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This paper explores a novel tractable regime for ultraviolet-complete quantum field theories—the
large Nc limit of non-abelian gauge theories with quarks in high dimensional representations (scaling
with Nc faster than N2

c ), such as quarks with ‘a’ fundamental indices with a ≥ 3. A smooth and
nontrivial Nc limit can be obtained if g2Na−1

c is held fixed instead of the standard ’t Hooft coupling
g2Nc as Nc →∞ where g is the gauge coupling. SU(Nc) gauge theories in 3+1 dimensions are not
asymptotically free at large Nc when they contain quarks in representations whose dimensions scale
faster than N2

c and hence are not ultraviolet complete. However, in lower space-time dimensions
(2+1, 1+1), for any Nc, renormalization group flow for such theories always has a stable ultraviolet
fixed point at g = 0; the theory is thus ultraviolet complete. For the case of massless quarks, the
theory has an infrared fixed point. For massive quarks, the theory is confining. The confining scale

is parametrically of the order N
2−a
4−d
c and is driven to zero at large Nc for theories with a > 2 and

d < 4 where d is the space time dimension.

I. INTRODUCTION

It is challenging to understand strongly coupled nonabelian gauge theories, since a perturbative expansion in the
coupling constant is not suitable. This has led researchers to investigate different limits of gauge theories to gain
insights. One such limit, the large Nc limit, was proposed by ’t Hooft in 1973 [1]. In this limit, the number of colors
Nc, was taken to infinity, g → 0, while keeping g2Nc fixed, where g was the coupling constant. The theory remains
strongly coupled since the relevant coupling is not g2 but g2Nc.

In ’t Hooft’s original analysis, the quarks were in the fundamental representation of SU(Nc) and the number of
flavors was kept constant. This limit has interesting consequences, one of which is the suppression of quark loops,
thus the gluodynamics, at leading order, is decoupled from the quark dynamics. On the other hand, it was recognized
quite early that the large Nc limit of SU(Nc) gauge symmetry is not unique: even if the gauge is fixed, one can include
fermions in a variety of ways yielding physically distinct large Nc limits. For example, G Veneziano suggested another
interesting limit [2] where Nf → ∞ and Nc → ∞ keeping Nc/Nf = x and g2Nc fixed. Another distinct large Nc
limit with quarks in the two-index anti-symmetric representation was also suggested by ’t Hooft [1] and was further
explored by Corrigan and Ramond [3]. This limit has generated considerable interest of late [4–7]. The two-index
anti-symmetric representation labels each quark by two fundamental color labels with qab = −qba. The large Nc limit
of this theory differs significantly from the standard ’t Hooft large Nc limit with quarks in the fundamental, QCD(F),
since in QCD(AS) quark loops are not suppressed compared to the gluon loops. The phenomenology of this limit was
explored by Kiritsis and Papavassiliou [8] and baryons in this limit were considered in detail in refs.[9–12].

Note that if one’s interest is in the formal structure of gauge theories as opposed to direct application to the
phenomenology of QCD, there are other representations for quarks which may be of interest. One obvious one is the
adjoint representation, QCD(Adj) in which quarks transform in the same way as do gluons. QCD(Adj) has quarks in
what is effectively a two-index representation with one index transforming like a fundamental color and the other as
an anti-fundamental. Another representation of interest is the two-index symmetric QCD(S) in which each quark is
labeled by two fundamental color labels with qab = qba.

The two-index theories in the large Nc limit have some very interesting formal properties. Of particular importance
is the emergence of equivalences between the theories at large Nc. That is QCD(AS), QCD(S) and QCD(Adj) share
a “common sector” of operators for which all observables in the sector are identical for the three theories up to
corrections which vanish as Nc → ∞ [13, 14]. As stressed by [13], this is particularly important for the case where
there is only one flavor of quark and it is massless. In this case QCD(Adj) is simply super Yang-Mills. Thus, certain
exact results which can be obtained due to the strong symmetry constraints in SYM are also valid at large Nc for the
non-supersymmetric theories of QCD(AS) and QCD(S).

Since large Nc theories with two-index representations are so interesting, it seems natural to consider theories with
quarks in representations with three or more indices. To date, such theories have not been systematically studied
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at large Nc. One obvious reason for this is that in 3+1 space-time dimensions, such theories are sick. They lack
asymptotic freedom and are thus believed to not be ultraviolet complete. Thus, by themselves, they are not well-
defined as theories. However, this does not mean that all theories of this sort lack meaning. One can consider these
theories in lower space-time dimensions (either 2 + 1 or 1 + 1) where the theories are expected to be UV complete
and therefore perfectly well-defined. QCD has been explored in lower space-time dimensions in the past [15–20].

In this paper we investigate the large Nc behavior of theories with quarks in higher-dimensional representations.
Higher dimensional in this context means that the dimension of the representation, R, scales with Nc at large Nc as

R ∼ Na
c with a ≥ 3 . (1)

One class of such representations is the one with its Young tableau composed of a boxes, with a independent of Nc
and greater than or equal to 3. These are representations that can be constructed by combining a fundamental colors.

More generally, we consider representations associated with a Young tableau consisting of n columns each with a
length of ai (where i runs from 1 to n) and m columns each with a length of Nc − bj (where j runs from 1 to m).
Such representations scale at large Nc as Na

c , with

a =

n∑
i=1

ai +

m∑
j=1

bj . (2)

One can construct such representations by combining
∑
i ai fundamental indices with

∑m
j=1 bj anti-fundamental ones

in such a way that no pair of fundamental and anti-fundamental colors reduces to a singlet.
Clearly such theories do not describe the underlying dynamics of nature. Indeed, in a mathematical sense, such

theories presumably do not exist except in 2 + 1 space-time dimensions or fewer. However, it remains of interest
to study these theories because they may help give insight into some of the major issues of gauge theory, including
perhaps the nature of confinement. Much of the analysis in this paper will be general. However, at times it will be
useful to illustrate things using a specific example. In these cases we will focus on the three-index anti-symmetric
representation.

In doing the analysis it is important to be very clear about precisely what is being held fixed as Nc →∞. Following
standard analysis we study correlation functions in which the external momenta (and quark masses) are held fixed
as Nc →∞. The scaling of the coupling constant with Nc turns out to be nontrivial. In the next section, we discuss
the scaling of the coupling constant with Nc. The β function will be discussed in the following section. The key
issue there is assuring the existence of an asymptotically free regime. It turns out the theory is conformal in the
IR rather than confining if the theory has massless quarks but is confining if the quarks are massive. Following this
is a section on correlation functions for local color-singlet sources. Both quark bilinear sources and gluonic sources
are considered. The role of confinement is discussed in the next section. A central issue is that at large Nc for the
case of massive quarks, the scale of confinement is parametrically suppressed in powers of 1/Nc relative to the quark
mass and the dynamical scale associated with asymptotic freedom. Finally, we discuss the results and conclude. In
the discussion we note that the behavior of these theories is qualitatively similar to theories with fixed Nc and many
flavors of quarks in any representation, including the fundamental.

II. SCALING OF THE COUPLING CONSTANT

In the standard large Nc limit of ’t Hooft with quarks in the fundamental representation, the number of colors goes
to infinity while the coupling constant, g goes to zero with g2Nc held fixed [1].

The simplest way to motivate this is via the study of the gluon propagator. If one wishes the gluon propagator to
have a smooth and non-trivial large Nc limit, then the gluon polarization tensor must be held fixed as Nc →∞. To
proceed further, look at the simplest contribution to the gluon polarization—namely, one-loop diagrams. As seen in
Fig. 1, there are four possible types of one-loop diagrams: a quark loop (a), two types of gluon loops (b) and (c), and
a ghost loop (d). Using standard counting rules, it is easy to see that in the conventional ‘t Hooft large Nc limit with
quarks in the fundamental, the single quark loop contribution to the polarization from diagram (a) is proportional to
g2 while the contributions from the gluon and the ghost loops in (b), (c) and (d) are proportional to g2Nc. Assuming
that the contributions of order g2Nc do not cancel out, one concludes that the quantity g2Nc must remain finite as
Nc goes to infinity. Of course, the statement that g2Nc must remain finite, is not the same as it remains fixed—it
could, in principle, go to zero as Nc goes to infinity. However, it is straightforward to show [21] that keeping g2Nc
fixed leads to a non-trivial and self-consistent theory. Note that the result that quark loops are suppressed compared
to gluon loops seen in the gluon propagator, turns out to be general.

Now, let’s consider what happens in a theory in which quarks are in a higher representation, with a dimension
scaling as Na

c . Again, let us motivate the scaling rules by looking at one-loop contributions to the gluon proagator
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FIG. 1: Diagrams contributing to gluon polarization at one loop. Curly lines stand for gluons, dashed lines for
ghost fields and solid lines for quarks.
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FIG. 2: The bold gluon propagator indicates the resummed one in which the polarization is resummed to all orders.

as seen in Fig. 1. The gluon and ghost loops contribution from diagrams (b), (c) and (d) to the gluon polarization
scale as g2Nc as before. However, the quark loop of diagram (a) yields a contribution to the polarization which scales
as g2Na−1

c . For a > 2, the quark loop scales more rapidly than the gluon loop. Thus to keep the gluon polarization
finite one should take the scaling to be:

Nc →∞
g → 0

g2Na−1
c fixed for a > 2

g2Nc fixed for a ≤ 2 .

(3)

Note, that the scalings are very different for a > 2 and a < 2. As will be shown below, this reflects qualitatively
different physics in the two regimes. In the a < 2 regime, the dynamics is dominated by gluons and the effects of
quarks are suppressed. However for a > 2 the dynamics is dominated by quarks and gluons play a subsidiary role.
For the case of a = 2, quarks and gluons both contribute at leading order.

It is straightforward to show that this scaling is self-consistent for the case of a > 2. Firstly, note that since the
gluon polarization has been constructed to scale as N0

c at leading order in the 1/Nc expansion, in considering the full
class of leading-order diagrams, it is efficient to sum polarization insertions to all orders leading to a renormalized
propagator as in Fig. 2. This is efficient since in considering all diagrams which contribute at leading order, one
can now use this resummed propagator everywhere and exclude explicit quark loop contributions to the polarization
everywhere. This allows one to treat infinite classes of leading diagrams at once.

Next, consider a leading-order diagram and ask what happens to the Nc counting if one adds an extra resummed
gluon line in it. As in the standard case of QCD with quarks in the fundamental, the addition of a gluon, will
contribute an additional two factors of g and at most a combinatoric factor of Nc (if the gluon is planar). Thus,
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the addition of an extra internal gluon line to a diagram will contribute a factor scaling as g2Nc or less. However
for the case of higher representations, Eq. (3) implies that the combination g2Na−1

c is held fixed as Nc → ∞ for
a > 2. Rewriting g2Nc as (g2Na−1

c )N2−a
c , one sees that the addition of an extra resummed gluon line to a diagram

characteristically reduces the scaling of the diagram by a factor which scales as N2−a
c . Similarly, removing a resummed

gluon line from a diagram increases the scaling of the diagram by a factor which scales at least as N2−a
c .

The upshot of this scaling is that for quarks in higher representations (a > 2), the maximum Nc scaling of any
class of diagrams necessarily consists of diagrams with the smallest number of resummed gluon lines consistent with
the type of diagram under study. Thus, for example, the leading vacuum amplitude (i.e. a zero point function) of
quark bilinear sources will be from a single quark loop and will scale as Na

c . Similarly, the leading contribution to
correlation functions of any number of quark bilinear sources, will consist of a single quark loop embellished by the
sources and will scale as Na

c . On the other hand, the leading-order correlation functions for sources which couple to
glue such as Tr (FµνF

µν) will consist of a single loop of the resummed gluon embellished by the sources and will scale
as N2

c .
At first sight the scaling rules may appear to be trivial. The leading-order contribution to correlators of the

quark bilinear sources is simply a single quark loop, as one would have in a weak coupling. However, the theory differs
markedly from the case of a pure weak coupling theory. Note, that the leading corrections involve the resummed gluon
propagator and as such contain the coupling constant to all orders. Similarly, the leading order correlation functions
for color-singlet sources coupling to gluons again involve the resummed gluon propagator and as such contain the
coupling constant to all orders.

III. RENORMALIZATION GROUP FLOW

As noted in the Introduction, large Nc gauge theories with quarks in higher representation are not asymptotically
free in 3 + 1 space-time dimensions. Accordingly, we consider theories in fewer space-time dimensions, either 2 + 1
or 1 + 1. The gauge coupling g, while dimensionless in theories in 3 + 1 space-time dimensions, is dimensionful in
lower dimensions: in d space-time dimensions the coupling constant has a dimension of 4−d

2 . It is useful to define a
dimensionless coupling g̃, which we do by introducing an arbitrary renormalization scale µ:

g = g̃µ
4−d
2 . (4)

The β function is defined as β(g̃) = ∂g̃
∂ log(µ) . It has two contributions: one coming from the explicit dependence of

µ in the naive scaling dimension of the coupling and the other coming from quantum loops. For simplicity we first
consider the case in which all quarks are massless. Thus, the β function is given by

β(g̃) = g̃
d− 4

2
+ β̃(g̃)

where

β̃(g̃) = g̃
(
b1g̃

2 + b2g̃
4 + b3g̃

3 + . . .
)

= g̃

(
b1

Na−1
c

(g̃2Na−1
c ) +

b2

(Na−1
c )2

(g̃2Na−1
c )2 +

b3

(Na−1
c )3

(g̃2Na−1
c )3 + . . .

)
.

(5)

The form for β̃ follows from a loop expansion with the coefficient bi associated with i loops. The second form for β̃(g̃)
is introduced to emphasize the scaling behavior of Eq. (3) for the case of quarks in higher representations.

Note that the loop contributions in the β function can involve either quarks or gluons and ghosts. For higher
representations, quark loops yield a contribution proportional Na−1

c while gluon or ghost loops yield contributions
proportional to Nc. The factors of bi/(N

a−1
c )i thus, will go to zero as Nc →∞ except for contributions in which all of

the loops are quark loops. However, the structure of the quantum loops which yield renormalization group equation
implies that the only contribution in which all loops are quark loops is at one loop. This is because, additional loops
will invariably require one or more gluon or ghost lines, each of which will contribute a factor of N2−a

c to the diagram.
This means that the diagrams are parametrically small. This is illustrated in figure Fig. 3. Thus at large Nc, the
renormalization group equation assumes the form

β(g̃) = g̃

(
d− 4

2
+

cd
(a− 1)!

NF (g̃2Na−1
c )

)
(6)

where cd is a numerical constant which depends on the dimensions of space-time cd = 1
32 in 2 + 1 dimensions and is

1
2π in 1 + 1 dimensions. NF is the number of (massless) flavors. It is straightforward to solve the differential equation
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FIG. 3: A one loop diagram with quarks running in the loop as compared to a two loop diagram with an additional
gluon line which brings in an extra factor of N2−a

c . The blobs represent meson sources.

for the large Nc coupling as a function of µ:

g2(µ)
Na−1
c

(a− 1)!
= Λ4−d

(
4− d

2cdNF

)
1

1 +
(

Λ
µ

)4−d (7)

where Λ, the natural scale of the theory, is fixed from the initial condition of the differential equation. As expected,

g2Na−1
c or g2 N

a−1
c

(a−1)! stays fixed at large Nc and the theory encodes asymptotic freedom—while g(µ) asymptotes to

a fixed value at large µ, the dimensionless coupling g̃(µ) goes to zero. In the infrared, g2(µ)
Na−1
c

(a−1)! asymptotes to
4−d

2cdNF
µ4−d. For dimensionless coupling g̃, this corresponds to asymptotic behavior in the infrared corresponding to

g̃(µ)
2 Na−1

c

(a−1)! going to 4−d
2cdNF

. This is easy to understand: from Eq. (6), it can be seen that the beta function vanishes for

g̃2 N
a−1
c

(a−1)! = 4−d
2cdNF

. Thus, the theory approaches a fixed point in the infrared: it becomes conformally invariant. Unlike

pure YM, the theory has no mass gap. Note, of course that as written Eq. (7) is valid only for the case of massless
quarks, since in the massless case the one-quark loop contribution to the β function depends on µ only implicitly
through g. Moreover, for massless quarks, the result is exact at large Nc. However, when non-zero quark masses are
taken into account, the running of the coupling depends on the ratio of µ to mq. Note that Eq. (7) remains valid for
µ� mq since in that case the quark mass is irrelevant and behavior is that of the massless case. For the purposes of
verifying asymptotic freedom this is sufficient. On the other hand for µ � mq the quarks are frozen out. Since the
quark loop is the only source of running at large Nc, one expects that g̃, the dimensionless coupling, follows Eq. (7)
at large µ but it slows down as µ approaches the regime of mq and stops asymptotically as µ gets much smaller than
mq. If there are multiple flavors of quarks with different masses, then one expects the form of Eq. (7) to hold for
µ well away from any of the quark masses with Nf equal to the number of active quarks (quarks with masses well
below µ). The values of Λ used in Eq. (7) will differ in the various regions; they will be fixed by the property that the
coupling constant as a function of µ needs to smoothly connect from below the threshold in which a quark is inactive
to the one above it.

IV. CORRELATION FUNCTIONS

Correlation functions in these theories are of interest. By “glueball-glueball” correlation function, we mean the
correlator for the purely gluonic local color singlet source

∑
a F

a
µνF

a µν where a represents color. Similarly the
“meson-meson” correlation functions are the correlators for quark bilinear sources. As it happens, the glueball-
glueball and the meson-meson correlation functions are both exactly calculable in the large Nc limit. This is because
as was shown in the previous section, the addition of an extra resummed gluon line to a diagram characteristically
reduces the scaling of the diagram by a factor which scales as N2−a

c . Thus, the leading diagrams are those with the
fewest number of resummed gluon lines.

In the case of the meson-meson correlation function, the one-loop diagram is of the order Na
c , and any higher

loop diagram is suppressed by powers of N2−a
c . For concreteness we illustrate the general issues associated with
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meson correlators in the case of scalar sources for one flavor of massless quarks in the three-index anti-symmetric
representation for QCD in 2 + 1 space-time dimensions. A quark in this theory is of the form qijk where i, j, k run
from 1 to Nc and where qijk = −qjik = −qkji. The scalar meson correlation function in general is given by

Πmeson(k2) =

∫
〈T
[
q̄ijkqijk (x) q̄lmnqlmn (0)

]
〉eikxd3x , (8)

where T indicates time-ordered product and the color indices i, j, k, l,m, n are summed. At leading order in Nc we
have

ΠLO
meson(k2) =

N3
c

3!

∫
d3q

(2π)
3 Trace

[(
i (γµq

µ +mq)

q2 −m2
q

)(
i (γµk

µ + γµq
µ +mq)

(q + k)2 −m2
q

)]

=
−iN3

c

6π

∫ 1

0

√
m2
q − k2x(1− x)dx+ const =

−iN3
c

6π

mq

2
−

(
k2 − 4m2

q

)
coth−1

(
2mq√
k2

)
4
√
k2

+ const , (9)

where the constant arises due to the need to renormalize the (divergent) composite operator.
The general structure of Eq. (9) holds for scalar meson correlators for theories in 2 + 1 space-time dimensions with

quarks in any higher representation and with any number of degenerate flavors. The only modification is a different
overall factor. A few simple comments about this structure are in order. The first is that after neglecting the additive
constant, −iΠLO

meson(k2) is purely real for k2 < 4m2
q. It develops an imaginary part at k2 = 4m2

q, which corresponds
to the threshold for unconfined q-q pair production. This may be a bit of a surprise: while the massless theory is
conformal in the IR, the theory with massive quarks is confining. However, as will be discussed in sec. V, the scale
of confinement is parametrically suppressed in Nc and thus, the correlator is accurately described by the expression
for unconfined quarks except right in the immediate vicinity of the would-be threshold. The massless limit of the

correlator is of interest: ΠLO
meson(k2)→ −i4N3

c

3π

√
−k2 + const.

The glueball correlation functions at leading order are also straightforward. One simply calculates the one-loop
correlation function using the dressed (i.e. resummed) gluon propagator from Fig. 2. The leading order diagrams go as
N2
c . Corrections associated with diagrams with additional gluon lines are suppressed by powers of N2−a

c . The first step
is to compute the dressed gluon propagator. It is worth noting that the dressed propagator involves renormalization
and must be specified at a scale. In order to keep the calculation consistent with that of the β function, it is natural
to set the scale for the dressed propagator to be the same as the scale of the couplings used in the bubble sum. The
result is particularly simple in the massless case:

DR ab
µν (q2, µ) =

gµνδab

(q2 + iε)

(
1 + 2cdNf g̃(µ)2 N

a−1
c

(a−1)! (i
µ√
q2
− 1)

)
=

gµνδab

(q2 + iε)

(
1 +

i µ√
q2
−1

µ
λ+1

) (10)

where R in the superscript stands for resummed and a, b are color indices. The expression for the resummed propagator
for the case of massive quarks is significantly more complicated but it too can be expressed in closed form.

This dressed propagator can directly be used to obtain the glueball-glueball correlator, i.e. the correlator between∑
a F

a
µνF

a µν and
∑
b F

b
ρσF

b ρσ operators. There does not appear to be any closed-form expression for this correlator,
even in the massless case. However it can be evaluated numerically in a straightforward way.

V. CONFINEMENT

The theory with massive quarks—unlike the case of massless ones—is confining. The reason is simple: the infrared
physics is dominated by gluons at scales well below the quark mass since the quarks are frozen out and the gluody-
namics is confining, not conformal. However, this gives rise to an apparent puzzle: if the theory is confining, then
Eq. (9) may seem problematic. After all, this expression is nothing but the correlation function for noninteracting
quarks. How can a confining theory yield the correlator for unconfined quarks ?

Actually, there is a very natural way for this to occur. To understand this, it is useful to recall what happens
to correlators of quark bilinears with four-momenta that are large compared to ΛQCD in ordinary QCD in 3 + 1
dimensions. As is well known, such correlators are accurately described by free-field correlation functions and become
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increasingly well described this way as the four-momentum increases. Now, this is usually understood as resulting
from asymptotic freedom—the theory becomes increasingly weakly coupled and for the purposes of describing the
correlator the quarks act, to good approximation, as though they are free and unconfined. This understanding is
correct so far as it goes.

However, there is an alternative way to think about the behavior of the large q2 correlator in QCD which sheds light
upon the present problem. From general principles [22], the correlator can be written in Kallen-Lehman representation:

π(q2) =

∫
ds

ρ(s)

q2 − s+ iε
(11)

where ρ(s) is the square of the amplitude for the quark bilinear source to create a physical state with mass of
√
s.

In order, for the large q2 correlators to be accurately described by the free quark-antiquark result, ρ(s) must also be
accurately described by the free theory result at large s. But ρ(s) describes the amplitude for creating physical states
and the physical states are made of hadrons, with quarks confined in them. Somehow the spectral density, although
actually composed of contributions from physical multi-hadron states, manages to simulate the behavior of a free
quark-antiquark pair for sufficiently large s. A necessary condition on the regime where this happens is that s should
be much larger than the confinement scale for the theory–i.e. the scale that controls the detailed dynamics of the
confined hadronic state. The reason for this is simply that in the regime of interest, the spectral function is a smooth
function reflecting the phase space for the would-be free quark-antiquark pair. Thus, the spectral function cannot be
sensitive to the details of the individual confined hadrons which actually compose the state. This will happen only
if there is enough phase space available that the system averages over all of the detailed physics of the individual
hadrons at the confinement scale.

Of course, in ordinary QCD in 3 + 1 dimensions, these two perspectives on the correlator at large q2 are com-
plementary. They are different ways to think about the problem and deal with different aspects. However, the two
perspectives are completely consistent with each other: in QCD, there is essentially only one scale—ΛQCD—and it sets
both the scale at which asymptotic freedom sets in and the scale where confinement begins. Thus, when q2 � ΛQCD

one expects that asymptotic freedom forces the correlator to look like the free field one and in the same regime one
expects the spectral function to be insensitive to the confinement dynamics enabling the spectral function to do so.

The question of interest here is the behavior of large Nc QCD with quarks in higher representations and lower
spatial dimensions. For these models, the behavior is a bit more subtle. The key thing, which we will show below,
is that unlike for the case of ordinary QCD, the scale which controls the asymptotic behavior of the coupling is
parametrically well separated from the confinement scale. In particular, the ratio of the confinement scale, Λconf to
Λ scales as

Λconf

Λ
∼ N

2−a
4−d
c . (12)

Thus, for example a three index representation in 2 + 1 space-time dimensions, Λconf/Λ scales as 1/Nc. Since the
analysis done in sec. III was in the limit of Nc going to infinity with masses, external momenta and Λ held fixed,
the regime studied implicitly had q � Λconf . Given this scaling, it is perfectly understandable why the dynamics
of confinement do not play a role in the meson-meson correlator: one is simply working at a scale well above the
confinement scale even though it is not well above Λ.

It is easy to derive the scaling in Eq. (12). Let us return to the analysis of sec. II and for simplicity assume non-zero
quark masses with either a single flavor of quarks or degenerate flavors so that there is only one quark mass in the
problem. It was argued in sec. II that Eq. (7) holds for q � mq. It was stated that the running of the dimensionless
coupling slows down as q becomes comparable to mq and stops asymptotically as q gets much smaller than mq. This
is correct as far as it goes. However, this analysis holds only for q of order N0

c when the leading order dynamics
dominates. For sufficiently small q one cannot neglect the subleading effect in 1/Nc associated with gluon exchange

and running begins again. We will see that “sufficiently small” means a q which is parametrically of the order N
2−a
4−d
c

(and thus is pushed to zero in the limit of large Nc).

Let us consider the value of the coupling at renormalization scale µ, g(µ) in a regime in which µ is both much
smaller than mq, but also of order N0

c . If such a regime is approached from above, Eq. (7) is accurate for µ � mq.
The running slows down and stops as µ approaches and then drops well below mq. A very crude estimate of the
value of g in the regime under consideration would be to assume that Eq. (7) hold for µ > mq and then running stops
immediately when µ hits mq. The actual value will differ from this crude estimate due to the running in the regime
µ ∼ mq. It is clear that such running can lead to a correction to the crude estimate by a factor of order N0

c since the
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running shuts off over a region of order N0
c . Thus the coupling in the regime of interest is given by

g2 = f(a− 1)!N1−a
c Λ4−d

(
4− d
2cNF

)
1

1 +
(

Λ
mq

)4−d (13)

where f is the correction factor which accounts for running with µ ∼ mq; f can be explicitly computed but its precise
value is not of concern here.

Now let us consider what happens if we approach from below the regime in which µ is both much smaller than
mq, but also of order N0

c . Let us begin running with arbitrarily small µ so that µ is not of the order N0
c and ask

what happens as it grows towards N0
c . In this case, the role of the quark in the renormalization group flow can be

neglected, but the role of the gluons cannot. Thus, the theory runs the same way as a pure Yang-Mills theory does.
In a pure Yang-Mills theory the leading order contributions in 1/Nc are planar and always have the coupling in the
combination g2Nc. Thus, the form of the scaling at leading order is

g2(µ) = N−1
c Λ4−d

conf h

(
µ

Λconf

)
(14)

where Λconf is the confinement scale associated with the Yang-Mills theory and h is a function characterizing the
scaling. Note that the lower dimensional Yang-Mills theory is asymptotically free in the sense that g2/µ4−d goes
down with increasing µ. It is easy to show from the renormalization group equation that the dimensionless coupling
asymptotes to a constant. Thus the function h has the property that the limit of h(x) as x goes to infinity is a finite,
nonzero value which we denote h∞. Thus as one approaches the regime of interest from below, the running stops and
one obtains

g2 = N−1
c Λ4−d

conf h∞. (15)

Equating Eqs. (13) and (15) yields Eq. (12).

VI. DISCUSSION

The large Nc gauge theories discussed in this paper are very different from the typical large Nc gauge theories. In
the regime where external momenta and quark masses are taken to be of order N0

c , the dynamics is dominated by
the quark loops and the confining dynamics associated with gluodynamics is irrelevant. This means that the large
Nc, β function is exactly calculable; it is given by Eq. (6) for the case of massless quarks. In the massless quark case,
the theory becomes conformal in the infrared. In the case of nonzero quark masses, the theory is confining. However,
the confining scale is parametrically well separated from the scale Λ which parameterizes the scaling of the coupling
in the ultraviolet by an amount given by Eq. (12). Correlation functions for color-singlet quark bilinear and gluon
bilinear sources are easily computed in this limit.

It is worth noting that the behavior seen in this version of the large Nc limit is qualitatively similar to gauge
theories in other regimes in which the quark loops dominate. Thus, for example, they will behave quite similar to
gauge theories with fixed Nc and many degenerate flavors of quark in any representation including the fundamental.
As in the case of large Nc with quarks in the higher representations, such theories are not asymptotically free in
3 + 1 D as the quark loops dominate the beta function. In order to have a smooth Nf limit that keeps the gluon
polarization finite we need to hold g2Nf fixed as Nf → ∞. Once again if we go to lower space-time dimensions, in
the absence of quark mass the beta function looks like

β(g̃) = g̃

(
d− 4

2
+ c̃ (g̃2Nf )

)
(16)

where the constant c̃ depends on dimensions of space-time and number of colors Nc which is finite in this case. The
form of this beta function is identical to (6) and as before we approach a non-interacting theory as we go to higher
and higher energies and achieve conformality in the infrared. Introduction of massive quarks gives rise to confinement
as before with the confinement scale parametrically separated from the ultraviolet scale. The factor separating the

two scales is given by N
1

4−d
f .
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