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k-inflation represents the most general single-field inflation, in which the perturbations usually
obey an equation of motion with a time-dependent sound speed. In this paper, we study the ob-
servational predictions of the k-inflation by using the high-order uniform asymptotic approximation
method. We calculate explicitly the slow-roll expressions of the power spectra, spectral indices, and
running of the spectral indices for both the scalar and tensor perturbations. These expressions are
all written in terms of the Hubble and sound speed flow parameters. It is shown that the previous
results obtained by using the first-order uniform asymptotic approximation have been significantly
improved by the high-order corrections of the uniform asymptotic approximations. Furthermore, we
also check our results by comparing them with the ones obtained by other approximation methods,
including the Green’s function method, WKB approximation, and improved WKB approximation,

and find the relative errors.
I. INTRODUCTION

Inflationary cosmology has become the dominant
paradigm for describing the evolution of the very early
universe. It not only solves several fundamental and con-
ceptual problems of the conventional big bang cosmol-
ogy, but also provides an elegant mechanism for generat-
ing the primordial density perturbations and primordial
gravitational waves (PGWs) [1, 2]. Both the density per-
turbations and PGWs create the cosmic microwave back-
ground temperature anisotropies, which have already
been detected by various CMB observations, such as
WMAP [3], Planck [4], and BICEP2 [5]. The observa-
tional results from WMAP, Planck, BICEP2, and also
forthcoming CMB experiments provide measurements of
the primordial power spectra and spectral indices more
accurate than ever before. For this, the comparison of
inflationary models with accurate observations requires
precise theoretical predictions.

However, in general it is impossible to obtain exact
spectra and spectral indices analytically, and thus one
has to use some approximate methods. In particular,
using the slow-roll approximation, the spectra of both
scalar and tensor perturbations were first calculated to
the first-order in the slow-roll approximations in [6], in
which the slow-roll parameters were assumed to be small
and constant. Beyond the first order slow-roll approx-
imation, one expects the time-dependence of the slow-
roll parameters could contribute to the spectra at the
second-order in the slow-roll approximation. This has
been achieved by calculating the power spectra up to
the second-order in the slow-roll approximation by the
Green’s function method [7, 8]. Then, the spectra at the
second-order in the slow-roll approximation have been

re-derived by using the WKB approximation [9, 10],
improved-WKB approximation [11], and also the first-
order uniform asymptotic approximation [12, 13]. Except
the above mentioned approximations, other methods are
also available for obtaining the power spectra and spec-
tral indices, such as the Bessel function approximation
[14], and the phase integral method [15].

The uniform asymptotic approximation method men-
tioned above was first applied to inflationary cosmology
in the framework of general relativity in Refs. [16, 17],
and then was extended by us [18] to the more general
case where the dispersion relation is not necessarily lin-
ear, and in general has multi- and/or high-order turning
points. Furthermore, by considering the more accurate
high-order uniform asymptotic approximations, we have
obtained the general expressions of the power spectra
and spectral indices up to the third-order in the uniform
asymptotic approximation, at which the error bounds are
< 0.15% [19]. With these results we have also calculated
explicitly the power spectra and spectral indices of scalar
and tensor perturbations with a modified dispersion re-
lation up to the second-order in the slow-roll approxima-
tion. These results have been checked by comparing them
with those obtained by the Green’s function method, and
are shown to be accurate enough to match the require-
ments of current and forthcoming observations.

The success of the high-order uniform asymptotic ap-
proximations motivates us to apply this powerful tech-
nique to other inflationary scenarios. In particular, in
this paper we shall apply it to the most general single
field inflation, the k-inflation. The most distinguishable
feature of the k-inflation is that the scalar perturbations
obey an equation of motion with a time-dependent sound
speed. This makes it very difficult to calculate the cor-



responding power spectra and spectral indices, although
with some additional assumptions, the power spectra of
the k-inflation can be obtained by using the Green’s func-
tion method [20]. For a general sound speed, after in-
troducing a simple hierarchy of parameters, related to
the sound speed of the scalar perturbations and its suc-
cessive derivatives, the authors in Refs. [12, 21] have
worked out explicitly the power spectra and spectral in-
dices by using the first-order uniform asymptotic approx-
imation, at which the error bounds in general are < 15%,
although further improvement can be achieved, similar to
that done in the relativistic case [17].

However, to match with the accuracy of the current
and forthcoming observations, as pointed out in [19], con-
sideration of the high-order corrections in the uniform
asymptotic approximation is highly demanded. In this
paper, with the general expressions of power spectra and
spectral indices we obtained in [19], we calculate explic-
itly the power spectra and spectral indices of scalar and
tensor perturbations of the k-inflation up to the third-
order in the uniform asymptotic approximation. These
expressions represent a significant improvement of the
previous results obtained by other methods. Further-
more, by comparing our expressions with the ones ob-
tained by other methods, such as the first-order uniform
asymptotic approximation, the Green’s function method,
WKB approximation, and improved WKB approxima-
tion, we show explicitly the relative errors among the
results obtained by these different methods.

The paper is organized as follows. In Sec. II, we
present a brief review of the k-inflation, and in Sec.
III, we give the most general formulas of the high-order
uniform asymptotic approximations. Then in Sec. IV,
with these general expressions we calculate explicitly the
power spectra, spectral indices, and running of the spec-
tral indices of both scalar and tensor perturbations in
the slow-roll k-inflation. In Sec. V, we present a detailed
comparison of the results with the ones obtained by other
methods. Our main conclusions are summarized in Sec.
VI

Before proceeding further, we note that it must not be
confused with the order of the wuniform asymptotic ap-
prozimations and the order of the slow-roll parameters.
The former is defined by the parameter A\, appearing in
Eq.(3.1), while the latter is characterized by the param-
eters €, and ¢,, defined, respectively, in Eqs.(2.5) and
(2.8). These represent two independent sets of parame-
ters. As a result, their expansions are also independent
one from the other. In addition, in this paper we do not
consider the pivot expansion.

II. SCALAR AND TENSOR PERTURBATIONS
OF THE k-INFLATION

In this section, we present a brief introduction of the
scalar and tensor perturbations of the k-inflation. In gen-
eral, the action of the k-inflation can be written in the

form,

S = 1/d‘*gc\/—_g[}z +2P(X,¢)], (2.1)
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where ¢ is the determinant of the metric, R is the 4D
Ricci scalar, ¢ denotes a scalar field and

1 v
X = 59“ 0,00, 9, (2.2)
is the kinetic term. To be stable, the k-inflation must
satisfy the following two conditions [21],
oP 0*P  OP
— >0, 2X—+—>0.
ax ~V Poxrtox 7
Let us consider a flat universe for simplicity, for which
the background metric is

ds® = —dt* + a®(t)(d2® + dy* + dz?)
= a2(n)(—d772 +da? + dy2 + sz),

where a is the scale factor of the universe, and 7 is the
conformal time defined as dn = dt/a. For the background
evolution during the inflation, it is convenient to define
a hierarchy of Hubble flow parameters,

dln €n Hini

n = , = s 2.5
Ent dlna €0 H (2:5)

where H = a/a is the Hubble parameter, and a dot de-
notes derivative with respect to the cosmic time t.

In general, the perturbations produced during the in-
flationary epoch are governed by the master equation

(2.3)

(2.4)

"
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() + (cs(nW - —) () = 0,

z

(2.6)

where ug(n) denotes the inflationary mode function, a
prime denotes differentiation with respect to the confor-
mal time 7, k is the co-moving wavenumber, ¢,(n) and
z(n) depend on the background and the types of the per-
turbations (scalar and tensor).

For scalar perturbations, we have

A =
s\ RX+2XRXX7

(2.7)

where a subscript “, X” represents differentiation with
respect to X. Similar to the definitions of the hierarchy
of Hubble parameters, the authors in Refs.[12, 21] intro-
duced a hierarchy of the sound speed, which are given
by

_ dIDQn _ Cini
gn+1 = dlna ) qdo = . (28)

Cs

In general the parameters are assumed to be small, i.e.,
qn < 1. With the above definitions we have

2" (n)
z(n)

3 1 1
= a’H? (2 — €1+ 562 + 3¢ + Ze% - 56162

1
+ 56263 — Q1 + €aq1 + g7 + Q1Q2),
(2.9)



in which z(n) = v/2€e1a(n)/cs(n). For tensor perturba-
tions, the corresponding expressions become simpler. In
particular, we have ¢s(n) = 1 and

#m)

=a’H?*(2 —¢

(2.10)

where z(n) = a(n).

III. POWER SPECTRA AND SPECTRAL
INDICES IN THE UNIFORM ASYMPTOTIC
APPROXIMATION

A. Brief introduction of the uniform asymptotic
approximation

In this section, we first present a brief introduction to
the uniform asymptotic approrimation method with high-
order corrections. Most of the expressions and results
presented here can be found in Refs. [17-19].

Following Refs. [19, 23], by introducing a dimensionless
variable y = —kn, let us first write the equation of the
mode function in the form,

a2 (y)

ay? = [V4(y) + ()] my)- (3.1)

In the above the parameter ) is used to trace the order of
the uniform approximations, and A2§(y) = g(y). Usually
A is supposed to be large, and can be absorbed into g(y).
Thus, when we turn to the final results, we can set A = 1

for the sake of simplification. Then, it is easy to show
that

2400 +at) =~ (o - Z0). 62)

z(n)

In general, §(y) and ¢(y) have two poles (singularities):
one is at y = 07 and the other is at y = +o0o. As we
discussed in [18] (see also [16, 23]), if these two poles are
both second-order or higher, one must choose

1

qly) = —
for the convergence of the error control functions. In ad-
dition, the function §(y) can vanish at various points,
which are called turning points or zeros, and the approx-
imate solution of the mode function py(y) depends on
the behavior of §(y) and ¢(y) near these turning points.
To proceed further, let us first introduce the Liouville
transformations with two new variables U(§) and & via
the relations

U(f) - X1/4,Ltk(y)7 §I2: f(l)(f)Q, (3'4)
where y = ¢2, ¢/ = d¢/dy, and
= [ Vil 9@ =L @)

Note that x must be regular and not vanish in the in-
tervals of interest. Consequently, f(£) must be chosen so
that f()(€) has zeros and singularities of the same type
as that of g(y). As shown in [18, 19], such a requirement
plays an essential role in determining the approximate
solutions. In terms of U and £, Eq. (3.1) takes the form

2
T - EO@elu o
where
(o) = 10 _ B0 (3.7)

X dy?

and the signs “+” correspond to g(y) > 0 and g(y) < 0,
respectively. Considering ¢(£) = 0 as the first-order ap-
proximation, one can choose f(1) (€) so that the first-order
approximation can be as close to the exact solution as
possible with the guidelines of minimizing the error func-
tions constructed below, and solving it in terms of known
functions. Clearly, such a choice sensitively depends on
the behavior of the functions g(y) and ¢(y) near the poles
and turning points.

For the case in which g(y) has only one single turning
point, we can choose

FOE) = £¢,

here £ = £(y) is a monotone decreasing function, and
+ correspond to g(y) > 0 and g(y) < 0, respectively.
Following Olver [23], the general solution of Eq. (3.6)
can be written as

(3.8)

U = a Ai(AQ/gé)zn:A;S )
s=0
A1 )\2235 Z )\25 32n+1)‘|
+60 | Bi(AY 35)20 /\25
LIS B |
(3.9)

where Ai(z) and Bi(z) represent the Airy functions,

6%271—1—1) and E(211-{- )

tion, and
AO (5) = 17
dv

+1 ¢ "
B, = W/O {¥(v)As(v) — A{ (v)}W’

€)= ~3BL©) + 5 [ o)

are errors of the approximate solu-

(3.10)



where + correspond to & > 0 and & < 0, respectively.

The up bounds of e§2n+l) and e(2n+1) can be expressed
as
2rE pelenth) g
M()\2/3§)’ )\2/3N(/\2/3§)
260 Y0e(1€Y%| B
< 2B 1 (\¥3¢) exp [ roe ’E(f | 0)]
Yae(1€"/%|B)
A2n+1 ’
E4(12n+l) 86512n+1)/6§
M()\2/3§)’ )\2/3]\7(/\2/35)
1/2
< 2B(\2/3¢) exp {%O%’ﬁ(f |BO)}

o Yes(I€12(Bn)

\2ntl ) (3.11)

where the definitions of M (z), N(x), ko, and ¥ () can
be found in [18].

B. Power spectra and spectral indices up to the
third-order in the uniform asymptotic
approximation

With the approximate solution given above, now let us
calculate the power spectra and spectral indices from the
approximate solution. We assume that the universe was
initially at the adiabatic vacuum,

lim ¥67”‘”k(’7)d”.

ATy (3.12)

Then, we need to match this initial state with the approx-
imate solution (3.9). However, the approximate solution
involves many high-order terms, which are complicated
and not easy to handle. In order to simplify the calcula-
tions, we first study their behavior in the limit y — +o0.
Let us start with the By(§) term in Eq.(3.10), which sat-
isfies

N S A4 (9
PO )y v T e B
where J7(§) = fOE dvip(v)/|v|'/? is the associated error

control function of the approximate solution (3.9), and
in the above we had used Ag(§) = 1. The error control
function 42°(§) is well behaved around the turning point
7o and converges when y — +00. As a result, we have

,m_ Bo(€) = BEN=3% (3.14)
Then, let us turn to Ay, which is
1 I

A9 = —5BoO) + 5/0 Y(v)By(v)dv.  (3.15)

In the limit y — +oo, B{(§) vanishes, and we find

i ) = =5 (S 3 [ )
_ 1 [@}

5 5 (3.16)

Note that in the above we had used the formula

13
”!/go e [ ” fen)- / F(2)dgrdes - dé,

= l i f(v)dv] . (3.17)

Thus, up to the third-order in the uniform asymptotic
approximation, we obtain

o+ 8 - 1o [ o),

Bo(§) 1 A () 1

Then, using the asymptotic form of Airy functions in the
limit £ — —oo, and comparing the solution uk(y) with
the initial state, we obtain

T 1
@0 = \/%(A0 + A1 /)2) —iy/—EBy /N

T 1
%”V%MMAMW—WQmM’(“”

where we have
(Ao + A1 /N2) —in/—EBo /X = (1 4+ O(1/X%))e®. (3.20)

Here 6 is an irrelevant phase factor, and without loss of
the generality, we can set 8 = 0. Thus, we finally get

\/% (1+0(1/3%)),
z\/g (14+0(1/X%)).

After determining the coefficients ay and [y, we can
calculate the power spectra of the perturbations. As y —
0, only the growing mode is relevant, thus we have

1/4 +o00o
ur(y) =~ Bo <$) lBi(Az/gﬁ)ZB,\sz(f)

/\2/3B1 )\2/35
Z )\25

1

Qo

Bo

1

(3.21)

(3.22)

In order to calculate the power spectra to high-order in
terms of the uniform asymptotic approximation parame-
ter A, let us first consider the By(§) term, which satisfies

L [Sy)  H(+0)
;13%30(5) 2172 |, U1/2d BENDYZVER

(3.23)



In the above we had used the relation £/2d¢ = —/gdy.
Based upon the By term, we can get the A; term, which

is
: L[S 9) [ (u)
1}1_{%141(5) = Z/o 1 /0 WY dudv
1 [A(+00)]”
2 2
Then, up to the third order in the uniform asymptotic

approximation, and considering the asymptotic forms of
the Airy functions in the limit £ — 400, we find

(3.24)

Boedre” H(+o00) A (+0)?
- (), oo

y—0 = NL/6G1/4r1/2 1+

(9(1//\3)1 . (3.25)

Hence, the power spectra are given by

A2(k) = 2’“_7:’2 #kz(y) ? .
2
= S (2 V)
x {1+%(i°°) +%22(;°°) +(’)(1/)\3)]

(3.26)

From the power spectra presented above, one can ob-
tain the general expression of the spectral indices, which
now is given by

_ dInA%(k)
"= Tk
d [P 1 dA (+0)
RRARrITY: y 9O+ =0k
1
+0(A3> (3.27)

Note that the third term in the above expression con-
tains contributions of both the second- and third-order
corrections in the uniform asymptotic approximations.

IV. APPLICATIONS TO THE k-INFLATION

Now we arrive at the position to calculate the power
spectra and spectral indices of the k-inflation from the
general formulas (3.26) and (3.27). In order to do so, we
need to perform the integral of \/g(y) in Eq.(3.26) and
calculate the error control function 7 (+00). However,
this becomes very complicated, if the explicit form of
v(n) and ¢s(n) is not specified. In this paper, we shall fo-
cus on the slow-roll k-inflation and consider the slow-roll

expansions of the power spectra at second-order and cor-
responding spectral indices at the third-order in terms
of the slow-roll parameters, for both scalar and tensor
perturbations. As we discussed in [19], in the slow-roll
inflation, it is convenient to consider the following expan-
sions,

_ _ Y 1.5y
v ~pg+vIn =+ -0y In” =, 4.1
() 0 1 T 2 2 7o (4.1)
with
ﬂl = 7611/(7’]) 172 = 76#1/(7’]) (4 2)
dn(—n)| dn®(=n)| '
7o 70
and
_ _ Y 1 .5y
Cs ~co+c1ln =+ —cyIn" =, 4.3
(n) 0 1 7 2 2 7o (4.3)
with
dCS d2cs
dIn(—n) d1n®(—n)
7o o

In the slow-roll k-inflation, we have v(n) ~ 3 + O(e),
v~ 0(62), Uy 0(63), and Co =~ 0(1)762 >~ O(E), Co ~
O(€?), where € represents the slow-roll parameters and
O(€™) denotes the n-th order in the slow-roll approxima-
tions. The slow-roll expansions of all the above quantities
can be found in Appendix A.
With the above expansions, we notice that
) = VG, AL yj mZ
Y Y\ V5 — Cgy Yo

n Vol _ CoCay
2y 75 —cgy? 2/ 75 — cgy?
_@m+me)’y) oy
2(vg — cgy?)3/ Yo

(4.5)

Therefore, the integral [ 1/gdy can be divided into three
parts,

Yo
| Vi@ =t 4 bt b (46)
Yy
where
Wm I, = —5 (141In—=
y—0 200 )
1—1In2 2 Im%2 1
lim Io = ( IE)CWO— L 2wy U1,
y—0 Co 24 2 2 Yo
2 —12In22\ &
lim I, — 7 (7) a
y—0 CO
In22
u0(1———1 2+n—)—
2 Co
¢(3) 7?2 W2 1 59\ _
_ —_ L
+(4 2 6 6" )

(4.7)



Note that in the above we keep the 7y ~ O(e?) term in
the expression of I3, this is because when we calculate the
spectral indices from Eq. (3.27), the k-derivative of this
term provides cancellation of the In? (y/7o) divergence of
the k-derivative of 77 term in Is.

Now, we turn to consider the error control function 7.
After some lengthy calculations we arrive at

() = 3—56{ \/@(ﬂ)dﬂ}

UG

In the limit y — 0, the above expression can be casted
in the form

Yo
}\/_dy (4.8)

5 12 "
169

71(23 +121n2)

C1
A ~ — (142 -
(+00) 61/0( +50) 7202
37¢2 56 _17@%1112 Go1n?2
36c3y  36cory  T0CRvy - 6coip
(4.9)

Then, the spectral indices are given by

- 2¢1 1 1
-1 ~ (3-2 —
n ( I/o) + EQ + <6V0
n (1 — 12D§1n2> 2 4 417@1 In2 5-— 61n2
6¢3io Co 3600

73 317 In?
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Once we get the integral of \/g(y) in Eq. (4.6) and error
control function in Eq. (4.9), from Eq. (3.26) one can
easily calculate the power spectra.

Now we turn to consider the corresponding spectral
indices. In order to do this, we first specify the k-
dependence of 7g(1n9), 71(no) through ny = no(k). From
the relation —kng = To(no)/Co(no), after lengthy techni-
cal calculations, we find

200In2 2w 1 2 12In2 2
2—21n2>m+<ﬂ—ﬂ— )62+(3+7“+”——1n22>ﬂz
€o Co

7202 12

n 1 In2
9 35

6¢og
VocC3
2—— In“2 —1n4
( 77 Tl )co

=3
1701
CO )

(4.11)
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+(2m2+2m?o - T ) 2L (Z20
6 g 4cg

362, 21027

2 13711512) _
+ C1C2.

Similarly, after some tedious calculations, we find that the running of the spectral index ay = dns/dInk is given by

+ 16 _4 + 1 v 250 -3
c - — | C
3ctm )t \ 38 c e )t

6i9In’2 51In2 Siglnd 20y w20
a(k) ~ 1 T 3545 P @ T o
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58In2 w20 83 1277 In” 2
+ =3 =3 0. =3
21cgin Co 9¢ciio Co CH

861n2

1200In2Y\ _ 2170@% 6In2 6 1 _ 9
_ — Ca2Cy + 53 + _—2+_—2+W v1cq
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— 4779 In? 2
— CoC
2 232 ) 2! &2

@2 105E1
137In2 7% 73

w20 n 2 BaEr + 1 6In2\ _ _
— C3C s — 12X
32 @) ! Co ¢ 2

ine (3% In*2 N 2 (! E 22, (20, 1 20pIn 2 _
— — c — | — — c
% a2 210c2m,  4c2 | 362 ) ' \373 ! ¢ | 6eot %o 3
T84Ty 61n2 1 1 w2 In2 23
- 2 Ind — — m?2-— - —= - =)y
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54170 hl 4 26250 I/()C4 ln 2 25450 554 ln 264 (4 12)
Co Co Co Co 36¢o1 () ’ '

A. Scalar Perturbations

With the above expressions and the slow-roll expansions of ¢y, c2, ¢3, vy, V1, v2, and v, which are presented in
Appendix B, we find that, up to second-order in the slow-roll approximation, the scalar spectrum can be cast in the
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Let us now compare the above expression with the one obtained by using the first-order uniform asymptotic
approximation in Ref. [12, 13], which reads

18H? 7 8 1 23 4In2 In?2
A2(k) ~ ——— 1+ (--n2])g¢q Ind— <> e n2—-)ée = —2\ &
+(F) 87T263M§1€150{ +(3 " )q1+<n 3>€1+<n 3>€2+<18 3 T3 )‘h
25 w2 7In2 In?2\ 131n2 25\ 13 10In2
+<§_ﬂ_ 3 +T>q1q2+< 3 —21n22—§)q161+<—— 212 ) €]

9 3
In2 2 2 25  In2
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?2 W2 1), ( 1 W2 %2
e I S (e O 414
+< 2 3 18>€2+<24 0" 3 2 >6263+ ()1 (414)

In the overall amplitude, we notice that the two results have about 10% relative errors. The comparison of the
numerical coefficients in the front of the Hubble flow parameters is presented in Table I, from which one can see
clearly that the results of the first-order uniform asymptotic approximation have been significantly improved by our
expression with high-order corrections from the high-order asymptotic approximations.

TABLE I: Comparison of the results obtained by using the first-order uniform asymptotic approximation [12, 13] with those
obtained in this paper by using the third-order uniform asymptotic approximation.

Methods @ 3 & e Q1G2 q1&1 é q1é €16 & €263

1st-order 1.64019 |-1.28037(0.359814 [0.59381 | 1.17261 |-0.844097 |0.094860 | 0.45257 |-1.24381 |-0.0463781|0.290945

3rd-order 1.67702-1.32089|0.322981 | 1.184580.989427 |-0.735046 |0.167079 |0.416461 |-1.11439 |-0.0467396 | 0.374793
Relative difference| 5.7% 3.1% 10% 50% 16% 13% 43% 8.7% 12% 0.8% 22%

Now we turn to the scalar spectral index ns. As the scalar spectrum is calculated up to the second-order in the
uniform asymptotic approximation, the corresponding scalar spectral index can be calculated up to the third-order
in the slow-roll approximation, which can be rewritten in the form,

64 101 10
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Similarly, the running of the scalar spectral index up to the fourth-order in the slow-roll approximation, is given by
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B. Tensor Perturbations

For the tensor perturbations, we can simply repeat the above analysis to calculate its spectrum, spectral index, and
running of the spectral index. However, this has actually been already done in [19], because the equation of motion
for the tensor perturbations in the k-inflation is the same as that in general relativity calculated explicitly in [19].
However, those expressions were written only in terms of the the slow-roll parameters (e, d1, da, ---). Therefore, in
the following, we only need to write those expressions in terms of the slow-roll parameters (€1, €2, ---). In particular,
we find that the tensor spectrum take the form,

181H? 4 2 In2
AZ(k) ~ 8—{1+<1n4—ﬁ) 1—|—< 93 21n22—630n >€§

36e372 181 181 181
w2 4636 4961n2
+ (5~ oo ~ 2+ g ) @+ 0 } o

Similar to the case for the scalar spectrum, here we compare our results with those obtained by using the first-order
uniform approximation [12, 13],

36H? 8 13 10In2
7Dh,lst—uniform(k) =~ 7{1 + <21D2 - g) €1 + (? - 3n + 2In 2 > €1

637T2M§1
2 26  8In2
- (W— S L L e 2) 6162}. (4.18)

129 3

By identifying Pp 1st-uniform ~ 8AZ?(k) and comparing the amplitudes of the spectra, we find that the results by
the first-order uniform asymptotic approximation have about 10% relative errors. The comparison of the numerical



coefficients in the front of the Hubble flow parameters are listed in Table II. Similar to the case for the scalar spectrum,
the high-order corrections of the third-order uniform asymptotic approximation make significant improvement over
the results obtained from the first-order uniform asymptotic approximation.

TABLE II: Comparing the results obtained by using the first-order uniform approximation [12] with those obtained in this
paper by using the third-order uniform asymptotic approximation

Methods 3 & €162

1st-order -1.28037(0.094860 | -1.24381

3rd-order -1.32089(0.167079|-0.604451
Relative difference| 3.1% 43% 13%

The tensor spectral index, on the other hand, is given by

_ _ 74\ _ ~ w2 425 74In2\ _ _
ng o~ —261—26%+(21D2—E) 6162—26?+(E—1—62—1n22+ o >ele§

74In2\ _ _ _ 622\ ,_
ﬁ — 1_62 — 1112 2+ 27 ) €1€2€3 + (61n2 — g) 6%62 + 0(64)- (419)

The running of the spectral index reads

74 74 1520
o ~ —26& — 6ErEy + (2 In2— ﬁ) €165 + (2 In2— ﬁ) 16263 — 12858 + (141n2 — T) e

242 4ln2 44 242 41n2
+<7T___5_1n22+7 - )€1€§+<81n2—88—1>€§€2€3+<7T___5_31n22+7 9“ )€1€§€3

12 162 27 4 54
w2 425 74In2\ _ _ _ w2 425 74In2\ _ _ _ _
<ﬁ T In?2 - ) elegeg (ﬁ T In?2+ ) €169E384 + O(€°). (4.20)

C. Expressions in terms of quantities calculated at horizon crossing

So far, we have obtained all the expressions of the power spectra, spectral indices, and running of spectral indices
for both the scalar and tensor perturbations in the k-inflation, evaluated only at the turning point. However, usually
those expressions were expressed in terms of the slow-roll parameters which are evaluated at the time 7, when scalar
or tensor modes cross the horizon, i.e., a(n.)H (n.) = cs(n)k for scalar perturbations and c¢2(n.) = 1 for tensor
perturbations. Consider modes with the same wavenumber k, it is easy to see that the scalar mode and tensor
mode left horizon at different times if ¢2(n,) # 1. When ¢%(n,) > 1, the scalar mode leaves horizon later than the
tensor mode, and for ¢2(n,) < 1, the scalar mode leaves horizon before the tensor one does. In this case, caution
must be taken for the evaluation time for all the inflationary observables. As we have two different horizon crossing
times, it is reasonable to re-write all our results in terms of quantities evaluated at the later time, i.e., we should
evaluate all expressions at scalar horizon crossing a(n.)H (n:) = cs(n+)k for ¢2(n.) > 1 and at tensor horizon crossing
a(ne)H (n,) = k for ¢2(n,) < 1. In the following, we present all the expressions for both cases, respectively.

1. 05(77*) >1

For ¢%(n.) > 1, as the scalar mode leaves horizon later than the tensor mode, we shall re-write all the expressions
in terms of quantities evaluated at the time when scalar leaves the Hubble horizon a(n,)H (1) = c¢s(n+)k. Skipping
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all the tedious calculations, we find that the scalar spectrum can be written in the form

181H2 429 496 67
2 ~ Tk - - -
Ak) > e {1 + <181 m?’) Bt <1n9 181) Gt <1n3 181> 2

n2  248In3 641112)2 (517 6301n3>2

ﬁ 181 1267
2

42?3 -
513 181 ) 1

72 3688 | . 47In3 320 23 673\ ,
+ (ﬁ Teag TS 1—81) Gt t (1086 LI T ) 2
7?4865 In*3  420In3 718 8111n3
+ < 2 e T2 T T ) B1geat G% — 2’34+ = ) et ca
3 _|2g, 3153 ™ 8 In®’3 67In3 5
* (T - 181 )q*l ot (24 1620 2 181 )6*26*3+0(6 )}'

(4.21)

Note that in the above the subscript x represents the quantities evaluated at 7,. Now we turn to the scalar spectral
index, which can be written as

64 101
Ns—1 =~ g1 — 260 — €22 + 3qu1641 + Gui€x2 — @21 — 265, + (ﬁ —1In 3) Gx1Gx2 + (1119 - W) €x1€x2
10 611 73
+ <1n3 27) 642653 — 402161 — Q21642 + BGe1€21 + <§ —4ln 3) Qx1Gx2€x1 + (@ —In 3) qx1Gx2€x2
803 103 5 260 72 In*3 64In3 )
+ (—1 51113) (x1€x1€x2 + (ﬁ — 21n3) (x1€x2€x3 + @51 + (ﬁ o + S T) Gx1952
72 260 In*3  64In3 442 32In2\ , 5 38,
+ o1 + 8L + 5 T g7 ) 110203 +(3In3 - 3 315 ) Bd2 2¢, + 37 263
w55 1011n3 72 19 1n®*3 10In3 757
+<E_E_1n23+ 5 >€*1632+<24+@——2 + o7 )6*26*3+<61H3—ﬁ> €262
2 185 1281n3 w2 19 In?3  10In3
+ (1— - a — 1n2 3 727 ) €x1€642€43 + ( 324 5 + —27 ) €4x2€4x3€x4 + 0(64)' (422)

Finally, the running of the scalar spectral index can be determined up to the fourth-order in terms of the slow-roll
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parameters, and is given by

2 2
Qs 2 (e2Gxl — €x26x3 — 2651652 + 4Gu2€41Gx1 + D€416x2G51 + @2€x2q51 + 26,2643Gx1 — 6651642 — 3Gx2G1
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634 32In2
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In*3  64In3 7r2 260\ 5 In*3  64In3 7r2 260
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1106 33  64In3 72 260 133
+ (—1 - 71D3> 1629051 + ( 5 "9 % + o7 > Qi2qx39x1 + <ﬁ - 31113) €x2€250x1
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+ (5 1112 5 + 5 — ﬂ — 31 + 31 ) Qx20%39%49x1 + (8_1 - 51n3) QEQE*IQ*I + 216%16*261*1
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+ (ﬁ —3In 3) Gx2€x2€43(Qx1 T (8—1 —T7ln 3) €41€42€x30%1 + ( 27 — 1n2 3+ ﬁ 18) 6*1632
133 10ln3 1n?3 72 19 1817
+ (ﬁ — 31n3> €42€43€x4(%1 T+ (T — T + ﬂ + @) 6*2633 + (141 3 — W) €i1632
76 1495 1551n3 w2 205
81 32 33 + < ]1 - 91n3> Qx2€x1€x2q%1 T < o7 — 1112 3+ E — a) 6*15*2633
1101n3 72 515 1141 38 4
+ ( ) — 3?3+ —I—Z — a) 6*16326*3 + (8 In3 — W) 316*26*3 + — ] *26*36*4
10ln3 3?3 72 19 ) 1553 5 7w 205
+ 9 — —2 + ? + m €426, 3644 7 —In"3+ ﬁ - H €x1€x2€x3€44
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(4.23)
Now let us turn to consider the tensor perturbations. For the tensor spectrum, we get
181H? 496 517 630 1n(3c.0)
A%(k) ~ *1 In(9 — — | e +21n? ) 2
(k) 366371'2{ i (n( ¢+0) 181) Gt (543 (Bevo) = =57 1
w2 4636 496 In(3c¢
+ (E - —1629 - 11?12(30*0) + 18(1 *O)) €x2€41 + 0(63)}
(4.24)

The tensor spectral index n;, on the other hand, can be expressed as

w2 425

74 741n(3
ne ~ —26,1 — 262, + <2ln(3c*0) - E) €x1€40 — 265, + (— —-— 1112(30*0) + M) €x1€2,

27

676 72 425
+ (6 In(3cq0) — §> 60+ (ﬁ ~ 165~ In?(3c.0) + T)) €x1€52653 + O(*), (4.25)
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while the running of the tensor spectral index is given by

74 74
ap ~ —2€,1€,0 — 66*2631 + (2 In(3c¢,0) — f) 6*1632 + <2 In(3ey0) — f) €41€642€643 — 126*2621

2 425 74 1n (3¢, 898 1574
(E BT I 1n2(3c*0) + %) 6326*1 + (8 In(3cy0) — a1 ) 6*26*36*1 (14111(30*0) a1 ) 32631
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(E ~ 1 n3 %) €40€43€44€41 + (’)(65). (4.26)

Finally, with both the scalar and tensor spectra given above, we can evaluate the tensor-to-scalar ratio at the time
when the scalar mode leaves horizon, i.e., a(n.)H. = c5(n,)k, and find that

42
T~ 166*06*1{ (1113 — ??) Gx1 + 2651 Incyo + (% —1In 3> €2 + (2 In? ¢,0 4 21In c*o) efl
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+ ( ~ 98983 — In? 3) Qx1€42 + ( 131 *0 08983 In3—In? o —4In31n c*o) €41€42
N 285365 ln 3 610In3 N 64In2\ |, In®3  67In3 32615 ,
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2. c(n) <1

For c¢2(n,) < 1, as the scalar mode leaves horizon before the tensor mode does, we shall re-write all the expressions in
terms of quantities evaluated at the time when the tensor mode leaves the Hubble horizon a(n.)H (n,) = k. Skipping
all the tedious calculations, we find that the scalar spectrum can be written in the form
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(4.28)
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Now we turn to the scalar spectral index, which can be written as
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Finally, the running of the scalar spectral index can be determined up to the fourth-order in terms of the slow-roll
parameters, and is given by
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Now let us turn to consider the tensor perturbations. For the tensor spectrum, we get

18152 496 517 630In3
AZ(k) ~ 314 (—— +1n9 2In°3 ) €2
¢ (k) 366371'2{ +< T )6*1+ (543 TR )6*1
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The tensor spectral index n;, on the other hand, can be expressed as

74 676
ng ~ —2€, —2€2, + <21n3 — §> €x1€x2 — 265 + <_ﬁ + 61n3> €51€42

425 72 741n3 425 72 741n3

while the running of the tensor spectral index is given by
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Finally, with both the scalar and tensor spectra given above, we can evaluate the tensor-to-scalar ratio at the time
when tensor leaves horizon, i.e., a(n,)H, = k, and find that

429 3 3
T~ 166*06*1{1 + <_ﬁ + 1n > qx1 + 26,1 Incyo + <181 C_>
s

(285365+ 64In2 — @mi —1 2 3 ) fl—i- (—@4——2—1—@1 i —lln2£> qx1Gx2

65522 ' 1267 181 ¢, 40 1629 ' 24 ' 181 2 o
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V. COMPARISON WITH RESULTS OBTAINED FROM OTHER APPROXIMATIONS

In this section, we compare the expressions we obtained in the above section with the ones obtained by other
approximations, including the first-order uniform asymptotic approximation, the Green’s function method, WKB
approximation, and improved WKB approximation. To do so, we need to restrict ourselves to the special case
cs(n) = 1.

Let us first consider the scalar spectrum. The scalar spectrum by the first-order uniform asymptotic approximation
is given by

18 H? 8 1 7 10In3
PC,lst—uniform =~ 7*{1"' (_§+21n3) €41+ <_§+1n3) €x2 + <_ — +2In 2 ) €51

8ed37m2e, 9 3

(2T ey - 3_m_3+@ 2
9 12 3 )T R T 3 9 )2

1 72 In3 In®3
+ <_§+ﬂ+?_7> 5*25*3}- (51)
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In Refs. [7, 22|, the authors have found the scalar spectrum by using the Green function method, which is given by

Hf 2 7w’ 2
reen =~ S o790 1 2 —1)es * 2 * 2 * - — 9
,PQG 87T2Mp216*1 + (06* )6 1+ Qi€i2 + ( « oy + ) ) €1
o a? 2 2 ol
+ (af + o, + 12 7) €x1€42 T <7 + e 1) €+ (ﬂ - 7) €x2643 5 (5.2)

where oy, =2 —1n2—~ ~ 0.729637 with v being the Euler constant v ~ 0.577216. By using the WKB approximation,
the scalar spectrum at second order is expressed as

H? 1
PewkB =~ WAWKB{l —2(DwkB — 1)ex1 — DwkBéx2 + (2D\27VKB +2Dwks — §> el
pl™*
2 9 D2 2 w2 D3
+ (D%VKB — Dwks + I §> €x1€42 + (% + i 1) 632 + (ﬂ — %) €x2€43 ¢

(5.3)

where Dwkp = —In3 + 1/3 ~ —0.765278955 and Awkp = 18¢72 ~ 0.896167. In Ref. [11], the above results were
further improved by taking the next order in the adiabatic approximation into account. With such improvement, the
scalar spectrum is given by

H?

PewWKBx ~ =55
< 871'2M§16*1

71 5

1083 ) “*!
2384 D? 253

+ (D%VKB* — Dwkss + - + —=bs ) €x1640 + <M + ) 2,

12 7 57° 1083 2 1083
2 D%VKB 2 49
T KB 4 e ) e b

* (24 > TS 722) €263

where Awkps = 361/(18¢3) ~ 0.998507, Dwkps = —In3 +7/19 ~ —0.730191, and bg is an undetermined coefficient.
For the overall amplitude in the above expressions, it is clear that the results obtained from the first-order uniform
asymptotic approximation, the Green’s function method, WKB approximation, and the improved WKB approxima-
tion, have a relative difference ~ 10.5%, 0.13%, 10.5%, or 0.28%, respectively, from ours that have an error bound
< 0.15%. It is worth emphasizing that the amplitudes in Eq.(4.28) and Eq.(5.2) are the closest ones among the four
amplitudes. In Table III, we also compare these numerical coefficients in the front of the Hubble flow parameters.

AWKB*{l — 2(DwkBs — 1)€x1 — DwKkBs«€x2 + (QD\QNKB* + 2DwkBsx —

2 4

(5.4)

TABLE III: Comparison of the numerical coefficients of the scalar spectrum obtained by various methods

Method €x1 €x2 € €41€42 €2y €42€43
3rd-order uniform -0.54310691| 0.72844654 |-0.45788334 0.050725385 0.4997524 0.16163455
1st-order uniform -0.46944209| 0.76527896 |-0.47036526 -0.048824354 0.51504816 0.062852021

Green function method| -0.5407257 [-0.72963715 [-0.45973135 0.019276766 0.4998857 0.14504833

WKB -0.4694421 | 0.76527896 |-0.47036526 -0.04882435 0.5150482 0.06285202

improved WKB -0.539617 | 0.7301912 | -0.459583 |-0.115455+0.070175 bs| 0.500200 |0.07677686+0.035088 bs

Now we turn to consider the tensor spectrum. The expressions from the first-order uniform asymptotic approxima-
tion, the Green’s function method, WKB approximation, and improved WKB approximation are given, respectively,

by
36H?2 8 7 10In3 9 9
—63M§1{1+<2ln3—§) 6*1—|—<§— 3 +2In 3>e*1

n 26+7r2+8ln3 1n23
9 12 3 n €x1€x2 ()

Ph, 1st-uniform ==
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2H? ) - ) , 2
Ph,Green = myvEl 142w = Dea + 205 =200+ o =5 e + ( —ai + 20 + 5 =2 ) eaez oy (5.6)
2H? 9 1\ ,
Phwks =~ Q—WAWKB 1 —2(Dwks + 1)ea + | 2D{ykp + 2Dwks — 5 ) en
M)
2 7T2 19
— (Pwks +2Dwke — 15 + o) e 0 (5.7)
2H7 ) 1\ ,
Ph=WKB* = Z—WAWKB* 1- 2(DWKB* + 1)6*1 + 2DWKB* + 2DWKB* - § €1
w2 M)
2 2 19
- DWKB* + 2DwkBx — ﬁ + ? €x1€x2 (- (58)

In Table IV, we present the numerical coefficients of the tensor spectrum for each method.

TABLE IV: Comparison of numerical coefficients of tensor spectrum

2

Methods €41 €31 €x1€42
3rd-order uniform -0.54310691 |-0.45788334 | -0.21983782
1st-order uniform -0.46944208 |-0.47036526 | -0.34373805

Green function method | -0.5407257 [-0.45973135| -0.25062903
WKB method -0.4694421 |-0.47036526 | -0.34373805
improved WKB method| 0.539617 | -0.459583 |-0.361440846

VI. CONCLUSIONS AND DISCUSSIONS

The uniform asymptotic approximation method pro-
vides a powerful, systematically improvable, and error-
controlled approach to construct accurate analytical so-
lutions of linear perturbations [18, 19]. In this paper,
by applying the high-order uniform asymptotic approx-
imations, we have obtained explicitly the analytical ex-
pressions of power spectra, spectral indices, and running
of spectral indices for both scalar and tensor perturba-
tions in the k-inflation with the slow-roll approximation.
These expressions are all written in terms of both the
Hubble flow parameters defined in Eq.(2.5) and sound
speed flow parameters defined in Eq.(2.8). Comparing to
the previous results obtained by the first-order uniform
asymptotic approximation which in general have an er-
ror bound < 15%, the accuracy of the power spectra
presented in this paper have been improved to < 0.15%,
which meets the accuracy of the current and forthcom-
ing observations. In addition, the numerical coefficients
in front of both the Hubble flow parameters and sound
speed flow parameters are also highly improved by cor-
rections from the high-order uniform asymptotic approx-
imation.

Moreover, in Sec. V, we have made detailed compar-

isons of the power spectra we obtained with the ones ob-
tained by other approximate methods, including the first-
order uniform asymptotic approximation, the Green’s
function method, WKB approximation, and improved
WKB approximation. It is shown that the results from
the high-order uniform asymptotic approximation and
the ones from the Green’s function are the closest ones
among the results obtained by the five different methods.
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Appendix A: Relations of slow-roll parameters

In this appendix, we present the relations between the
Hubble flow parameters ¢; used in this paper and the
slow-roll parameters (e, d;) used in Refs. [7, 19]. It can be



shown that the parameters (e, ;) in terms of the Hubble
flow parameters ¢; are given by

€ = €1,
€
o = 52—617
5 2
8y = 26%— €2€1 @ 2% (Al)

2 4 2
On the other hand, the Hubble flow parameters can also
be expressed in terms of (e, d;), and are given by

€1 — €,
€y = 251 + 26,

€9€3 — 6516 — 25% + 252 + 462- (A2)

Appendix B: Slow-roll expansions of vy, vi, v2, U3
and ci1, c2, c3, Ca

In this section we present the results of the slow-
roll expansions of the quantities (vp, v1, 2, v3) and
(c1, ca, c3, c4). For the scalar perturbations, the expan-
sions of (v, V1, Ve, v3) are given, respectively, by

.3 1 1 , 11
Vg = 5 +q +€1+—62+Q1€1+—Q1Q2+€1+F6261

2 2 3

+1 P 4 n 10 1
—€9€ € - € —(1€2€6] — — €
623 q1€ 9q1qQ1 9Q121 9Q1Q22
1 2, +3+77 2+172

——(@1€2€3 — — € —€q€ —e5€
9Q123 9(J1QQ 1 1821 9 2€1
14 1

—|—§€26361 - Eégﬁg + O(e"), (B.1)

s €2€3
Vi = —q1q2 — €1€2 — 5 2q1q2€1 — qi€1€2
1 11

—30a — 3N — a6 — ced — 3de
7 1

—gelegeg — 6626364 — 3(]1(]26% — 3(]1626%
T, 10, 7 23

—— €1 — — (€561 — — € — — €€
9Q1QQ 1 9 q1€2€1 ngz% 1 9 q192€2€1

+1 2+1 3 +1
—_—— €92€3€ — €92€ — € — €
9(11 2€3€1 9(11 2€3 9Q1QQ 2 ngz% 2

2 1 4,, 2,
+-q1qe€2€3 + —qr€2€3€4 + —q7q5 + —G1G243

9 9 9 9
205 119 17
—6egel — 1—8636% — 1—862636% — gegel
31, 35 4 31 n 1,5,
—T—€2€5€6] — ——€5€3€] — T-€2€3€4€] + —€5€
18231 6231 182341 923
1
+1—8€§63€4 + O(e%), (B.2)
1 1
vy Q1Q§ + q193q92 + 616% + 5626% + €1€2€3 + 5626364

17

Vi ~ —qigs — 3q14395 — 19392 — Q1430402 — €165
1

1 3
—§€2€g - €1€2€§ - 5626362 - 3616%63 - 5626%64

1
—€1€0€364 — 562636465 + O(€). (B.4)
For tensor perturbations, we find
3 4 34
Vé ~ 5 + €1 —|—e% + 56261 + e? + gege%
4 4
+§€§61 + 3 €2€3€1 + O(eh), (B.5)

2 4, 4 3
— Jeg€e] — 56261 — 5626361 — Begey
89 46 4 4
2 2 2 3 2
——€5€] — ——€2€3€] — —€5€] — 5626361

9 3

4
—4e3ezeq — 3 c2€3€acl +O(e), (B.6)

4
t 2 3 2 2 2
vy X €1€; + €1€3€2 + 56162 + Tere; + derezes

4 4
—l——elegez + 4€2ezeq + gEL€sae +O(e%),

3
(B.7)

V:f, ~ —eleg — 361636% — 616%62 — €1€3€4€2

+0(€°). (B.8)

Now we turn to consider ¢y, c2, cs3, ¢4, which are given

by

c1 ~ ¢ (qlef +qie1 + qreser +q1 + (’)(64)) , (B.9)

c2 ~ co(qf — q1q2 + 2qie1 — 2q2q1€1 — queren + 3qi€]
+ 2¢i€1€2 — 3q2q1€7 — queres — 3qieren

— 2gaq1 €162 — qrerezes + O(€°)), (B.10)

cs ~ co(qf — 3207 + G3q1 + q2q3q1 + 3¢5 €1 — Y2t €
—3qieiea + qie16; + 3g5q1€1 + 3¢2q3q1€1

+3g2q1€1€2 + qrE1€2€3 + 0(65)), (B.ll)

+3q1g5€1 + 3q1q3q2€1 + 3q1q2€1€2 + qre1€s + qrerezes and

11
3

1
+662€§ =+ 76

3 3 6

17 1
%fg + Fﬁlﬁzég + 562636‘21 + 6616%63

) 1, 17 1
—|—4€1€263 + 5626364 + 361626364 + 662636465

+0(€),

1 4 2, 1 4 1 11
+590195 + 919395 + 5919392 + 591939492 + — €165

(B.3)

ca ~ co(qi — 6q2a; + 74507 + 4420307 — G301 — RGO
=3¢343q1 — q2q3q4q1 + O(€%)). (B.12)
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