the following current 1-forms

J = q ψγAeAψ, JA =
1

2
(ψγA∇ψ −∇ψγAψ), JAB =

1

4
eCψγ

CADηDBψ (24)

which we will refer to as the charge current, stress current, and spin current respectively.

These couple respectively to the U(1) gauge field A, co-frame eA, and spin connection ωAB

10In fact, as explained in [67], the classical theory possesses a corresponding background scaling symme-

try when m = 0 under which the fields and background transform as eA(x) 7→ eΛ(x)eA(x), ωAB(x) 7→
ωAB(x), ψ(x) 7→ e−(d−1)Λ(x)/2ψ(x). We note from the definition of B that under such a transformation, B

transforms like a gauge field B 7→ B + d−1
2 dΛ. However, this symmetry will not play much of a role in our

discussion, so we leave it at that.
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in the classical action. The components of the current JA give a (not necessarily symmetric)

notion of the “stress-energy tensor”11 via Tµν = JAµ e
B
ν ηAB. Also note that the spin current

JABµ vanishes in d = 2.

Invariance of the classical action under background diffeomorphisms follows immediately

from writing it as the integral of a top form, as in (17). We will take the action of local

diffeomorphisms on fermions and background fields as

δψ = iξ∇ψ, δeA = DξA + iξT
A, δωAB = iξRAB, δA = iξF (25)

where D is the Lorentz-covariant derivative12, ξ is a vector field with compact support and

iξ is the interior product of ξ with a differential form.13 These transformations differ from

ordinary diffeomorphisms by local Lorentz and U(1) gauge transformations, so we will refer

to these as covariant diffeomorphisms. Using Noether’s theorem, it is straightforward to

obtain the conservation equation

D ∗ JA − ieATB ∧ ∗JB − ieARBC ∧ ∗JBC − ieAF ∧ ∗J = 0. (26)

Some readers might be more familiar with the component form of this equation, which reads

1

det(e)
Dµ

(
det(e) JAµ

)
− eAµTB;µνJ

Bν − eAµRBC;µνJ
BC;ν − eAµFµνJν = 0, (27)

or when written in terms of the stress-energy tensor, we have

∇(Γ)
µ T µρ −RBCρνJ

BCν − FρνJν = 0.

where ∇(Γ) is the coordinate covariant derivative, involving the (torsionful) Christoffel sym-

bol.

Next, under an infinitesimal Lorentz transformation, the spinors and background fields trans-

form as

δψ =
1

4
θABγ

ABψ, δeA = −θABeB, δωAB = −(Dθ)AB, δA = 0 (28)

11For reasons that will become apparent below, we should resist the temptation to symmetrize the stress-

energy tensor at this point.
12The Lorentz covariant derivative acting on a p-form with Lorentz indices KA1···AM

B1···BN
reads

DKA1···AM
B1···BN

= dKA1···AM
B1···BN

+ωA1
C1
∧KC1···AM

B1···BN
+ · · ·−(−1)pKA1···AM

C1···BN
∧ωC1

B1
+ · · ·

13For α = 1
p!αµ1···µpdx

µ1 ∧ · · · dxµp a p-form, and ξ = ξµ∂µ a vector field, the interior product is defined as

iξα =
1

(p− 1)!
ξνανµ1···µp−1

dxµ1 ∧ · · · dxµp−1

.
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where θAB are the infinitesimal angles parametrizing the transformation. Invariance of the

Dirac action under these transformations is automatic, by construction. The corresponding

Ward identity is

D ∗ JAB − e[A ∧ ∗JB] = 0. (29)

In components, this evaluates to

eλBe
ρ
ADµJ

ABµ + T [ρλ] = 0, (30)

where the second term is the anti-symmetric part of the stress-energy tensor. The physical

interpretation of this equation is that of conservation of net angular momentum. This is

the classical result; usually, it is interpreted to mean that the stress-tensor can be made

symmetric, by adding the appropriate ‘improvement’ terms involving the spin current. Note

however, that if this Ward identity is anomalous in the quantum theory (as is indeed the

case for Weyl fermions in even dimensions), then this interpretation is problematic, and the

anomaly must correspond to an irremovable anti-symmetric part of the stress-energy tensor

(certainly this must be true in 1+1-dimensions, since the fermionic Lorentz current vanishes).

In such a case, the usual improvement of the stress-energy tensor to make it symmetric must

fail, in the sense that it cannot correspond to the addition of local counterterms. We note that

this conclusion also holds in theories which are not necessarily Lorentz invariant, but which

have any type of spin-orbit (or orbital-orbit) coupling where the momenta couple to matrices.

This covers a large class of condensed matter systems where the electronic degrees of freedom

couple to the geometry via the frame (or a frame-like object) and spin-connection instead

of purely the metric. For example, a model of the form H = (p2
x − p2

y)σ
x + 2pxpyσ

y + mσz,

which is a continuum theory for a model with a Chern number equal to 2, and not Lorentz

invariant, will exhibit the qualitative features we have discussed above albeit with some

important modifications that we leave to future work.

Finally, we remark that in even dimensions, it is also possible to couple chiral fermions to

the frame and connection. The action is a straightforward modification of (18). The chiral

theory also has the same symmetries as the Dirac theory at the classical level, and the

above conservation laws carry over straightforwardly to the chiral case. However, all the

symmetries are spoilt by perturbative anomalies upon quantization. Chiral fermions show

up as edge states in topological insulators, and we will see that their anomalies are intimately

related with the bulk transport properties.

13



3 Parity odd effective actions

All types of free-fermion topological insulator/superconductor phases can be represented by

massive Dirac Hamiltonians with various symmetries, i.e.,

H =
D∑

a=1

paΓ
a +mΓ0 (31)

where {ΓA,ΓB} = 2ηAB for A,B = 0, 1, 2, . . . D and ηAB is the flat Lorentz metric. In

odd space-time dimensions the Hamiltonians of insulators without additional symmetries

(called the unitary A class) are classified by an integer topological invariant ν. Non-trivial

insulators, i.e., insulators where ν 6= 0 are said to exhibit the D-dimensional quantum Hall

effect, or just the quantum Hall effect if D = 2. These systems are gapped in the bulk, but

harbor D − 1-dimensional chiral fermions on their boundaries (D − 1 would give an even-

dimensional boundary space-time). The bulk remains gapped, unless the mass vanishes, at

which point there is a topological phase transition between insulating states where ν differs

by one. The precise value of ν is not determined by Eq. (31) alone but requires information

about the regularization scheme to uniquely define ν. Throughout this article we will use

Pauli-Villars (spectator fermion) type regularization as it matches the structure of many

simplified condensed matter lattice-Dirac models including lattice models with Wilson mass

terms. Our convention is to choose the regularization such thatm < 0 is the topological phase

with ν = 1 and m > 0 is the trivial phase with ν = 0. We note that such a regularization is

required even in the absence of all gravitational/torsional effects, as noted in Ref. [13], since

otherwise a 2+1-d free-fermion model would give rise to a non-integer Hall conductivity.

The topological insulator phase with ν = 1 will possess chiral boundary states that will

produce anomalous currents in the presence of background electromagnetic and gravitational

fields. These anomalous currents are matched by a bulk response of the topological insulating

state where all anomalous current flowing from the boundary simply flows through the bulk to

another boundary. Even without boundaries, the bulk of the material can respond similarly

when background fields are present. The bulk response is captured by topological terms that

appear in the effective action when the gapped fermions are integrated out in the presence of

background fields. For instance, the effective action for a massive Dirac fermion in d = 2 + 1

flat space-time in the presence of background electromagnetic fields, contains the parity-odd

Chern-Simons term

Sodd[A] =
σH
2

∫

M3

A ∧ dA (32)

where σH = 1
2
(1 − sign(m)) q

2

2π
. The flow of the corresponding Hall current ∗Jbulk = σHdA

into the boundary between a trivial σH = 0 phase and a topological σH = q2/2π phase,
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precisely matches the U(1) anomaly of the edge chiral fermion (Eq. (5)). In this section,

we derive such topological response terms in the fermion effective action in odd-dimensional

space-times with curvature and torsion, from an anomaly polynomial which is naturally

defined in one higher dimension. The relevant terms are easily identified as they violate

parity and can be easily extracted. In our discussion below, we will use the techniques

presented in [4], albeit adapted to the case with non-zero torsion. Our main emphasis, as

mentioned previously, will be on torsional terms and the corresponding transport physics.

In particular, we will see that including torsion results in UV divergences in the effective

action, which we will carefully regulate. Although such divergences represent non-universal

effects, the difference of such quantities between distinct phases is finite and is captured by

the boundary physics.

3.1 The anomaly polynomial

Let us consider massive Dirac fermions on a d = D + 1 = 2n − 1-dimensional manifold-

without-boundary M2n−1, endowed (locally) with the co-frame eA, spin connection ωAB, and

a U(1) connection A. In Euclidean signature, the fermionic quantum effective action is given

by

Seff [e, ω,A] = −ln det
(
i /D2n−1 + im

)
. (33)

Formally, we may rewrite the above as

Seff [e, ω,A] = −
∑

λk

1

2
ln (λ2

k +m2)− i
∑

λk

tan−1 m

λk
(34)

where λk are the eigenvalues of the Dirac operator: i /D2n−1|ψk〉 = λk|ψk〉, |ψk〉 being the

eigenstates. The parity violating piece must come with odd powers of m

Sodd[e, ω,A] = −i
∑

λk

tan−1 m

λk
. (35)

In order to compute (35) as a functional of the background gauge and gravitational sources

(eA, ωAB, A), it is convenient to use the following strategy [4]: imagine a one-parameter

family of backgrounds (eA(t), ωAB(t), A(t)) which adiabatically interpolates between a fiducial

background (eA(0), ω(0) AB, A(0)) and (eA, ωAB, A) (see Fig. 3.1).14 For instance, we may choose

the co-frame to be

eA(t) =





eA(0), −∞ < t < −T
1
2

[1− ϕ(t)] eA(0) + 1
2

[1 + ϕ(t)] eA, −T ≤ t ≤ T

eA, T < t <∞
(36)

14Note that this is merely a technique which facilitates the computation. Also, t is an external parameter,

and not to be confused with time.
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t = T

t = −T

eA

eA(t)

eA
(0)

M2n−1

t

Figure 1: An illustration of the one-parameter family of background co-frames, which in-

terpolates between the fiducial co-frame eA(0) and the co-frame in which we are interested

eA.

where ϕ(t) is an arbitrary function which smoothly interpolates between [−1, 1] as t runs

from −T to T , for some large and positive T . The other sources ωAB(t) and A(t) may

be chosen similarly. This gives us a one-parameter family of Dirac operators /D2n−1(t) =

/D2n−1[eA(t), ωAB(t), A(t)] with eigenvalues λk(t). Taking a t-derivative of equation (35), we

obtain
dSodd
dt

(t) = im
∑

λk

1

λ2
k(t) +m2

dλk
dt

. (37)

Exponentiating the factor of (λ2
k +m2)−1 and using dλk

dt
= 〈ψk(t)|id/D2n−1

dt
(t)|ψk(t)〉, we there-

fore find
∫ ∞

−∞
dt

d

dt
Sodd(t) = −m

∫ ∞

−∞
dt

∫ ∞

0

ds Tr2n−1
d /D2n−1

dt
e−s(m

2− /D2
2n−1(t)) (38)

where Tr2n−1 is the trace over the spectrum of /D2n−1(t).

On the other hand, consider the 2n-dimensional Dirac operator /D2n on the space M2n−1×R
given by15

/D2n = σ1 ⊗ d

dt
+ σ2 ⊗ /D2n−1(t). (39)

The square of /D2n is easily computed

/D2
2n =

d2

dt2
+ iσ3 ⊗ d /D2n−1

dt
+ /D2

2n−1(t). (40)

15Here we take the Clifford matrices on M2n−1 × R to be Γ0 = σ1 ⊗ 1, ΓA = σ2 ⊗ γA
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Also note that the 2n-dimensional chirality operator is given by Γ2n+1 = σ3⊗1. Now, define

a 2n-form P(0)(m) on M2n−1 × R by

∫

M2n−1×R
P(0)(m) = im

√
π

∫ ∞

0

ds s−1/2Tr2nΓ2n+1e−s(m
2− /D2

2n) (41)

where Tr2n is trace over the spectrum of /D2n defined onM2n−1×R. Notice that Tr2nΓ2n+1es /D
2
2n

is the integral over M2n−1×R of the Atiyah-Singer index density, which is locally exact. Since

M2n−1 is taken to be without-boundary, P(0)(m) is a total derivative in t. Using the assump-

tion of adiabaticity we may carry out the trace in the t- direction to obtain

∫

M2n−1×R
P(0)(m) = −m

∫ ∞

−∞
dt

∫ ∞

0

ds Tr2n−1
d /D2n−1

dt
e−s(m

2− /D2
2n−1) + · · · (42)

where · · · indicate terms with three or more t-derivatives. These terms drop out because the

background fields are asymptotically t-independent (see Eq. (36)). Comparing with (38),

we conclude that

Sodd[e, ω,A]− Sodd[e(0), ω(0), A(0)] =

∫

M2n−1×R
P(0)(m). (43)

Therefore, the parity odd fermion effective action Sodd[e, ω,A] in d = 2n − 1 may be in-

terpreted as the “Chern-Simons” form correponding to the locally exact index polynomial

P(0)(m) defined in 2n dimensions. We will refer to P(0)(m) as the anomaly polynomial.

We will mainly focus on computing Sodd[e, ω,A] in the limit where the mass scale |m| is taken

to be much larger than all background curvature and torsion scales. Our general strategy

to compute P(0)(m) in this limit will be as follows: in the limit s 7→ 0, there exists an

asymptotic expansion

Tr2nΓ2n+1es /D
2
2n '

∞∑

k=0

bks
−n/2+k (44)

where the bk are integrals over M2n of polynomials in curvature, torsion, and their covariant

derivatives. The important point is that it suffices to use this asymptotic expansion in

order to extract terms in (41) which survive in the limit where |m| is taken to be much

larger than all background curvature and torsion scales. Unfortunately, as will become

clear soon, the anomaly polynomial as defined above is divergent if the background spin

connection is torsional. These are the same divergences that one would encounter in a direct

computation of the 2n − 1 dimensional parity odd effective action (for instance, by using

Feynman diagrams) in the presence of background torsion. In order to remedy the situation,

we introduce N Pauli-Villar’s regulator fermions with coefficients Ci and masses Mi, with
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i = 1, 2 · · ·N . For convenience, we label C0 = 1 and M0 = m. We then define the regularized

anomaly polynomial

P(m) =
N∑

i=0

CiP(0)(Mi). (45)

The Ci’s and Mi’s may be determined by requiring UV finiteness. In a condensed matter

context this type of regulator is natural in simple lattice Dirac models which are often used

to describe topological insulators. These models contain massive spectator Dirac fermions

at locations in the Brillouin zone far away from the region which contains the low-energy

fermion(s). Indeed, upon including the spectator fermions of the lattice Dirac model (inter-

preted as Pauli-Villar’s regulator fermions), the anomaly polynomial P(m) becomes finite in

arbitrary even dimension; we postpone the proof to appendix B.

Since the anomaly polynomial is the (exterior) derivative of the parity odd effective action in

2n−1 dimensions, it encodes the 2n−1 dimensional transport coefficients for the two gapped

phases. Furthermore, as has been explained in [4, 41], covariant anomalies of the 2n − 2-

dimensional edge theory can be extracted out of the fermion effective action in d = 2n − 1

by computing Hall-type currents passing between the edges through the bulk. In this way,

P(m) encodes all the anomalies of the 2n−2 dimensional edge theory. Let us now apply the

above formalism to explicitly compute the parity odd terms in the fermion effective actions

in d = 2 + 1 and d = 4 + 1.

3.2 d = 2 + 1

We first begin with the asymptotic expansion (see Appendix A)

Tr4 Γ5es /D
2 '

∫

M3×R

(
qT

16π2s
dH +

1

192π2
tr R(−qT ) ∧R(−qT ) +

1

8π2
F ∧ F +

qT
96π2

d ∗ d ∗ dH +O(s)

)

(46)

where we recall that H = eA ∧ TA, and we have defined R
(−qT )
AB to be the curvature 2-form

for the connection

ω
(−qT )
AB = ω̊AB +

qT
2
HABCe

C . (47)

The terms higher order in s may be ignored as they give rise to negative powers of m. We

may also drop the last term in (46) as it necessarily contains three or more t-derivatives,

and does not pull back to the boundary for asymptotically t-independent backgrounds, as

explained in the previous section. The unregulated polynomial (41) is then given by

P(0)(m) =
iζ

(0)
H

2
dH +

iκ
(0)
H

2
tr R(−qT ) ∧R(−qT ) +

iσ
(0)
H

2
F ∧ F. (48)
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The unregulated transport coefficients may be computed from (41) and (46)

ζ
(0)
H (m) = − qT

4π

[
− m√

πε
+ σ0m

2

]

κ
(0)
H (m) =

1

96π
σ0

σ
(0)
H (m) =

q2

4π
σ0 (49)

where σ0 = sign(m), and 1√
ε
∼ Λ is the UV cutoff. Introducing the Pauli-Villar’s regulator

fermions, and requiring finiteness in the limit ε 7→ 0, we are led to the constraints

N∑

i=0

Ci = 0,
N∑

i=0

CiMi = 0. (50)

Even without the UV divergent term this action would need to be regularized due to the fact

that the Hall conductivity σ
(0)
H (m) is not an integer multiple of q2

2π
as it must be for a non-

interacting system[13]. One possible choice for {Ci} and {Mi} that solves the constraints

can be inferred from the spectator fermion structure of the 2+1-d lattice Dirac model[68]

where

Mi Ci
m +

m+ 2∆ -
m+ 2∆ -
m+ 4∆ +

where the energy scale ∆ is a large energy scale with |m| << ∆ << Λ. The regulated

anomaly polynomial is then given by16

P(m) =
iζH
2
dH +

iκH
2

tr R(−qT ) ∧R(−qT ) +
iσH
2
F ∧ F (51)

with the regulated transport coefficients

ζH =
qTm

2

2π

1− σ0

2

κH =
1

48π

1− σ0

2

σH =
q2

2π

1− σ0

2
. (52)

16We have also cancelled out a σ0-independent (and hence independent of whether or not the system is in

the topological or trivial phase) divergence proportional to dH by adding a counterterm. Such a counterterm

is required only in d = 2 + 1, and not in higher dimensions.
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Since the anomaly polynomial is a total derivative, we may read off the parity odd effective

action from the above as the corresponding Chern-Simons form

Sodd[e, ω,A] =
i

2

∫

M3

(
ζH eA ∧ TA + σHA ∧ dA

+ κH tr(ω(−qT ) ∧ dω(−qT ) +
2

3
ω(−qT ) ∧ ω(−qT ) ∧ ω(−qT ))

)
(53)

Expanding Sodd to linear order in torsion, we find

Sodd[e, ω,A] =
i

2

∫

M3

(
σHA ∧ dA+ κHtr(ω̊ ∧ dω̊ +

2

3
ω̊ ∧ ω̊ ∧ ω̊)

+ ζH eA ∧ TA − qTκH R̊eA ∧ TA + · · ·
)
. (54)

which is the same action that was derived in [41] by a more direct computation. It might

seem odd that the coefficient of the eA ∧ TA term is a dimensionful parameter, as opposed

to the other coefficients, which are universal and quantized. We note that this is not an

obstacle to gauge invariance: the quantization of both σH and κH is forced upon us by the

requirement of gauge invariance under large gauge transformations. The eA ∧ TA term on

the other hand, is globally well-defined (i.e., gauge, Lorentz, and diffeomorphism invariant),

and hence requires no such quantization of it’s coefficient.

We now focus on the physics of the torsional terms. The ζH eA∧TA term has the interpreta-

tion of Hall viscosity, as has been explained in [47, 41]. Here we wish to delve a bit into the

curvature correction R̊ eA∧TA since similar terms will appear in higher dimensions. We may

loosely interpret this term as a local-curvature dependent Hall viscosity. On a space-time

of the form R× Σ, with Σ a constant curvature Riemann surface of Euler characteristic χΣ

and area A, terms linear in torsion in (54) become

Sodd[e, ω,A] =
i

2

(
ζH −

4πqTκHχΣ

A

)∫
eA ∧ TA. (55)

For curvature and area preserving deformations of the co-frame, we thus find a shift in the

effective Hall viscosity ζH relative to its flat space value

ζH = ζH −
4πκHχΣ

A
. (56)

This effect is reminiscent of the Wen-Zee shift of the number density in a quantum Hall fluid

in the presence of curvature. In fact, let us define the spin density s of the Chern insulator

as

s =
1

A

∫

Σ

∗J12 (57)
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where J12 is the spatial component of the spin current JAB. To lowest order in torsion,

this may be computed from the action17 (55), and we see that the local spin density is also

affected by the local curvature, and in fact satisfies

ζH = −s. (58)

Thus, the shift due to curvature may be interpreted as a shift in the spin density relative to

its flat space value. Equation (58) is similar to the relation between Hall viscosity and spin

presented in [43, 45].

Although we will not consider them in this paper, we note that for d = 2+1, the parity-even

terms can similarly be computed with careful regularization. The complete effective action

then arranges into chiral gravity, namely an SL(2,R) Chern-Simons term [41].

3.3 d = 4 + 1

Since the primary goal of this article is to discuss 3 + 1-d systems, let us now repeat the

above analysis for d = 4 + 1, which we will subsequently use to determine the properties of

3 + 1-d chiral fermions, and 3 + 1-d time-reversal invariant topological insulators. We begin

with the corresponding 6-dimensional asymptotic expansion

Tr6 Γ7es /D
2
6 '

∫

R×M5

(
− qT

32π3s
F ∧ dH − 1

384π3
F ∧ tr R(−qT ) ∧R(−qT ) − 1

48π3
F ∧ F ∧ F

− qT
192π3

d (F ∧ ∗d ∗ dH) +
qT

384π3
d ∗ d ∗ (F ∧ dH) +O(s)

)
. (59)

We do not consider O(s) terms as they lead to inverse powers of m, and are generally of

higher order in the curvature/torsion expansion. As before, we may also drop the last term

in (59), as it does not pull back to the boundary effective action. The unregulated anomaly

polynomial is then easily obtained

P(0)(m) =
iζ

(0)
H

2
F ∧dH+

iκ
(0)
H

2
F ∧ tr R(−qT )∧R(−qT ) +

iσ
(0)
H

3
F ∧F ∧F +

iλ(0)

2
d (F ∧ ∗d ∗ dH)

(60)

17In particular, JAB is obtained by varying with respect to ωAB , holding eA fixed.
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with the unregulated transport coefficients

ζ
(0)
H (m) = −qqT

8π2

[
− m√

πε
+ σ0m

2

]

κ
(0)
H (m) =

q

192π2
σ0

σ
(0)
H (m) =

q3

16π2
σ0

λ(0)(m) =
qqT
96π2

σ0. (61)

The structure of divergences is the same as previously encountered in 2 + 1 dimensions -

namely a linear divergence. In fact, more generally the structure of divergences (i.e. linear,

quadratic etc.) of the parity-odd effective action is identical in d = 4n − 1 and d = 4n + 1

(see Appendix B for more details). Therefore, it suffices to use the Pauli-Villar’s regulators

we used in d = 2 + 1, which gives the regulated anomaly polynomial

P(m) =
iζH
2
F ∧dH +

iκH
2
F ∧ tr R(−qT )∧R(−qT ) +

iσH
3
F ∧F ∧F +

iλ

2
d (F ∧ ∗d ∗ dH) (62)

with the regulated transport coefficients

ζH =
qqTm

2

4π2

1− σ0

2

κH =
q

96π2

1− σ0

2

σH =
q3

8π2

1− σ0

2

λ =
qqT
48π2

1− σ0

2
. (63)

The parity odd effective action in d = 4 + 1 is then given by

Sodd[e, ω,A] =
i

2

∫

M5

(
ζH F ∧ eA ∧ TA +

2σH
3

A ∧ F ∧ F (64)

+ κH F ∧ tr (ω(−qT ) ∧ dω(−qT ) +
2

3
ω(−qT ) ∧ ω(−qT ) ∧ ω(−qT )) + λ F ∧ ∗d ∗ dH

)
.

As before, we stress that this should be regarded as giving rise to the leading (in powers of

|m|) parity-violating terms in correlation functions of the charge, stress, and spin currents.

Once again, we may expand this to linear order in torsion to obtain

=
i

2

∫

M5

(
2σH

3
A ∧ F ∧ F + κH F ∧ tr(ω̊ ∧ dω̊ +

2

3
ω̊ ∧ ω̊ ∧ ω̊) (65)

+ ζH F ∧ eA ∧ TA − qTκH (R̊ F + 2FC ∧ R̊C + FCDR̊CD) ∧ eA ∧ TA + λ F ∧ ∗d ∗ dH + · · ·
)

where we have introduced the notation FA = F (eA), FAB = F (eA, eB), R̊B = R̊AB(eA) and

so on.
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Figure 2: An illustration describing the field setup for a magneto-Hall viscosity response:

turning on a U(1) flux through Σ̃ gives rise to a Hall viscosity response on Σ.

Let us focus on the second line above. The term proportional to ζH now represents a magneto-

Hall viscosity, which is to say a dissipationless viscosity in the presence of a magnetic flux

through perpendicular spatial dimensions. To be more explicit, let us consider a simple

example where we take the space-time manifold to be of the form M5 = R× Σ× Σ̃, with Σ

and Σ̃ being two constant curvature Riemann surfaces with areas A and Ã. If we turn on a

U(1) magnetic flux of F = 2πn

qÃ
volΣ̃ through Σ̃ (for n ∈ Z), then the effective dissipationless

viscosity for co-frame deformations in the orthogonal surface Σ is given by

ζH = n
qTm

2

2π

1− σ0

2
. (66)

Just as in 2 + 1-d, we also have curvature dependent corrections to the effective magneto-

Hall viscosity. For the choice of M5 and F we are working with, the terms linear in torsion

simplify to give us the following effective action on the subspace Σ

Sodd(Σ) =
i

2

∫

R×Σ

{
ζH −

qT
q
κH

(
2πnR̊ +

32π2nχΣ̃

Ã

)}
eA ∧ TA. (67)

As before, if we restrict ourselves to curvature and area-preserving co-frame deformations on

Σ, we find that the effective magneto-Hall viscosity gets shifted from its flat space value to

ζH 7→ ζH −
qT
q
κH

(
32π2nχΣ̃

Ã
+

8π2nχΣ

A

)
. (68)

Once again, the shift in the magneto-Hall viscosity may be interpreted as a shift in the spin

density on Σ relative to the flat space value.

With the completed derivation of the 4 + 1-d parity-violating terms in the effective action

we are now ready to explore measurable consequences in real condensed matter systems. In

23



the next two sections we will first consider the properties of isolated 3+1-d boundary chiral

fermions and then discuss some aspects of the response properties of Weyl semi-metals that

result from these effects. Finally we will discuss the dimensional reduction of the 4 + 1-d

action to 3 + 1-d that will determine the response properties of the 3 + 1-d time-reversal

invariant topological insulator.

4 Callan-Harvey Anomaly Inflow and Boundary Chiral

Anomalies

To study the properties of isolated chiral fermions, or pairs of chiral fermions in a Weyl semi-

metal, we must consider their anomaly structure. One nice way to organize the anomalous

currents is to consider the low-energy chiral modes which are localized on an interface between

topological and trivial phases in odd space-time dimensions. The case of 1+1 dimensional

edge modes on the surface (interface between the non-trivial topological phase and the trivial

vacuum) of a 2+1 dimensional topological insulator was discussed in detail in [41]. Here we

will deal with the case of 3+1 dimensional boundary modes, and their relationship with the

4+1 dimensional parity-odd transport coefficients described in the previous section.

Consider then the non-trivial phase labelled by transport coefficients (σH , ζH , κH , λ) on a 4+1

dimensional manifold M5, separated from the trivial phase by a 3+1 dimensional interface

Σ4 = ∂M5. One model for this system is a 4+1 dimensional Dirac fermion with mass m < 0

on M5, and m > 0 outside, with some interpolation region, the interface Σ4, which we refer

to as the domain wall. In general, there could be multiple fermions with mass domain walls

along Σ4, and their number decides (σH , ζH , κH , λ). The domain wall hosts 3+1-d chiral

fermions, whose anomalies will encode the differences in (σH , ζH , κH , λ) between opposite

sides of the domain wall.

In order to avoid complicating our discussion, we will first explain the anomaly inflow only

focusing on the first two terms in (64), and later present the more general result. We start

with the 4+1-d bulk effective action

Sbulk = i
σH
3

∫

M5

A ∧ F ∧ F + i
ζH
2

∫

M5

F ∧H (69)

where we recall the notation H = eA ∧ TA. The first term is the second (Abelian) Chern-

Simons form and is diffeomorphism and Lorentz invariant, but not U(1) invariant. This gauge

non-invariance must be compensated by the consistent anomaly of the boundary/interface
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theory. This means that the boundary effective action Sbdry cannot be gauge invariant either.

In fact, under a U(1) gauge transformation δA = dα, we must have

δαSbdry = −iσH
3

∫

Σ4

αF ∧ F. (70)

in order to cancel the gauge variation of the bulk Chern-Simons term. Interestingly, the

second term in (69) is gauge, diffeomorphism, and Lorentz invariant despite its similarity to

the first term, and hence we do not expect it to contribute to consistent anomalies in the

boundary. This is an important distinction between the two terms. Using these constraints,

the consistent Ward identities on the boundary are18

d ∗ Jcons =
σH
3
F ∧ F (71)

D ∗ Jacons − ieaTb ∧ ∗J bcons − ieaRbc ∧ ∗J bccons − ieaF ∧ ∗Jcons = −σH
3
ieaA ∧ F ∧ F (72)

D ∗ Jabcons + e[b ∧ ∗Ja]
cons = 0 (73)

where lower-case Latin indices are local Lorentz indices on the boundary manifold Σ4. The

Ward identities written in terms of consistent currents are clearly not gauge covariant since

they depend on gauge-variant fields like the vector-potential A. To remedy the situation, we

must write these in terms of covariant currents. Consider then, the variation of the bulk

response action19

δSbulk =

∫

M5

(
δA ∧ ∗Jbulk + δeA ∧ ∗JAbulk + δωAB ∧ ∗JABbulk

)
+

∫

Σ4

(
δA ∧ ∗j + δea ∧ ∗ja + δωab ∧ ∗jab

)

(74)

The conserved Hall currents in the bulk are given by

∗Jbulk = σHF ∧ F +
ζH
2
dH (75a)

∗JAbulk = ζHF ∧ TA (75b)

∗JABbulk = −ζH
2
F ∧ eA ∧ eB (75c)

while the induced currents in the boundary are

∗j =
2

3
σHA ∧ F +

ζH
2
H (76a)

∗ja =
ζH
2
F ∧ ea (76b)

∗jab = 0. (76c)

18Note that the right hand side of equation (72) originates from the fact that this Ward identity corresponds

to a covariant diffeomorphism, which involves an ordinary diffeomorphism plus a U(1) and local Lorentz

gauge transformation.
19Here we will assume that the boundary values of the variations δeA and δωAB are non-zero only when

the Lorentz indices are those of the boundary. In other words, we are ignoring extrinsic effects here.
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Define the covariant boundary currents Jcov = Jcons + j, Jacov = Jacons + ja, and Jabcov =

Jabcons + jab. Then the Ward identities written in terms of these are

d ∗ Jcov = σHF ∧ F +
ζH
2
dH (77)

D ∗ Jacov − ieaTb ∧ ∗J bcov − ieaRbc ∧ ∗J bccov − ieaF ∧ ∗Jcov = ζHF ∧ T a (78)

D ∗ Jabcov + e[b ∧ ∗Ja]
cov = −ζH

2
F ∧ ea ∧ eb. (79)

These are referred to as the covariant anomalies in the boundary theory. Notice that these

precisely match the fluxes of bulk Hall currents (75) into Σ4

∆Q = σH

∫

Σ4

F ∧ F +
ζH
2

∫

Σ

dH (80a)

∆Qa = ζH

∫

Σ4

F ∧ T a (80b)

∆Qab = −ζH
∫

Σ4

F ∧ ea ∧ eb. (80c)

Thus, the charge, momentum, and spin injected into the edge from the bulk are carried by

the covariant currents Jcov, J
a
cov, and Jabcov respectively.

Having described the general idea of anomaly inflow in a simpler setting, we now give the

full result for edge anomalies. Applying the same ideas discussed above to the full effective

action (64), we get the flux of bulk charge, stress, and spin currents into the edge

∆Q =

∫

Σ4

(
σHF ∧ F +

ζH
2
dH +

κH
2

tr R(−qT ) ∧R(−qT ) +
λ

2
d ∗ d ∗ dH

)
(81a)

∆Qa =

∫

Σ4

(ζHF ∧ T a + κH ea ∧ dA2 − qTκH A2 ∧ T a + λ d ∗ d ∗ F ∧ T a) (81b)

∆Qab = −
∫

Σ4

(
ζH
2
F − qTκH

2
A2 +

λ

2
d ∗ d ∗ F

)
∧ ea ∧ eb (81c)

where we have defined

A2 =
(
F ∧R(−qT )

ab

)
(ea, eb) =

(
F abR

(−qT )
ab + 2F a ∧R(−qT )

a +R(−qT )F
)
. (82)

These are the covariant U(1), diffeomorphism, and Lorentz anomalies of the edge theory in

the presence of curvature. Note the appearance of the dimensionful viscosity term ζH
2
dH in

the chiral U(1) anomaly. This might seem problematic given the topological character of the

(integrated) chiral anomaly. However, note that H is a globally well defined 3-form (unlike,

for instance A ∧ dA), and dH is truly a total derivative. On compact 4-manifolds then, this

term drops out. On the physics side, we are interested in the local anomaly densities – which
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is why it is important for us to keep this term. In fact, this term is precisely the Nieh-Yan

term discussed earlier, and it now has a clear meaning in the present context: its coefficient

is the difference of magneto-Hall viscosities across a 3+1-d interface between two different

topological phases.

Using the structure of the anomalous terms presented here, we will now go on to show the

microscopic origin of a subset of the anomalous currents using spectral-flow type arguments

in the Hamiltonian formalism of the chiral boundary states. This will clarify the physical

origin of the terms in which we are most interested, and will give a nice interpretation for

some of the torsional contributions to the anomalous currents.

5 Spectral flow

In this section we will discuss the covariant anomalies of the boundary theory from the point

of view of adiabatic spectral flow of the Hamiltonian spectrum of chiral boundary states.

We will first review the well-known case of the 4+1-d Hall conductivity and spectral flow

induced by U(1) fluxes, and then move on to magneto-Hall viscosity and the chiral anomaly

due to torsion.

5.1 4+1-d Quantum Hall Effect

First we will study the effects of the U(1) second Chern-Simons term that enters the response

action

Sbulk =
σH
3

∫

M5

A ∧ F ∧ F. (83)

This term gives rise to the 4+1-d quantum Hall effect in which a charge current is carried

through the bulk in a direction perpendicular to applied electric and magnetic fields. This

is reminiscent of the 2+1-d effect where a current is generated perpendicular to an applied

electric field. Here we have a non-linear topological response which requires simultaneous

electric and magnetic fields. The reason, of course, is well-known: the bulk current is

intertwined with the boundary chiral anomalies which require parallel electric and magnetic

fields on the 3+1-d surface. In 2+1-d the bulk Hall current is also connected with the 1+1-

d chiral anomaly on the edge, but in this case the anomalous current is generated in the

presence of an electric field alone.
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To simplify our discussion let us consider the spatial geometry to be Σ3 × [0, L], where

Σ3 = R×S1×S1. We will label the bulk direction by w ∈ [0, L], while the coordinates on Σ3

will be labelled by (x, y, z) with x being the non-compact direction. The edge states will be

localized at w = 0 and w = L. We turn on a magnetic field B perpendicular to the surface

of the (x, y)-cylinder, and an electric field Ez = 2π
qLzT

(for some large and positive time scale

T and with ~ = 1). This electric field can be generated by slowly threading magnetic flux

through the hole of the (z, w) cylinder. The corresponding gauge field configuration will be

chosen to be

A = Bxdy + Eztdz (84)

where the U(1) flux is then given by

F = Bdx ∧ dy + Ezdt ∧ dz. (85)

From the bulk Chern-Simons response we have the bulk Hall current

∗ Jbulk = σHF ∧ F =
q3

8π2
BEzdt ∧ dx ∧ dy ∧ dz. (86)

This yields a constant current density through the bulk in the w-direction and leads to a

charge transfer over a time period T of

∆Q =

∫ T

0

∫

Σ3

∗Jbulk = q2BLxLy
2π

(87)

from one edge to the other. Given that the system is in the non-trivial topologically insulating

phase, we have a left-handed chiral fermion localized at w = 0 and a right-handed chiral

fermion localized at w = L. From the boundary point of view, the above charge transfer is

an anomalous process, which corresponds to the U(1) chiral anomaly in the boundary theory

d ∗ Jcov = σHF ∧ F. (88)

Indeed, the anomalous charge created or destroyed on a boundary during the above process is

precisely equal to the charge transferred across the bulk of the insulator by the Hall-current,

as expected.

We can develop a more intuitive, microscopic picture of the anomaly from the Hamiltonian

energy spectra of the chiral boundary states during the adiabatic flux threading process. In

the presence of the above gauge field configuration, the low-energy spectrum on the boundary

consists of two types of states (see Appendix C): (i) positive and negative energy towers of

gapped states

E(`, pz, σ) = ±
{

(pz − qAz)2 + 2|qB|
(
`+

1 + σ

2

)}1/2

, ` = 1, 2, 3 · · · , σ = ±1 (89)
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Figure 3: The Hamiltonian energy spectrum for chiral fermions in the presence of a uniform

background magnetic field in the z-direction. The (black) gapped states are higher Landau

levels, while the linear gapless (blue, red) curves are the zeroth Landau levels for left and

right handed fermions respectively. We can consider the left and right handed fermions

to exist on opposite boundaries of a cylinder. Once the energies of the linearly dispersing

modes reach ±|m| these states are no longer localized on the boundary and lose their sense

of chirality. (a) Before an electric field is turned on the states are filled to E = 0 on both

boundaries. (b) After an electric field has acted and a single magnetic flux quantum has

been threaded into the cylinder. Spectral flow has modified the level occupations such that

one additional level of fermions appear in the right-handed branch and one level of fermions

are missing from the left handed branch.

and (ii) one gapless branch which depends on the chirality

EL(pz, t) = −sign(qB) (pz − qAz(t)), ER(pz, t) = sign(qB) (pz − qAz(t)) (90)

all of which have a degeneracy of N = |qΦB |
2π

for every pz, where ΦB = BLxLy is the flux

through the surface of the (x, y)-cylinder. For the purpose of our discussion, it suffices to

concentrate on the gapless states. Since the z-direction is compactified on a circle, we may

take pz = 2πn
Lz

(n ∈ Z) and re-write the gapless branches as

EL(pz, t) = −sign(qB)
2π

Lz

(
n− t

T

)
, ER(pz, t) = sign(qB)

2π

Lz

(
n− t

T

)
. (91)

Here T is taken to be large, and we assume that the spectrum flows adiabatically as a

function of time. We will put the chemical potential at E = 0 for convenience. If ψ(~x, t) is

the boundary-fermion field operator (with ~x = (x, y, z)) then the net charge may be defined
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as

Q(t) = q

∫

Σ3

d3~x
1

2
〈vac|

[
ψ†(~x, t), ψ(~x, t)

]
|vac〉 =

q

2

∑

{|En|≤|m|}

sign(En) (92)

where the summation is over all the Hamiltonian eigenstates with |En| ≤ |m|. The sum

only includes these states because at energies beyond the mass gap of the bulk insulator

there are no localized chiral modes on the boundary. During the flux threading, we find

that after a period of time t = rT for integral r, the spectrum returns to itself, but after

a translation by r units with respect to the chemical potential. In fact, r is the number of

magnetic flux quanta which have been threaded through the hole of the (w, z)-cylinder. For

each flux quantum that is threaded, N = |qΦB |
2π

states cross the chemical potential, and the

charge jumps by Nq - either increasing or decreasing depending on the chirality. Taking into

account the factor of sign(qB) in (91), we therefore reproduce precisely the charge transfer

in Eq (87) due to the U(1) chiral anomaly.

5.2 Momentum and Charge Transport from Magneto-Hall Viscos-

ity

In this section, we will consider the momentum and charge transport due to torsion flux.

These transport processes both arise from the term

Sbulk =
ζH
2

∫

M5

F ∧ eA ∧ TA. (93)

To simplify the discussion of Hamiltonian spectral flow, we will set qT = 1 throughout this

section. We can determine the momentum current by varying with respect to eA and the

charge current by varying with respect to A. We focus first on the momentum transport by

turning on a U(1) magnetic flux and torsion electric field. To generate the necessary back-

ground fields we turn on a U(1) magnetic field through the (x, y) cylinder using A = Bxdy.

We can thread torsion magnetic flux through the hole of the (z, w) cylinder, represented by

the co-frame

e0 = dt, e1 = dx, e2 = dy, e3 = (1 + h(t))dz, e5 = dw (94)

where we take h(t) = bt
LzT

, for some large and positive time-scale T . The time-dependent

torsion flux threading will generate a circulating torsion electric field in the z-direction. For

simplicity, we will set the spin connection20 ωAB = 0. As a result, the above configuration

20In particular, we are supposing that the curvature RAB vanishes. Consequently, ωAB is pure gauge, and

we are choosing it to be zero here.
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is torsional with the torsion electric field given by T 3 = b
LzT

dt ∧ dz. The bulk stress current

from the term (93) in the action, in the presence of our set background fields, is

∗ J3
bulk = ζH F ∧ T 3 = q

m2Bb

4π2LzT
dt ∧ dz ∧ dx ∧ dy. (95)

In order to compute the momentum transferred due to this current over a time-period t, we

introduce a covariant Killing vector field ξAeA = ∂z. Then the rate of momentum transfer

from one edge to the other due to the constant stress-current density is

dP 3

dt
=

∫

Σ3

ξA ∗ JAcov = sign(qB)
m2N

2π

(
1 +

bt

LzT

)
b

T
(96)

where N = |qΦB |
2π

= |qB|LxLy
2π

. From the boundary point of view, this set of background fields

gives rise to the diffeomorphism anomaly

d ∗ (ξAJ
A
cov) = ζH F ∧ ξATA. (97)

In order to understand this from the Hamiltonian point of view, it suffices once again to

focus on the gapless boundary state branches for left- and right-handed chiral fermions in

the presence of the uniform background magnetic field:

EL(pz, t) = −sign(qB)
pz(

1 + bt
LzT

) , ER(pz, t) = sign(qB)
pz(

1 + bt
LzT

) (98)

with degeneracy of N = |qΦB |
2π

for every pz. Note that these Hamiltonian spectra differ from

the usual spectra (for a trivial co-frame field) via a scaling of the momenta (or from another

point of view a scaling of the velocity), on account of the torsional electric field. In analogy

with the boundary charge, we define the boundary momentum by

P 3(t) =

∫

Σ3

d3~x
1

2
〈vac|

[
ψ†(~x, t), P̂3ψ(~x, t)

]
|vac〉 =

1

2

∑

{|En|≤|m|}

sign(En)pzn (99)

where we recall that the summation is over all Hamiltonian eigenstates with |En| ≤ |m|.
Using this, we can compute the net momentum along ξ on both the edges at a time t

P 3
L(t) = −sign(qB)

m2NLz
4π

(
1 +

bt

LzT

)2

, P 3
R(t) = sign(qB)

m2NLz
4π

(
1 +

bt

LzT

)2

(100)

where now we have taken Lz to be large. From here, we get the rate of momentum change

dP 3
L

dt
= −sign(qB)

m2N

2π

(
1 +

bt

LzT

)
b

T
(101)

dP 3
R

dt
= sign(qB)

m2N

2π

(
1 +

bt

LzT

)
b

T
. (102)
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Figure 4: The Hamiltonian energy spectrum for chiral fermions in the presence of a uniform

background magnetic field in the z-direction. The (black) gapped states are higher Landau

levels, while the linear gapless (blue, red) curves are the zeroth Landau levels for left and

right handed fermions respectively. We can consider the left and right handed fermions

to exist on opposite boundaries of a cylinder. Once the energies of the linearly dispersing

modes reach ±|m| these states are no longer localized on the boundary and lose their sense

of chirality. (a) The initial state before the torsion electric field is applied. (b) A later

state after some amount of torsional flux is threaded through the cylinder and the torsion

electric field has had time to act on the system. The spectral rotation/stretching around

E = 0 pushes some occupied chiral modes outside of the topological insulator mass gap

which causes them to be lost into the sea of gapped bulk states. The overall process changes

the momentum localized on each edge since each chiral fermion state lost to the bulk carries

momentum that originally was localized on the boundary.

Comparing with Eq (96), we find a precise agreement of the momentum transfer rates. Note

that in contrast with the charge anomaly discussed in the previous section, the momentum

anomaly in the present case is generated by a spectral rotation/stretching about E = 0

which pushes some edge states to energies |E| > |m|, thus causing them to get lost into the

sea of gapped bulk states (see figure 5.2).

We will now look at one final anomalous transport process. Interestingly, because of the

mixed dependence of Sbulk = ζH
2

∫
M5
F ∧ eA ∧ TA on eA, ωAB and A, we can also generate a

charge current with a certain arrangement of background geometry fields. This is unusual as

this type of transport does not occur in the 2+1-d effective action. Let us turn on a torsion

magnetic field T 3 = Cdx ∧ dy on the (x, y) cylinder, and thread torsion magnetic flux (i.e.,

a dislocation) through the hole of the (z, w) cylinder to generate the torsion electric field
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T 3 = b
LzT

dt ∧ dz. This can be achieved through the co-frame

e0 = dt, e1 = dx, e2 = dy, e3 =

(
1 +

bt

LzT

)
dz + Cxdy, e4 = dw (103)

upon choosing ωAB = 0. From the bulk response action we get the bulk charge current

∗ Jbulk =
ζH
2
d(eA ∧ TA) =

qm2

8π2

bC

LzT
dt ∧ dx ∧ dy ∧ dz. (104)

Just like in the case of the 4+1-d quantum Hall effect this gives a constant current density

in the w-direction which transfers charge from one boundary to the other at a rate

dQ

dt
=
qm2bΦT

8π2T
. (105)

From the perspective of the boundary fermions, this current is due to another manifestation

of the U(1) chiral anomaly d ∗ Jcov = ζH
2
T a ∧ Ta for the chiral boundary states. This is of

course the Nieh-Yan contribution to the (covariant) chiral anomaly, discussed previously.

Let us now explore how the anomaly can be understood microscopically from a Hamiltonian

point of view. Once again, it suffices to focus on the lowest energy part of the spectrum of

the chiral fermions in the background frame field (see Appendix C for a derivation):

EL(t) = −sign(Cpz)
pz(

1 + bt
LzT

) , ER(t) = sign(Cpz)
pz(

1 + bt
LzT

) (106)

with degeneracy N(pz, t) = |pzΦT |
2π(1+ bt

LzT
)
. From the definition

Q = q

∫

Σ3

d3~x
1

2
〈vac|

[
ψ†(~x), ψ(~x)

]
|vac〉 =

q

2

∑

{|En|≤|m|}

sign(En) (107)

we see that the net left- and right-handed charges at a time t are given by (taking the large

Lz limit)

QL = −qLz
2π

∫ m(1+ bt
LzT

)

0

dpz
ΦT

2π

pz(
1 + bt

LzT

) = −qm
2ΦTLz
8π2

(
1 +

bt

LzT

)
(108)

QR =
qLz
2π

∫ m(1+ bt
LzT

)

0

dpz
ΦT

2π

pz(
1 + bt

LzT

) =
qm2ΦTLz

8π2

(
1 +

bt

LzT

)
. (109)

From here, we find the rates of change of net charge are given by

dQL

dt
= −qm

2bΦT

8π2T
,
dQR

dt
=
qm2bΦT

8π2T
(110)
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Figure 5: The Hamiltonian energy spectrum for chiral fermions in the presence of a uniform

background torsion magnetic field in the z-direction. The (black) states are higher torsion

Landau levels, while the linear gapless (blue, red) curves are the zeroth Landau levels for left

and right handed fermions respectively. We can consider the left and right handed fermions

to exist on opposite boundaries of a cylinder. Once the energies of the linearly dispersing

modes reach ±|m| these states are no longer localized on the boundary and lose their sense of

chirality. Note that something unusual happens here compared to the previous two figures. In

a torsion magnetic field one chirality disperses upward while the other disperses downward.

(a) The Hamiltonian spectrum before the application of a torsion electric field. (b) The

spectral modification induced by an additional torsion electric field along the z direction.

which precisely agrees with the previous result in Eq. (105).

We see here that the reason that the Nieh-Yan term can contribute to the covariant U(1)

anomaly is due to the structure of the low-energy chiral fermion branches in the presence

of a uniform torsional magnetic field (see Appendix C). As a comparison, we know that

in the case of a conventional U(1) magnetic field the low energy states of a single Weyl

node become quasi-1D branches that disperse chirally, i.e., the states coming from a left-

handed (right-handed) Weyl node have a positive (negative) group velocity (if qB < 0) E =

±vpz. Heuristically, the magnetic field acts to convert a 3+1-d Weyl fermion into a highly

degenerate quasi-1D Weyl fermion at low-energy which only disperses along the direction of

the applied uniform magnetic field. The torsional magnetic field (which for instance can be

thought of as a density of screw dislocations) acts differently. Instead it generates quasi-1D

upward dispersing or downward dispersing branches depending on the chirality of the 3+1-d

Weyl node E = ±v|pz|. These branches contain both left- and right-movers but they have a

fixed chirality. For example, for torsional field C > 0 the downward dispersing branch of the
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low-energy modes are made up of left-handed modes alone, whereas the upward dispersing

branch contains only right-handed modes. The degeneracy also depends on the value of the

momentum pz as the torsional magnetic field is effectively stronger for larger pz charge. This

seems a bit strange at first, but we can see that the microscopic calculation precisely matches

the bulk anomaly calculation and thus it is a consistent interpretation. In the next section

we will illustrate how this spectrum might be regularized if both chiralities are present, as

must be the case, e.g., in 3+1-d Weyl semi-metals.

6 Properties of Weyl Semi-metals with Torsion

So far our work has focused on the general structure of the torsion anomalies associated to

3+1-d Weyl fermions. While such fermions can occur at the boundary of a 4+1-d topological

insulator, they can also appear in a 3+1-d material, the so-called Weyl semi-metal. However,

unlike the 4+1-d boundary modes, bulk Weyl fermions must always appear in pairs due to the

Nielsen-Ninomiya no-go theorem[62]. Thus, our results do not immediately carry over to the

discussion of the Weyl semi-metals. However, we can utilize the viewpoint taken by much of

the recent work on the electromagnetic response properties of Weyl semi-metals, which casts

the 3+1-d Weyl semi-metal as a 2+1-d family of Chern insulator Hamiltonians[69, 23, 33].

Since we know the torsional response properties of the 2+1-d system, we can use those results

to write down the correct response for the 3+1-d Weyl semi-metal in a manner analogous to

what has already been done for the Hall conductance[69, 23, 33]. We will first briefly review

the electromagnetic case before proceeding to the geometric response.

The properties of Weyl semi-metals (WSM) have been the focus of a large number of recent

articles[22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 70, 71, 72, 37]. As mentioned above,

these materials are gapless in the bulk and have isolated point-like degeneracies between the

valence and conduction bands. Each of these degeneracy points is a Weyl node, i.e., a

bulk, 3+1-d Weyl fermion, and the total chirality of all the nodes in a single material must

vanish. So, while the right and left-handed 3+1-d Weyl fermions are spatially separated

on the surfaces of a 4+1-d topological insulator, there is no such spatial separation for the

Weyl fermions in a WSM. To illustrate the basic physics, let us assume we have the simplest

example of a WSM, i.e., one with two Weyl nodes that are separated in momentum space

along the pz axis and located at ~pL,R = (0, 0,±pzc) (see Fig. 6). Let us define the quantity
~b = 1

2
(~pL − ~pR) = (0, 0, pzc). If the left and right-handed nodes are not degenerate in energy

we can also define an energy separation b0 = 1
2
(εL − εR) where εL,R are the energies of the

nodes at ~p = ~pL,R respectively. We can combine these two quantities into a 1-form bµdx
µ.
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Figure 6: Momentum space description of a simple Weyl semi-metal with two Weyl nodes

of opposite chirality (red ands blue spheres) separated in the pz direction. The two planes

represent two gapped 2+1-d insulator subspaces of the three dimensional Brillouin zone. The

grey plane has a Hall conductance of 0 and the magenta plane has a Hall conductance of 1

in units of q2

2π
. In fact the entire family of planes parameterized by pz that lies between the

two Weyl nodes will each carry Hall conductance of q2

2π
while the planes outside the nodes

and inside the Brillouin zone boundaries carry no Hall conductance.

This definition is useful21 because the quasi-topological electromagnetic response properties

of WSM have been investigated, and it was found that the low-energy effective action takes

the form[22, 33]
q2

8π2

∫
(g−1dg) ∧ A ∧ dA (111)

for the space-time translation group element g = exp(i(2bµ)xµ). This is usually written in

terms of components as
q2

4π2

∫
d4xεµνρσbµAν∂ρAσ. (112)

which is similar to the Lorentz-violating Chern-Simons terms discussed in Refs. [73, 74].

21We note that we have chosen the factors of 1
2 in the definition of bµ to match the convention in the

literature.
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The origin of this response can be understood from the simple limit of two Weyl-nodes. Let

us also assume that they are degenerate in energy. Then, except for pz = −pzc or +pzc,

the system is gapped, and thus every fixed-pz plane is a 2+1-d insulator apart from the two

critical values of pz. Since at fixed pz the low-energy model near each Weyl node is that of a

2+1-d Dirac model with a mass given by the magnitude of pz away from the node, then every

fixed-pz plane is either a trivial or topological 2+1-d Chern insulator. For the continuum

models we have been considering, it only makes sense that the planes between the critical

values would be in the topological phase, i.e., for −pzc < pz < pzc. This implies that there is

a finite contribution of Hall conductance given by σxy = q2

2π
for each value of pz ∈ [−pzc, pzc]

which is exactly what Eq. (111) encodes when b0 = 0. If instead the region of pz outside

of the range −pzc < pz < pzc, but inside the Brillouin zone boundaries (assuming a lattice

model), was topologically non-trivial, then the Hall conductance would differ by the addition

of an amount e2/h per layer, i.e., the quantized amount due to fully occupied bands carrying

a weak topological index[75, 76, 77, 26]. The WSM response action for a lattice system only

uniquely determines the fractional piece of the response, i.e., only the piece corresponding

to 2~b mod ~G where ~G is the set of reciprocal lattice vectors.

For a generic set of Weyl-nodes located at a 3-momentum P(α), with energy ε(α), and

chirality χα = ±1 we can construct the 4 component 1-form bµ = 1
2

∑
α χαP(α),µ where

P
(α)
µ ≡ (ε(α),P(α)). We can also represent this using the generic translation group element

g = exp
[
i
∑

α

(
χαP

(α)
µ

)
xµ
]
. We note that for a lattice system the spatial translations can

only take values in the real-space lattice which implies that the response only captures the

fractional piece of the
∑

α χαP
(α) which is less than a reciprocal lattice vector, i.e., it does

not uniquely determine the response due to fully occupied bands. This is why it is not so

important to specify which region of momentum space is topological and which is trivial (as

in the simple example above), because they differ by an amount due to fully filled bands.

After having reviewed the electromagnetic response it is easy to see that this type of argument

holds for more than just this case. Considering a family of Chern insulators parameterized

by an additional momentum immediately leads us to the appropriate geometric responses.

Terms with quantized coefficients (i.e., ones that only depend on the sign of the Dirac mass),

such as the gravitational Chern-Simons term will yield

κH
2π

∫
b ∧ tr

(
ω̊ ∧ dω̊ +

2

3
ω̊ ∧ ω̊ ∧ ω̊

)
. (113)

However, for the torsional term, the Hall viscosity coefficient depends on the magnitude of

the mass, i.e., ζH(pz) depends on pz in a complicated fashion. In the context of the simple

WSM discussed above this means that each 2+1-d Hamiltonian parameterized by pz yields a

37



different contribution to the Hall viscosity, and thus the value of the Lorentz violating 1-form

that enters the response is not trivially determined from the energy-momentum locations of

the Weyl-nodes as is the Hall conductance. In our simple example, since σxy(pz) is just a

piecewise constant function which is quantized to be q2/2π for −pzc < pz < pzc, and zero

otherwise, we find that 2bz = 2π
q2

∫
dpzσxy(pz) = pzc − (−pzc) = 2pzc. However, we need to

define a separate parameter for the torsion response λ = λµdx
µ such that 2λz =

∫
dpzζxy(pz)

for our simple example. The 1-form λ will generically be a complicated function of the

Weyl-node positions, and has units of L−3 in natural units. With this definition we see that

λ will contribute to the torsion response as

1

2π

∫
λ ∧ ea ∧ Ta (114)

where a = 0, 1, 2, 3. For the simple WSM we can use an almost identical argument as above to

indicate that the collection of topological insulator planes will carry a total 3D Hall viscosity

given by ζxy = λzLz
2π

.

An interesting phenomenon also occurs when the Weyl nodes are non-degenerate in energy.

In this case, one finds the analog of the chiral magnetic effect (a non-zero electric current in

the presence of a non-zero magnetic field but vanishing electric field), but for torsion. This

would imply that with the insertion of a dislocation line, there should be a momentum current

flowing in the direction of the Burgers’ vector even without the application of a torsion

electric field though there may be some subtleties22. For example, to generate a typical

chiral magnetic effect one must violate the effective Lorentz invariance by either doping the

system away from charge neutrality to induce a background density, or turning on a weakly

time-dependent magnetic field and slowly taking the DC limit. These considerations will

also enter the discussion of the chiral dislocation effect. We should also note that Ref. [78]

predicts a chiral heat effect at finite temperature which is related to the curvature response

of a 3+1-d Weyl fermion, which is also contained in our bulk response calculation. The 3+1-

d anomalous Hall viscosity and the chiral dislocation effect are two prominent geometric

response features of the Weyl semi-metal. We will delay a more detailed discussion of the

geometric response properties of Weyl semi-metals to future work.

Before moving on to discuss 3+1-d TRI topological insulators we want to illustrate one other

interesting property of the Weyl semi-metal along the lines of the seminal Nielsen-Ninomiya

paper that discussed the chiral anomaly in a crystal[40]. We know that because of the

vanishing chirality in the semi-metal we cannot have an overall chiral anomaly. However,

22There has been some controversy in the literature about the existence of the chiral magnetic response

in real systems and also the role played by the boundary states[32, 33, 34, 35, 26, 36, 70]. These same

complications may arise in the geometric response as well.
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Figure 7: The low-energy spectrum of a simple Weyl semi-metal in the presence of a uniform

background torsion magnetic field. The Weyl nodes are located at pz = ±pzc in the absence

of a field. The solid lines are from Eqs. 120, 122 for the first few values of n. The dotted

lines are a conjectured continuation of the levels that show how they might be regularized in

a lattice model. The red and blue colors represent left and right handed Weyl nodes. One

can compare this to Fig. 5 which shows the energy spectra of the Weyl nodes when they are

both located at the same point in momentum space.

since the Weyl nodes are separated in momentum (and possibly in energy) we can have

anomalous current flows in momentum space between the nodes. We will now illustrate this

behavior for the anomaly due to the Nieh-Yan term, i.e., we will illustrate the anomalous

chiral current due to parallel torsion electric and torsion magnetic fields arising from the

anomalous Ward identity:

∂µj
mu
5 =

∫
q

32π2`2
εµνρσ

(
ηabT

a
µνT

b
ρσ − 2Rab;µνe

a
ρe
b
σ

)
. (115)

To calculate the anomalous current flow we need to understand the spectrum of a Weyl

semi-metal in the presence of a uniform background torsion magnetic field. Suppose that

the torsion magnetic field is applied using the co-frame

e0 = dt, e1 = dx, e2 = dy, e3 = dz + f(x)dy. (116)

The frame is torsional if we set the spin connection to zero (assuming zero curvature), with

T 3 = de3 = f ′(x) dx∧ dy, and hence ea∧Ta = f ′(x)dx∧ dy∧ dz. The Dirac operator is then
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given by

i /D = iγaeµa∂µ = i
(
γ0∂t + γ1∂x + γ2(∂y − f(x)∂z) + γ3∂z

)
. (117)

We can project onto left-chiral modes, obtaining23

iγ0 /DPL =
(
i∂t + iσ1∂x − σ2(py − f(x)pz)− σ3pz

)
(118)

where, because py, pz are good quantum numbers, we have Fourier transformed in the y, z

directions.

Since we want to represent a Weyl semi-metal whose nodes are shifted in the pz direction,

we introduce a vector b in momentum space, such that the Dirac operator gets shifted to

i /D = iγaeµa(∂µ + iγ5bµ), and take ba = eµabµ = (0, 0, b3). In this case,

iγ0 /DPL =
(
i∂t + iσ1∂x − σ2(py − f(x)pz)− σ3(pz + b3)

)
. (119)

Upon solving the resulting Dirac equation, we find that the low-energy spectra of the left-

and right-handed gapless modes shifts as

EL = −sign(C)|(pz + b3)|, ER = sign(C)|(pz − b3)| (120)

but the degeneracies remain unchanged

NL =

∣∣∣∣
pzΦT

2π

∣∣∣∣ , NR =

∣∣∣∣
pzΦT

2π

∣∣∣∣ . (121)

The higher energy modes now do not completely shift, they simply get gapped and distorted

(see Fig. 7)

En,± = ±
(
(pz ± b3)2 + 2n|Cpz|

)1/2
, n = 1, 2, . . . (122)

If we now add a torsion electric field then we will see that chiral charge is transferred between

the two low-energy branches of the Weyl-nodes in the uniform torsion magnetic field. The

calculation is identical to that presented at the end of Section 5.2 which culminates with Eq.

110 so we will not reproduce it here.

23The choice of representation for the Dirac matrices is

γ0 =

(
0 1
1 0

)
, γi =

(
0 −σi
σi 0

)
, γ5 =

(
1 0
0 −1

)

.
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7 3+1-d Topological Insulator via Dimensional reduc-

tion

Given our derivation of the 4+1-d response action we can now discuss the properties of the

3+1-d time-reversal invariant strong topological insulator[76, 77, 79]. As shown in Ref. [19],

if one knows the anomaly structure in odd space-time dimensions, one can dimensionally

reduce the relevant effective actions to study the properties of topological phases in one

or two dimensions lower. There is a cost for this, namely one expects to have to make

symmetry constraints on the lower-dimensional system in order to have a robust topological

phase, and the integer topological invariants of the higher-dimensional systems get reduced

to Z2 invariants in the lower-dimensional systems.

As an example, let us briefly review the theory for electromagnetic response of the 4 + 1-d

topological insulator reduced to 3 + 1-d. We will be a little imprecise here, but the overall

picture is correct (for more detail see Ref. [19]). The action for the 4 + 1-d topological

insulator is

Seff [A] =
q3C2

24π2

∫
d5xεabcdeAa∂bAc∂dAe (123)

which is the second Chern Simons term, where a, b, c, d, e = 1, 2 . . . 5, and C2 is the second

Chern number, the value of which is an integer which depends on the phase of the underlying

massive fermions of the topological insulator. To dimensionally reduce this system we can

assume that the fields do not depend on the 4-th spatial coordinate w (which we have

compactified to a circle with circumference L). Then we can take the limit as Lw → 0 from

which we find the action

Seff [A] = 3
q2

24π2

∫
d4x

[∫
dw qC2Aw

]
εµνρσ∂µAν∂ρAσ

=
q2

8π2

∫
d4x θεµνρσ∂µAν∂ρAσ (124)

where θ ≡
∫
dw qC2Aw which gives us the amount of flux threaded through the w circle.

For example, for one flux quantum θ = 2π.

Since we want to consider time-reversal invariant insulators in 3 + 1-d there is a constraint

on θ. Under time-reversal θ → −θ. However θ is only well-defined mod 2π: θ ≡ θ + 2πn

for some integer n. Thus, if we require time-reversal then θ = 0 or θ = π are the only two

allowed values. So while the 4 + 1-d insulator was classified by an integer C2 and there

were no required symmetries, it turns out that the time-reversal invariant 3+1-d case is

classified by the Z2 invariant θ. The physical consequence of this term is as follows. If θ
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is a constant in space-time then our dimensionally reduced action is a total derivative and

thus there is no measurable response. There are two exceptions to this: (i) when magnetic

monopoles exist then this term attaches an electric charge qmonopole = qθ
2π

to the monopole

via the Witten effect[80] (ii) if we have a boundary to the vacuum or trivial insulator then

θ necessarily changes from π to 0 and the action will have a non-zero contribution. For case

(ii) the effect of this action is to endow the boundary with a quantum Hall effect localized at

the boundary with a half Hall conductance σ = q2

4π
. Generically at such a 2+1-d boundary,

a θ-term will attach its corresponding Chern-Simons action to that localized region. For

topological insulators the coefficient of the Chern-Simons term can be half of that required

for a properly regularized intrinsically 2+1-d system. These are the general features of the

dimensional reduction.

Given the general anomaly structure in 4+1-d we now want to dimensionally reduce the effec-

tive response action to find the relevant action for 3+1-d time-reversal invariant topological

insulators in the presence of curvature and torsion. The calculation here is more complicated

since our fields are intimately related to the geometry. Thus, to perform this reduction we

need to split the fields up into appropriate pieces. We take the following co-frame, frame,

and connections

ea = badw + ẽai dx
i

e4 = Ndw

ea = ẽa

e4 = N−1
(
∂w − baẽia∂i

)
(125)

A = Θdw + Ãidx
i

ωab = θabdw + ω̃ai;bdx
i

ωa4 = 0

where a = 0, 1, 2, 3, and the intrinsic 3 + 1-d co-frame, frame, and connections are now

labelled by a tilde. As usual for a dimensional reduction, all the fields are only allowed to

depend on the intrinsic 3 + 1-d coordinates, but not on the fourth spatial direction w. Also

note that we have set ωa4 = 0 because this is related to extrinsic geometric effects, which

are not of interest to us here.

We want to compute our fermion effective action with this choice, which we will now do

term by term. Let us begin with A∧F ∧F which we already calculated above in component

notation. Using

F = dΘ ∧ dw + F̃ (126)
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we obtain
1

L

∮
A ∧ F ∧ F = 3Θ F̃ ∧ F̃ − 2d

(
Θ Ã ∧ F̃

)
(127)

where the integral above is over the w-direction. Next, for the F ∧ eA ∧ TA term, we need

to use

T a = D̃ba ∧ dw + T̃ a + θabdw ∧ ẽb (128)

T 4 = dN ∧ dw (129)

and we find

1

L

∮
F ∧ eA ∧ TA = Θ d(ẽa ∧ T̃ a) + 2ba F̃ ∧ T̃ a − F̃ ∧ ẽa ∧ ẽbθab

− d(Θ ẽa ∧ T̃ a)− d(baẽ
a ∧ F̃ ). (130)

Notice above, that terms linear in Θ, ba and θab seem to be related to 3 + 1 − d covariant

anomalies. Of course, this is no coincidence, and we will return to this point shortly in

Section 7.1.

Next, we need to deal with the curvature terms. These are quite complicated in general, and

involve many terms which are not easy to interpret physically. In order to avoid cluttering

our discussion, we will defer some of these calculations to Appendix D. Nevertheless, there

is a straightforward way to extract the dimensionally reduced action to linear order in ba

and θab. Fortunately, these are also the most interesting terms from the point of view of our

discussion so far.

7.1 Linear terms and Covariant anomalies

The choice of frame and connections in Eq. (125) can be broken up into the separable

background

ea = ẽa

e4 = Ndw

A = Ã (131)

ωab = ω̃ab

ωa4 = 0

and the perturbations about this background

δea = badw, δA = Θdw, δωab = θabdw. (132)
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Note that all of these are proportional to dw. Since we are interested in computing the

intrinsic d = 3 + 1 effective action, we need terms in the 4 + 1-d Lagrangian density of the

form dw ∧ (· · · ). If further, we decide to focus on terms linear in Θ, ba, and θab, then the

terms of interest are precisely

L4+1 = δA ∧ ∗Jbulk + δea ∧ ∗Jabulk + δωab ∧ ∗Jabbulk +O(b2, θ2). (133)

Performing the integration over w, we then arrive at the intrinsic 3 + 1-d Lagrangian density

L3+1 = Θ ∗Jbulk|bg + ba ∗Jabulk|bg + θab ∗Jabbulk
∣∣
bg

+O(b2, θ2) (134)

where the subscript bg means that these currents are to be evaluated on the separable back-

ground (131). Indeed, the currents above are precisely the covariant U(1), diffeomorphism,

and Lorentz anomalies in 3 + 1-d, as calculated from the Callan-Harvey argument. Having

computed these anomalies previously (see Eq. (81)), we merely state the result24

L3+1 =
q2

8π2
Θ F̃ ∧ F̃ +

qTm
2

8π2
Θ d(ẽa ∧ T̃ a) +

1

192π2
Θ tr R̃(−qT ) ∧ R̃(−qT )

+
qT

96π2
Θ d ∗ d ∗ d(ẽa ∧ T̃ a) +

qqTm
2

4π2
ba F̃ ∧ T̃ a +

q

96π2
ba ẽa ∧ dA2

− qT q

96π2
ba A2 ∧ T̃ a +

qqT
48π2

ba d ∗ d ∗ F̃ ∧ T̃ a −
m2qqT

8π2
θab F̃ ∧ ẽa ∧ ẽb

+
qqT
96π2

θab A2 ∧ ẽa ∧ ẽb −
qqT
96π2

θab d ∗ d ∗ F̃ ∧ ẽa ∧ ẽb +O(b2, θ2) (135)

where recall the definition

A2 = (F̃ ∧ R̃(−qT )
ab )(ẽa, ẽb).

Unfortunately there are still a lot of terms to understand, though some of them are simpler

than others. The first three terms are variations on the electromagnetic Θ term action found

in 3+1-d time-reversal invariant topological insulators. As explained above, all three terms

can be interpreted as giving rise to 2+1-d response coefficients on the surface (domain wall

of Θ) of the topological insulator. Explicitly, the terms

q2

8π2
Θ F̃ ∧ F̃ +

qTm
2

8π2
Θ d(ẽa ∧ T̃ a) +

1

192π2
Θ tr R̃(−qT ) ∧ R̃(−qT ) (136)

give rise to a surface Hall conductivity, a surface Hall viscosity, and a surface gravitational

Chern-Simons term respectively. Perhaps one can view the third term as a response of

angular momentum to intrinsic curvature deformations of the surface. That is. at locations

24In this language, boundary terms such as those present in Eqs. (127) and (130) are the same as

the induced boundary currents (or Bardeen-Zumino terms) from the Callan-Harvey discussion. These are

however not important in what follows.
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on the surface where there is a non-zero curvature, the gravitational Chern-Simons term

may bind spin/angular momentum to that location similar to the charge Chern-Simons

term binding electric charge on locations with non-zero magnetic flux (U(1) curvature).

In addition to this interpretation, Ref. [78] shows that at finite temperature the surface

gravitational Chern-Simons term is related to a thermal response.

Although there are a large number of terms, they can be organized in a way which is easier

to interpret. Besides the U(1) anomaly term, the other types of terms can each be grouped

into (i) a leading order piece which goes as m2, (ii) a curvature dependent universal piece,

and (iii) a higher-order derivative piece. There are three separate groupings I, II, and III

which depend on the parameters Θ, ba, and θab respectively:

I :
qT
8π2

Θ

[
m2d(ẽa ∧ T̃ a) +

1

24qT
tr R̃(−qT ) ∧ R̃(−qT ) +

1

12
d ∗ d ∗ d(ẽa ∧ T̃ a)

]
(137)

II :
qT qba
4π2

[
m2F̃ ∧ T̃ a +

1

24qT

(
ẽa ∧ dA2 − qTA2 ∧ T̃ a

)
+

1

12
d ∗ d ∗ F̃ ∧ T̃ a

]
(138)

III : − qqT θab
8π2

[
m2F̃ ∧ ẽa ∧ ẽb − 1

12
A2 ∧ ẽa ∧ ẽb +

1

12
d ∗ d ∗ F̃ ∧ ẽa ∧ ẽb

]
. (139)

Grouping I shows the response terms which all depend on the parameter Θ. In the bulk of a

non-trivial Z2 3+1-d topological insulator Θ is quantized to be an odd multiple of π, while

outside the material Θ = 0. Thus, as has been mentioned above, these terms imply that

on the surface of a topological insulator (if time-reversal symmetry is weakly broken by a

magnetic layer) there will be a surface quantum Hall viscosity and its associated curvature

correction. If we assume that at a given surface Θ varies like a step function from π inside

to zero outside then the effective surface action becomes

Ssurf =

∫

bdry

− qT
8π

[
m2ẽa ∧ T̃ a +

1

24qT
CS[ω(−qT )] +

1

12
∗ d ∗ d(ẽa ∧ T̃ a)

]
(140)

where CS is the Chern-Simons 3-form. This means the surface of a 3+1 d topological

insulator has a viscosity coefficient which is exactly half that found in 2+1-d. This is similar

to the surface Hall conductance which also carries exactly half the value of the bulk Hall

conductance of a 2+1-d Chern insulator. Note that the gravitational Chern-Simons term

can be expanded in powers of torsion, to obtain the Levi-Civita Chern Simons term plus

the curvature correction to surface Hall-viscosity, etc. While we have written the higher

derivative term as well, this term (a) depends on the metric (through the bulk Hodge star

operator) and thus is not a topological response term, and (b) captures effects which are

extrinsic to the surface.
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The second grouping is a response when the parameter ba is non-vanishing. We know that

3+1-d time-reversal invariant topological insulators have a non-vanishing Θ, however it is not

known what materials would have a non-vanishing ba, though it seems they must somehow

be anisotropic. For now let us assume we have a material in which ba 6= 0 inside, and we

will calculate the consequences (assuming the vacuum has ba = 0). From the first term in

this grouping we see that in such a material we will find a localized charge density at places

where dislocation lines intersect the surface, but only if the Burgers vector of the dislocation

is not orthogonal to ba. We can see this for the simple case where we set the spin connection

to zero, i.e., in flat space. If we assume ba changes as a step function at a surface we find

that the leading order term in the surface action contains the mixed Chern-Simons term

Ssurf =
qT qm

2∆ba
4π2

∫

bdry

Ã ∧ dẽa (141)

∗j =
qT qm

2

4π2
∆badẽ

a. (142)

Thus for a dislocation line with Burgers vector Ba that intersects the surface, there will be a

bound charge density ρ = qm2

4π2 ∆baB
a. Conversely, magnetic flux lines will carry momentum

density along the direction ∆ba at points where they intersect the surface. As usual, the

second term in equation (138) can then be thought of as a universal curvature correction to

this mixed Chern-Simons response.

The sensitivity to dislocations reminds one of the properties of weak topological insulators

which have been shown to trap low-energy modes on dislocations[54]. In fact, naively, an

action of the form S ∼ baF̃ ∧ T̃ a looks like the action for a massive 1+1-d Dirac fermion

bound to dislocation lines with Burgers vectors parallel to ba. However, despite the similarity,

we must resist, for now, the temptation to identify ba with a weak topological index (e.g.,

by letting ba be proportional to half a reciprocal lattice vector) until we more carefully

consider the properties of ba. The weak invariant arises purely from the Lorentz-violating

lattice structure which is not taken into account so far. Additionally, ba has units of length,

not inverse length as would be required for a weak invariant. We could consider the quantity

m2ba instead which does have the correct units. If one chose to “quantize” the inverse area

scale m2 to be proportional to a lattice plaquette area, and have ba proportional to the

lattice constant in the a-th direction, as would be appropriate for a spatial lattice vector,

then this combined number would have the correct units and structure. Thus, it could be

that for lattice models with discrete translation symmetry we would find a quantized ba, but

in our continuum calculations this is not yet obvious. In fact, since the spatial components

of ba are odd under time-reversal it should vanish identically in the dimensionally reduced

time-reversal invariant insulator. We will discuss this further in the next subsection where we

show that imposing a lattice structure induces a modular/periodic structure in ba that allows
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it to be non-vanishing even in a system with time-reversal symmetry. We will also see in the

next subsection that in 3+1-d the parameter ba intrinsically arises from chiral translations in

space(time) and for translationally invariant systems it gives rise to a momentum dependence

of the chiral mass angle Θ.

The third grouping of terms is harder to physically interpret. These terms arise in a material

where θab is non-zero, but we know of no such material. Just as the parameter ba is related to

translations, θab is related to rotations, and so similar terms to those in grouping III might

appear in materials with topological phases determined by discrete rotation symmetries.

It is possible that topological crystalline insulators/superconductors[81, 82, 83, 84, 85, 86,

57, 87, 60, 88, 89, 90, 59, 91, 92, 93] might generate such a response, or even secondary

weak topological systems which have a non-trivial antisymmetric tensor as a topological

invariant[55, 59]. For these cases dislocation (torsion) and disclination (curvature) defects

may have bound charges, e.g., electric charge, momentum, or spin. The spatial components

of θab are also odd under time-reversal (a, b both spatial) and thus must vanish unless an

additional symmetry structure is added such that θab is only well-defined modulo some

quantized amount. We will leave further discussion of this to future work.

7.2 Intrinsic point of view

In addition to understanding how these terms arise from dimensional reduction, it is also

important to understand how they appear intrinsically in 3+1-d without reference to a 4+1-d

parent system. We will carry out this calculation now. The Dirac operator in d = 4 + 1 is

given by

/∇(5) = γAeµA

(
∂µ +

1

4
ωµ;ABγ

AB + Aµ +Bµ

)
(143)

where we remind the reader that B ≡ 1
2
TB(eA, eB) eA. For the choice of frame in (125), we

find

/∇(5) = γaẽia

(
∂i +

1

4
ω̃i;abγ

ab + Ãi + B̃i

)
+

1

N
γ4∂t −

1

N
γ4bi

(
∂i +

1

4
ω̃i;abγ

ab + Ãi

)

+
1

N
γ4Θ +

1

4N
γ4γabθab +

1

2N
γa∂aN −

1

2N
γ4(D̃ab

a + 2B̃ab
a) (144)

where we have used

Ba = B̃a +
1

2N
∂aN

B4 =
1

2N
D̃ab

a − 1

N
bcB̃c. (145)
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The w-independent modes of the parent fermions Ψ can be written in terms of d = 3 + 1

fermions ψ as Ψ = 1√
LN
ψ, where L is some length scale. The intrinsic Dirac action becomes

S3+1[ψ] =

∫

M4

vol4

{
iψ̄ /̃∇(4)ψ −mψ̄ψ +

i

NL
ψ̄γ5

(
Θ− bi∇̃i +

1

4
θabγ

ab − 1

2
√
g5

∂i
(√

g5 b
i
))

ψ

}

(146)

where
√
g5 = N det(ẽ), and we have relabeled γ4 as γ5. From the 3+1-d point of view, the

first two terms look like the action of a Dirac fermion. The remaining γ5 terms can be gauged

away by performing a chiral gauge transformation, a chiral diffeomorphism, and a chiral

Lorentz transformation with parameters Θ, ba, and θab respectively. However, these chiral

transformations are anomalous in d = 3 + 1, and the removal of the γ5 terms from the above

action can be done at the cost of accounting for the corresponding anomaly contributions in

the effective action. These are precisely the terms which appear in the action (135) which we

derived previously from dimensional reduction. If we consider a trivial flat space geometry

then the action reduces to

S3+1[ψ] =

∫

M4

vol4

{
iψ̄ /∂(4)ψ −mψ̄ψ + imψ̄γ5

(
Θ− bi∂̃i +

1

4
θabγ

ab

)
ψ

}
(147)

where we have used the convention that NL = 1/m. If we chose a different convention then

we would have to rescale Θ, bi, and θab so that their periodicity relations take simple forms,

e.g., Θ ≡ Θ + 2π.

Let us now try to understand the intrinsic meaning of the Θ, bi, and θab parameters in a 3+1-

d time-reversal invariant topological insulator, which is represented by this action. Under

time-reversal it is well-known that Θ transforms to −Θ. Thus, if time-reversal is a required

symmetry, we must have the constraint that Θ = −Θ or 2Θ = 0. If Θ is defined uniquely

there is only one solution, i.e., Θ = 0. However, there is a physical ambiguity such that

Θ is only well-defined up to a multiple of 2π and thus the symmetry condition becomes

2Θ = 0 mod 2π. This equation has two solutions: Θ = 0, π which represent the trivial

and topological time-reversal invariant insulator classes respectively. At the surface of the

topological insulator phase Θ changes from π to 0 which has the effect of binding a half-

quantum Hall effect to the region where Θ is varying. The ambiguity in Θ can be understood

from the boundary perspective where we can add extra 2D layers to the surface that can

change the quantized Hall conductance by an integer amount. If we add a layer with Hall

conductance σ = n q
2

2π
then effectively Θ→ Θ+2πn. The physical property determined by the

time-reversal invariant bulk is the parity of Θ mod π which is not changed by adding extra

integer layers onto the surface. Thus, the parity of (Θ
π

mod 2) determines a Z2 topological

invariant.

Since we will need this type of argument soon, let us recount the periodicity argument for Θ.
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Once we have integrated out the fermions we recall that we produce the term in the effective

action

Seff =
q2

8π2~

∫
d4xΘεµνρτ∂µAν∂ρAτ

=
q2Θ

2πh

∫
d4x~E · ~B

= ~NφENφBΘ. (148)

where NφE/B are the integer numbers of electric and magnetic fluxes (where we have assumed

all of the space-time directions are compact and only Ez and Bz are non-zero for simplicity).

This means that the phase picked up by this term in a path-integral is

exp

[
i

~
Seff

]
= exp [iNφENφBΘ] (149)

from which we clearly see that Θ is only defined mod 2π.

Now, we want to consider the other intrinsic quantities bi and θab. We also find that the

spatial components of bi and the components of θab where a, b are both spatial indices are

odd under time-reversal. If these intrinsic quantities are uniquely defined it implies that

they must vanish identically in a time-reversal invariant insulator. However, if we require

discrete spatial symmetries it is possible to induce periodicity relations such that we can find

non-trivial values even in a time-reversal symmetric system. As an example, let us impose a

discrete translation symmetry with spatial lattice vectors ~a1, ~a2, and ~a3 such that the system

is symmetric under the discrete translations by ~Rmap = m~a1 +n~a2 + p~a3 for any m,n, p ∈ Z.
For every spatial lattice there is a corresponding reciprocal lattice spanned by ~G1, ~G2, and
~G3 which satisfy ~ai · ~Gj = 2πδij.

For ba we will focus on one piece of the effective action:

Seff =
qT qm

2ba
4π2

∫
d4xεµνρτ∂µAν∂ρe

a
τ (150)

= ~
qTm

2bi
2π

NφEBi. (151)

where NφE is the integer number of electric flux quanta and Bi is the total Burgers’ vector

coming from the torsion magnetic flux (where again we have assumed all of the space-time

directions are compact and only Ez and T ixy were non-zero for simplicity). This means that

in a path-integral formalism the phase picked up due to this term is

exp
[
i qTm

2

2π
NφEbiBi

]
(152)
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from which we see that qTm
2biBi

2π
is only defined mod 2π. To clearly see the implications of

this condition let us rewrite the phase as GiBi (which is defined mod 2π) where we have

defined Gi = qTm
2

2π
bi.

Now, under time-reversal Gi → −Gi, and thus we must have GiBi = −GiBi for a time-reversal

invariant insulator. Because of the periodicity we can have GiBi = nπ for some integer n.

Since the total Burgers’ vector Bi is itself a real-space lattice vector this constraint implies

that Gi is either a reciprocal lattice vector (for n even) or a half-reciprocal lattice vector (for

n odd). The latter is the non-trivial case, and is the familiar result of a weak topological

invariant.

One consequence of this result can be determined from this effective action. Let us assume

that Gi is non-vanishing such that the term in the effective action above becomes

Seff =
q

2π

∫
d4xGiεµνρτ∂µAν∂ρeiτ . (153)

For a straight dislocation-line localized at the origin in the xy-plane, and extended in the

z-direction with Burgers’ vector Bi, we can evaluate the action to find

q

2π

∫
dzdtGiBiεµν∂µAν (154)

where now µ, ν = t, z. This is exactly ND = 1
π
GiBi copies of the response action for a 1D Dirac

fermion localized on the dislocation coupled to a scalar/axion field. This result matches what

was found using more conventional methods in Ref. [54]. Thus, for a lattice system with

discrete translation symmetry we can interpret the vector bi as being connected to a weak

topological invariant. This hints that θab might be non-zero in systems with time-reversal

symmetry and discrete rotation symmetries. We will leave the treatment of these systems

to future work.

8 Discussion and Conclusion

In this article we set out to understand the response of several classes of condensed matter

systems to geometric perturbations. By utilizing the anomaly polynomial technology in

a high space-time dimension, we were able to cleanly derive the response coefficients of

the charge, stress, and spin currents in the presence of the full range of geometric and

electromagnetic perturbations including curvature and torsion contributions. Our results
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include both universal quantized responses, e.g., the Hall conductance, gravitational Chern-

Simons response, and curvature corrections to the Hall viscosity, and seemingly less universal

quantities, e.g., the leading-order Hall viscosity term, the magneto-Hall viscosity, and the

torsion contribution to the chiral anomaly. These latter response coefficients all share a

dependence on a (possibly non-universal) intrinsic length scale of the system and are not

generically quantized since they are attached to terms in the effective action which are

completely gauge, diffeomorphism, and Lorentz invariant. This invariance does not allow for

the enforcement of a quantizing constraint in contrast to what is found, for example, for a

non-Abelian Chern-Simons term under gauge transformations.

In addition to providing the bulk response coefficients, we presented a spectral-flow/Callan-

Harvey analysis for many of the different types of responses. One of the most interesting

examples is the explanation of how 3+1-d Weyl fermions are anomalous in the presence of

torsion. This anomaly is encoded in the Nieh-Yan term and can be explained by considering

the low-energy physics of a Weyl fermion in a uniform background torsion magnetic field.

Such a field generates torsional Landau level type states and there is a special zeroth Landau

level. For the more conventional configuration of Weyl fermion in a uniform U(1) magnetic

field, this zeroth Landau level has a 1+1-d chiral dispersion along the direction of the mag-

netic field. The resulting low-energy theory has many degenerate copies of a 1+1-d chiral

fermion, which are anomalous in the presence of an electric field due to the 1+1-d chiral

anomaly. For the torsional case, the dispersion is not linear. In fact, for a Weyl node with

a fixed chirality, the low-energy theory in the presence of a torsion magnetic field has 1+1-d

modes with group velocities parallel and anti-parallel to the field. It is exactly this difference

which allows for the anomaly when a torsion electric field is applied as we discussed earlier.

The torsion electric field deforms the velocities of the low-energy modes and transfers states

past the high-energy cutoff which, in total, results in an anomalous process.

Finally we provided two possible applications of our calculations in the visco-elastic response

of Weyl semi-metals and 3+1-d time-reversal invariant topological insulators. For the Weyl

semi-metals we showed that there is both a 3D anomalous Hall viscosity and an analog the

chiral magnetic effect in which momentum current flows along dislocation lines in the absence

of an applied torsional electric field. For the 3+1-d topological insulator we showed that the

surface, in the presence of a time-reversal breaking perturbation, will exhibit a half Hall

viscosity (though the half just means that the regularized coefficient is half of the coefficient

for a regularized bulk 2+1-d Dirac fermion, and not that it is quantized), and in fact all of

the 2+1-d geometric responses, but with half of the coefficient of the intrinsic, bulk 2+1-d

Dirac fermion. We also found anisotropic response terms that have not previously been

discussed. We argued that these anisotropic responses are connected to topological phases
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protected by translation and rotation symmetries.
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A Asymptotic expansions from supersymmetric quan-

tum mechanics

In section 3 we encountered traces of the form

Tr2n Γ2n+1es /D
2
2n (155)

and in particular, their asymptotic expansions (in powers of s) in the limit s → 0. We can

use N = 1 supersymmetric quantum mechanics to evaluate these expressions. We will not

provide details, but rather only sketch the essential ideas involved; see [63, 94, 95, 96] for

details. We also note that the use of N = 1 Supersymmetric quantum mechanics (SQM) in

computing Chiral anomalies or Atiyah Singer index densities on torsional backgrounds has

been discussed before in [97] (see also [98]), and in the special case of vanishing Nieh-Yan

four form in [99, 100, 101] (see also the older works like [102, 103] etc.).

Let Σ be a manifold with metric gij, a torsional connection ωi;ab, and a U(1) gauge field A.

The action for N = 1 SQM in the presence of torsion is given by

SSQM =

∫
ds

(
1

2
gijẋ

iẋj +
i

2
χa(δabχ̇

b + ẋkω̊k;abχ
b)− iqT

4
ẋkχaχbHkab −

qT
2

1

4!
Nabcdχ

aχbχcχd

+ ic̄(ċ+ iẋkAkc) +
i

2
c̄Fabχ

aχbc

)
(156)

where xi are local coordinates on Σ, χa are one-component real fermions, while c and c̄

are one-component complex fermions, and the notation ẋj ≡ ∂sx
j. We have also introduced

the notation N = dH, and F = dA. The theory is invariant under the supersymmetry
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transformations δxi = iεχi, δχi = −εẋi, with the supercharge

Q = iχaeia(pi −
i

2
ω̊i,bcχ

bχc + c̄Aic)−
qT
2

1

3!
Ha;bcχ

aχbχc (157)

(pi being the momentum conjugate to xi), and the Hamiltonian H = −Q2. Upon quantiza-

tion, we must replace pi → −i∂i and χa → 1√
2
γa. The supercharge becomes Q = 1√

2
/D+ · · ·,

while the Hamiltonian is H = −1
2
/D2

+ · · ·, up to operator ordering ambiguities indicated by

· · ·. Further, the fermion number operator in SQM, (−1)F , is proportional to the chirality

matrix Γ2n+1.

This is what allows us to compute traces of the type (155) - the Hilbert space of N = 1

SQM essentially furnishes a representation of Dirac fermions on Σ. In fact, the trace (155)

is proportional to the Witten index of supersymmetric quantum mechanics

Tr (−1)F e−βĤ (158)

with s = 1
2
β. Such a trace over the Hilbert space is easiest to compute using the path

integral representation. To handle the operator ordering ambiguities, we follow the time-

slicing prescription for the path integral [94], at the expense of the counter-terms

Lct =
1

8
gijΓ̊kilΓ̊

l
jk +

1

16
ω(qT )

i;abω
(qT )i;ab − qT

2

16

1

3!
Ha;bcH

a;bc. (159)

The path integral corresponding to Tr (−1)F e−βĤ is then given by

Tr (−1)F e−βĤ =

∫

PBC

[dxidχadaidbidci]e−
∫ 0
−β ds LE (160)

where ai are commuting ghosts, bi and ci are anti-commuting ghosts,25 and LE is the Eu-

clidean time Lagrangian given by

LE =
1

2
gijẋ

iẋj +
1

2
δabχ

aχ̇b +
1

2
ẋkω

(qT )
k;bc χ

bχc +
qT
2
Nabcdχ

aχbχcχd

+ c̄(ċ+ ẋkAkc)−
i

2
c̄Fabχ

aχbc+
1

2
gij(a

iaj + bicj) + Lct. (161)

Here xi and ai have periodic boundary conditions, χa have periodic boundary conditions

because of the (−1)F in the trace (which is what the subscript PBC indicates), and bi, cj, c

and c̄ all have anti-periodic boundary conditions. In the absence of (−1)F , χa acquire anti-

periodic boundary conditions (APBC). Finally, the β → 0 limit is just the weak coupling

limit in SQM, where we can do perturbation theory. In this way, N = 1 SQM allows us to

25The ghosts are introduced to exponentiate factors of det(e) which arise due to insertion of complete set

of position eigenstates in the discretized path integral.
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compute the asymptotic expansions in (155) using standard techniques of field theory. For

instance, using the method described above, we find the asymptotic expansion for Tr4 Γ5es /D
2

in four dimensions is given by

Tr4 γ
5es /D

2
4 '

∫

Σ4

(
qT

16π2s
dH +

1

8π2
F ∧ F +

1

192π2
tr R(−qT ) ∧R(−qT ) +

qT
96π2

d ∗ d ∗ dH +O(s)

)
.

(162)

The same procedure can be applied for computing such asymptotic expansions in higher

dimensions. For instance, in six dimensions we get

Tr6 Γ7es /D
2
6 '

∫

Σ6

(
− qT

32π3s
F ∧ dH − 1

384π3
F ∧ tr R(−qT ) ∧R(−qT ) − 1

48π3
F ∧ F ∧ F

− qT
192π3

d (F ∧ ∗d ∗ dH) +
qT

384π3
d ∗ d ∗ (F ∧ dH) +O(s)

)
(163)

B Divergences in higher dimensions

In this section, we discuss the torsional divergences in anomaly polynomials in arbitrary

dimensions, and their Pauli-Villar’s regularization. As we noted in Section 3, divergences of

the anomaly polynomials in d = 4n and d = 4n + 2 are the same. Therefore, to study the

cancellation of divergences, it suffices to focus on the anomaly polynomials in d = 4n. We

have dealt with the case of n = 1 explicitly in section 3, so we now take n > 1. Now in

d = 4n, we have the asymptotic expansion

Tr4nΓ4n+1es /D
2
4n ' 1

sn

∞∑

k=0

bks
k =

1

sn

n∑

k=0

bks
k +O(s) (164)

where the bk are 4n-form polynomials made out of curvature, torsion, and their covariant

derivatives (see Eqs. (46) and (59)). For instance, in d = 4n we have b0 ∝
∫
M4n

(dH)n,

while in d = 4n + 2 we have b0 ∝
∫
M4n+2

F ∧ (dH)n.26 As before, we will not consider O(s)

terms because these lead to 1/m corrections in the anomaly polynomial. The un-regulated

anomaly polynomial thus takes the form

P(0)(m) = lim
ε→0

i
√
πm

n∑

k=0

Γε(−n+
1

2
+ k,m2) bk (165)

where

Γε(α,m
2) =

∫ ∞

ε

sα−1e−sm
2

(166)

26The explicit form of bk is difficult to compute in arbitrary dimension in the presence of torsion.
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with ε = 1
Λ2 . Therefore, the UV divergences of the anomaly polynomial in d = 4n are

contained in {
mΓε(−n+

1

2
+ k,m2)

}
, 0 ≤ k < n (167)

where ε = 1
Λ2 . Let us examine these integrals schematically:

mΓε(−n+
1

2
+k,m2) = a

(k)
0 mΛ2n−2k−1+a

(k)
1 m3Λ2n−3−2k+· · · a(k)

n−k−1m
2n−1−2kΛ+a

(k)
n−ksign(m)m2n−2k

(168)

where the a
(k)
` are finite numerical coefficients. As before, we introduce Pauli-Villar’s regu-

lator fermions with masses MI and parities CI , where I = 1, 2 · · ·N . For convenience, we

label the original low-energy fermion as I = 0 with M0 = m and C0 = 1. From equation

(168), it is amply clear that to cancel all the UV divergences, we must require

N∑

I=0

CIMI = 0,
N∑

I=0

CIM
3
I = 0, · · · ,

N∑

I=0

CIM
2n−1
I = 0. (169)

Additionally, we must also check the finiteness of the remaining Λ-independent coefficients

α0 =
N∑

I=0

a(0)
n CIsign(MI)M

2n
I , α1 =

N∑

I=0

a
(1)
n−1CIsign(MI)M

2n−2
I , · · · , αn =

N∑

I=0

a
(n)
0 CIsign(MI)

(170)

in both the topological and trivial phases, where we note that a
(k)
n−k = Γ̃(−n+ k+ 1

2
), where

Γ̃ stands for analytic continuation of the Gamma function. Having done so, the regulated

anomaly polynomial is

P(m) =
n∑

k=0

αk(m) bk. (171)

In order to see that the constraints in (169) can be satisfied, and that the coefficients {αk}
are finite, we go back to the lattice Dirac model in d = 4n− 1. We will work with the lattice

Hamiltonian

H =
∑

~k

c†~k

{
m+ µbw

(
4n− 2−

4n−2∑

µ=1

cos(kµ)

)
γ4n−1 + vF

4n−2∑

µ=1

sin(kµ)γµ

}
c~k. (172)

The Hamiltonian has 24n−2 Dirac points - the one at ~k = (0, 0, · · · , 0) will be labelled by I = 0

and interpreted as the low-energy Dirac fermion, while the other fermions will be labelled by

I from 1 to 4n − 2 and interpreted as Pauli-Villar’s regulator fermions. The fermions have

a degenracy of NI =

(
4n− 2

I

)
, parities CI = (−1)I , and masses MI = (m + 2Iµbw). Now

in this model, all of the UV constraints (169) translate to

4n−2∑

I=0

CINI = 0,
4n−2∑

I=0

CINII = 0,
4n−2∑

I=0

CINII
2 = 0 · · · ,

4n−2∑

I=0

CINII
2n−1 = 0. (173)
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These constraints are obviously satisfied on account of the following identity

4n−2∑

I=0

(
4n− 2

I

)
(−1)IIk =

(
x
∂

∂x

)k
(1− x)4n−2

∣∣∣∣∣
x=1

= 0, ∀ 0 ≤ k ≤ 2n− 1. (174)

Moving on to the finiteness of the coefficients (170), we have to deal with these separately

for m < 0 and m > 0. For m > 0, these are all zero (for n > 1) as a result of identity (174).

On the other hand for m < 0, we get

αk = −2m2n−2kΓ̃

(
−n+ k +

1

2

)
. (175)

This proves that the parity-odd fermion effective action for the lattice Dirac model is fi-

nite in arbitrary dimension even in presence of torsion, provided we take into account the

contributions from spectator fermions.

C Energy Spectra for 3+1-d Weyl Fermions

C.1 U(1) Magnetic Field

Let us consider the energy spectra of isolated Weyl fermions in the presence of a uniform

U(1) magnetic field. This result is well-known but we recount it here to compare it with the

case of the torsional magnetic field. We take the spatial geometry to be Σ3 = R× S1 × S1,

parametrized by xi = (x1, x2, x3) respectively. The U(1) gauge field is taken to be A =

f(x)dy. We chose the Weyl basis for gamma matrices

γ0 =

(
0 1
1 0

)
, γi =

(
0 −σi
σi 0

)
, γ5 =

(
−1 0
0 1

)
. (176)

With this, the Dirac equation for the left and right modes ψL = 1−γ5
2
ψL, ψR = 1+γ5

2
ψR

becomes

i
(
∂0 − σi(∂i + iqAi)

)
ψR = 0, i

(
∂0 + σi(∂i + iqAi)

)
ψL = 0. (177)

Let us now concentrate on the left handed modes, and we will drop the L subscript from

here on. If ψ is a zero mode of ∂0 + σi(∂i + iqAi), then so is (∂0 − σi(∂i + iqAi))ψ (because

the Ai are time independent), and hence we try to solve the second order equation27

(
∂2

0 − σi(∂i + iqAi)σ
j(∂j + iqAj)

)
ψ = 0. (178)

27Eventually, we should be careful to discard solutions of (∂0 − σi(∂i + iqAi))ψ = 0
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Using σiσj = δij + iεijkσk and the fact that p2, p3 are good quantum numbers, we find that

energy eigenfunctions must satisfy(
−∂2

1 + (p2 + qA2)2 + p2
3 +

q

2
εijkFijσ

k
)
ψ = E2ψ. (179)

Now let us consider the special case of a uniform magnetic field. Choose A = Bx1dx2

corresponding to a uniform magnetic field B parallel to x3. Substituting into Eq. 179 we

find (
−∂2

1 + (qB)2

(
x1 +

p2

qB

)2

+ p2
3 + qBσ3

)
ψ = E2ψ (180)

which is the simple harmonic oscillator equation with frequency |qB|. The dispersion rela-

tions are

E(`, p3, σ3) = ±
(
p2

3 + 2|qB|(`+
1

2
) + qBσ3

)1/2

, ` = 0, 1, 2, · · · , σ3 = ±1 (181)

and the wavefunctions are

ψ(`, p3, σ3) = A`e
ip3x3+ip2x2e−|qB|x

2
1/2H`

(√
|qB|(x1 +

p2

qB
)

)
|σ3〉 (182)

with A` = 1
2``!

(|qB|)1/4 being the normalization.

The solutions corresponding to ` = 0, σ3 = −sign(qB) are the gapless modes E(p3) = ±p3.

But note that we still need to eliminate the spurious solutions which satisfy (i∂0 − iσi(∂i +

iqAi))ψ = 0, i.e.
(

E + p3 (p1 − ieB(x1 + p2/qB))
p1 + iqB(x1 + p2/qB) E − p3

)
ψ(`, p3, σ) = 0. (183)

Thus, the E = sign(qB)p3 mode gets eliminated, and we are left with only one gapless

branch

E = −sign(qB)p3. (184)

The number of states for each p3 is given by |qΦB |
2π

, which comes from demanding −L1

2
<

p2
qB

< L1

2
; here ΦB is the magnetic flux. If we had chosen to study the right-handed chirality

then −sign(qB)p3 would have been eliminated and the remaining mode would be E =

+sign(qB)p3.

C.2 Torsion Magnetic Field

Now set the U(1) magnetic field to zero, and consider the following co-frame and its dual

frame

e0 = dt, e1 = dx1, e2 = dx2, e3 = dx3 + f(x1)dx2, (185)
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−|m|

Figure 8: An illustration of the energy spectrum for a left-handed Weyl fermion in the

presence of a uniform background U(1) magnetic field. The linear dispersing mode is the

zeroth Landau level and the gapped modes are higher Landau levels (or bulk states). We

have drawn a mass cut-off ±|m| to represent the energy at which the low-energy chiral

modes begin to couple with the bulk modes in the gapped topological insulator and lose

their chirality and boundary localization properties.

e0 = ∂0, e1 = ∂1, e2 = ∂2 − f(x1)∂3, e3 = ∂3.

We will set the spin connection to zero for simplicity. In this case, the above co-frame is

torsional with T 3 = de3 = ∂1f(x1)dx1 ∧ dx2. The Dirac operator becomes

i /D = i
(
γ0∂0 + γ1∂1 + γ2(∂2 − f(x1)∂3) + γ3∂3

)
. (186)

For the left-handed Weyl fermions, the Dirac equation reduces to

i
(
∂0 + σ1∂1 + σ2(∂2 − f(x1)∂3) + σ3∂3

)
ψL = 0, (187)

and since p2, p3 are good quantum numbers, we can write the above as

(
i∂0 + iσ1∂1 − σ2(p2 − f(x1)p3)− σ3p3

)
ψL = 0. (188)

We notice that this looks exactly like the Dirac equation with a U(1) gauge field A =

−p3
q
f(x1)dx2 = −p3

q
δe3 and field strength F = −p3

q
T 3. Thus (179) becomes

(
−∂2

1 + (p2 − p3δe
3
2)2 + p2

3 −
p3

2
εijkT

3
ijσ

k
)
ψ = E2ψ. (189)

To understand the spectrum, we first notice that for p3 = 0, the spectrum is justE(p1, p2, p3 =

0) = ±(p2
1 + p2

2)1/2. This must be the case because the p3 = 0 mode is not sensitive to trans-

lations/torsion. In order to proceed, we choose f(x1) = Cx1, this leads to a uniform torsion
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Figure 9: An illustration of the energy spectrum for a 3+1-d left-handed Weyl fermion in the

presence of a uniform background torsion magnetic field. The downward dispersing (blue)

curve represents the zeroth Landau level while the non-linear (black) curves represent higher

Landau levels as given in Eq. 190. This should be compared with the result for a U(1)

magnetic field shown in Fig. 8.

magnetic field T 3 = Cdx1∧dx2. The spectrum for p3 6= 0 is similar to the case of the uniform

magnetic field

E(`, p3, σ3) = ±
(
p2

3 + 2|Cp3|(`+
1

2
)− Cp3σ

3

)1/2

` = 0, 1, 2 · · · , σ3 = ±1. (190)

Notice that for ` = 0, σ3 = sign(Cp3), the spectrum is simply given by E = ±p3. But once

again we have to be careful to eliminate the spurious zero mode. This is delicate, so let us

work this out explicitly; the spurious mode satisfies
(

E + p3 p1 − i(p2 − Cp3x
1)

p1 + i(p2 − Cp3x
1) E − p3

)
ψ = 0. (191)

We find that E = −sign(Cp3)p3 should be eliminated. Thus the remaining gapless (p3 6= 0)

mode is

E = sign(Cp3)p3, σ3 = sign(Cp3). (192)

The opposite chirality mode will have E = −sign(Cp3)p3, σ3 = −sign(Cp3). This is different

from the case of the U(1) magnetic field in two important ways. First, the number of states

for each p3 6= 0 is now given by |p3ΦT |
2π

, where ΦT = CL1L2 is the torsion magnetic flux. Second

the right-handed and left-handed fermions do not give rise to 1+1-d fermion branches with

a constant group velocity. In fact, one chirality disperses upward and the other chirality

disperses downward. The fact that the association between the different 1+1-d branches

and the chirality is modified is exactly what gives rise to the torsional contribution to the

chiral anomaly.

59



D Dimensional reduction of Curvature terms

In Section 7, we performed the dimensional reduction from the 4+1-d topological insulator

to the 3+1-d topological insulator. Here, we wish to demonstrate the additional terms which

arise due to curvature. We recall the form of the geometry fields we employ

ea = badw + ẽai dx
i

e4 = Ndw

ea = ẽa

e4 = N−1
(
∂w − baẽia∂i

)
(193)

A = Θdw + Ãidx
i

ωab = θabdw + ω̃ai;bdx
i

ωa4 = 0

where a = 0, 1, 2, 3 and the intrinsic 3+1-d co-frame, frame and connections are now labelled

by a tilde. For simplicity, we will take N to be constant.

Now we wish to compute the dimensional reduction of the Levi-Civita Chern Simons term,

but this can be straightforwardly done for the full torsional case as well. We start by

computing the dimensionally reduced Levi-Civita connection. Using

ω̊AB =
1

2
{deA(eB, eC)− deB(eA, eC)− deC(eA, eB)} eC (194)

we find

ω̊ab = ˚̃ωab +K[ab]dw (195)

ω̊a4 = − 1

N
K(ac) (ẽc + bcdw) (196)

and we have defined Kab

Kac = (
˚̃
Dba)(ẽc) = (dba + ˚̃ωadb

d)(ẽc). (197)

The Levi-Civita curvature two-form is given by

R̊ab =
˚̃
Rab +

˚̃
DK[ab] ∧ dw −

1

N2
K(ac)K(bd)(ẽ

c + bcdw) ∧ (ẽd + bddw) (198)

R̊a4 = − 1

N

(
˚̃
DK(ac) ∧ ẽc +

˚̃
D
(
K(ac)b

c
)
∧ dw +K[ac]dw ∧K(cd)ẽ

d
)

(199)

where note that
˚̃
DKab = dKab + [̊ω̃,K]ab.
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Let us now proceed to computing the LC Chern Simons term in the effective action. Up to

unimportant boundary terms, we find
∮
F ∧ CS [̊ω] =

∮
F ∧

(
CS [̊ωab] + 2ω̊a4 ∧ R̊4a

)
(200)

= −dΘ ∧ CS [̊ω̃] + 2F̃ ∧K[ab]
˚̃
Rba −

2

N2
dΘ ∧Ka ∧ ˚̃

DKa

− 2

N2
K(ac)b

c F̃ ∧ ˚̃
DKa +

1

N2
K[ab] F̃ ∧Ka ∧Kb

where we have introduced the 1-form Ka = K(ab)ẽ
b. Note that up to terms of O(b2), we find

∮
F ∧ CS [̊ω] = −dΘ ∧ CS [̊ω̃] + baẽ

a ∧ dÅ2 +O(b2) (201)

where Å2 = (F̃ ∧ ˚̃
Rab)(ẽ

a, ẽb), which is the result we arrived at previously, albeit in the

presence of torsion.
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