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We consider the stability of self-accelerating solutions to extended quasidilaton massive gravity
in the presence of matter. By making a second metric dynamical in this model, matter can cause
it to evolve from a Lorentzian to Euclidean signature, triggering a ghost instability. We study this
possibility with scalar field matter as it can model a wide range of cosmological expansion histories.
For the ΛCDM expansion history, stability considerations substantially limit the available parameter
space while for a kinetic energy dominated expansion, no choice of quasidilaton parameters is stable.
More generally these results show that there is no mechanism intrinsic to the theory to forbid such
pathologies from developing from stable initial conditions and that stability can only be guaranteed
for particular choices for the matter configuration.

PACS numbers: 04.50.Kd, 98.80.-k

I. INTRODUCTION

de Rham-Gabadadze-Tolley (dRGT) massive gravity [1] is a theory with a massive graviton, which is constructed to
remove the Boulware-Deser ghost. In this theory, there are two metrics: the usual spacetime metric and a flat fiducial
metric. It possesses a branch of self-accelerated solutions [2–8] where the Universe undergoes de Sitter expansion
without a true cosmological constant.

However, because the fiducial metric is non-dynamical, the dRGT model breaks diffeomorphism invariance. In
the preferred unitary gauge coordinates where the fiducial metric is Minkowski, the spacetime metric does not take
on the Friedmann-Lemâıtre-Robertson-Walker (FLRW) form. Furthermore on the self-accelerating branch there is
no coordinate system where the two metrics are even simultaneously homogeneous and isotropic for spatially flat or
closed FLRW solutions [9]. While there exists open FLRW solutions where this is possible [10], they are generally
unstable to fluctuations [11, 12]. Though accelerating solutions where one of the two metrics are either inhomogeneous
or anisotropic do exist [6, 9, 13–15], this feature of dRGT with a static flat fiducial metric is an obstacle in building
a successful cosmology.

Many generalizations of the dRGT model focus on replacing the static flat fiducial metric while retaining the
Boulware-Deser ghost free form of the construction. Quasidilaton massive gravity is one of such attempts to make
the fiducial metric dynamical. Here the quasidilaton acts as a conformal rescaling of the fiducial metric and so can
accommodate the expansion of the Universe in both metrics [16]. Unfortunately, in its original form the model suffers
from ghost instabilities [17, 18]. The extended quasidilaton model introduces an extra coupling term between the
massive graviton and quasidilaton that cures this instability for vacuum self-accelerating solutions [19]. However
making the fiducial metric itself dynamical and dependent on the evolution of the quasidilaton field, opens the
possibility that in the presence of matter instabilities develop. It is the purpose of the present paper to investigate
the stability of the extended quasidilaton massive gravity in cosmological solutions with matter.

This paper is organized as follows. In §II, we review the model and define notation. In §III, we present homogeneous
and isotropic background dynamics of the model. We show that it is still possible to have a self-accelerated solution in
the presence of matter components. In §IV, we explore the scalar perturbations around the self-accelerated solution,
and check their stability. Starting from summarizing vacuum case, we derive new conditions for stability with matter.
We conclude in §V, and we provide techniques used in the main text in Appendix A and B.

Throughout the paper, we will work in natural units where c = 1, and the metric signature is (−+ ++).

II. EXTENDED QUASIDILATON MASSIVE GRAVITY WITH MATTER

Extended quasidilaton massive gravity is defined by the action [19]

Sg =
M2

Pl

2

∫
d4x
√
−g
[
R+ 2m2

g(L2 + α3L3 + α4L4)− ω

M2
Pl

∂µσ∂
µσ

]
, (1)
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where mg is the graviton mass, σ is the quasidilaton scalar field, and ω, α3, and α4 are dimensionless model parameters.
The graviton mass term is expressed by

L2 =
1

2
([K]2 − [K2]),

L3 =
1

6
([K]3 − 3[K][K2] + 2[K3]),

L4 =
1

24
([K]4 − 6[K]2[K2] + 3[K2]2 + 8[K][K3]− 6[K4]). (2)

Here, square brackets represent the trace of the enclosed matrix. The form of L2, L3, and L4 are the same as dRGT
massive gravity but the matrix Kµν is given by

Kµν = δµν − eσ/MPl

(√
g−1f̃

)µ
ν

, (3)

where (g−1f̃)µν = gµρf̃ρν and
√
M

µ

ν is understood as a root of matrix:
√
M

µ

ρ

√
M

ρ

ν = Mµ
ν . There are two differences

in Kµν from dRGT massive gravity: the extended fiducial metric f̃µν which is disformally related to the fiducial metric
fµν

f̃µν = fµν −
ασ

M2
Plm

2
g

e−2σ/MPl∂µσ∂νσ,

fµν = ηab∂µφ
a∂νφ

b, (4)

and its coupling to the quasidilaton. Note that this disformal relation does not guarantee a Lorentzian signature to
the extended fiducial metric. More generally a disformal scaling which does not depend on the kinetic term of σ itself
does not by construction preserve the signature [20]. Thus we are interested in the question of whether matter can
induce an evolution in σ that changes the signature of this metric.

In (4) the 4 Stückelberg fields φa restore general covariance as they transform as spacetime scalars. In addition,
the form of the coupling is chosen so that under a transformation

σ → σ + σ0, φa → e−σ0/MPlφa, (5)

where σ0 =const., the extended fiducial metric transforms as

f̃µν → e−2σ0/MPl f̃µν , (6)

leaving the action invariant as in the original quasidilaton model [16]. The quasidilaton thus allows a rescaling of the
extended fiducial metric and in cosmological solutions plays a similar role to the scale factor. The coupling constant
ασ between the massive graviton and the quasidilaton is introduced to stabilize the self-accelerating solution in the
absence of matter [19]. Note that the extended fiducial metric is dynamical whereas fµν is always a coordinatization
of the standard Minkowski metric regardless of the dynamics of the Stückelberg fields.

We are interested in how the background and the perturbations for the self-accelerating flat FLRW solution behave
if we include matter component. In order to consider a wide range of cosmological background solutions, we take the
matter to be a canonical scalar field ξ whose action is given by

Sm =

∫
d4x
√
−g
[
−1

2
∂µξ∂νξ − V (ξ)

]
. (7)

The total action S = Sg + Sm is thus specified by 5 model parameters {mg, ω, α3, α4, ασ} and a choice of the scalar
field potential V (ξ).

III. BACKGROUND

The form of spatially flat cosmological background solutions is defined by homogeneity and isotropy of the spacetime
and fiducial metrics, and quasidilaton and matter fields

ds2 = −N(t)2dt2 + a(t)2δijdx
idxj ,

φ0 = φ0(t), φi = xi,

σ = σ̄(t), ξ = ξ̄(t). (8)
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Here we have kept a general lapse function N(t) so as to study its implied equation of motion before setting it to
unity as in the conventional FLRW metric. The extended fiducial metric is then given by

−f̃00 ≡ n(t)2 = (φ̇0)2 +
ασ

M2
Plm

2
g

e−2σ̄/MPl ˙̄σ2,

f̃ij = δij . (9)

It is convenient to introduce the following variables:

H ≡ ȧ

Na
, X ≡ eσ̄/MPl

a
, r ≡ n

N
a. (10)

The Lagrangian at the background level is then given by

L =
M2

Pl

2
a3N

[
6

(
ȧ2

N2a2
+

ä

N2a
− Ṅ ȧ

N3a

)
+ 2m2

g(X − 1)[3(rX +X − 2)− (X − 1)(3rX +X − 4)α3 + (X − 1)2(rX − 1)α4]

+
ωσ̇2

M2
PlN

2
+

1

M2
Pl

(
ξ̇2

N2
− 2V

)]
. (11)

From this Lagrangian we can derive the equations of motion. Variation of the action with respect to φ0 gives

d

dt

[
φ̇0

n
a4X(X − 1)J

]
= 0, (12)

where

J ≡ 3 + 3(1−X)α3 + (1−X)2α4. (13)

Since the Stückelberg field do not couple to the matter field, this equation is the same in the presence or absence
of matter and we follow Ref. [19] in studying its solutions. From (12), we obtain X(1 − X)Jφ̇0/n ∝ a−4 which
asymptotically vanishes as the Universe expands. We focus on the branch with J = 0, and hereafter X shall denote
the root of J = 0. In this branch of cosmological solutions, X ≡ eσ̄/MPl/a = const and the quasidilaton in the
background plays the same role as the scale factor allowing the extended fiducial metric to scale with the expansion.
This solution implies ˙̄σ = MPlNH and(

φ̇0

n

)2

= 1− ασe
−2σ̄/MPl

M2
Plm

2
g

˙̄σ2

n2
= 1− ασH

2

m2
gX

2r2
. (14)

If we insist that both the fiducial and extended fiducial metrics have a Lorentzian signature then φ̇0/n is real and

ασ <
m2
gX

2r2

H2
. (15)

For r2 > 0, violation of this bound means that the fiducial metric loses its Lorentzian signature.
Variation with respect to N and a give the Friedmann equations

3
(

1− ω

6

)
M2

PlH
2 = M2

PlΛX +
˙̄ξ2

2
+ V, (16)

−2
(

1− ω

6

)
M2

PlḢ = ˙̄ξ2. (17)

After deriving the equation of motion for N , we set N = 1 for the following. Here, we define

ΛX ≡ m2
g(X − 1)2[(X − 1)α3 − 3]. (18)

Therefore, the total energy consists of the matter component and an effective cosmological constant induced by the
graviton mass term, which leads to a self-accelerated expansion of the Universe. To make ΛX ∼ m2

g responsible for
the late-time acceleration, one needs mg ∼ H0 and its positivity requires

(X − 1)α3 − 3 > 0. (19)
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In addition, we note that the effective gravitational constant for background is given by a rescaling of the Planck mass

M̃2
Pl ≡M2

Pl

(
1− ω

6

)
(20)

and M̃2
Pl > 0 requires

ω < 6. (21)

By defining the effective critical density ρ̃cr ≡ 3M̃2
PlH

2
0 , the Friedmann equations (16), (17) take their usual form.

In particular for the ΛCDM expansion history with Ωi ≡ ρi/ρ̃cr, H
2/H2

0 = ΩΛ + Ωma
−3. Setting ΩΛ to satisfy

observational constrains determines mg/H0 as

m2
g

H2
0

=
(6− ω)ΩΛ

2(X − 1)2[(X − 1)α3 − 3]
. (22)

From the equation of motion for the quasidilaton σ̄, we obtain

r = 1 +
ω(3H2 + Ḣ)

3m2
gX

2[(X − 1)α3 − 2]
. (23)

Therefore, r is not constant in general, a crucial distinction from the case without a matter field. It is only constant
if H itself is constant, or if 3H2 + Ḣ = 0. In particular, the latter case implies that the Universe is dominated by the
stiff matter, whose equation of state parameter is w = 1. This phase could take place if the expansion is dominated by
the kinetic energy of the scalar field. In this case, r = 1, which we shall see has interesting consequences for stability.

Finally, the matter field ξ̄ obeys the usual equation for a minimally coupled scalar field

¨̄ξ + 3H ˙̄ξ +
dV

dξ
= 0. (24)

Since the equation of state parameter for the scalar field is w ≥ −1, it typically dominates the energy density and
the expansion rate in the past. We shall use the flexibility in choosing the potential to mimic the various stages of
the standard ΛCDM model. In particular, we can reproduce any power law expansion a ∝ tp by using the potential
for power-law inflation. Furthermore, it is possible to reproduce an expansion which is equivalent to that with
nonrelativistic matter and a cosmological constant. This case is studied in the Appendix A.

To summarize, we choose the model parameters, namely, {mg, ω, α3, α4, ασ} in order to satisfy requirements on the
background evolution. Since

3 + 3(1−X)α3 + (1−X)2α4 = 0 (25)

on the self accelerating branch and we also need to satisfy a condition on X (19) for positivity of the effective
cosmological constant, it is useful to choose first α3 and X and determine α4 by (25). A specific example of a set of
parameters which satisfy (25) and (19) is

α3 = 4, α4 = 9, X = 2. (26)

For ω, we only need to satisfy (21) in order to guarantee the positivity of the gravitational constant. For ασ, (15)
is necessary if all metrics have Lorentzian signatures. We shall see in the next section that this condition can be
alternately viewed as a requirement for the stability of fluctuations around the background solution which generalizes
the vacuum results of Ref. [19]. Then we set mg (22) using the observational data for ΩΛ. For instance, for parameter
set (26), ω = 4, and ΩΛ = 0.7, we obtain (mg/H0)2 = 0.7. After specifying all the parameters, the evolution of
H(t) and ξ̄(t) are given by (17) and (24), and r(t) is given by (23). Importantly, this makes the bound on ασ time
dependent beyond the vacuum solutions.

IV. SCALAR PERTURBATIONS

We will work in the unitary gauge, where the perturbation for the Stückelberg field vanishes. This gauge condi-
tion completely fixes the gauge degree of freedom and requires the most general parameterization of scalar metric
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fluctuations

δg00 = −2Φ,

δg0i = a∂iB,

δgij = a2

[
2δijΨ +

(
∂i∂j −

1

3
δij∂`∂

`

)
E

]
, (27)

and two dimensionless perturbation for quasidilaton and matter field

σ = σ̄ +MPlδσ,

ξ = ξ̄ +MPlδξ, (28)

and we will work in a Fourier space.
Since the quadratic action does not have kinetic term for B and Φ as expected, we can eliminate them by using

their equations of motion. We are then left with four variables, Ψ, E, δσ, and δξ.

A. Vacuum case

Let us first review the case without matter component. To analyze this case, we only need to switch off ξ and V ,
and use Ḣ = 0. Then we have three variable Ψ, E, and δσ. However, the kinetic terms for Ψ and δσ can be combined
in the form of (Ψ̇− ˙δσ)2. Therefore, one nondynamical degree of freedom still remains in the quadratic Lagrangian.
We define a new notation as

φ1 ≡ Ψ− δσ : dynamical,

φ2 ≡ E : dynamical,

φ3 ≡ Ψ + δσ : nondynamical. (29)

After integrating out φ3, the kinetic terms are Kij φ̇iφ̇j for i, j = 1, 2. The no-ghost condition is given by the positivity
of all the eigenvalues of the kinematic matrix Kij , which is equivalent to imposing

detK =
M4

Plω
2a2H2k6

r2(r − 1)2

2A(r − 1)2(k/aH)2 + 3(ω − 6)(A− r2)

4(A− 1)(k/aH)2 + ω(6− ω)
> 0, (30)

K22 =
k4M2

Pl

18

ω[2(A− 1)(k/aH)2 + 3(6− ω)]

4(A− 1)(k/aH)2 + ω(6− ω)
> 0, (31)

where

A ≡ ασH
2

m2
gX

2
. (32)

Note that H is given by (16) without the matter component, r is given by (23) with Ḣ = 0, and both H and r are
constant.

We would like to derive a condition for model parameters to make both of (30) and (31) positive for all wavenumber
k. We start from deriving necessary conditions from taking high-k and low-k limit. For k/aH � 1,

A

A− 1
> 0, ω > 0. (33)

For k/aH � 1, the K22 condition is automatically satisfied and

r2 −A
ω

> 0, (34)

Therefore, in addition to ω < 6 from the positivity of the effective gravitational constant, the necessary condition for
the stability is

ω > 0, and A < r2, and [A > 1 or A < 0]. (35)
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Now let us check the sufficiency of the conditions. We note that A < 0 is not sufficient. For instance, we can choose
wavenumber (

k

aH

)2

=
3(1− ε)(6− ω)

2(1−A)
, (36)

which is positive by the virtue of A < 0. Here, we choose some small positive ε, which satisfies 0 < ε < Min{1, 6−ω}.
For this wavenumber, K22 is a positive number times

ε

ω − 6 + ε
, (37)

which is negative. On the other hand, A > 1 is sufficient, because all the terms appeared in the expressions of detK
and K22 are positive for A > 1, combined with 0 < ω < 6 and A < r2.

Therefore, the no-ghost condition in the absence of matter component is given by

0 < ω < 6, 1 <
ασH

2

m2
gX

2
< r2. (38)

Note that we need r > 1, namely, (X−1)α3−2 > 0, which is satisfied if we impose (19). This condition is necessary to
establish stability in asymptotic future of cosmological solutions of the self accelerating branch. Furthermore note that
since H and r are constant here, the stability condition for ασ depends only on the choices for the other parameters
of the quasidilaton model. We shall next consider how these conditions generalize in the presence of matter.

B. Matter with −1 ≤ w < 1

Now we turn our attention to examine the no-ghost condition in the presence of matter field, but we omit the
case with w = 1 for reasons which shall be made clear in §IV D. In addition to the perturbation for the metric and
the quasidilaton, we introduce matter perturbation δξ. As in the absence of matter, the quadratic Lagrangian with
matter does not have kinetic terms for Φ and B. Thus, we can derive two constraint equations and make use of them
to eliminate Φ and B. After eliminating Φ and B, we are left with four perturbative variables, namely, (E,Ψ, δσ, δξ).
Without matter, we have two dynamical degrees of freedom. Therefore, we anticipate that with matter we should have
three dynamical degrees of freedom, and there is one nondynamical degrees of freedom which should be expressed
by certain linear combination of (E,Ψ, δσ, δξ). Indeed, the determinant of the kinematic matrix for (E,Ψ, δσ, δξ)
vanishes, which implies the existence of nondynamical field. By examining the sub-kinematic matrices, we find that
the kinematic matrix for (Ψ, δσ, δξ) is the minimal one whose determinant vanishes. Let us denote the eigenvalues by
λ1 = 0, λ2, λ3, and their eigenvectors by ~vT1 ≡ (1/Ξ, 1/Ξ, 1), ~vT2 ≡ (v21, v22, 1), ~vT3 ≡ (v31, v32, 1). Here,

Ξ ≡
˙̄ξ

MPlH
(39)

and explicit forms for λ2, λ3, ~v2, and ~v3 are given in Appendix B. Now, we define a new basis thorough (Ψ, δσ, δξ) =
(~v1, ~v2, ~v3)(ψ1, ψ2, ψ3), and diagonalize the sub-kinematic matrix. After rewriting the quadratic Lagrangian in terms
of new basis, we obtain the kinematic matrix for ψ1, ψ2, ψ3, and ψ4 ≡ E as0 0 0 0

0 λ2 0 ∗
0 0 λ3 ∗
0 ∗ ∗ ∗

 , (40)

where a star denotes nonzero components. Therefore, we can eliminate the nondynamical variable ψ1 by using its
constraint equation, and end up with the quadratic Lagrangian for three dynamical degrees of freedom (ψ2, ψ3, ψ4).
We would like to examine the necessary conditions for the kinematic matrix Kij for i, j = 2, 3, 4 to be positive
definite. As in the matterless case, we investigate the sign of the determinants of the matrix and its subblocks, detK,
K33K44 −K2

34 and K44 in the high-k and low-k limit.
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First, let us focus on the high-k limit. The leading order terms for k/aH � 1 are given by

K44 =
k4

72
M2

Pla
3(ω + Ξ2) + · · · , (41)∣∣∣∣K33 K34

K34 K44

∣∣∣∣ =
ωk4

144
M4

Pla
6(Ξv32 − 1)2 + · · · , (42)

detK =
ω2Ak2

96r2Ξ2(A− 1)
M6

Pla
11(3H2 + Ḣ)(2 + Ξ2)2[(1− 2ω)2 + 2Ξ2 + Ξ4] + · · · . (43)

Here, v32 is understood as the leading order term at the high-k limit. Let us determine the constraints on model
parameters that are necessary for these quantities to be positive. First, (41) is always positive. From (42) being
positive, we have ω > 0. Since ω < 6 from the positivity of the effective gravitational constant, we obtain 0 < ω < 6.
Last, (43) provides A(A − 1) > 0, namely, (A > 1 or A < 0). To also satisfy sufficient conditions for the matterless
case, we choose A > 1.

Next, we focus on the low-k limit. The leading order terms for k/aH � 1 are

K44 =
k4

12
M2

Pla
3 + · · · , (44)∣∣∣∣K33 K34

K34 K44

∣∣∣∣ =
ω(r2 −A)k2

8r2(r − 1)2
M4

Pla
8(3H2 + Ḣ)(v31 − v32)2 + · · · , (45)

detK =
3ω(r2 −A)k2

16r2(r2 − 1)
M6

Pla
11H2[(v31 − v32)(Ξv21 − 1)− (v21 − v22)(Ξv31 − 1)]2 + · · · . (46)

Here, v21, v22, v31, v32 are understood as the leading order terms at the low-k limit. From (45) and (46), we obtain
A < r2.

With the high-k and low-k results combined, the necessary conditions for stability are

0 < ω < 6,
m2
gX

2

H2(t)
< ασ <

m2
gX

2

H2(t)
r2(t), (47)

which is identical to (38) for the case without matter. However, the crucial difference is that H = H(t) and r = r(t)
are time dependent and the condition must be satisfied for all time with a single value of the constant ασ. This
means that it is possible to choose parameters for which the system is initially stable but evolve into an instability.
We shall show in the next section explicit examples that do so. Physically, this means that these backgrounds have
their fiducial metrics evolve from a Lorentzian to a Euclidean signature, thus triggering the instability. By making
the second metric f̃µν dynamical in the extended quasidilaton scenario, stability depends not just on the intrinsic
model parameters but also on the matter content and evolution of the Universe.

Indeed, by introducing a scalar field for the matter with an arbitrary potential, we have allowed for the possibility
of any expansion history for matter whose equation of state parameter varies from −1 ≤ w < 1. For instance, we can
describe any expansion evolving as w=const. or a ∝ t2/3(1+w) by using the same potential that describes power law
inflation. We shall next derive a more explicit condition from (47) with the help of the ΛCDM expansion.

C. ΛCDM expansion history

Given the observational success of the ΛCDM expansion history, it is worthwhile to explore the explicit constraints
on parameters for this form. In Appendix A, we show that it is possible to construct two different scalar field potentials
that reproduce the ΛCDM expansion history. The first case is the usual axion model where the field oscillates in a
quadratic potential with m� H. The second, more novel case is a rolling field where the kinetic and potential energy
driven to be equal through an attractor. While these models have the same background expansion history, the axion
model is equivalent to CDM in that it is gravitationally unstable whereas the rolling field is not. The two models
indicate that our condition (47) is not dependent on whether matter is gravitationally unstable in the linear regime.

Using the definition of ΛX and the expansion history H2 = H2
0 (ΩΛ + Ωma

−3), we obtain

m2
gX

2

H2
=

X2

2(X − 1)2

6− ω
(X − 1)α3 − 3

ΩΛ

ΩΛ + Ωma−3
, (48)

r = 1 +
ω

6− ω
(X − 1)2

X2

(X − 1)α3 − 3

(X − 1)α3 − 2

(
2 +

Ωm
ΩΛ

a−3

)
. (49)
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Figure 1. Evolution in redshift of the region between the upper and lower bounds upper bound for ασ (47) for the ΛCDM
expansion history. A constant ασ that satisfies the bounds exists for ω = 5.9 (light green shaded region) but does not for
ω = 0.1 (dark red shaded region) yielding an additional constraint on ω. In the latter case, all choices of ασ > 0 are initially
stable but evolve to an instability. Here α3 = 4, α4 = 9, and X = 2.

From (48) and (49), the allowed range for ασ (47) can be expressed in terms of X, α3, ω, and ΩΛ. Note that as
a decreases, the lower bound on ασ monotonically weakens since H ≥ H0 while the upper bound asymptotically
weakens since lima→0 r

2/H2 ∝ a−3.
On the other hand the appearance of the factor ω/(6−ω) in (49) for r has important consequences for the evolution

of the upper bound near a = 1 or redshift z = 0. For ω → 0, the growing part of r is suppressed and near z = 0 can
drop below the growth of H2 thereby tightening the upper bound. Figure 1 illustrates these properties by showing
the region between the upper and lower bounds as a function of redshift z for parameter set (26) with ω = 5.9 (light
green shaded) compared with 0.1 (dark red shaded). For ω = 5.9, it is possible to choose a constant ασ that satisfies
the bound for all z whereas it is impossible for ω = 0.1. Hence, small ω is not allowed and we gain an additional
constraint beyond 0 < ω < 6 from requiring that the ΛCDM expansion history be stable.

The existence of a constant ασ which satisfy the bound (47) requires

m2
gX

2

H2
0

< Min

[
m2
gX

2

H(t)2
r(t)2

]
(50)

should be satisfied. By using (48) and (49), we can rewrite this condition as

ω

6− ω
> B, (51)

where

B =
X2

2(X − 1)2

(X − 1)α3 − 2

(X − 1)α3 − 3
(
√

1 + ΩΛ − 1), (52)

or

6B

1 +B
< ω < 6. (53)

For instance, for parameter set (26) and ΩΛ = 0.7, we obtain 3.29 < ω < 6. This means that requiring ΛCDM
stability eliminates half the parameter space that was available in the matterless case. We emphasize that these
parameters would otherwise appear to grant stability both at the initial and current epochs. They represent models
whose fiducial metric evolve from Lorentzian to Euclidean and back to Lorentzian.

The condition for ασ (47) is then

X2

2(X − 1)2

(6− ω) ΩΛ

(X − 1)α3 − 3
< ασ <

2ω

(X − 1)α3 − 2

[
1 +

2ω

6− ω
(X − 1)2

X2

(X − 1)α3 − 3

(X − 1)α3 − 2

]
. (54)

Here we used (22). For instance, for parameter set (26) and ΩΛ = 0.7, ω = 4, we obtain (mg/H0)2 = 0.7 and
1.43 < ασ < 5.

Thus, in addition to the conditions which we mentioned in the end of Sec. III, we need to choose ω to satisfy (53)
and ασ to satisfy (54) given a value for ΩΛ that satisfies observational constraints on the expansion history.
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D. Matter with w = 1

Finally, for the completeness of our analysis, there is a special case that occurs for w = 1 or a kinetic energy
dominated scalar field. Since 3H2 + Ḣ = 0, r − 1 = 0 and (47) would imply that no constant ασ can satisfy the
stability bounds. However since the derivation involves many expressions that assume these quantities are finite, we
study this case separately.

As in the w 6= 1 case, we study the conditions that would make the kinematic matrix Kij for i, j = 2, 3, 4 be positive
definite. However, detK is negative definite:

detK =−
3m4

gM
6
PlX

4a13[(X − 1)α3 − 2]2(ω − 8)2

64 [8(k/C)2 + ω + 6]
2

× [64(5ω2 − 18ω + 49)(k/C)4 + 16(ω3 + 18ω2 − 61ω + 294)(k/C)2 + (ω2 − ω + 42)2], (55)

where

C ≡ mgaX
√

(X − 1)α3 − 2. (56)

Note that the second line of (55) is positive definite for any wavenumber under 0 < ω < 6. Thus, there is no choice of
parameters that makes the extended quasidilaton model stable for matter with a kinetic dominated equation of state.
This is compatible with the naive interpretation of the bound (47).

Furthermore note that a pure w = 1 expansion history is not strictly necessary for the bound (47) to have no
solution. For a multicomponent matter system, so long as the kinetic term of the scalar field dominates the expansion,
any additional subdominant matter component with equation of state parameter wj < 0 will also cause a failure of
solutions. Suppose that total energy is dominated by the kinetic term of the scalar field but has other components:
H2 = H2

0 (Ωsa
−6 +

∑
j Ωja

−3(1+wj)). Then,

lim
a→0

r − 1

H
=

ω

6− ω
(X − 1)2

X2

(X − 1)α3 − 3

(X − 1)α3 − 2

∑
j(1− wj)Ωja−3wj

ΩΛΩ
1/2
s H0

. (57)

The right hand side asymptotically vanishes as a→ 0 for wj < 0, which implies that r/H approaches to 1/H in the
past and no constant ασ can satisfy the stability bounds (47). This includes the case where the additional component
is from the self-accelerating background. For wj = 0, solutions would only exist for special choices of parameters, e.g.
ω → 6, so that r/H � 1/H and it allows a constant ασ to satisfy the bound (47).

V. CONCLUSIONS

We considered cosmological self-accelerated solutions of the extended quasidilaton theory in the presence of matter
components. By treating the matter as a scalar field with a canonical kinetic term but an arbitrary potential, we
have allowed for a wide range of background expansion histories that may occur in a cosmological setting. Examining
the quadratic Lagrangian for the scalar perturbations around these background solutions, we obtained necessary
conditions for stability (47). While these appear identical in form to the case without matter, they provide time-
dependent constraints on the fundamental parameters of the theory. By demanding the ΛCDM expansion history be
stable, we obtained the constraints (53) and (54) for model parameters ω and ασ, for given value of ΩΛ which are
considerably stronger than the case without matter. We also showed that the self-accelerated solution is unstable for
any choice of model parameters if the expansion is governed by matter with w = 1 or a kinetic energy dominated
scalar field.

More generally, these results arise because in this model the extended fiducial metric is dynamical. In particular there
is nothing intrinsic to its dynamics that forbids an evolution of the fiducial metric from a Lorentzian to a Euclidean
signature. Backgrounds that evolve through such a transition develop a ghost instability. Thus the presence of certain
types of matter can induce evolution to an instability that is not present in the initial conditions or apparent from
just the parameters of the extended quasidilaton model itself.
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Appendix A: ΛCDM expansion history with scalar fields

In the main text, we use a scalar field to model the ΛCDM expansion history from the matter dominated to the
acceleration epoch. It is well known that an axionic model where the field oscillates in a quadratic potential with
m � H satisfies these conditions averaged over oscillations. Here we provide a novel explicit construction of an
alternate case where the field is rolling rather than oscillating and the ΛCDM expansion history arises from attractor
behavior. We begin with the expansion history itself which can be written as

a(t) =

(
Ωm
ΩΛ

)1/3

sinh2/3

(
3

2

√
ΩΛH0t

)
, (A1)

or

H(t) =
√

ΩΛH0 coth

(
3

2

√
ΩΛH0t

)
. (A2)

Here we consider the ΩΛ contribution to be from the quasidilaton or more generally, a contribution that is external
to the scalar field system. Therefore, for the scalar system to combine with ΩΛ to form the ΛCDM expansion history,
we require the energy in the scalar field to scale as ρ ∝ a−3 and the pressure p = 0. This condition then requires
˙̄ξ2/2 = V (ξ̄) = ρ/2 or

ξ̄ = ±2M̃Pl√
3

log

[
tanh

(
3
4

√
ΩΛH0t

)
3
4

√
ΩΛ

]
, (A3)

and finally

V =
3ΩΛH

2
0M̃

2
Pl

8

[
3

4

√
ΩΛe

√
3ξ

2M̃Pl −
(

3

4

√
ΩΛe

√
3ξ

2MPl

)−1
]2

. (A4)

This solution (A3) is an attractor of this potential. It also holds for a true cosmological constant rather than the

quasidilaton effective cosmological constant with the replacement M̃Pl →MPl.
Note that this system differs from axionic scalar field solutions that also satisfy the ΛCDM expansion history. In our

solution the kinetic and potential energies are set to be equal instantaneously whereas for an axion they only average
to the same values over many oscillations. This difference also appears in the dynamics of perturbations. Here they
are gravitationally stable due to the field fluctuations having sound speed unity in a slowly varying background. In
the axion case, the rapid oscillation of the background allows for growing modes in the energy density perturbations
that behave like CDM. Unlike the axionic case, this model is an example of a system that is indistinguishable from
ΛCDM from the expansion history but easily distinguishable in the growth of structure.

Appendix B: Eigensystem for sub-kinematic matrix

Here we give explicit forms for the eigenvalues and eigenvectors of the sub-kinematic matrix for (Ψ, δσ, δξ) used in
Sec. IV B. Diagonalizing the matrix yields the eigenvalues

λ1 ≡ 0, λ2 ≡
1

4
(p0 −

√
q), λ3 ≡

1

4
(p0 +

√
q), (B1)

and the corresponding eigenvectors

~vT1 ≡ (1/Ξ, 1/Ξ, 1), ~vT2 ≡ (v21, v22, 1), ~vT3 ≡ (v31, v32, 1), (B2)

where recall Ξ = ˙̄ξ/MPlH and

v21 ≡
p1 − (ω + Ξ2)

√
q

d+ Ξ
√
q

, v22 ≡
p2 + ω

√
q

d+ Ξ
√
q
,

v31 ≡
p1 + (ω + Ξ2)

√
q

d− Ξ
√
q

, v32 ≡
p2 − ω

√
q

d− Ξ
√
q
, (B3)
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and

q ≡16(6− ω)2(r2 − 1)2[Ξ4 + 2Ξ2 + (2ω − 1)2]

(
k

aH

)4

− 8ω(6− ω)(r2 − 1)(Ξ2 + ω − 6)[(ω + 6)Ξ4 + 2(ω + 6)Ξ2 + (2ω − 1)(13ω − 6)]

(
k

aH

)2

+ ω2(Ξ2 + ω − 6)2[(ω + 6)2Ξ4 + 2(ω + 6)2Ξ2 + (13ω − 6)2],

d ≡− 4(6− ω)(r2 − 1)Ξ(Ξ2 + 1)

(
k

aH

)2

+ ωΞ(Ξ2 + ω − 6)[(ω + 6)Ξ2 + 2ω2 − ω + 6],

p0 ≡4(ω − 6)(r2 − 1)(Ξ2 + 2ω + 1)

(
k

aH

)2

+ ω(Ξ2 + ω − 6)[(ω − 6)Ξ2 − (11ω + 6)],

p1 ≡4(6− ω)(r2 − 1)[Ξ4 + (ω + 1)Ξ2 + ω(2ω − 1)]

(
k

aH

)2

− ω(Ξ2 + ω − 6)[(ω + 6)Ξ4 + (ω + 1)(ω + 6)Ξ2 + ω(13ω − 6)],

p2 ≡− 4ω(6− ω)(r2 − 1)[Ξ2 + 2ω − 1]

(
k

aH

)2

+ ω2(Ξ2 + ω − 6)[(8− ω)Ξ2 − 13ω + 6]. (B4)

The following relations also help simplify the derivation:

Ξ2 + ω − 6 = − 2

H2

(
Λ + ΛX +

V

M2
Pl

)
= −2

(
1− ω

6

) 3H2 + Ḣ

H2
, (B5)

from the background equations and

v21 + v22 + Ξ = 0,

v31 + v32 + Ξ = 0,

v21v31 + v22v22 + 1 = 0, (B6)

from the orthogonality of the eigenvectors.
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