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An interesting possibility to ease the tension between various determinations of |Vub| is to allow
a small right-handed contribution to the standard model weak current. The present bounds on
such a contribution are fairly weak. We propose new ways to search for such a beyond standard
model contribution in semileptonic B → ρ`ν̄ decay. Generalized asymmetries in one, two, or three
angular variables are introduced as discriminators, which do not require an unbinned analysis of
the fully differential distribution, and a detailed study of the corresponding theoretical uncertainties
is performed. A discussion on how binned measurements can access all the angular information
follows, which may be useful in both B → ρ`ν̄ and B → K∗`+`−, and possibly essential in the
former decay due to backgrounds. The achievable sensitivity from the available BABAR and Belle
data sets is explored, as well as from the anticipated 50 ab−1 Belle II data.

I. INTRODUCTION

There is a long standing persistent tension between
measurements of |Vub| from B decays in leptonic, inclu-
sive semileptonic, and exclusive semileptonic decay chan-
nels. In semileptonic decays, the difference between the
inclusive determination and that based on B → π `ν̄ is
almost 3σ. It is possible that the resolution of this is
related to not sufficiently understood theoretical or ex-
perimental issues, and future theory progress combined
with the anticipated much larger Belle II data sets will
yield better consistency. A precise determination of |Vub|
is crucial for improving tests of the standard model (SM)
and the sensitivity to new physics in B0−B0 mixing [1].

Another possibility, which received renewed attention
recently [2–4], is that this tension can be eased by allow-
ing for a right-handed admixture to the SM weak current.
Such a contribution could arise from not yet discovered
TeV-scale new physics. In general, from a low energy ef-
fective theory point of view, the SM can be extended by
several new operators relevant for semileptonic decays,
suppressed by O(v2/Λ2) [5, 6], where Λ is a high scale
related to new physics. For simplicity, we consider the
effective Lagrangian with only one new parameter,

Leff = −4GF√
2
V Lub
(
ūγµPLb+ εR ūγµPRb

)
(ν̄γµPL`) + h.c.,

(1)
where PL,R = (1∓γ5)/2. The SM is recovered as εR → 0.
Since we consider observables with leading, linear, depen-
dence on Re (εR), we assume it to be real in this paper,
unless indicated otherwise. This happens to be the ex-
pectation in models with flavor structures close to mini-
mal flavor violation. We do not consider b → c`ν decay
in this paper, as the tension between the determinations
of |Vcb| is less severe, and the connection between b→ u
and b→ c transitions is model dependent (see, however,
Ref. [7]). To distinguish from determinations of |Vub|
assuming the SM, we refer to analyses which allow for

εR 6= 0 as measurements of |V Lub|.
The current measurements of |Vub| are summarized in

Table I, and their dependence on εR is indicated in the
three cases in which it is simple. The ρ and ω measure-
ments are from Ref. [9] using the theoretical predictions
of Ref. [10], and the two isospin-related ρ modes were av-
eraged assuming a 35% correlation of the systematic un-
certainties [9]. While we do not study the ω final state, it
could provide complementary information in the future
if lattice QCD calculations of the form factors become
available. For B → Xu`ν̄ the BLNP result was used [11].
The result of the χ2 fit for |V Lub| − εR without and with
B → ρ `ν̄ are shown in Fig. 1.

The goal of this this paper is to devise observables
sensitive to new physics contributions in εR, without re-
quiring the measurement of the fully differential decay
distribution. It is well-known from the literature on both
semileptonic and rare decays that a full description of the
four-body final state in B → ρ`ν̄ depends on the dilepton
invariant mass, q2, and three angles. While we assume
that the neutrino four-momentum is reconstructed, past
studies of B → D∗ [12, 13] and D → ρ [14] semilep-
tonic decays show that for B → ρ`ν̄, which has a much
smaller rate, the full angular analysis will be challenging
and may be many years in the future. Thus, it is inter-

Decay |Vub| × 103 εR dependence

B → π `ν̄ 3.23± 0.30 1 + εR

B → Xu`ν̄ 4.39± 0.21
√

1 + ε2R
B → τ ν̄τ 4.32± 0.42 1− εR

Decay B × 104

B → ρ `ν̄ 1.97± 0.16 (q2 < 12 GeV2)

B → ω `ν̄ 0.61± 0.11 (q2 < 12 GeV2)

TABLE I. The |Vub| measurements [8] used in the fit shown in
Fig. 1 and their dependence on εR. The branching fractions
are taken from Ref. [9]
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FIG. 1. The allowed |V Lub| − εR regions. The black ellipse in the left (right) plot shows the result of a χ2 fit using the first three
(four, excluding ω) measurements in Table I. The fainter ellipse in the right plot is the same as that in the left plot.

Fit |V Lub| × 104 εR χ2 / ndf Prob.

3 modes 4.07± 0.18 −0.17± 0.06 2.5 /1 0.11

4 modes 4.00± 0.17 −0.15± 0.06 4.5 /2 0.11

TABLE II. The results of the χ2 fits to the first 3 and all
modes but ω in Table I. The correlation between |V Lub| and
εR in the two fits are 0.01 and 0.01.

esting to explore how the best sensitivity to εR may be
obtained using current and near future data sets.

In Section II we discuss the decay rate distributions.
Besides investigating the well known forward-backward
asymmetry, we propose a generalized two-dimensional
asymmetry as a new observable that would be interest-
ing to measure. Additionally we explore the possibility
to extract the full information on the differential rate
by considering asymmetries in all three angles simulta-
neously. In Section III we discuss the theoretical uncer-
tainties in existing form factor calculations. Using results
from a light-cone sum rule calculation [10], we estimate
the correlations among the uncertainties. Then we per-
form a simultaneous fit to a (simplified) series expan-
sion parametrization of the form factors. In Section IV
we discuss the best theoretical predictions to extract in-
formation on right-handed currents. We investigate the
discriminating contour for the two dimensional asymme-
try. We estimate the sensitivity both with the current
B-factory data, as well as with the anticipated Belle II
dataset to compare the various observables. We use this
information in Section V to explore the impact of the
sensitivity to right-handed currents by performing global
fits simultaneously to |V Lub| and εR assuming different sce-
narios for both the current B-factory as well as expected
Belle II dataset. Section VI contains our conclusions.

II. POSSIBLE OBSERVABLES

Starting from the Lagrangian in Eq. (1), the B → ρ`ν̄
decay is described by replacing in the matrix element
the vector (V ) and the three axial-vector (A0,1,2) form
factors via

V → (1 + εR)V , Ai → (1− εR)Ai . (2)

(If Im εR = 0 then this can be done in the decay rate,
too.) Recently, the similar B → K∗`+`− decay has re-
ceived a lot of attention, in which case the decay distribu-
tions are in exact analogy with B → ρ`ν̄ (assuming that
the neutrino is reconstructed). It has been advocated [15]
to use the form factor relations proposed in the heavy
quark limit [16, 17] to construct observables, which are
ratios of terms in the fully differential decay distribution,
to optimize sensitivity to new physics. However, the size
of perturbative and nonperturbative corrections to these
relations are subject to discussions [18–20]. Thus, other
recent papers [21] also have to resort to some extent to
QCD sum rule calculations to estimate the corrections to
the form factor relations, which we discuss in Sec. III.

A. The general parameterization

The fully differential decay rate for the four-body de-
cay B → ρ(→ ππ)`−ν̄` can be written in terms of four
variables. These are conventionally chosen as the mo-
mentum transfer to the dilepton system, q2, and three
angles describing the relative orientation of the final state
particles. As usual, we choose θV as the angle of the π+

in the ρ restframe with respect to the ρ direction in the B
restframe. Similarly, θ` is the angle of the `− in the dilep-
ton restframe with respect to the direction of the virtual
W− in the B restframe. Finally χ is the angle between
the decay planes of the hadronic and leptonic systems
in the B restframe. This convention coincides with the
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usual definition in the similar flavor-changing neutral-
current decay B → K∗(→ Kπ)`+`− [20, 22]. The fully
differential rate is

dΓ

dq2 d cos θV d cos θ` dχ
=
G2
F |V Lub|2m3

B

2π4

×
{
J1s sin2 θV + J1c cos2 θV

+ (J2s sin2 θV + J2c cos2 θV ) cos 2θ`

+ J3 sin2 θV sin2 θ` cos 2χ

+ J4 sin 2θV sin 2θ` cosχ+ J5 sin 2θV sin θ` cosχ

+ (J6s sin2 θV + J6c cos2 θV ) cos θ`

+ J7 sin 2θV sin θ` sinχ+ J8 sin 2θV sin 2θ` sinχ

+ J9 sin2 θV sin2 θ` sin 2χ

}
. (3)

Our convention for the ranges of the angular variables are
χ ∈ [0, 2π], θ` ∈ [0, π], θV ∈ [0, π]. Switching χ→ χ− π,
so that χ ∈ [−π, π], customary in B → K∗`+`−, amounts
to a sign flip in the terms

{J4, J5, J7, J8} → {−J4, −J5, −J7, −J8} . (4)

The dependence on q2, as well as that on all form factors
and on the NP parameter εR, is contained in the 12 di-
mensionless Ji(q

2, εR) functions. For the Lagrangian in
Eq. (1), some simplifications occur

J1s = 3J2s , J1c = −J2c , J7 = 0 , (5)

and additionally J6c = 0 for massless leptons. In this
work we neglect lepton mass effects, however including
these is straightforward. While the functions J7,8,9 are
proportional to Im εR, the other Ji functions start with
(Im εR)2 and Re εR, and so they are mainly sensitive to
Re εR. Partially integrated rates can be found in Ap-
pendix A.

An important difference between B → ρ`ν̄ and B →
K∗`+`− is that in the former case the leptonic current
is constrained to be left-handed, and in the latter case
several operators contribute already in the SM, thus it is
more compelling to study all possible NP contributions.
(Right-handed `ν̄ couplings are severely constrained, e.g.,
by Michel parameter analyses, see [23] for a review.)
The rate corresponding to switching from left-handed to
right-handed leptonic current is obtained by the replace-
ment θ` → θ` − π, resulting in a sign flip of the terms

{J5, J6s, J6c, J7} → {−J5, −J6s, −J6c, −J7} . (6)

(As well as multiplication by the square of the right-
handed coupling; neglecting lepton masses, there is no
interference between the two lepton couplings.) This dif-
ference can only be seen in an angular analysis, as it does
not contribute after integration over the angles. The q2

spectrum depends on 2J1s + J1c − (2J2s + J2c)/3 and
hence is insensitive to the chirality of the lepton current.

In B → K∗`+`− decay, a set of “clean observables”
were proposed [15], which can be calculated model inde-
pendently in the SM, if the so-called “non-factorizable”
contributions dominate the form factors [18]. These ob-
servables are ratios of the Ji functions, constructed so
that these non-factorizable contributions cancel at each
value of q2, while there are corrections from power sup-
pressed effects as well as calculable “factorizable” con-
tributions. The cancellation of the non-factorizable con-
tributions arises because in the heavy b-quark limit, the
number of independent nonperturbative parameters is re-
duced due to the symmetries of SCET [24, 25]. However,
even in this case, symmetry breaking corrections may be
a significant limitation in practice [20]. In the following
we explore the possibilities of constructing observables
sensitive to a right-handed current. We also compare to
this set of so-called “clean observables”. As we use the
full (unexpanded) form factors, we do not study whether
other observables would be considered “clean” by those
criteria given the Lagrangian in Eq. (1).

A fully differential analysis in four-dimensions, as re-
quired for the determination of the Ji in bins of q2 for
the calculation of the “clean observables” is experimen-
tally challenging: an unbinned fit to the four-dimensional
decay rates requires parametrizing the background com-
ponents and their correlations adequately and when faced
with this problem experimentalists often choose alter-
native approaches, e.g., projections are analyzed (see
Refs. [12, 13]) or event probabilities are assigned (see,
e.g., Ref. [14]). Both methods are complicated, and as
we are interested in the search for right-handed currents,
corresponding to constraining a single unknown parame-
ter, we explore simpler variables, which amount to count-
ing experiments in different regions of phase space.

B. One- and generalized two-dimensional
asymmetries

It is well known that the forward-backward asymmetry
is sensitive to the chiral structure of currents contributing
to a decay,

AFB =

∫ 0

−1
d cos θ`(dΓ/d cos θ`)−

∫ 1

0
d cos θ`(dΓ/d cos θ`)∫ 1

−1
d cos θ` (dΓ/d cos θ`)

.

(7)
We study the sensitivity of this variable to εR in Sec. IV,
after discussing the form factor inputs used. The one-
dimensional distributions in χ and θV are symmetric,
and hence it is not possible to construct asymmetry-type
observables with good sensitivity to εR from these one-
dimensional distributions.

Next, we integrate over one of the three angles, which
reduces the number of contributing Ji. We found that
if one integrates over one of the angles and defines two
distinct regions in the remaining two angles, then inte-
grating over χ results in the best sensitivity, which leaves
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us with

dΓ

dq2 d cos θV d cos θ`
=
G2
F |V Lub|2m3

B

π3

{
J1s sin2 θV

+ J1c cos2 θV + (J2s sin2 θV + J2c cos2 θV ) cos 2θ`

+ (J6s sin2 θV + J6c cos2 θV ) cos θ`

}
(8)

and J6c = 0 for massless leptons. This limits the possible
observables substantially, and none of the “clean observ-
ables” sensitive to εR are accessible from measurement of
this triple differential rate only.

To optimize the sensitivity from this class of measure-
ments, we introduce new observables,

S =
A−B
A+B

, (9)

where A and B are the decay rates in two regions in
the {cos θ`, cos θV } parameter space, chosen such that
S ' 0 in the SM. This is a generalization of the forward-
backward asymmetry, which may have increased sensi-
tivity to εR. To improve the statistical precision, we in-
tegrate over a suitably chosen interval of q2. Given the
available constraints on the form factors, we integrate
over 0 ≤ q2 ≤ 12 GeV2 to balance between experimental
and theoretical uncertainties.

It is important to estimate a reliable theoretical un-
certainty for the asymmetry S. A priori, one may think
that the hadronic uncertainties in the numerator and the
denominator cancel in the ratio to a large extent. As it is
shown below, we cannot simply assume such a cancella-
tion of nonperturbative uncertainties in the ratios of the
binned rates, as the considered q2 region is sizable. We
develop a model for the uncertainties and correlations
among the binned rates, using available calculations of
the form factors. The optimal separation which discrim-
inates between the two regions, A and B, depends on
this choice of the q2 range. Thus it is crucial to test the
sensitivity of the result to nonperturbative uncertainties.

C. Binned measurements of the Ji coefficients

The previous approaches have the limitations of not
allowing to chose the numerator and denominator arbi-
trarily in terms of the Ji functions. The extraction of the
full set of these coefficients is experimentally challenging,
and we propose a method that may allow for a better ex-
traction of these coefficients. (The determination of a
subset of the Ji coefficients from binned rates was ex-
plored in Ref. [26].) We then investigate the sensitivity
of arbitrary ratios of the Ji.

The form of the differential rate in Eq. (3) enables us
to separate each coefficient function Ji from binning the
three angles in fairly large, π/2 size, bins. Since some bin-
boundaries need to be at half-integer multiples of π/2,
we use a notation where χ and θV,` are split into 8 and

4 equal bins of size π/4, respectively. We can then write

Ji =
1

Ni

8∑
j=1

4∑
k,l=1

ηχi,j η
θ`
i,k η

θV
i,l

[
χ(j) ⊗ θ(j)

` ⊗ θ
(k)
V

]
, (10)

where the ηαi,n are weight factors listed in Table III, and
the term in square brackets denotes the partial rate in
the bin labeled by jkl. Thus, one can obtain the coef-
ficient functions Ji at each value of q2, or in bins of q2,
J̄i =

∫
∆q2

dq2Ji. Taking ratios of Ji-s to cancel some

experimental and theoretical uncertainties, as well as the
dependence on |Vub|, leads to observables closely related
to the Pi “clean observables” in the literature. (Such
possibilities were also explored in Ref. [27].)

Here a somewhat different way of extracting all the
Ji is proposed. For B → K∗`+`− the angular folding
technique was used [28] to extract these observables ei-
ther via a counting method or via a full unbinned fit.
An unbinned analysis is more difficult for B → ρ`ν̄ due
to the sizable B → Xu`ν̄ background. This background
cannot be assumed to be completely uncorrelated in the
three-angle differential distribution, which complicates
the parametrization of the background considerably. Ex-
tracting all Ji-s from a binned asymmetry enables one to
perform cross-checks with the angular folding technique
for all observables [26], also in the case of B → K∗`+`−.

In analogy with Ref. [15, 22, 29], we define

〈P1〉bin =
1

2

∫
∆q2

dq2J3∫
∆q2

dq2J2s
, (11)

〈P ′4〉bin =

∫
∆q2

dq2J4√
−
∫

∆q2
dq2J2s

∫
∆q2

dq2J2c

, (12)

〈P ′5〉bin =
1

2

∫
∆q2

dq2J5√
−
∫

∆q2
dq2J2s

∫
∆q2

dq2J2c

, (13)

which are the most sensitive to a possible right-handed
current (in terms of theoretical uncertainties), while the
other “clean observables” either vanish or are less sen-
sitive to a right-handed current. Furthermore, we find
that we get best sensitivity for simple ratios, defined as

〈Pi,j〉bin =

∫
∆q2

dq2Ji∫
∆q2

dq2Jj
. (14)

In particular, some coefficients which depend on all three
angles have good sensitivities, 〈P3,4〉, 〈P3,5〉, and 〈P5,4〉.

We can now constrain Im εR as well. The above de-
fined 〈Pi〉 observables only have quadratic dependence
on Im εR, and for 〈P1〉, 〈P ′4〉, 〈P3,4〉 these contributions
from the imaginary part start at order Re εR, and hence
are strongly suppressed. However, from the linear de-
pendence in J7,8,9 we can construct sensitive observables
to Im εR, with a quadratic dependence on the real part,
namely 〈P8,5〉 and 〈P9,5〉. Furthermore it is interesting
to look at 〈P8,3〉, which starts with a linear dependence
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Ji ηχi η
θ`
i ηθVi normalization Ni

J1s {+} {+, a, a,+} {−, c, c,−} 2π(1)2

J1c {+} {+, a, a,+} {+, d, d,+} 2π(1)(2/5)

J2s {+} {−, b, b,−} {−, c, c,−} 2π(−2/3)2

J2c {+} {−, b, b,−} {+, d, d,+} 2π(−2/3)(2/5)

J3 {+,−,−,+,+,−,−,+} {+} {+} 4(4/3)2

J4 {+,+,−,−,−,−,+,+} {+,+,−,−} {+,+,−,−} 4(4/3)2

J5 {+,+,−,−,−,−,+,+} {+} {+,+,−,−} 4(π/2)(4/3)

J6s {+} {+,+,−,−} {−, c, c,−} 2π(1)2

J6c {+} {+,+,−,−} {+, d, d,+} 2π(1)(2/5)

J7 {+,+,+,+,−,−,−,−} {+} {+,+,−,−} 4(π/2)(4/3)

J8 {+,+,+,+,−,−,−,−} {+,+,−,−} {+,+,−,−} 4(4/3)2

J9 {+,+,−,−,+,+,−,−} {+} {+} 4(4/3)2

TABLE III. Definition of the asymmetries in the three angles in bin-size of π/4, see Eq- (10). The ± signs denote ±1, and {+}
denotes +1 in all entries in a given column. Simple choices are a = 1− 1/

√
2, b = a

√
2, c = 2

√
2− 1, and d = 1− 4

√
2/5.

on the real part, but has a very large slope with respect
to εR, while at the same time a very small theoretical
uncertainty.

The next section discusses the light-cone sum rule cal-
culation and the correlations among the form factors.
Then we derive the optimal two-dimensional asymme-
try, S, and subsequently return to the sensitivities in εR
obtainable through all observables discussed.

III. FORM FACTOR CALCULATION AND FIT

A. The series expansion (SE) and the simplified
series expansion (SSE)

It has long been known that unitarity and analyticity
impose strong constraints on heavy meson decay form
factors [30–34]. We use a series expansion, also known as
the z expansion, to describe the form factor shape over
the full range of the dilepton invariant mass. Using this
expansion for a vector meson in the final state, instead
of a pseudoscalar, requires additional assumptions [35],
and we investigate the corresponding uncertainties. In
this paper we expand the form factors directly, instead
of the helicity amplitudes.

The series expansion uses unitarity to constrain the
shape of the form factors, and implies a simple and well-
motivated analytic parametrization over the full range of
q2. The form factors are written as

V (q2) =
1

BV (q2) ΦV (q2)

K∑
k=0

αVk z(q
2, q2

0)k ,

Ai(q
2) =

1

BAi(q
2) ΦAi(q

2)

K∑
k=0

αAik z(q2, q2
0)k , (15)

where unitarity constrains the shapes of the form factors
by predicting ΦF (q2), F = {V, Ai}, and also bounds

the coefficients of the expansion in powers of the small

parameter, z(q2, q2
0), schematically as

∑∞
k=0

(
αFk
)2
< 1.

(For q2 relevant for semileptonic B decay, |z(q2, q2
0)| < 1.)

In Eq. (15) the variable

z(q2, q2
0) =

√
q2
+ − q2 −

√
q2
+ − q2

0√
q2
+ − q2 +

√
q2
+ − q2

0

, (16)

maps the real q2 axis onto the unit circle, q2
0 is a free

parameter, and q2
± ≡ (mB ± mρ)

2. The range −∞ <
q2 < q2

+ is mapped onto the −1 < z(q2 < q2
+, q

2
0) < 1

line segment on the real axis inside the unit disk, while
the branch cut region corresponding to Bρ pair creation,
q2 > q2

+, maps onto the unit circle, |z(q2 > q2
+, q

2
0)| = 1.

The q2
0 parameter of this transformation is usually chosen

as

q2
0 = (mB +mρ) (

√
mB −

√
mρ)

2, (17)

so that for the physical q2 range of B → ρ`ν̄ decay,
0 ≤ q2 ≤ q2

−, the expansion parameter is minimal,

|z(q2, q2
0)| <

(
1− 4

√
1− q2

−/q
2
+

)/(
1+ 4

√
1− q2

−/q
2
+

)
≈ 0.1.

The so-called Blaschke factors in Eq. (15) for each form
factor are

BF (q2) ≡
∏
RF

z(q2, m2
RF ) , (18)

whereRF are the sub-threshold resonances (q2
− < m2

RF
<

q2
+) with the quantum numbers appropriate for each form

factor. By construction, BF (m2
RF

) = 0 and |BF (q2)| = 1

for q2 > q2
+. The main shape information is given by the

functions [35]

ΦF (q2) =

√
1

32πχF (n)

q2 − q2
+

(q2
+ − q2

0)1/4

[
z(q2, 0)

−q2

](n+3)/2

×
[
z(q2, q2

0)

q2
0 − q2

]−1/2 [
z(q2, q2

−)

q2
− − q2

]−3/4

. (19)
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The only form factor dependent quantity is χF (n), which
is related to the polarization tensor Πµν(q2) at q2 = 0,
and n is the number of derivatives (subtractions) neces-
sary to render the dispersion relation finite. This function
is calculable in an operator product expansion. Since it
is an overall constant which does not affect the shapes
of the form factors (and we do not use a constraint on∑
α2
i ), we can absorb this quantity into the fit parame-

ters αi. In contrast, the number of required subtractions
n influences the shape information. For the longitudinal
part, involving A0, one subtraction is necessary, while for
the transverse part of the vector and axialvector current,
involving the form factors A1, A2, and V , two subtrac-
tions are needed [35].

While constraining the shapes of the form factors, sev-
eral uncertainties need to be considered. Using analytic-
ity requires the form factor to be free of poles and branch
cuts in the region q2

− < q2 < q2
+, which is not true in re-

ality. In the analysis of each form factor, F , resonances
RF with appropriate quantum numbers appear as sub-
threshold singularities. Their effects can be eliminated
by dividing with the Blaschke factors in Eq. (18). How-
ever, some of the resonances are fairly broad, and their
masses, mRF , have uncertainties. We checked that the
final result is not too sensitive to variations of the reso-
nance masses by ±100 MeV.

Besides resonances, there are also branch cuts in the
range q2

− < q2 < q2
+, corresponding to multi-body states,

such as B + nπ below the B + ρ threshold. This does
not occur for B → π`ν̄, and they cannot be eliminated
as easily as the poles. Using a model for the branch
cuts [36], we estimate in Appendix B how the unitarity
bound changes numerically. We find that the expansion
parameters, αFi , which would distort the shapes of the
form factors, change at most at a few percent. As these
coefficients multiply small numbers, |z(q2, q2

0)| <∼ 0.1, we
find that neglecting branch cuts does not change the form
factor shape significantly, as it probably mainly affects
the saturation of higher order terms in the expansion.

Another potential complication is due to the ρ meson’s
substantial width, which allows nonresonant B → ππ`ν̄
decay to contribute to the B → ρ`ν̄ signal. This can be
handled using standard experimental techniques, and a
measurement of B → π0π0`ν̄ can be used to constrain
this background, as ρ0 → π0π0 is forbidden. Narrower
cuts on the ρ mass window can also reduce this uncer-
tainty, especially using larger data sets in the future.

Throughout this paper we refer to the approach de-
scribed so far as the series expansion (SE). We do not re-
calculate the bound on the expansion coefficients, which
shows that the expansion to linear order is a good ap-
proximation [35]. However, we perform the fit both to
linear and to quadratic order and investigate from this
the convergence behavior of the SE. As a cross-check of
possible shape information bias with respect to the input
data, we also use the proposed simplified series expansion
(SSE) [34, 35], which further tests uncertainties related
to the form factor shape. It is obtained via the replace-

ments

ΦF (q2)→ 1 ,

BF (q2)→ PF (q2) =
1

1− q2/m2
RF

. (20)

RF is the lightest resonance with the appropriate quan-
tum numbers for each form factor, F . Since using the
helicity basis for the form factors is theoretically fa-
vored [20, 35], we compare our SE and SSE parametriza-
tions in the form factor basis and fitting the helicity ba-
sis with Ref. [35]. We find consistent results with all
parametrizations. Since all studied approaches are very
compatible, we limit ourselves to show results using the
linear series expansion parametrization.

B. Correlation assumptions for the form factors

Ideally, any determination of the form factors should
also provide their correlations, in addition to the central
values and uncertainties, as it is crucial for predicting
uncertainties of observables dependent on several form
factors. Unfortunately this is currently not available
from either lattice QCD or model calculations. We esti-
mate these correlations in the light-cone QCD sum rule
(LCSR) results [10, 21]. We distinguish two different
kinds of correlations, (i) correlations among the different
form factors at the same value of q2; and (ii) correla-
tions between different values of q2, for the same form
factors. In general larger correlation between the form
factors will result in larger correlations of the fit param-
eters, and hence more precise predictions, while larger
correlations for different values of q2 lead to less precise
predictions.

In Ref. [10], the uncertainties at q2 = 0 are grouped
into four sources, presumed uncorrelated: ∆7P , ∆mb ,
∆L, and ∆T . The values evaluated for q2 = 0 are listed
in Table IV, and are used in the following as an estimate
of the uncertainties over a larger range of q2. We inves-
tigate the individual contributions to these uncertainties
and estimate the correlation among the form factors.

1. The leading contributions for ∆7P are from the
uncertainties in the distribution amplitude of the
B meson and their expansion in Gegenbauer mo-
ments. The source of these two uncertainties is as-
sumed fully correlated among all Ai and V in the
following. Wen can assess the contribution from
these sources to ∆7P from Fig. 4 in Ref. [10]. This
helps to estimate the amount of correlation stem-
ming from this source.

2. External inputs, e.g., the values of mb and of the
condensates are fully correlated among the form
factors. Ref. [21] argued that the duality parame-
ter and Borel parameter should also be treated as
strongly correlated.
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3. The uncertainties due to the vector and tensor de-
cay constants of the ρ are also correlated among
all form factors. They enter the same correlation
function, see Eqs. (32)–(37) in Ref. [10].

From these considerations, we can assess the corre-
lated uncertainties in each contribution. In the follow-
ing a model is tested to predict the correlations between
the form factors. For this model, according to the list
above, the correlations between the Ai, and between the
Ai and V are assumed to be

{
ρAi7P , ρ

Ai
mb
, ρAiL , ρAiT

}
=

{0.6, 1.0, 1.0, 1.0} and
{
ρV,Ai7P , ρV,Aimb

, ρV,AiL , ρV,AiT

}
=

{0.6, 1.0, 1.0, 1.0 }. A full calculation of the form fac-
tors and the complete determination of the correlations
is beyond the scope of this paper. Hence our estimate
relies on the results given in that paper, and on our as-
sumptions listed above. A new determination of these
input values in a separate analysis would be useful.

The total covariance can in turn be written as

C = C7P + Cmb + CL + CT , (21)

where Cj is a 4× 4 matrix of the form
(
∆V
j

)2
ρV,Aij ∆V

j ∆A0
j ρV,Aij ∆V

j ∆A1
j ρV,Aij ∆V

j ∆A2
j

ρV,Aij ∆V
j ∆A0

j

(
∆A0
j

)2
ρAij ∆A0

j ∆A1
j ρAij ∆A0

j ∆A2
j

ρV,Aij ∆V
j ∆A1

j ρAij ∆A0
j ∆A1

j

(
∆A1
j

)2
ρAij ∆A1

j ∆A2
j

ρV,Aij ∆V
j ∆A2

j ρAij ∆A0
j ∆A2

j ρAij ∆A1
j ∆A2

j

(
∆A2
j

)2

.
(22)

This results in the correlation matrix for {V,A0, A1, A2}
given by

C =


1. 0.65 0.71 0.72

0.65 1. 0.64 0.62

0.71 0.64 1. 0.72

0.72 0.62 0.72 1.

 , (23)

This estimate is derived at q2 = 0, and we use it for
q2 > 0 as well. Because of the constraints on the shapes
of the form factors, no large change is expected far from
maximal q2.

The form factors at different values of q2 are obtained
from the same sum rule, however, the various contribu-
tions are weighted differently by q2; see Eqs. (32)–(37) in
Ref. [10]. For values of q2 farther from one another, the
correlation should decrease. We implemented the lead-
ing order formulae [10], which are consistent with the full

Form factor, F F (q2 = 0) ∆7P ∆mb ∆L ∆T

V (0) 0.323 0.025 0.007 0.005 0.013

A0(0) 0.303 0.026 0.004 0.009 0.006

A1(0) 0.242 0.020 0.007 0.004 0.010

A2(0) 0.221 0.018 0.008 0.002 0.011

TABLE IV. The uncertainties from ∆7P , ∆mb , ∆L, and ∆T

from Ref. [10].

results for the shapes of the form factors, and the magni-
tude is also consistent within the uncertainty of the full
result. We found that the correlation for different values
of q2 only mildly depends on the separation, which we
use below. Thus, uncertainties of a given form factor, Ai
or V , for different q2 are estimated to be 80% correlated,
which is a bit more conservative than the 75% correlation
used in Ref. [35] (with a binning of 3 GeV2, whereas we
use 1 GeV2 in our analysis).

C. The χ2 fit for the SE and SSE parameters

A simultaneous χ2 fit to all sum rule points of Ref. [10]
assuming the correlations discussed in the previous sec-
tion is performed. The form factors are parametrized
both in the full or in the simplified series expansion, to
either linear or quadratic order in z, for both the form
factor and the helicity amplitude basis. All of them show
consistent results, and thus we restrict ourselves to the
SE at linear order. In [35] a similar analysis with a less
elaborate correlation treatment was performed. We find
reasonable agreement with their form factor fit results,
but due to the different correlation structure the uncer-
tainties on physical observables differs from this work.
The result of the fit to the linear SE is shown in Fig. 2.
The central values and uncertainties of the fit were ver-
ified using ensembles of pseudo-experiments. (Varying
the input assumptions leaves the central values and un-
certainties mostly stable, while the resulting correlation
matrix is slightly changed as one would expect.) The
fitted values for the full series expansion to linear order
are listed in Table V. The corresponding fit parameter
correlations are listed in Table VI.

The LCSR result is valid only for small q2. However,

F aF0 aF1

A0 −0.351± 0.032 1.250± 0.147

A1 −0.111± 0.010 −0.208± 0.042

A2 −0.138± 0.014 0.170± 0.049

V −0.366± 0.034 1.148± 0.145

TABLE V. Fit result for linear order SE.

aV0 aV1 aA0
0 aA0

1 aA1
0 aA1

1 aA2
0 aA2

1

aA0
0 1.00 -0.86 0.77 0.35 0.74 -0.26 0.78 -0.57

aA0
1 -0.86 1.00 -0.60 -0.27 -0.58 0.20 -0.61 0.44

aA1
0 0.77 -0.60 1.00 0.31 0.86 -0.31 0.85 -0.62

aA1
1 0.35 -0.27 0.31 1.00 0.39 -0.14 0.39 -0.28

aA2
0 0.74 -0.58 0.86 0.39 1.00 -0.49 0.86 -0.63

aA2
1 -0.26 0.20 -0.31 -0.14 -0.49 1.00 -0.31 0.22

aV0 0.78 -0.61 0.85 0.39 0.86 -0.31 1.00 -0.82

aV1 -0.57 0.44 -0.62 -0.28 -0.63 0.22 -0.82 1.00

TABLE VI. Correlations for linear order SE.
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FIG. 2. Simultaneous fits to the sum rule prediction of Ref. [10] using the linear full series expansion for the form factors:
V (q2) (top left), A0(q2) (top right), A1(q2) (bottom left), A2(q2) (bottom right). The solid black lines show the fitted form
factor, the gray data points show the fitted sum rule points, and the red dashed line shows the determined uncertainty.

the q2 distribution changes by less than 1% when fitted in
the region q2 < 7 GeV2 or q2 < 14 GeV2 [10]. Since the
measurements in Ref. [9] are in 4 GeV bins, we restrict
ourselves to fitting the data in the range q2 < 12 GeV2

to optimize statistical sensitivity while maintaining the-
oretical validity.

Our fitting procedure can perform a fit to several data
sets. In the future, a combined fit to LCSR data, most
reliable at low q2, and lattice QCD data, most reliable
at high q2, is desirable. That would constrain the shape
of the spectrum in an optimal way, and it would also
test the compatibility of the two approaches. Since no
reliable and precise lattice QCD calculation of B → ρ
form factors is available, this is left for future work. The
framework developed in this work is capable to incorpo-
rating such future inputs, which will also allow the whole
experimental data set to be used without any restriction
on q2. Our fitting program is not restricted to B → ρ
form factors, but can easily be adopted for other pro-
cesses using the parametrizations discussed.

IV. PREDICTIONS OF THE OBSERVABLES

In the following the theoretical predictions using the
form factor input and uncertainties from the last section

are discussed. The one-dimensional angular distributions
including the theoretical uncertainties are displayed in
Fig. 3 with |Vub| = 4.2 × 10−3. The large theoretical
uncertainties due to the B → ρ form factor show the
necessity of constructing non-trivial observables to gain
sensitivity for right-handed contributions.

The achievable sensitivity of the observables is esti-
mated for 1 ab−1 and 50 ab−1 of integrated luminosity,
corresponding to the available BABAR and Belle data
sets and the anticipated Belle II data. The experimen-
tal sensitivities were estimated using the uncertainties of
Ref. [9], assuming that systematic uncertainties in dis-
joint regions of phase space (e.g. between different bins
of Ji) are fully correlated. For 50 ab−1 an improvement
of the systematic uncertainties of a factor of 3 is as-
sumed, motivated by the improvements for B → Xu`ν̄
from Ref. [37] which face similar experimental challenges.
The statistical uncertainties were scaled to correspond to
1 ab−1 or 50 ab−1 integrated luminosity. The expected
sensitivity for εR for each observable is characterized as
a 68% confidence interval by using the Neyman construc-
tion assuming normal distributed uncertainties. In prac-
tice, every experiment will have to derive these curves
from an ensemble of pseudo-experiments or asymptotic
formulae with the specific values of εR and proper exper-
imental uncertainties incorporated. The sensitivity to a



9

0£q2£12 GeV2ΕR=0.15

-1.0 -0.5 0.0 0.5 1.0
0

2

4

6

8

10

CosΘl

d
G

d
C

o
sΘ

l

@10
-

1
7
G

eV
D

0£q2£12 GeV2ΕR=0

-1.0 -0.5 0.0 0.5 1.0
0

2

4

6

8

10

CosΘl

d
G

d
C

o
sΘ

l

@10
-

1
7
G

eV
D

0£q2£12 GeV2ΕR=-0.15

-1.0 -0.5 0.0 0.5 1.0
0

2

4

6

8

10

CosΘl

d
G

d
C

o
sΘ

l

@10
-

1
7
G

eV
D

0£q2£12 GeV2ΕR=0.15

-1.0 -0.5 0.0 0.5 1.0
0
2
4
6
8

10
12
14

CosΘV

d
G

d
C

o
sΘ

V

@10
-

1
7
G

eV
D

0£q2£12 GeV2ΕR=0

-1.0 -0.5 0.0 0.5 1.0
0
2
4
6
8

10
12
14

CosΘV

d
G

d
C

o
sΘ

V

@10
-

1
7
G

eV
D

0£q2£12 GeV2ΕR=-0.15

-1.0 -0.5 0.0 0.5 1.0
0
2
4
6
8

10
12
14

CosΘV

d
G

d
C

o
sΘ

V

@10
-

1
7
G

eV
D

0£q2£12 GeV2ΕR=0.15

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

Χ

d
G

d
Χ

@10
-

1
7
G

e
V

D

0£q2£12 GeV2ΕR=0

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

Χ

d
G

d
Χ

@10
-

1
7
G

e
V

D

0£q2£12 GeV2ΕR=-0.15

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

Χ

d
G

d
Χ

@10
-

1
7
G

e
V

D

FIG. 3. The differential decay rate as a function of the helicity angles cos θ` (left), cos θV (middle), and χ (right), for εR = 0 (SM,
middle line) and εR = ±0.15. The dashed curves show the full series expansion to linear order. The shaded areas correspond
to the estimated theoretical uncertainty from the fit to the sum rule prediction, taking into account the full correlation of the
expansion coefficients.

possible right-handed admixture is assessed by the inter-
ception of the uncertainty bands with the predicted SM
value. Experimental and theoretical uncertainties are as-
sumed to be independent, and addition in quadrature is
used to combine them.

A. Forward-backward asymmetry and the
two-dimensional asymmetry, S

Determining AFB requires the measurements of the de-
cay angle θ` and the predictions including uncertainty
estimates are shown in the left panel of Fig. 4. The
central value is indicated by dotted lines and the blue
band shows the theory uncertainty, as derived in the pre-
vious section. The red and green band show the total
uncertainties for 1 ab−1 and 50 ab−1 of integrated lumi-
nosity, and the dashed vertical lines show the expected
sensitivities assuming the SM. The theoretical and exper-
imental uncertainties for 1 ab−1 integrated luminosity are
expected to be of similar size. For 50 ab−1 integrated lu-
minosity the dominant uncertainty will come from the
B → ρ form factor. The sensitivity to New Physics is de-
rived from the slope as a function of εR. For AFB there is
only a modest dependence, that reduces significantly for
positive admixture, reducing the sensitivity considerably.

The generalized two-dimensional asymmetry, S, re-
quires the measurements of the decay angles θV,`. An
optimal contour in terms of sensitivity to right-handed

admixtures in these angles is devised as follows: The dif-
ferential decay rate can be rewritten as

dΓ

dq2 d cos θV d cos θ`
=
[
f

(0)
SM(q2, cos θ`) + εRf

(0)
NP1

(q2, cos θ`)

+ ε2Rf
(0)
NP2

(q2, cos θ`)
]

+
[
f

(1)
SM(q2, cos θ`) + εRf

(1)
NP1

(q2, cos θ`)

+ε2Rf
(1)
NP2

(q2, cos θ`)
]

cos2 θV , (24)

where the functions f
(n)
i are second order polynomials in

cos θ` and depend on q2 explicitly, as well as indirectly
through the form factors

f (0) = J1s + J2s + J6s cos θ` − 2J2s cos2 θ` ,

f (1) = J1c + J2c − J1s − J2s + (J6c − J6s) cos θ`

+ 2(J2s − J2c) cos2 θ` . (25)

Treating εR as a small parameter, Eq. (9) becomes

A = ASM + εRANP1
+ ε2RANP2

,

B = BSM + εRBNP1
+ ε2RBNP2

, (26)

S =
ASM −BSM

ASM +BSM
+ 2εR

ANP1
BSM −ASMBNP1

(ASM +BSM)2
+ . . . .

In the following we require SSM ≈ 0 what approximately
divides the phase-space equally in the two regions of the
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FIG. 4. Predictions for the forward-backward asymmetry (left) and S (right), including theoretical uncertainties (blue band),
and theory and experimental uncertainties combined in quadrature for 50 ab−1 (orange) and 1 ab−1 (green).

asymmetry. The sensitivity to εR is optimized by de-
manding a maximal slope,

dS

dεR
= 2

ANP1
BSM −ASMBNP1

(ASM +BSM)2
+O(εR) . (27)

This implies that

ASM ≈ BSM ,

ANP1
� BNP1

or ANP1
� BNP1

. (28)

In addition, the SM left-handed and the NP right-handed
couplings are odd and even in cos θ`, and both are sym-
metric in cos θV . The dividing curves are derived as fol-
lows. The SM and NP differential distribution are sepa-
rated along a curve of constant ratio, causing a deviation
in ration in the presence of non negligible right-handed
admixture. The symmetry in cos θV forces one region to
be within ± cos θV (cos θ`) with cos θV (cos θmin

` ) = 0. The

first relation dΓSM = κdΓ
(1)
NP using (24) is written as∫

∆q2
dq2
[
f

(0)
SM + f

(1)
SM cos2 θV

]
=

∫
∆q2

dq2κ
[
f

(0)
NP1

+ f
(1)
NP1

cos2 θV
]
, (29)

where arguments for (q2, cos θ`) were suppressed for the
f functions for brevity. This implies

cos2 θV (cos θ`) =

∫
∆q2

[
κf

(0)
NP1
− f (0)

SM

]
dq2∫

∆q2

[
− κf (1)

NP1
+ f

(1)
SM

]
dq2

. (30)

From this immediately follows

cos θmin,max
V (cos θ`) = ±

√√√√ ∫
∆q2

[
κf

(0)
NP1
− f (0)

SM

]
dq2∫

∆q2

[
− κf (1)

NP1
+ f

(1)
SM

]
dq2

.

(31)

The minimal value for cos θmin
` can be numerically ob-

tained via∫
∆q2

dq2
[
κf

(0)
NP1

(q2, cos θmin
` )

]
=

∫
∆q2

dq2
[
f

(0)
SM(q2, cos θmin

` )
]
.

(32)

Note that the fi functions may be negative and thus the
minimum value cannot be imposed by having the inte-
grand zero. Thus cos θmin

` will depend on the interval
∆q2 and one numerically has cos θmin

` = −0.611. Inde-
pendent of the actual form factor shape, for cos θV = 1
one has

κf
(0)
NP1
− f (0)

SM = −κf (1)
NP1

+ f
(1)
SM , (33)

so that cos θmax
` = 1 and κ is determined by requiring

SSM ≈ 0. The resulting curve most sensitive for εR that
separates regions A and B can be numerically approxi-
mated by

cos θV = ±

√
0.8472 cos2 θ` + 1.9038 cos θ` + 0.8472

−1.1484 cos2 θ` + 1.9038 cos θ` + 2.8429
.

(34)
This choice depends on nonperturbative input quanti-
ties. However, it turns out that in the heavy quark limit
the minimum value cos θmin

` is given form-factor indepen-
dently and agrees well with the one derived from the full
form factors, while the shape cos θV (cos θ`) is distorted
mildly using the heavy quark limit form factors. This
curve is displayed together with the SM and NP density
distributions in Fig. 5.

The Neyman belt of S and sensitivities are shown in
Fig. 4: integrating over a range of q2 introduces addi-
tional uncertainties, that do not cancel entirely in the
ratio, resulting in larger theoretical uncertainties than
for AFB. The overall sensitivity on NP for 1 ab−1 of inte-
grated luminosity, however, is better due to the increased
dependence on εR, and for 50 ab−1 of data the sensitivity
is comparable.
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FIG. 5. The optimized contour (red curve) separating the SM (left) and NP linear in εR (right) contributions.

B. Simple generalized ratios

In the context of “clean observables” a set of simple
generalized observables, Pi, in Eq. (11-14), from which
one expects the best theoretical sensitivity are derived.
The most sensitive observables in the context of real
right-handed currents, are 〈P1〉, 〈P ′5〉 and 〈P5,4〉. The
most sensitive observables for imaginary right-handed
contributions are 〈P8,5〉, 〈P9,5〉 and 〈P8,3〉. The cor-
responding predictions and sensitivities are shown in
Fig. 6. The statistical correlations between the numera-
tor and denominator in the observables was estimated us-
ing Monte Carlo methods, neglecting any influence from
background. The three-dimensional observables reduce
the theoretical uncertainties with respect to the one-
dimensional or two-dimensional asymmetries. Their ex-
perimental uncertainties, however, are larger due to the
great number of free parameters that need to be deter-
mined from the same data. The most precise observable
for 1 ab−1 of integrated luminosity are 〈P5,4〉 and 〈P8,3〉,
for real and imaginary εR, respectively.

C. Testing NP contributions vs. form factor
uncertainties

The predicted value of the observables depends on the
assumed form factor shape and integrated q2 range. As
this is a nonperturbative calculation with possible un-
known systematic uncertainties, in case experimentally a
significant deviation is observed, it is necessary to verify
if NP is the source of a possible deviation (see the recent
discussion related to B → K∗ transitions [20]).

An obvious consistency check is to measure several of
the presented observables. In addition one should per-
form a q2 binned analysis of these, for instance recon-
struct them in a high q2 and a low q2 range. If a measured

deviation is related to not properly considered theoret-
ical or also experimental uncertainties, it will produce
an inconsistent pattern, since one expects all regions in
q2 to show a consistent deviation form the SM due to a
right-handed admixture.

In addition two of the “clean observables” [15], 〈P4〉
and 〈P5〉, are nearly independent of a right-handed cur-
rent,

〈P4〉bin =

√
2
∫

∆q2
dq2J4√

−
∫

∆q2
dq2J2c

∫
∆q2

dq2(2J2s − J3)
,

≈ 0.94± 0.01Theory , (35)

〈P5〉bin =

∫
∆q2

dq2J5√
−
∫

∆q2
dq22J2c

∫
∆q2

dq2(2J2s + J3)

≈ 0.95± 0.01Theory . (36)

Thus a global hypothesis test incorporating all observ-
ables, taking into account the proper experimental and
theoretical correlations, would be desirable and be the
most powerful test of the data for the presence of right-
handed currents.

Note that 〈P4〉 is also insensitive to Im εR, while there
is a quadratic effect in 〈P5〉. This happens to be a co-
incidence in cancellation of the NP parameters in the
point-by-point ratio, which is broken by the finite bin-
ning. However, numerically this breaking amounts to
a very small, unobservable effect. In case these Pi can
be measured using for instance the asymmetries in Ta-
ble. III, one can use this prediction to test for other ef-
fects.
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FIG. 6. The most sensitive angular observables to Re εR (top row) and to Im εR (lower row), assuming εR to be purely real or
imaginary, respectively. The blue bands show the theoretical uncertainties, while the orange [dark-green] bands show theory
and experimental uncertainties combined in quadrature, for 50 ab−1 [1 ab−1] of B-factory data. The observables, 〈P1〉 (top left),
〈P ′5〉 (top center), 〈P5,4〉 (top right), 〈P8,5〉 (lower left), 〈P9,5〉 (lower center), 〈P8,3〉 (lower right), are defined in Eqs. (11)–(14).

V. GLOBAL FIT FOR |V L
ub| AND εR

The estimated sensitivities on εR in the previous sec-
tion can be used to add an orthogonal constraint to the
global fit performed in Section I. The gain in overall sen-
sitivity on |V Lub| and εR is estimated by extrapolating the

experimental uncertainties to 1 ab−1 and 50 ab−1. For
the branching fraction input other than B → ρ`ν̄ and
B → π`ν̄ the projections from Ref. [37] are used. For
B → π `ν̄ a more optimistic uncertainty of 3% is used
due to estimated progress in the lattice QCD form factor
determinations [38]. For the B → ρ`ν̄ branching fraction
the uncertainties discussed in Section IV are used and are
listed in Table VII. The irreducible uncertainty of the
B → ρ `ν̄ form factors is quoted to be 7% in Ref. [10]. In
the following no such scenarios are explored, due to the
complication related to how a reduction of uncertainty
would affect the overall correlations between the differ-
ent form factors.

Fig. 7 shows the results for the simultaneous fit for |V Lub|
and εR for integrated luminosities of 1 ab−1 and 50 ab−1.
The fits incorporate the expected constraints from either
AFB, S, or P ′5,4 in the absence of right-handed currents.

For the 1 ab−1 scenario, the current experimental central
values are used for |Vub|, whereas for 50 ab−1 the SM is as-
sumed, with identical |Vub| from all channels. For 1 ab−1

B-factory data, S results in the largest gain in sensitivity
for right-handed currents among the studied observables.
Table VIII lists the reduction of the uncertainty of |V Lub|
and εR with respect to a fit without any additional or-
thogonal bound. Although the theoretical uncertainties

on S are more sizable than on P ′5,4, the experimental sim-
plicity of the two-dimensional asymmetry results in the
best overall expected sensitivity. The reduction in exper-
imental uncertainties for 50 ab−1 statistics changes this
picture: here the theoretical uncertainties on the B → ρ
form factors dominate the overall uncertainty of all ob-
servables and P ′5,4 results in the best expected sensitivity.

VI. SUMMARY AND CONCLUSIONS

In this paper, the full decay distribution in semilep-
tonic B → ρ[→ ππ]`ν̄ decay was analyzed to explore the
consequences of a possible right-handed semileptonic cur-
rent from physics beyond the Standard Model. A number
of observables was explored, some new and some defined
in the literature, and a detailed investigation of the im-
pact of the theoretical uncertainties on the sensitivity was
performed.

The theoretical uncertainties and correlations are cru-

Decay Expected error on |Vub|
B → π `ν̄ 3%

B → Xu`ν̄ 3%

B → τ ν̄τ 1.5%

Decay Expected error on B
B → ρ `ν̄ 3%

TABLE VII. The assumed uncertainties on |Vub| and B(B →
ρ`ν̄ for 50 ab−1 of integrated luminosity are listed.
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FIG. 7. The χ2 fits for |V Lub| and εR assuming 1 ab−1 (left) and 50 ab−1 (right) of B-factory data. The green bands show
the B → ρ`ν̄ information, c.f., Fig. 1. The observable used for the expected orthogonal bound on εR, assuming the SM,
is shown in each Figure. The used uncertainties for 50 ab−1 are quoted in Tables VII. Table VIII lists the improvement in
uncertainty by including the orthogonal constraint from the discussed observable on εR with respect to the uncertainty of fitting
the experimental information available by B → Xu`ν̄, B → τ ν̄, B → π`ν̄, and B → ρ`ν̄ only.

Fit δ
(∣∣V Lub∣∣) [%] δ (εR) [%]

4 modes + AFB (1 ab−1) −0.3 −5

4 modes + S (1 ab−1) −0.5 −9

4 modes + P5,4 (1 ab−1) −0.5 −8

4 modes + AFB (50 ab−1) −0.4 −2

4 modes + S (50 ab−1) −0.5 −2

4 modes + P5,4 (50 ab−1) −3 −10

TABLE VIII. The expected relative reduction in the uncer-
tainty of

∣∣V Lub∣∣ and εR for the χ2 fits in Figs. 7. The improve-
ments are quoted with respect to the expected uncertainties
on the 4-mode analysis for 1 ab−1 and 50 ab−1, which are
∆
(∣∣V Lub∣∣× 103,∆εR

)
= (0.18, 0.061) and (0.06, 0.016), respec-

tively.

cial ingredients of predicting the uncertainties of the ob-
servables reliably. Such correlation information is not
readily available in existing B → ρ or other form factor
calculations. A model of these correlations is discussed
for the B → ρ form factor, incorporating correlations
among different form factors and different q2 points of
the form factors

A detailed analysis on the B → ρ form factor was

performed. The use of unitarity constraints to predict
the form factor shape up to a small expansion was revis-
ited and verified in the context of a vector meson final
state. This technique is known in the literature as z-
parametrization, and has the advantage to be valid over
the entire q2 range of the form factor. In order to com-
bine all this information, a fit routine was developed,
which is capable of fitting several correlated or uncorre-
lated sources of form factor values, i.e., LCSR and lat-
tice QCD, taking into account the correlations among the
form factors and among different points of q2. The fit re-
sults have been cross-checked with several parametriza-
tions and validated by fits of pseudo-input.

With the theoretical prediction for the fully differential
spectrum including correlations at hand, the sensitivity
to a right-handed current was investigated, which has
been proposed as a possibility to ease a current tensions
in the determinations of |Vub|. To set a bound on this be-
yond Standard Model contribution, two approaches are
possible: (i) a full four-dimensional fit for the Ji coeffi-
cients or counting experiments that involve determining
the partial branching fraction in several regions of phase
space and combining this information appropriately to
project out either the Ji coefficients, or (ii) to construct
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asymmetries sensitive to NP contributions. The latter of-
fer an obvious alternative, since with the currently avail-
able B-factory data, a full four-dimensional fit appears
to be a very challenging endeavor.

The discussed observables exhibit very different theo-
retical and experimental uncertainties: besides the usual
forward-backward asymmetry, a two-dimensional gener-
alized asymmetry is proposed by integrating out one of
the decay angles form the fully differential decay rate.
These two are experimentally the simplest observables.
A set of generalized three-dimensional observables is dis-
cussed. These are experimentally more challenging, and
the eventual observables involve ratios of statistically and
systematically correlated observables.

A ranking in terms of sensitivity reveals that the bal-
ance of experimental and theoretical uncertainties is im-
portant: for the available B-factory statistics of about
1 ab−1, the two dimensional asymmetry S with its sim-
ple experimental definition seems to be the most sensitive
to the presence of right-handed currents. For the antic-
ipated 50 ab−1 Belle II statistics, the more complicated
three-dimensional observables result in the best expected
sensitivity due to the reduction of experimental uncer-
tainties. A direct determination of εR allows to introduce
an orthogonal constraint into the indirect determination
involving |Vub| measurements from various decays with
different εR dependencies. Including the most sensitive
direct εR constraint for 1 ab−1 or 50 ab−1, reduces the
uncertainty of εR by about 10% in such a global anal-
ysis. This implies that even with the current B-factory
datasets a useful statement about εR from B → ρ`ν can
be obtained.

In case a deviation from the SM is observed, a global
hypothesis test incorporating all observables is desirable:
the presence of a right-handed admixture should result
in a consistent change. A non-consistency could imply
problems with the predictions of the B → ρ form factors.
To assert the correctness of the form factor predictions,
an analysis in bins of q2 (e.g., a low and high q2 region)
should be performed to see if the deviation is consistent
and independent of the q2 region. Ultimately a fully dif-
ferential analysis by a four dimensional fit would be de-

sirable to analyze the full anatomy of this decay mode.
In the context of such an analysis, the nonperturbative
uncertainties would be greatly reduced.

Future high statistics B → ρ`ν̄ measurements will not
only allow the extraction of the Ji coefficients in this
semileptonic decay and more sensitive searches for right-
handed current, it can also be used to test the form factor
relations, which are important for the interpretation of
the identically defined observables in B → K∗`+`−. If
precise and reliable lattice QCD calculations of B → ρ
and B → K∗ form factors become available, the quoted
theoretical uncertainties can be greatly reduced. Such
additional inputs can be readily incorporated into our fit
for the form factors and the combined analysis with the
available experimental data. Furthermore, precise form
factor input at high q2 would allow to access the whole
kinematic region, increasing the statistical power of the
experimental data and hence improving the sensitivity to
new physics in B → ρ`ν̄.
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Appendix A: Partially Integrated Angular Rates

The differential rates integrated over one angle are then
given by
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dΓ

d cos θV d cos θ`
=
G2
F |V Lub|2m3

B

π3

{
J̄1s sin2 θV + J̄1c cos2 θV + (J̄2s sin2 θV + J̄2c cos2 θV ) cos 2θ`

+ (J̄6s sin2 θV + J̄6c cos2 θV ) cos θ`

}
, (A1)

dΓ

d cos θV dχ
=
G2
F |V Lub|2m3

B

π4

{
(J̄1s sin2 θV + J̄1c cos2 θV )− 1

3
(J̄2s sin2 θV + J̄2c cos2 θV )

+
2

3
J̄3 sin2 θV cos 2χ+

π

4
J̄5 sin 2θV cosχ+

π

4
J̄7 sin 2θV sinχ+

2

3
J̄9 sin2 θV sin 2χ

}
, (A2)

dΓ

d cos θ` dχ
=
G2
F |V Lub|2m3

B

3π4
×
{

2J̄1s + J̄1c + (2J̄2s + J̄2c) cos 2θ` + 2J̄3 sin2 θ` cos 2χ

+ (2J̄6s + J̄6c) cos θ` + 2J̄9 sin2 θ` sin 2χ

}
. (A3)

Integrating over two angles, the rates become

dΓ

d cos θ`
=

2G2
F |V Lub|2m3

B

3π3

{
2J̄1s + J̄1c(+2J̄2s + J̄2c) cos 2θ` + (2J̄6s + J̄6c) cos θl

}
, (A4)

dΓ

d cos θV
=

2G2
F |V Lub|2m3

B

π3

{
J̄1s sin2 θV + J̄1c cos2 θV −

1

3
(J̄2s sin2 θV + J̄2c cos2 θV )

}
, (A5)

dΓ

dχ
=
G2
F |V Lub|2m3

B

2π4

{
8

3
J̄1s +

4

3
J̄1c −

8

9
J̄2s +

4

9
J̄2c +

16

9
J̄3 cos 2χ+

16

9
J̄9 sin 2χ

}
. (A6)

Appendix B: Branch Cut Uncertainty

Using t ≡ q2, the bound on the expansion coefficients
of the form factors AXl can be written as [35]

1

2π

∫ 2π

0

dφ
∣∣ΦAXl ∣∣2 (e−iφ) ≤ 1 , (B1)

where AXl are projections onto the longitudinal
(l) and transverse (t) components, |AXl (t)|2 =
Pµνl 〈ρ|jXµ |B〉〈B|jXν |ρ〉 . For our model we need to redefine
the kinematical factor with poles in the branch cut region

into the matrix element |AXl (t)|2 → (t−−t)(t+−t)
3t |ÃXl (t)|2.

Hence the Φ function is now given by Φnew(t) =√
3 −t
z(t,0)

t−−t
z(t,t−) (t− t+)ΦF (t). Analyticity is restored by

subtracting the branch cut

g(z) ≡ Φ(z)ĀXl (z) = Φnew(z)ÃXl (z)

− 1

π

∫ zcut

−1

dx
Φnew(x) ImF (x)

x− z
. (B2)

The true analytic form factor is ĀXl (z), for which we
can derive the bound using g(z). Here zcut ≡ z(tcut, t0)
is the position of the lowest sub-threshold branch cut.
We integrate only from z ≡ z(t+, t0) = −1, because ev-
erything above the two-particle threshold is being taken
care of already. The function ImF (x) is connected to
the branch cut, and no analytic expression of this exists.
However we may model it with an ansatz, since its origin

is related to matrix elements of the form Im 〈0|jX |Bh〉,
where h is a (combination) of allowed light hadrons in the
final state. This is an intermediate state of the transition
B → ρ. The model function should fulfill the conditions
(i) vanish as t → ∞ (or get constant for a finite t inter-
val), (ii) start with zero at the threshold point, and (iii)
it should be a contiguous function. We will model this
function inspired by the optical theorem and saturation
of the lowest states due to phase-space and multiplicity
suppression. The first factor is related to the “produc-
tion coupling” of the state, and the second is related to
the kinematics of the branch cut.

We try a model function inspired by e+e− → µ+µ−

scattering, which gives larger contributions than, e.g., a
model used in [36]

ImF (t) = C
√
t+

√
1− tcut

t

(
1 +

tcut

2t

)
, tcut ≤ t ≤ t+ ,

(B3)
where C is in general a dimensionless quantity. The sat-
uration of the lowest state has been assumed in a dis-
persion relation as Im 〈0|jX |Bh〉 to estimate C [36]. In-
tegrating over the phase-space region in question, the
authors have found a slow varying number of order one.
Another possibility is to assume the on-shell production
of the leading branch-cut state out of the vacuum. We use
a generic meson coupling constant model in the narrow
width approximation. We normalize the production cur-
rent to the threshold mass of the system over the width,
similarly to an intermediate on-shell state. Each addi-
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tional particle has a phase-space suppression factor of
1/(4π)2. We neglect further suppression by spin and
isospin quantum numbers, i.e., Clebsch-Gordan coeffi-
cients. We estimate the coupling constant by the relation

C ≈ g2
Bnπ(mB + nmπ)

ΓBππ(16π2)n−1
c

narrow
width−→
n=2

3

π

1 + 2mπ
mB

(1− 4m2
π

m2
B

)
3
2

c (B4)

with a dimensionless constant c ∼ O(1). The coupling
gets smaller for a higher multiplicity state, as expected,
and we focus on the leading contribution n = 2.

In some cases, there may be additional suppressions,
e.g., for isospin violating transitions or OZI-suppressed
decays, leading to a smaller coupling C. This could hap-
pen in Bc decays, however it is not present in B → ρ.

This most important contribution will be from B+2π,
with n = 2, which is neither isospin, nor spin nor OZI
suppressed. Numerically we have

t+ ≈ 36.65 GeV2 tcut ≈ 30.79 GeV2 zcut ≈ −0.344 .

For comparison the physical form factor values are
z(0, t0) ≈ 0.10 , z(t−, t0) ≈ −0.10 . In summary we es-
timate in our approach C ≈ 1.01c, hence an order one
number as as in [36]. Subsequently we will assume a
(hopefully) conservative estimate of C ≈ 10.

For the estimate of this branch cut influence, we use
the Minkowski inequality, which states for (Lebesgue) in-
tegrable functions ||f+g||p ≤ ||f ||p+||+g||p for any norm

p > 1, which is defined as ||f ||p =
(∫

dµ|f |p
) 1
p . Thus for

p = 2 in our case we can write the inequality (B1) as√∫ 2π

0

dφ
∣∣∣ΦÃXl ∣∣∣2 (e−iφ) ≤

√∫ 2π

0

dφ |g(e−iφ)|2

+

√∫ 2π

0

dφ

∣∣∣∣ 1π
∫ zcut

−1

dx
Φ(x) ImF (x)

x− e−iφ

∣∣∣∣2
≤
√

2π(1 + Icut) . (B5)

We have used the fact, that the integral of the analytic
function g(z) fulfills the bound, while the left-hand side
is the “true” relation. Hence we can estimate the devia-
tion from the bound through this additional cut removal
function by the model and numerical integration. For the
numerical evaluation we take two subtractions n = 2, as
the contributing form factors require these numbers of
subtractions. Furthermore we need to use a numerical
value for χ(n = 2). Since this has not been calculated by
us, we take the value for the transverse form factor part
with two subtractions from [35] with χ(2) = 0.0116/m2

b .
For this being a rough estimate of the branch cut uncer-
tainty, this value will be sufficient.

In fact we derived an indirect correction to the bound,
which constrains the expansion parameters of the resid-
ual q2 dependence. Our calculated form factor depen-
dence thus fulfills the corrected bound

1

2π

∫ 2π

0

dφ
∣∣ΦAXl ∣∣2 (e−iφ) =

1

BFF ΦFF

K∑
k=0

αFFk z(q2, q2
0)k

≤ (1 + Icut)
2 , (B6)

which has a correction term of the form 2Icut + I2
cut. If

these additional terms are sufficiently small, the bound
on the residual dependence is not changed dramatically
and from this we conclude the shape is not changed by
these branch cut singularities. Note especially that the
leading contribution to α0 is only a constant shift, and
no shape distortion. A modification of the first shape
influencing expansion coefficient would be multiplied by
a number |z| <∼ 0.1. Numerically this amounts to

Icut =

√
1

2π

∫ 2π

0

dφ

∣∣∣∣ 1π
∫ zcut

−1

dx
Φ(x) ImF (x)

x− e−iφ

∣∣∣∣2Icut ≈ 0.11 .

(B7)

This now has to be compared with the bound

1

2π

∫ 2π

0

dφ
∣∣ΦAXl ∣∣2 (e−iφ) ≤ (1 + Icut)

2 , (B8)

At first sight, this seems to indicate an order O(10%)
correction to the form factor bound itself. However, that
will affect the bound on all expansion coefficients, and
does not mean a 10% contribution to the leading coeffi-
cient squared of all of the form factors. For the expansion
parameter fulfills −0.1 <∼ z <∼ 0.1, and so the larger al-
lowance of higher order coefficient contributions will not
change the slope dramatically. Furthermore it has to be
compared with the O(10%) uncertainty of each form fac-
tor data point, which is of the same order of magnitude.
Furthermore this bound constraints a linear combination
of all transverse form factors, which can formally easy be
derived in the helicity eigenbasis. So in total even with
this correction only a mild influence on the individual
form factor shape is expected.

In Ref. [36] a similar model, which gives smaller num-
bers in this case, was applied to the B → D∗`ν̄` decay in
a slightly different approach. The have found a 10−3 · C
influence on the shape parameters, which they dubbed to
be very small. This is to be compared to our numbers,
which are a bit higher as expected but still ok.

Thus we conclude the influence of branch cuts is at
most at the few percent level on the form factor shape
as well as the parametrization. Therefore regarding our
precision, this effect can be safely neglected.
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