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Conformal perturbation theory, dimensional regularization and AdS/CFT

David Berenstein, Alexandra Miller
Department of Physics, University of California at Santa Barbara, CA 93106

We study relevant deformations of conformal field theory on a cylinder using conformal perturba-
tion theory, and in particular the one point function of the deformation operator and the energy in
a system after a quench. We do the one point function calculation in both AdS and the conformal
field theory and we show that the results match. Our calculations are done with arbitrary spacetime
dimension, as well as arbitrary scaling dimension of the relevant operator. The only singularities
that appear in the end calculation can be related to logarithmic singularities in dimensional regu-
larization. We also study time dependent setups in the field theory and we show how the response
of the system can be calculated in a Hamiltonian based approach. We use this procedure to explain
certain short time universal results that have been found previously.
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I. INTRODUCTION

Consider a conformal field theory in d dimensions perturbed by a relevant (scalar) operator O of dimension ∆ < d.
We are interested in evaluating the correlators of O in the presence of the perturbation. The partition function is

Z = 〈exp(−α

∫

ddxO(x))〉 =
〈

∞
∑

n=0

1

n!

(

−α

∫

ddxO(x)

)n
〉

(1)

and the formal evaluation of correlators with the infinite sum in the equation above is what is known as conformal
perturbation theory. To begin with such a program, one can compute the one point function of O(x) as follows

〈O(x)〉=
〈

−α

∫

ddyO(y)O(x) + . . .

〉

= −α

∫

ddy
1

|x− y|2∆+ . . . (2)

The right hand side is infinite regardless of ∆. The divergence comes either from the small distance UV regime, or
from the long distance IR regime. This is because we have to perform an integral of a scaling function. The problem
seems ill defined until one resums the full perturbation expansion. This is a very important conceptual point in the
AdS/CFT correspondence [1] where standard ‘experiments’ insert time dependent or time independent sources for
various fields on the boundary of AdS [2, 3] and these in turn can be associated with sources for an operator such
as O(x). Some of these results have been argued to be universal in [4–7], independent of the AdS origin of such
a calculation. We want to understand such type of results under a more controlled setting, where we can use the
philosophy of conformal perturbation theory to get finite answers ab initio without a resummation.
A natural way to solve the problem above is to introduce a meaningful infrared regulator, so that the only divergences

that survive arise from the UV of the theory and can then be handled via the usual procedure of renormalization.
Such a natural regulator is provided by the conformal field theory on the cylinder Sd−1 × R, which also happens
to be the conformal boundary of global AdS spacetime, rather than just the Poincaré patch. The cylinder also is
conformally equivalent to flat space and provides both the radial quantization and the operator state correspondence.
In this sense, we are not modifying the AdS space in a meaningful way. However, a constant source for O(x) in such
a geometry is different than a constant source on the Poincaré patch.
In the rest of the paper we discuss the details of such a computation for two universal quantities. These are the

one point function of O(x), and the energy stored in a configuration where we quench from α 6= 0 to α = 0. We
also explain how to deal with general time dependent sources in the conformal field theory side for more general
AdS motivated experiments. Because we work with arbitrary d,∆, our results can naturally be cast as a real space
dimensional regularization formalism.
We find that the AdS answer, which is generally finite for the one point function, matches this notion of dimensional

regularization. The only singularities that arise are those that one associates with logarithmic divergences. We are
also able to match this result to the CFT calculation exactly, where the calculation is more involved. We also argue
how to calculate the energy of the configuration and that having solved for the one point function naturally produces
the result for this other computation.

II. ONE POINT FUNCTIONS ON THE SPHERE

What we want to do is set up the equivalent calculation to (1) and (2), but where we substitute the space R×Sd−1

in the integral. That is, we want to compute

〈O(τ, θ)〉 ≃
〈

−α

∫

dd−1Ω′dτ ′O(τ ′, θ′)O(τ, θ) + . . .

〉

= −αC∆ (3)

for τ a time coordinate on R and θ an angular position on the sphere. Because the operator O is not marginal, α
has units and we need to choose a specific radius for the sphere. We will choose this radius to be one. Our job is to
compute the number C∆. Because the sphere times time as a space is both spherically invariant and time independent,
properties that are also shared by the perturbation, we find that the result of equation (3) should be independent of
both θ and τ . As such, we can choose to perform the angular integral by setting the point θ at the north pole of the
sphere, so that we only need to do an integral over the polar angle in θ′. We want to do this calculation both in the
AdS spacetime and in conformal field theory. We will first do the AdS calculation and then we will do the conformal
field theory calculation.
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1. The AdS calculation

As described in the introduction, we need to compute the answer in global AdS spacetime. We first describe the
global AdS geometry as follows

ds2 = −(1 + r2)dt2 +
dr2

(1 + r2)
+ r2dΩ2

d−1 (4)

We need to find solutions for a perturbatively small scalar field φ with mass m and time independent boundary
conditions at infinity. Such a perturbation is a solution to the free equations of motion of the field φ in global AdS.
Such boundary conditions allow separation of variables in time, angular coordinates and r. A solution which is time
independent and independent of the angles can be found. We only need to solve the radial equation of motion. Using
|g| ∝ r2(d−1) we find that we need to solve

1

rd−1

∂

∂r

(

r(d−1)(1 + r2)
∂

∂r

)

−m2φ(r) = 0 (5)

The nonsingular solution at the origin is provided by

φ(r) = A 2F1

(

d

4
− 1

4

√

d2 + 4m2,
d

4
+

1

4

√

d2 + 4m2;
d

2
;−r2

)

(6)

where A indicates the amplitude of the solution. We now switch to a coordinate y = 1/r to study the asymptotic
form of the field by expanding near y ≃ 0. In this coordinate system we have that

ds2 = −dt2

y2
− dt2 +

dy2

y2(1 + y2)
+

dΩ2

y2
≃ −dt2

y2
+

dy2

y2
+

dΩ2

y2
(7)

So zooming into any small region of the sphere on the boundary y = 0 we have an asymptotic form of the metric that
matches the usual Poincare slicing of AdS. In such a coordinate system the asymptotic growth or decay of φ(y) in the
y coordinate is polynomial, proportional to y∆± and can be matched to the usual dictionary for a flat slicing, where
∆± = d

2 ± 1
2

√
d2 + 4m2. We have made the match ∆+ = ∆, the operator dimension for irrelevant perturbations. For

relevant perturbations we get a choice.
Reading the coefficients of this expansion has the same interpretation as in flat space: one is a source and the other

one is the response. Writing this as

φ(y) ≃ A(f+y
∆+ + f−y

∆−) (8)

we find that f+ = Γ(d/2)Γ(d/2 −∆+)/Γ(1/2(∆−))
2, and f− is the same expression with ∆+ replaced by ∆−. We

now use

∆ = ∆+ (9)

in what follows to distinguish between vev and source, although we will find the answer is symmetric in this choice.
The relation between source and vacuum expectation value is then

f+ =
Γ(d2 −∆)Γ(12∆)2

Γ(∆− d
2 )Γ(

d
2 − ∆

2 )
2
f− (10)

We have artificially chosen ∆ = ∆+ over ∆− to indicate the vacuum expectation value versus the source as one would
do for irrelevant perturbations, but since the expressions for f+ and f− are symmetric in the exchange of ∆+ and
∆−, we can eliminate the distinction in equation (10). Notice that this relation seems to be completely independent
of the normalization of the field φ. We will explain how to get the correct normalization later.

2. The conformal field theory computation

The basic question for the conformal field theory computation is how does one compute the two point function on
the cylinder. Since the cylinder results from a Weyl rescaling of the plane, the two point functions are related to each
other in a standard way. The Weyl rescaling is as follows

ds2 = d~x2 = r2
(

dr2

r2
+ dΩ2

d−1

)

→ dτ2 + dΩ2
d−1 (11)
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which uses a Weyl factor of r2 (the rescaling of units is by a factor of r = exp(τ)). As a primary field of conformal
dimension ∆, O(x) will need to be rescaled by O(θ, r) ≃ r∆O(x) to translate to the new rescaled metric. For the two
point functions this means that

〈O(τ1, θ1)O(τ2, θ2)〉cyl =
exp(∆τ1) exp(∆τ2)

|x1 − x2|2∆
=

1

(exp[(τ1 − τ2)] + exp[(τ2 − τ1)]− 2 cos(θrel))
∆

(12)

where θrel is the angle computed between the unit vectors x̂1, x̂2 in standard cartesian coordinates. If we choose x̂1

to be fixed, and at the north pole, the angle θrel is the polar angle of the insertion of O over which we will integrate.
Since the answer only depends on the the difference of the times, τ2 − τ1, the end result is time translation invariant.
Notice that we have used throughout conformal primaries that are unit normalized in the Zamolodchikov metric.
Now we need to integrate over the angles and the relative time τ . Our expression for C∆ reduces to the following

definite double integral

C∆ =

∫ ∞

−∞

dτ

∫ π

0

dθ sind−2 θV ol(Sd−2)
1

2∆(cosh τ − cos θ)∆
(13)

= 21−∆V ol(Sd−2)

∫ ∞

1

du
1√

u2 − 1

∫ 1

−1

dv(1 − v2)
d−3
2 [u− v]−∆ (14)

where we have changed variables to u = cosh τ and v = cos θ. For the integral to converge absolutely, we need that
0 < 2∆ < d, but once we find an analytic formula for arbitrary 0 < 2∆ < d we can analytically continue it for all values
of ∆, d. The volume of spheres can be computed in arbitrary dimensions as is done in dimensional regularization, so
we also get an analytic answer for the variable d itself. Any answer we get can therefore be interpreted as one would
in a real space dimensional regularization formalism, where we keep the operator dimension fixed but arbitrary, but
where we allow the dimension of space to vary. The final answer we get is

C∆ = π
(d+1)

2 21−∆

[

Γ(d2 −∆)Γ(∆2 )

Γ(d2 − ∆
2 )

2Γ(12 + ∆
2 )

]

(15)

3. Divergences

On comparing the answers for the AdS and CFT calculation, equations (10) and (15) seem to be completely
different. But here we need to be careful about normalizations of the operator O in the conformal field theory and
the corresponding fields in the gravity formulation. We should compare the Green’s function of the field φ in gravity
and take it to the boundary to match the two point function one expects in the CFT dual. The correct normalization
factor that does so can be found in equation (A.10) in [8]. Naively, it seems that we just need to multiply the result

from equation (15) by Γ(∆)

2π
d

2 Γ(∆−d

2+1)
and then we might expect

f+
f−

≃ Γ(∆)

2π
d

2 Γ(∆− d
2 + 1)

C∆. (16)

However, if we compare the ratio of the left hand side to the right hand side we get that the ratio of the two is given
by

f+
f−

(

Γ(∆)

2π
d

2 Γ(∆− d
2 + 1)

C∆

)−1

= 2∆− d = ∆+ −∆− (17)

Happily, this extra factor is exactly what is predicted from the work [9] (in particular, eq. 4.24). See also [10, 11].
This is because one needs to add a counter-term to the action of the scalar field when one uses a geometric regulator
in order to have a well defined boundary condition in gravity.
We see then that the gravity answer and the field theory answer match each other exactly, for arbitrary d,∆ once

the known normalization issues are dealt with carefully. Now we want to interpret the end result C∆ itself.
The expression we found has singularities at specific values of ∆. These arise from poles in the Γ function, which

occur when (d/2−∆) is a negative integer. However, these poles are cancelled when (d−∆)/2 is a negative integer,
because we then have a double pole in the denominator. For both of these conditions to be true simultaneously, we
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need both d and ∆ to be even, and furthermore ∆ ≥ d. The origin of such poles is from the UV structure of the
integral (2). The singular integral (evaluated at x = 0) is of the form

Asing =

∫ ǫ

0

ddy y−2∆ ∝
∫ ǫ

0

dy yd−1−2∆ ≃
∫ ∞

1/ǫ

dp pd−1(p2 +m2)−g (18)

where g = d−∆ and in the last step we introduced a momentum like variable p = 1/y and a mass m infrared regulator
to render it into a familiar form for dimensional regularization integrals that would arise from Feynman diagrams.
Singularities on the right hand side arise in dimensional regularization in the UV whenever there are logarithmic
subdivergences. This can be seen by factorizing p2 + m2 = p2(1 + m2/p2) and expanding in power series in m2.
Only when d − 1 − 2g − 2k = −1 for some non-negative integer k do we expect a logarithmic singularity. In our
case, with −g = ∆ − d, the condition for such a logarithmic singularity is that −g = ∆ − d = − d

2 + k, which is
exactly the same condition as we found for there to exist poles in the numerator of equation (15). The first such
singularity arises when ∆ = d/2. Beyond that, the integral in equation (14) is not convergent, but is rendered finite
in the dimensional regularization spirit. Notice that this was never really an issue in the gravitational computation,
since the final answer depended only the asymptotic expansion of hypergeometric functions and we never had to do
an integral. The presence of singularities in gravity has to do with the fact that when ∆+ −∆− is twice an integer,
then the two linearly independent solutions to the hypergeometric equation near y = 0 have power series expansions
where the exponents of y match between the two. Such singularities are resolved by taking a limit which produces an
additional logarithm between the two solutions. We should take this match to mean that the AdS gravity computation
already knows about dimensional regularization.
Another interesting value for ∆ is when we take ∆ → d. The denominator will have a double pole that will always

render the number C∆=d = 0. This is exactly as expected for a marginal operator in a conformal field theory: it
should move us to a near conformal point where all one point functions of non-trivial local operators vanish.

III. THE ENERGY OF A QUENCH

After concluding that the AdS and CFT calculation really did give the same answer for a constant perturbation
we want to understand the energy stored in such a solution. This needs to be done carefully, because as we have
seen divergences can appear. Under such circumstances, we should compare the new state to the vacuum state in
the absence of a perturbation and ask if we get a finite answer for the energy. That is, we need to take the state and
quench the dynamics to the unperturbed theory. In that setup one can compute the energy unambiguously.
We would also like to have a better understanding of the origin of the divergences in field theory, to understand

how one can regulate the UV to create various states we might be interested in. For this task we will now do a
Hamiltonian analysis. Although in principle one could use a three point function including the stress tensor and
integrate, performing a Hamiltonian analysis will both be simpler and more illuminating as to what is the physics of
these situations. Also, it is more easily adaptable to a real time situation.

4. A Hamiltonian approach

The perturbation we have discussed in the action takes the Euclidean action S → S + α
∫

O. When thinking in
terms of the Hamiltonian on a sphere, we need to take

H → H + α

∫

dΩ′O(θ′) (19)

and we think of it as a new time independent Hamiltonian. When we think of using α as a perturbation expansion
parameter, we need to know the action of

∫

dΩ′O(θ′) on the ground state of the Hamiltonian O(θ′)|0〉. This is actually
encoded in the two point function we computed. Consider the time ordered two point function with τ1 > τ2

〈O(τ1, θ1)O(τ2, θ2)〉cyl =
1

(exp[(τ1 − τ2)] + exp[(τ2 − τ1)]− 2 cos(θrel))
∆

(20)

=
∑

s

〈0|O(θ1) exp(−Hτ1)|s〉〈s| exp(Hτ2)O(θ2)|0〉 (21)

=
∑

s

exp(−Es(τ1 − τ2))〈0|O(θ2)|s〉〈s|O(θ1)|0〉 (22)
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where s is a complete basis that diagonalizes the Hamiltonian H and we have written the operators O(τ) ≃
exp(Hτ)O(0) exp(−Hτ) as corresponds to the Schrodinger picture. The states |s〉 that can contribute are those
that are related to O by the operator-state correspondence: the primary state of O and it’s descendants. When
we integrate over the sphere, only the descendants that are spherically invariant can survive. For a primary O(0),
these are the descendants given by (∂µ∂

µ)kO(0). The normalized states corresponding to these descendants will have
energy (dimension) ∆+2k, and are unique for each k. We will label them by ∆+2k. We are interested in computing
the amplitudes

A∆+2k = 〈∆+ 2k|
∫

dΩ′O(θ′)|0〉 (23)

These amplitudes can be read from equation (21) by integration over θ1, θ2. Indeed, we find that
∫

dd−1Ω〈O(τ1, θ1)O(τ2, θ2)〉cyl = 2−∆V ol(Sd−2)

∫ 1

−1

dv(1− v2)
d−3
2 [cosh(τ) − v]−∆ (24)

= π
d

2 21−∆ cosh[τ ]−∆
2F̃1[

∆

2
,
1 + ∆

2
;
d

2
; cosh−2(τ)] (25)

= M
∑

|A∆+2k|2 exp[(−∆− 2k)τ ] (26)

where τ = τ1 − τ2 and 2F̃1 is the regularized hypergeometric function. From this expression further integration over
Ω1 is trivial: it gives the volume of the sphere V ol(Sd−1). We want to expand this in powers of exp(−τ). To do this
we use the expression cosh(τ) = exp(τ)(1 + exp(−2τ))/2, and therefore

cosh−a(τ) = exp(−aτ)2a[1 + exp(−2τ)]−a =
∞
∑

n=0

2a exp(−aτ − 2nτ)(−1)n
Γ[a+ n]

n!Γ[a]
(27)

Inserting this expression into the power series of the hypergeometric function appearing in (25) gives us our desired
expansion. Apart from common factors to all the amplitudes A∆+2k (which are trivially computed for k = 0) we are
in the end only interested in the k dependence of the amplitude itself. After a bit of algebra one finds that

|A∆+2k|2 ∝ Γ[k +∆]Γ[∆− d
2 + k + 1]

Γ[1 + ∆− d
2 ]

2Γ[k + d
2 ]k!

(28)

and to normalize we have that

|A∆|2 = [V ol(Sd−1)]2 (29)

For these amplitudes to make sense quantum mechanically, their squares have to be positive numbers. This implies
that none of the Γ functions in the numerator can be negative. The condition for that to happen is that the argument
of the Γ function in the numerator must positive and therefore ∆ ≥ d

2 − 1, which is the usual unitary condition for
scalar primary fields. Also, at saturation ∆ = d/2 − 1 we have a free field and then the higher amplitudes vanish
Ak>0/A0 = 0. This is reflected in the fact that ∂µ∂

µφ = 0 is the free field equation of motion.
We are interested in comparing our results to the AdS setup. In the CFT side this usually corresponds to a large

N field theory. If the primary fields we are considering are single trace operators, they give rise to an approximate
Fock space of states of multitraces, whose anomalous dimension is the sum of the individual traces plus corrections
of order 1/N2 from non-planar diagrams. In the large N limit we can ignore these corrections, so we want to
imagine that the operator insertion of O is a linear combination of raising and lowering operators

∫

dΩO(θ) ≃
∑

A∆+2ka
†
2k+∆ +A∆+2ka2k+∆ with [a, a†] = 1. In such a situation we can write the perturbed Hamiltonian in terms

of the free field representation of the Fock space in the following form

H + δH =
∑

Esa
†
sas + α(

∑

A∆+2ka
†
2k+∆ +A∆+2ka2k+∆) +O(1/N2)a†a†aa+ . . . (30)

Indeed, when we work in perturbation theory, if this Fock space exists or not is immaterial, as the expectation value
of the energy for a first order perturbation will only depend on the amplitudes we have computed already. It is for
states that do not differ infinitesimally from the ground state that we need to be careful about this and this Fock
space representation becomes very useful.
When we computed using conformal perturbation theory abstractly, we were considering the vacuum state of the

Hamiltonian in equation (30) to first order in α. We write this as

|0〉α = |0〉+ α|1〉 (31)
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and we want to compute the value of the energy for the unperturbed Hamiltonian for this new state. This is what
quenching the system to the unperturbed theory does for us. We find that

〈0α|H |0〉α = α2〈1|H |1〉 (32)

Now, we can use the expression (30) to compute the state |0〉α. Indeed, we find that we can do much better than
infinitesimal values of α. What we can do is realize that if we ignore the subleading pieces in N then the ground state

for H + δH is a coherent state for the independent harmonic oscillators a†2k+∆. Such a coherent state is of the form

|0〉α = N exp(
∑

β2k+∆a
†
2k+∆)|0〉 (33)

For such a state we have that

〈H + δH〉 =
∑

(2k +∆)|β2k+∆|2 + αβ2k+∆A2k+δ + αβ∗
2k+∆A2k+δ (34)

and the energy is minimized by

β2k+∆ = −α
A2k+∆

2k +∆
(35)

Once we have this information, we can compute the energy of the state in the unperturbed setup and the expectation
value of O (which we integrate over the sphere). We find that

〈H〉 =
∑

(2k +∆)|β2k+∆|2 = α2
∑ |A2k+∆|2

2k +∆
(36)

〈O〉 ≃
∑

2Ak+2∆β2k+∆ ≃ −2α
∑ |A2k+∆|2

2k +∆
(37)

so that in general

〈H〉 ≃ −α〈O〉
2

(38)

That is, the integrated one point function of the operator O over the sphere and the strength of the perturbation is
enough to tell us the value of the energy of the state. For both of these to be well defined, we need that the sum
appearing in (36) is actually finite. Notice that this matches the Ward identity for gravity [4] integrated adiabatically
(for a more general treatment in holographic setups see [12]).

5. Amplitude Asymptotics, divergences and general quenches

Our purpose now is to understand in more detail the sum appearing in (36) and (37). We are interested in the
convergence and asymptotic values for the terms in the series, that is, we want to understand the large k limit. This
can be read from equation (28) by using Stirlings approximation log Γ[t+ 1] ≃ (t) log(t)− (t) in the large t limit. We
find that after using this approximation on all terms that depend on k, that

log(A2
2k+∆) ≃ (k +∆− 1) log(k +∆− 1) + (k +∆− d/2) log(k +∆− d/2) (39)

−(k + d/2− 1) log(k + d/2− 1)− k log(k) +O(1) (40)

≃ (∆− 1 + ∆− d

2
− (

d

2
− 1)) log k = (2∆− d) log k (41)

So that the sum is bounded by a power law in k

∑ |A2k+∆|2
2k +∆

≃
∑ 1

kd+1−2∆
(42)

Again, we see that convergence of the sum requires 2∆ − d < 0. This is the condition to have a finite vacuum
expectation value of both the energy and the operator O. If we consider instead the L2 norm of the state, the norm is
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finite so long as d+2− 2∆ > 1, that is, so long as ∆ < (d+1)/2. The divergence in the window d/2 ≤ ∆ < (d+1)/2
is associated with the unboundedness of the Hamiltonian, not to the infinite norm of the state.
In general we can use higher order approximations to find subleading terms in the expression (41). Such approxi-

mations will give that A2k+∆ will have a polynomial expression with leading term as above, with power corrections
in 1/k. Only a finite number of such corrections lead to divergent sums, so the problem of evaluating 〈O〉 can be
dealt with using a finite number of substractions of UV divergences. In this sense, we can renormalize the answer
with a finite number of counterterms. A particularly useful regulator to make the sum finite is to choose to modify
A2k+∆ → A2k+∆ exp(−ǫ(2k + ∆)). This is like inserting the operator O at time t = 0 in the Euclidean cylinder
and evolving it in Euclidean time for a time ǫ. Because the growth of the coefficients is polynomial in k, any such
exponential will render the sum finite. We can trade the divergences in the sums for powers of 1/ǫ and then take the
limit ǫ → 0 of the regulated answer. This is beyond the scope of the present paper.
Notice that we can also analyze more general quenches from studying equation (34). All we have to do is make

α time dependent. The general problem can then be analyzed in terms of linearly driven harmonic oscillators, one
for each a†, a pair. Since the driving force is linear in raising and lowering operators, the final state will always be
a coherent state as in equation (33) for some β which is the linear response to the source. The differential equation,
derived from the Schrodinger equation applied to a time dependent coherent state, is the following

iβ̇2k+∆(t) = (2k +∆)β2k+∆ + α(t)A2k+∆ (43)

The solution is given by

β2k+∆(t) = β2k+∆(0) exp(−iωt) +A2k+∆

∫ ∞

0

dt′α(t′)θ(t− t′) exp(−iω(t− t′)) (44)

with ω = 2k +∆ the frequency of the oscillator.
Consider the case that α only acts over a finite amount of time between 0, τ and that we start in the vacuum. After

the time τ the motion for β will be trivial, and the amplitude will be given by

β2k+∆(τ) = A2k+∆ exp(−i(2k +∆)τ)

∫ τ

0

dt′α(t′) exp(iωt′) (45)

and all of these numbers can be obtained from the Fourier transform of α(t). Notice that these responses are always
correct in the infinitesimal α regime, as can be derived using time dependent perturbation theory. What is interesting
is that in the large N limit they are also valid for α(t) that is not infinitesimal, so long as the O(1/N) corrections can
still be neglected. One can also compute the energy of such processes. In particular, so long as ∆ < d/2, any such
experiment with bounded α(t) will give a finite answer.
The simplest such experiment is to take α constant during a small interval τ = δt << 1. For modes with small ω,

that is, those such that ωδt < 1, we then have that

β2k+∆(τ) ≃ A2k+∆αδt (46)

While for those modes such that ωδt > 1, we get that

|β2k+∆(τ)| ≃ α
A2k+∆

ω
(47)

When we compute the energy of such a configuration, we need to divide the sum between high frequency and low
frequency modes. The energy goes as

E ≃
∑

ω|β2k+∆|2 ≃
∫ 1/(2δt)

0

dkω|A2k+∆αδt|2 +
∫ ∞

1/(2δt)

dk
|αA2k+∆|2

ω
(48)

now we use the fact that |A2k+∆|2 ≃ k2∆−d and that ω ∝ k to find that

E ≃ |α|2(δt)d−2∆ (49)

which shows an interesting power law for the energy deposited into the system. One can similarly argue that the one
point function of O(τ) scales as α(δt)d−2∆: for the slow modes, the sum is proportional to

∑

A2
2k+∆αδt, while for

the fast modes one can argue that they have random phases and don’t contribute to O(τ).
If we want to study the case ∆ ≥ d/2, divergences arise, so we need to choose an α(t) that is smooth enough that

the high energy modes are not excited in the process because they are adiabatic, but if we scale that into a δt window,



9

the adiabatic modes are going to be those such ωδt > 10, let’s say. Then for these modes we take β ≃ 0, and then the
estimate is also as above. For ∆ = d/2, in an abrupt quench one obtains a logarithmic singularity rather than power
law, coming from the UV modes. This matches the results in [7] and gives a reason for their universality as arising
from the universality of 2-point functions in conformal perturbation theory. Essentially, the nature of the singularities
that arise is that the amplitudes to generate descendants are larger than amplitudes to generate primaries, so the
details of the cutoff matter.
Here is another simple way to understand the scaling for the one point function of the operator O(τ). The

idea is that we need to do an integral similar to
∫

ddxO(τ)α(x)O(x), but which takes into account causality of
the perturbation relative to the response. If we only turn on the perturbation by a small amount of time δt, the
backwards lightcone volume to the insertion of an operator at τ = δt is of order δtd, and this finite volume serves as
an infrared regulator, while the two point function that is being integrated is of order δt−2∆. When we combine these
two pieces of information we get a result proportional to δtd−2∆, which again is finite for ∆ < d/2 and otherwise
has a singularity in the corresponding integral. Similarly, the energy density would be an integral of the three point
function TOO ≃ δt−2∆−d times the volume of the past lightcone squared which is again proportional to δt2d, giving
an answer with the scaling we have already found. The additional corrections would involve an extra insertion of O
and the volume of the past lightcone, so they scale as δtd−∆, multiplied by the amplitude of the perturbation. This
lets us recover the scalings of the energy [7] in full generality.

6. A note on renormalization

So far we have described our experiment as doing a time dependent profile for α(t) such that α(t) = 0 for t > τ .
Under such an experiment, we can control the outcome of the operations we have described and we obtain the scaling
relations that we want. If on the other hand we want to measure the operator O(t, θ) for some t < τ , we need to
be more careful. This is where we need a better prescription for subtracting divergences: as we have seen, in the
presence of a constant value for α we already have divergences for ∆ ≥ d/2. Under the usual rules of effective field
theory, all UV divergences correcting 〈O(t, θ)〉 should be polynomial in the (perturbed) coupling constants and their
derivatives. Moreover, if a covariant regulator exists, it suggests that the number of such derivatives should be even.
Since we are working to linear order in α(t), these can only depend linearly on α(t) and it’s time derivatives. Another
object that can show up regularly is the curvature of the background metric in which we are doing conformal field
theory. That is, we can have expressions of the form ∂k

t α(t)R
s and (∂k

t α∂
ℓ
tα)R

s appearing as counterterms in the
effective action. These are needed if we want to compute the energy during the quench. Although in principle we can
also get covariant derivatives acting on the curvature tensor R, these vanish on the cylinder. The counterterms are
particularly important in the case of logarithmic divergences, as these control the renormalization group. Furthermore,
the logarithmic divergences are usually the only divergences that are immediately visible in dimensional regularization.
It is also the case that there are logarithmic enhancements of the maximum value of O(t, θ) during the quench [7] and
these will be captured by such logarithmic divergences.
We need to identify when such logarithmic divergences can be present. In particular, we want to do a subtraction

of the adiabatic modes (which do contribute divergences) to the one point function of O(θ, t) at times t < τ . To
undertake such a procedure, we want to solve equation (43) recursively for the adiabatic modes (those high k). We
do this by taking

β2k+∆(t) = −α(t)
A2k+∆

2k +∆
+ β1

2k+∆(t) + β2
2k+∆(t) + . . . (50)

where we determine the βi(t) recursively for high k by substituting β2k+∆(t) as above in the differential equation.
The solution we have written is correct to zeroth order, and we then write the next term as follows

−iα̇(t)
A2k+∆

2k +∆
= (2k +∆)β1

2k+∆(t) (51)

and in general

iβ̇n−1
2k+∆(t) = (2k +∆)βn

2k+∆(t) (52)

This will generate a series in 1
(2k+∆)n ∂

n
t α(t), which is also proportional to A2k+∆. We then substitute this solution

into the expectation value of O(t, θ), where we get an expression of the form

〈O(t)〉 ≃
∑

k,ℓ

|A2k+δ |2
cℓ

(2k +∆)ℓ+1
∂ℓ
tα(t) ≃

∫

dk
∑

ℓ

1

k2∆−d

cℓ
(2k +∆)ℓ+1

∂ℓ
tα(t) (53)
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The right hand side has a logarithmic divergence when 2∆ − d + ℓ = 0. Notice that this divergence arises from the
combination β + β∗, so the terms with odd derivatives vanish because of the factors of i in equation (52). Thus, such
logarithmic divergences will only be present when ℓ is even. This matches the behavior we expect when we have a
covariant regulator. This translates to ∆ = d/2+ k, where k is an integer. Notice that this is the same condition that
we need to obtain a pole in the numerator of the Gamma function in equation (14). We see that such logarithmic
divergences are exactly captured by dimensional regularization. As a logarithmic divergence, it needs to be of the
form log(ΛUV /ΛIR) = log(ΛUV /µ)+ log(µ/ΛIR). In our case, the IR limit is formally set by the radius of the sphere,
while the UV is determined by how we choose to work precisely with the cutoff. The counterterm is the infinite
term log(ΛUV /µ), but the finite term depends on the intermediate scale µ, which is also usually taken to be a UV
scale which is finite. This lets us consider the Lorentzian limit by taking a small region of the sphere and to work
with δt as our infrared cutoff: only the adiabatic modes should be treated in the way we described above. Then the
logarithmic term scales as log((µδt))∂2∆−d

t α(t). These logarithmic terms are exactly as written in [7]. Notice that
after the quench, we have that α(t) = 0 and all of it’s derivatives are zero, so no counterterms are needed at that
time. We only need the pulse α(t) to be smooth enough so that the state we produce has finite energy.

IV. CONCLUSION

In this paper we have shown how to do conformal perturbation theory on the cylinder rather than in flat space. The
main reason to do so was to use a physical infrared regulator in order to understand the process of renormalization
of UV divergences in a more controlled setting. We showed moreover that the results that are found using AdS
calculations actually match a notion of dimensional regularization where the dimension of the perturbation operator
stays fixed. In this sense the AdS geometry knows about dimensional regularization as a regulator. This is an
interesting observation that merits closer attention. In particular, it suggests that one can try a real space dimensional
regularization approach to study perturbations of conformal field theory.
We then showed that one could treat in detail also a time dependent quench, and not only where we able to find

the energy after a quench, but we also were able to understand scalings that have been observed before for fast
quenches. Our calculations show in what sense they are universal. They only depend on the two point function of the
perturbation. The singularities that arise can be understood in detail in the Hamiltonian formulation we have pursued,
and they arise from amplitudes to excite descendants increasing with energy, or just not decaying fast enough. In
this way they are sensitive to the UV cutoff associated to a pulse quench: the Fourier transform of the pulse shape
needs to decay sufficiently fast at infinity to compensate for the increasing amplitudes to produce descendants. We
were also able to explain some logarithmic enhancements for the vacuum expectation values of operators during the
process of the quench that can be understood in terms of renormalizing the theory to first order in the perturbation.
Understanding how to do this to higher orders in the perturbation is interesting and should depend on the OPE
coefficients of a specific theory.
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