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We study N = 1 field theories with a U(1)R symmetry on compact four-manifolds M.

Supersymmetry requires M to be a complex manifold. The supersymmetric theory on M
can be described in terms of conventional fields coupled to background supergravity, or in

terms of twisted fields adapted to the complex geometry of M. Many properties of the

theory that are difficult to see in one formulation are simpler in the other one. We use the

twisted description to study the dependence of the partition function ZM on the geometry

of M, as well as coupling constants and background gauge fields, recovering and extending

previous results. We also indicate how to generalize our analysis to three-dimensional

N = 2 theories with a U(1)R symmetry. In this case supersymmetry requires M to

carry a transversely holomorphic foliation, which endows it with a near-perfect analogue

of complex geometry. Finally, we present new explicit formulas for the dependence of ZM

on the choice of U(1)R symmetry in four and three dimensions, and illustrate them for

complex manifolds diffeomorphic to S3 × S1, as well as general squashed three-spheres.



1. Introduction

Broadly speaking, there are two systematic ways to construct supersymmetric field

theories on a Riemannian manifoldM. (For simplicity, we will assume thatM is compact.)

Twisting: In this approach, a subgroup of Euclidean spacetime rotations is identified

with the R-symmetry group, so that some of the supercharges transform as scalars and

can be defined globally on M. In curved space, the role of spacetime rotations is played

by the Riemannian holonomy group. The archetypal (and also the first) example of this

procedure isN = 2 Yang-Mills theory twisted on a four-manifold [1], where an SU(2) factor

of the SU(2)ℓ × SU(2)r holonomy group is identified with the SU(2)R symmetry. After

twisting, the bosonic and fermionic fields of the theory become differential forms on M,

and it can be shown that the partition function ZM is independent of the metric. For

this reason, the twist is referred to as topological. Four-dimensional N = 1 theories with

a U(1)R symmetry can be twisted on Kähler manifolds, which have U(2) holonomy [2,3].

In this case the twist is not topological, because it depends on a choice of Kähler structure.

Rigid Supersymmetry: In this approach, supersymmetric theories on M are described

in terms of conventional field variables coupled to background off-shell supergravity [4].

The allowed supersymmetric configurations for the bosonic supergravity fields are deter-

mined by setting the fermions in the supergravity multiplet and their supersymmetry

variations to zero. These constraints often imply the presence of additional geometric

structures on M (other than the Riemannian metric gµν), which affect the supersymmetry

transformations of dynamical fields, as well as the Lagrangian on M.

We will explore the relationship between twisting and rigid supersymmetry for N = 1

theories with a U(1)R symmetry in four dimensions, and for their three-dimensional

cousins.1 The latter approach is based on the new-minimal supergravity multiplet con-

structed in [10,11], which contains the metric gµν , an R-symmetry gauge field A
(R)
µ , and a

covariantly conserved vector V µ, as well as the gravitinos Ψµα, Ψ̃µα̇.
2 Setting the graviti-

nos and their supersymmetry variations to zero leads to the following generalized Killing

spinor equations [4],
(
∇µ − iA(R)

µ

)
ζ = − i

2
V νσµσ̃νζ ,

(
∇µ + iA(R)

µ

)
ζ̃ =

i

2
V ν σ̃µσν ζ̃ ,

(1.1)

1 In the context of four-dimensional N = 2 theories, the relationship between the topologically

twisted formulation and a description in terms of conventional field variables was discussed in [5-9].
2 Unless stated otherwise, we follow the conventions of [12].



where ζ and ζ̃ carry R-charges +1 and −1. The existence of such Killing spinors implies

that the bosonic background fields preserve a supercharge Q or Q̃ of R-charge −1 or +1,

respectively. We will mostly focus on manifolds M that admit a Killing spinor ζα of R-

charge +1, which exists if and only if M possess an integrable complex structure Jµ
ν

and gµν is a compatible Hermitian metric [13,14]. The other supergravity fields A
(R)
µ

and V µ are then essentially determined in terms of Jµ
ν and gµν .

The rigid supersymmetry approach cleanly separates Lagrangians and transforma-

tion rules, which only depend on the supergravity fields, from the allowed supersymmetric

backgrounds, which are determined by solving the Killing spinor equations (1.1). These

backgrounds depend on the Hermitian structure, and hence the same is true for the trans-

formation rules and the Lagrangian on M. However, attempting to express the latter

directly in terms of Jµ
ν and gµν quickly leads to complicated formulas. This makes it

challenging to study the dependence of supersymmetric observables, such as the partition

function ZM, on the geometry of M.

This problem was sidestepped in [12] by first analyzing the dependence of ZM on Jµ
ν

and gµν at the linearized level around flat space and arguing for the validity of the results on

a general manifoldM. (The second step relies on the global properties of the supercharge Q

on M, which will be reviewed below.) At the linearized level, the Lagrangians on M and

in flat space only differ by operators that reside in the R-current supermultiplet of the

flat-space theory [15,16], which also contains the supersymmetry current and the energy-

momentum tensor. The sources that multiply these operators are the linearized new-

minimal supergravity fields, which in turn depend on Jµ
ν and gµν . Using the known

transformation rules of the R-current supermultiplet and the fact that Q-exact terms in

the Lagrangian do not affect the partition function ZM, it was shown that ZM is a locally

holomorphic function of the complex structure moduli (finitely many, since M is compact),

but independent of the Hermitian metric. Similarly, it was found that ZM only depends

on background gauge fields for Abelian flavor symmetries, which determine holomorphic

line bundles over M, through a locally holomorphic function of the corresponding bundle

moduli (again, finitely many).

The arguments in [12] only rely on general properties of the R-current supermultiplet.

Therefore, they are model independent and do not require a Lagrangian description. In

sections 5 and 6 we will use similar methods to study the dependence of the partition func-

tion on the choice of R-symmetry in four and three dimensions. An obvious shortcoming

of the linearized approach is the need to explain why results obtained in a neighborhood of



flat space continue to hold for arbitrary M. Moreover, this approach inherits the empha-

sis of the rigid supersymmetry paradigm on supergravity fields. The Hermitian structure,

which underlies many aspects of the supersymmetric theory on M, only enters indirectly

through the dependence of the supergravity background fields on Jµ
ν and gµν .

Here we will pursue a more geometric, fully non-linear approach, which harnesses the

complex geometry of M. As was shown in [13], the properties of the Killing spinor ζα

allow us to identify L = K− 1

2 , where L is the U(1)R bundle and K is the canonical line

bundle of complex (2, 0)-forms on M. This defines a twist, which turns fields of R-charge r

into sections of K− r
2 . In particular, the supercharge Q corresponding to ζα transforms as

a scalar under holomorphic coordinate changes. This allows us to make contact with the

twisted N = 1 theories on Kähler manifolds studied in [2,3,17], and to generalize them to

arbitrary complex manifolds M. Since the twist is defined with respect to a fixed complex

structure on M, we will follow [17] and refer to it as a holomorphic twist. An example

of recent interest is furnished by complex manifolds diffeomorphic to S3 × S1, known as

primary Hopf surfaces, which are not Kähler. Partition functions on these spaces compute

the supersymmetric indices defined in [18,19], up to local counterterms and effects due to

quantum anomalies [4,12,20,21].

In this paper, we will develop the twisted holomorphic formulation for N = 1 theories

on complex manifoldsM, and use it to study the properties of their partition functions ZM.

This will allow us to give an alternative, more direct, proof of the results in [12] about

the dependence of ZM on the geometry of M, and to extend them by obtaining exact

statements about the dependence of ZM on other continuous parameters. For instance,

we will show that ZM is a locally holomorphic function of anti-chiral F -term coupling

constants, but that it does not depend onD-terms or chiral F -terms. We will also study the

dependence of ZM on continuous shifts of the R-symmetry by an Abelian flavor symmetry,

which is completely fixed by its holomorphic dependence on complex structure and line

bundle moduli. At the end of the paper, we will sketch how to generalize our results to

three-dimensional N = 2 theories with a U(1)R symmetry (see the outline below).

As was already explained in [12], our methods are essentially classical: we will assume

that Q-exact terms in the Lagrangian do not affect the partition function ZM, and that it

is legitimate to perform field redefinitions. Both assumptions can be ruined by quantum

effects, hidden in the path integral measure, and hence our results about the partition

function ZM only hold up to local counterterms and possible quantum anomalies. This



qualification applies throughout the paper, although we will repeat it occasionally. In this

context, some effects due to anomalies were recently discussed in [22,21].

The remainder of this paper is structured as follows: in section 2, we review rigid

supersymmetric theories on four-manifolds M that admit solutions to the Killing spinor

equations (1.1). In particular, we assemble the ingredients needed to describe renormaliz-

able theories of chiral multiplets and gauge fields coupled to background supergravity.

Section 3 recalls the correspondence between a Killing spinor ζα and a Hermitian

structure on M, and how this defines the holomorphic twist. We exhibit an explicit field

redefinition from conventional to twisted field variables. In terms of the twisted variables,

which are adapted to the complex geometry of M, the supersymmetry transformations

and Lagrangians described in section 2 simplify dramatically. This allows us to prove

that D-terms and chiral F -terms are Q-exact, and hence the partition function ZM does

not depend on coupling constants that multiply such terms.

In section 4, we use twisted variables to study the dependence of ZM on the complex

structure and Hermitian metric on M, as well as Abelian background gauge fields that

couple to flavor symmetries, which define holomorphic line bundles overM. We recover the

results of [12], already summarized above: the partition function is a locally holomorphic

function of finitely many complex structure and holomorphic line bundle moduli; it does

not depend on the Hermitian metric or the detailed configuration of background flavor

gauge fields. The proof using twisted variables is manifestly non-linear and fully utilizes

the complex geometry of M. However, unlike the model-independent analysis in [12], it

requires an explicit Lagrangian description in terms of fields.

Section 5 examines the dependence of the partition function on continuous shifts of

the R-symmetry by an Abelian flavor symmetry, which are possible if the canonical bundle

of M is topologically trivial. We derive an explicit formula that expresses the R-symmetry

dependence of ZM in terms of its dependence on complex structure and holomorphic line

bundle moduli, and illustrate this formula for primary Hopf surfaces, i.e. complex manifolds

diffeomorphic to S3 × S1.

In section 6, we explain how to generalize the results of this paper to three-

dimensional N = 2 theories with a U(1)R symmetry on curved manifolds M. Supersym-

metry requires M to possess a transversely holomorphic foliation [23,12], which endows

it with a near-perfect analogue of complex geometry. Therefore, supersymmetric theories

on M also have a twisted description, which can be used to re-derive and extend the re-

sults of [12] on the parameter dependence of the three-dimensional partition function ZM.



We generalize the results of section 5 to obtain an explicit formula for the R-symmetry

dependence of ZM, and we apply it to a general squashed sphere. Our formula provides an

a priori explanation for the ‘mysterious’ holomorphy observed in [24] on a round sphere,

and its generalization to the squashed case.

2. Supersymmetry Multiplets and Lagrangians

In this section, we review the rigid supersymmetry algebra and its multiplets on

manifolds M that admit one or several solutions to the Killing spinor equations (1.1).

Using these multiplets, it is straightforward to write down supersymmetric Lagrangians

on M. We will give explicit formulas for renormalizable theories of chiral multiplets

coupled to dynamical or background gauge fields. As explained in [4], these results fol-

low from the corresponding formulas in matter-coupled new minimal supergravity [10,11].

The rigid curved-space Lagrangians obtained in this way reduce to conventional flat-space

Lagrangians at short distances. In particular, taking the metric to be flat and setting to

zero all other background fields results in a theory with full N = 1 super-Poincaré invari-

ance. An example of a supersymmetric term that does not seem to arise from a known

supergravity-matter coupling will be discussed in section 3.

2.1. The Supersymmetry Algebra

Given solutions ζ, η and ζ̃ , η̃ of the Killing spinor equations (1.1), the rigid supersym-

metry algebra on M follows from the algebra of local supersymmetry transformations in

new minimal supergavity [10,11]. If Φ(r) is a field of R-charge r and arbitrary spin,

{δζ , δζ̃}Φ
(r) = 2iL′

KΦ(r) , Kµ = ζσµζ̃ ,

{δζ , δη}Φ(r) = {δ
ζ̃
, δ

η̃
}Φ(r) = 0 .

(2.1)

Here we have assumed that Φ(r) does not couple to other dynamical or background gauge

fields, which will be discussed below. The Killing spinor equations (1.1) imply that Kµ is

a Killing vector [13]. The modified Lie derivative L′
K is covariant with respect to local R-

symmetry gauge transformations,

L′
KΦ(r) = LKΦ(r) − irKµ

(
A(R)

µ +
3

2
Vµ

)
Φ(r) , (2.2)

where LK is the usual Lie derivative. Two additional comments are in order:



1.) We take the Killing spinors parametrizing supersymmetry transformations to be com-

muting. Consequently, supersymmetry transformations δ are anti-commuting. This

is reflected in the structure of the algebra (2.1).

2.) Since we are working in Euclidean signature, left-handed and right-handed spinors

are not related by complex conjugation. Compatibility with supersymmetry transfor-

mations prompts us to formally relax the reality conditions on bosonic fields as well.

We therefore view all fields as independent complex variables, with the understanding

that one must ultimately choose an integration contour for dynamical bosonic fields.

2.2. Basic Supersymmetry Multiplets

We will now discuss the realization of the algebra (2.1) on a general multiplet S, whose

bottom component C is a complex scalar of R-charge r. Although there are more general

multiplets, whose bottom components carry spin, we will obtain all necessary multiplets

by starting with S and imposing supersymmetric constraints.

The general multiplet S has 16 + 16 components,

S = (C, χα, χ̃
α̇,M, M̃, aµ, λα, λ̃

α̇, D) , (2.3)

whose R-charges relative to its bottom component are given by (0,−1, 1,−2, 2, 0, 1,−1, 0).

Its transformation rules under a supersymmetry variation with spinor parameters ζ, ζ̃ can

be obtained by taking a rigid limit of the tensor calculus for new-minimal supergravity

developed in [11,25],

δC = iζχ− iζ̃χ̃ ,

δχ = ζM + σµζ̃ (iaµ +DµC) ,

δχ̃ = ζ̃M̃ + σ̃µζ (iaµ −DµC) ,

δM = 2ζ̃λ̃+ 2iDµ(ζ̃ σ̃
µχ) ,

δM̃ = 2ζλ+ 2iDµ(ζσ
µχ̃) ,

δaµ = i(ζσµλ̃+ ζ̃ σ̃µλ) +Dµ(ζχ+ ζ̃χ̃) ,

δλ = iζD + 2σµνζ Dµaν ,

δλ̃ = −iζ̃D + 2σ̃µν ζ̃ Dµaν ,

δD = −Dµ(ζσ
µλ̃− ζ̃ σ̃µλ) + 2iVµ(ζσ

µλ̃+ ζ̃ σ̃µλ)

+
ir

4
(R − 6V µVµ)(ζχ+ ζ̃χ̃) .

(2.4)



Here R is the Ricci scalar. The action of the covariant derivative Dµ on a field Φ(r)

of R-charge r is given by

DµΦ
(r) =

(
∇µ − ir

(
A(R)

µ +
3

2
Vµ
))

Φ(r) , (2.5)

with ∇µ the usual Levi-Civita connection. It can be checked that the transformations

in (2.4) realize the algebra (2.1) whenever the Killing spinors satisfy (1.1).

Given two general multiplets S1, S2 with bottom components C1, C2 of R-charge r1, r2,

we can define a product multiplet S, whose bottom component C = C1C2 carries R-

charge r1+r2. The other components of S can then be expressed in terms of the components

of S1, S2 by repeatedly applying the transformations in (2.4). The resulting multiplication

rules are summarized in appendix A.

In order to construct supersymmetric Lagrangians, we need chiral and anti-chiral

matter multiplets, as well as vector multiplets containing gauge fields. As in flat space,

chiral and anti-chiral multiplets can be obtained from a general multiplet (2.3) by imposing

supersymmetric constraints:

• Chiral Multiplet: Imposing χ̃α̇ = 0 leads to a chiral multiplet Φ = (φ, ψα, F ) of R-

charge r. Consistency with the transformation rules (2.4) shows that Φ is embedded

in a general multiplet (2.3) as follows,

Φ =
(
φ,−

√
2iψα, 0,−2iF, 0,−iDµφ, 0, 0,

r

4
(R− 6VµV

µ)φ
)
. (2.6)

The resulting supersymmetry transformations for the components of Φ are given by

δφ =
√
2ζψ ,

δψ =
√
2ζF +

√
2iσµζ̃ Dµφ ,

δF =
√
2iDµ

(
ζ̃ σ̃µψ

)
.

(2.7)

• Anti-Chiral Multiplet: The multiplet conjugate to Φ is an anti-chiral multiplet Φ̃ =

(φ̃, ψ̃α̇, F ) of R-charge −r. It is embedded in a general multiplet (2.3) of R-charge −r
with χα = 0,

Φ̃ =
(
φ̃, 0,

√
2iψ̃α̇, 0, 2iF̃ , iDµφ̃, 0, 0,

r

4
(R − 6VµV

µ)φ̃
)
. (2.8)



Its supersymmetry transformations are given by

δφ̃ =
√
2ζ̃ψ̃ ,

δψ̃ =
√
2ζ̃F̃ +

√
2iσ̃µζ Dµφ̃ ,

δF̃ =
√
2iDµ

(
ζσµψ̃

)
.

(2.9)

2.3. Gauge Fields and Charged Matter

In order to describe gauge fields, we need to specify a compact gauge group G with

Lie algebra g. Let T a (a = 1, . . . , dimG) denote a set of Hermitian generators for g in the

adjoint representation, normalized so that

Tr
(
T aT b

)
= δab . (2.10)

As in flat space, a vector multiplet V = VaT a is a general multiplet of vanishing R-charge,

which is valued in the adjoint representation of g and subject to the gauge freedom

e−2V′

= eiΩ̃e−2Ve−iΩ . (2.11)

Here Ω = ΩaT a and Ω̃ = Ω̃aT a are arbitrary adjoint-valued chiral and anti-chiral multiplets

of vanishing R-charge. The exponentials in (2.11) should be interpreted as infinite power

series, where each term is evaluated according to the product rules in appendix A.

We can use (2.11) to fix Wess-Zumino (WZ) gauge, in which

V =
(
0, 0, 0, 0, 0, aµ, λα, λ̃

α̇, D
)
. (2.12)

All components of V are g-valued fields in the adjoint representation, e.g. aµ = aaµT
a. The

residual gauge freedom is parametrized by Ω = Ω̃ = (ω, 0, 0). For infinitesimal ω,

δωaµ = ∂µω + i[ω, aµ] , δωλ = i[ω, λ] , δωλ̃ = i[ω, λ̃] , δωD = i[ω,D] . (2.13)

As expected, aµ transforms like a g-valued gauge field, while the other components trans-

form in the adjoint representation of g.

Supersymmetry transformations do not preserve WZ-gauge, which must be restored

by a compensating gauge transformation. This leads to the following transformation rules:

δaµ = i(ζσµλ̃+ ζ̃ σ̃µλ) ,

δλ = iζD + σµνζ fµν ,

δλ̃ = −iζ̃D + σ̃µν ζ̃ fµν ,

δD = −Dµ(ζσ
µλ̃− ζ̃ σ̃µλ) + 2iVµ(ζσ

µλ̃+ ζ̃ σ̃µλ) .

(2.14)



Here the adjoint-valued field strength fµν is given by

fµν = ∂µaν − ∂νaµ − i[aµ, aν] . (2.15)

The covariant derivative Dµ acts as in (2.5), supplemented by the usual minimal terms to

ensure gauge covariance under (2.13). For instance,

Dµλ = ∇µλ− i
(
A(R)

µ +
3

2
Vµ

)
λ− i[aµ, λ] . (2.16)

The Lie derivative L′
K in (2.2) is similarly modified, which ensures gauge covariance of the

supersymmetry algebra (2.1) and consistency with the transformation rules (2.14).

As in flat space, we can consider a field-strength multiplet Λα, whose bottom com-

ponent is the gaugino λα. We will only need its gauge-invariant square TrΛ2, which is a

chiral multiplet whose components (φΛ2 , ψΛ2 , FΛ2) are given by

φΛ2 = Trλλ ,

ψΛ2 =
√
2Tr (iλD − σµνλfµν) ,

FΛ2 = Tr

(
1

2
fµνf

µν +
1

4
εµνρσfµνfρσ −D2 + 2iλσµ

(
Dµ − 3i

2
Vµ

)
λ̃

)
.

(2.17)

The components of the conjugate anti-chiral multiplet Tr Λ̃2 are given by

φ̃
Λ̃2

= Tr λ̃λ̃ ,

ψ̃
Λ̃2

=
√
2Tr

(
λ̃σ̃µνfµν − iλ̃D

)
,

F̃
Λ̃2

= Tr

(
1

2
fµνf

µν − 1

4
εµνρσfµνfρσ −D2 − 2i

(
Dµ +

3i

2
Vµ

)
λσµλ̃

)

= FΛ2 − Tr

(
1

2
εµνρσfµνfρσ + 2i∇µ

(
λσµλ̃

))
.

(2.18)

Here the last line shows that F̃
Λ̃2

and FΛ2 only differ by a topological term, as well as a

genuine total derivative. Note that (2.17) and (2.18) do not follow from the multiplication

rules in appendix A, which only apply to chiral and anti-chiral multiplets whose bottom

components are scalars.

In the presence of gauge fields, the transformation rules (2.7) and (2.9) for charged

chiral and anti-chiral matter fields are modified. Consider a chiral multiplet Φ ofR-charge r

transforming in some representation R of the gauge group with Hermitian generators T a
R
.

The conjugate anti-chiral multiplet Φ̃ of R-charge −r transforms in the representation R.



As usual, we can view Φ as a column vector and let gauge transformations (2.11) act from

the left, while Φ̃ is a row vector with gauge transformations acting from the right,

Φ′ = eiΩΦ , Φ̃′ = Φ̃e−iΩ̃ , (2.19)

where Ω = ΩaT a
R

and Ω̃ = Ω̃aT a
R

are both valued in the R-representation of g. As

before, (2.19) should be evaluated using a series expansion for the exponentials and the

product rules in appendix A.3 Under the residual gauge freedom (2.13), δωΦ = iωaT a
R
Φ

and δωΦ̃ = −iωaΦ̃T a
R
, as expected.

The supersymmetry transformations of charged chiral and anti-chiral multiplets in

WZ-gauge are given by (2.7) and (2.9), followed by a compensating gauge transformation

to restore WZ-gauge. For the chiral multiplet Φ the resulting transformation rules are

given by
δφ =

√
2ζψ ,

δψ =
√
2ζF +

√
2iσµζ̃ Dµφ ,

δF =
√
2iDµ

(
ζ̃ σ̃µψ

)
− 2iζ̃λ̃φ .

(2.20)

As in (2.16), the derivative Dµ is both R- and G-covariant,

Dµφ = ∂µφ− ir
(
A(R)

µ +
3

2
Vµ

)
φ− iaaµT

a
Rφ . (2.21)

Likewise, the action of λ̃ on φ in the last term of δF should be understood in the R-

representation, i.e. λ̃φ = λ̃aT a
R
φ.

Similarly, the supersymmetry transformations for the conjugate anti-chiral multiplet Φ̃

are given by

δφ̃ =
√
2ζ̃ψ̃ ,

δψ̃ =
√
2ζ̃F̃ +

√
2iσ̃µζ Dµφ̃ ,

δF̃ =
√
2iDµ

(
ζσµψ̃

)
+ 2iζλφ̃ .

(2.22)

Now Dµ and the action of λ on φ̃ in δF̃ should be understood in the R-representation,

Dµφ̃ = ∂µφ̃+ ir
(
A(R)

µ +
3

2
Vµ

)
φ̃+ iaaµ (T

a
R)

∗
φ̃ , (2.23)

and λφ̃ = −λa (T a
R
)
∗
φ̃.

3 Note that the multiplication rules for the product of two chiral multiplets or the product of

two anti-chiral multiplets are the same as in flat space.



It is straightforward to adapt the preceding discussion to the case where G is a global

flavor symmetry and the vector multiplet describes non-dynamical background gauge fields.

A given configuration for the bosonic fields aµ, D with λ = λ̃ = 0 is compatible with

supersymmetry if the variations δλ and δλ̃ in (2.14) vanish. Since aµ, D are not dynamical

and we are in Euclidean signature, it is natural to allow complex-valued field configurations.

(See the discussion at the end of section 2.1.) The supersymmetry transformations of chiral

and anti-chiral fields that transform under the flavor symmetry group G are given by (2.20)

and (2.22) with λ = λ̃ = 0.

2.4. Supersymmetric Lagrangians

We can use the multiplets described above to construct supersymmetric Lagrangians.

For our purposes, it is sufficient to limit the discussion to the curved-space analogues of

standard D- and F -term Lagrangians:

1.) D-terms: Consider a general multiplet (2.3) of R-charge r = 0, which may itself be

the product of various other multiplets. According to (2.4), the D-component of this

multiplet does not transform into a total derivative, unlike in flat space. However, it

is easy to check that the following Lagrangian does,

LD = −1

2
(D − 2aµV

µ) . (2.24)

This is the curved-space analogue of the usual flat-space D-term.

2.) F-Terms: The analogue of the flat-space superpotential is a chiral multiplet W of

R-charge r = 2, which is generally a composite field. It follows from (2.7) that

its F -term FW , whose R-charge vanishes, transforms into a total derivative under

supersymmetry, and hence it can serve as a supersymmetric Lagrangian,

LF = FW . (2.25)

We will refer to LF as a chiral F -term. Similarly, it follows from (2.9) that the su-

persymmetry variation of F̃
W̃
, which resides in the conjugate anti-chiral multiplet W̃

of R-charge r = −2, is a total derivative. We will refer to such a term in the super-

symmetric Lagrangian as an anti-chiral F -term,

L
F̃
= F̃

W̃
. (2.26)



2.5. Examples

Consider a single chiral multiplet Φ of R-charge r. As in flat space, the canonical

kinetic Lagrangian L
Φ̃Φ

for Φ is obtained by applying the D-term formula (2.24) to the

neutral superfield Φ̃Φ, whose components can be computed using the multiplication rules

in appendix A. Up to a total derivative,

L
Φ̃Φ

= Dµφ̃Dµφ+ iψ̃σ̃µDµψ − F̃F − r

4
(R− 6V µVµ) φ̃φ

− iV µ
(
φ̃Dµφ− φDµφ̃

)
+

1

2
Vµψ̃σ̃

µψ .
(2.27)

Here the covariant derivative Dµ acts as in (2.5). This precisely agrees with the formula

obtained in [4] from the rigid limit of the corresponding supergravity Lagrangian.4 The

matter Lagrangian (2.27) is independent of Vµ if we set the R-charge of the chiral field Φ

to its superconformal value r = 2
3
. This is due to the fact that the operator coupling to Vµ

is redundant when the flat-space field theory is superconformal.

We would like to generalize (2.27) to the case where Φ transforms in a representationR

of the gauge group G, with Φ̃ transforming in the conjugate representation R. We must

now use (2.20) and (2.22) to compute the components of Φ̃Φ. Alternatively, we can apply

the product rules in appendix A to the multiplet Φ̃e−2VΦ, which is invariant under the

full gauge freedom in (2.11) and (2.19). The resulting Lagrangian is given by

L
G

Φ̃Φ
= Dµφ̃Dµφ+ iψ̃σ̃µDµψ − F̃F − r

4
(R− 6V µVµ) φ̃φ

− iV µ
(
φ̃Dµφ− φDµφ̃

)
+

1

2
Vµψ̃σ̃

µψ

+ φ̃Dφ+
√
2i
(
φ̃λψ − ψ̃λ̃φ

)
.

(2.28)

Here the covariant derivatives are modified as in (2.21) and (2.23).

In order to write down Yang-Mills kinetic terms for the gauge fields, we proceed as in

flat space and use the F and F̃ -terms of the chiral and anti-chiral superfields TrΛ2,Tr Λ̃2

in (2.17) and (2.18),

LYM =
τ

16πi
FΛ2 − τ

16πi
F̃
Λ̃2

, (2.29)

where τ the holomorphic gauge coupling,

τ =
θ

2π
+

4πi

g2
. (2.30)

4 The general Kähler sigma model described in [4] can be obtained by applying (2.24) to the

multiplet whose bottom component is the Kähler potential K.



For future reference, we use the last equation in (2.18) to rewrite (2.29) as

LYM =

(
τ − τ

16πi

)
FΛ2 +

τ

32πi
εµνρσTr (fµνfρσ) , (2.31)

up to a total derivative. Therefore, the Yang-Mills Lagrangian is a chiral F -term, up to a

term which is topological and holomorphic in τ . In components,

LYM =
1

g2
Tr

(
1

4
fµνfµν − 1

2
D2 + iλ̃σ̃µ

(
Dµ +

3i

2
Vµ
)
λ

)
− iθ

64π2
εµνρσTr (fµνfρλ) , (2.32)

again up to a total derivative. If G contains several factors, each will have its own holo-

morphic gauge coupling. Note that the explicit appearence of Vµ in (2.32) is canceled by

the Vµ-dependent piece of the covariant derivative (2.16), so that LYM is Vµ-independent.

This is due to the superconformal invariance of the classical Yang-Mills Lagrangian.

If G contains Abelian factors, additional supersymmetric terms become available. An

important example is the Fayet-Iliopoulos (FI) term, which can be obtained by applying

the D-term formula (2.24) to an Abelian vector multiplet (2.12) in Wess-Zumino gauge,

LFI = ξFI (D − 2aµV
µ) . (2.33)

This Lagrangian is invariant under small gauge transformations of aµ, since V µ is co-

variantly conserved, ∇µV
µ = 0, but if the gauge group is compact, invariance of LFI

under large gauge transformations may require ξFI to be quantized (see for instance [26]).

There are also terms that mix Abelian gauge fields with the R-symmetry gauge field,

e.g. εµνρλ∂µA
(R)
ν fρλ. For simplicity, we will omit such terms, as well as FI-Terms (2.33),

from our discussion, but it is straightforward to incorporate them into the framework

developed below.

3. Twisted Holomorphic Theories on Complex Manifolds

In the previous section, we constructed supersymmetric Lagrangians on a four-

manifold M that was assumed to admit one or several solutions to the Killing spinor

equations (1.1). As we will review below, the existence of a Killing spinor requires M to

be a complex manifold [13,14]. In this section, we will describe supersymmetric theories

on M in terms of twisted variables that are adapted to its complex structure. These

variables will be convenient for studying the dependence of the partition function ZM on

coupling constants and the geometry of M.



3.1. Killing Spinors and Complex Manifolds

From now on, we will assume that M admits a solution ζα of R-charge +1 to the

first Killing spinor equation in (1.1), and hence a supercharge Q of R-charge −1. (The

corresponding supersymmetry transformations on fields are denoted by δ.) As was shown

in [13,14], this requires M to possess a Hermitian structure, i.e. an integrable complex

structure Jµ
ν with compatible Hermitian metric gµν . The relation between ζα, which is

everywhere non-zero, and the complex structure is given by

Jµ
ν = − 2i

|ζ|2 ζ
†σµ

νζ . (3.1)

Using Fierz identities and the Killing spinor equation (1.1), it can be checked that the

right-hand side of (3.1) is in fact an integrable complex structure. We will therefore work

in local holomorphic coordinates zi (i = 1, 2) adapted to Jµ
ν , in which the only non-

vanishing components of the complex structure and the Hermitian metric are

J i
j = iδij , J i

j = −iδij , gij . (3.2)

It was argued in [13] that the supercharge Q corresponding to ζα transforms like a

scalar under holomorphic coordinate changes. A crucial role was played by the nowhere

vanishing two-form Pµν = ζσµνζ, which is a section of L2 ⊗K. Here L is the line bundle

of local U(1)R transformations and K is the canonical line bundle of complex (2, 0)-forms

onM. Since Pµν is everywhere non-zero, the line bundle L2⊗K is trivial. We can therefore

identify L = K− 1

2 , up to a trivial line bundle. This defines a holomorphic twist, under

which fields of R-charge r become sections of K− r
2 . (Below, we will discuss the conditions

under which K− r
2 is well defined.) A special case of this twist was used in [2,3,17] to study

certain R-symmetric N = 1 theories on Kähler manifolds.

In order to write explicit formulas, we define

p = P12 , s = pg−
1

4 , g = det (gµν) . (3.3)

For future use, note that
|p|2
|ζ|4 = 4

√
g , (3.4)

which follows from (3.3) and the fact that P12 = ζσ12ζ. Under a holomorphic coordinate

change z′i = z′i(z),

p′(z′) = p(z)det

(
∂z′i

∂zj

)
, s′(z′) = s(z)

(
det

(
∂z′i

∂zj

)) 1

2

(
det

(
∂z′i

∂zj

))− 1

2

. (3.5)



Therefore, s transforms by a phase. After the twist, this phase is compensated by a U(1)R

transformation, so that s behaves as a scalar under holomorphic coordinate changes. In

a suitable holomorphic frame, the Killing spinor ζα only depends on s and therefore also

transforms as a scalar. The explicit form of ζα in such a frame can be found in [13], but

it will not be needed here.

Given a choice of complex structure Jµ
ν and Hermitian metric gµν on M, as well as

a nowhere vanishing complex s, the background fields A
(R)
µ and are Vµ almost completely

fixed. The former is given by

A(R)
µ = Âµ +Aflat

µ − 1

4
(2δµ

ν − iJµ
ν)∇ρJ

ρ
ν ,

Âi =
i

8
∂i log g , Âi = − i

8
∂i log g ,

Aflat
µ = − i

2
∂µ log s .

(3.6)

while V µ is only determined up to a covariantly conserved, anti-holomorphic vector U i,

V µ =
1

2
∇νJν

µ + Uµ , U i = 0 , ∇µU
µ = 0 . (3.7)

Note that s is only unique up to multiplication by a well-defined, nowhere vanishing com-

plex function s0. Multiplying s by s0 has the effect of shifting A
(R)
µ by a gauge transfor-

mation. If the homotopy class of the map s0 : M → C
∗ is non-trivial, it is a large gauge

transformation. This is innocuous for fields whose R-charge is properly quantized, which

are described by well-defined integer powers of K upon identifying L = K− 1

2 . As we will see

below, some complex manifolds allow fields whose R-charges are not properly quantized.

After the twist, they are described by non-integer powers of K, whose definition requires

a choice of homotopy class for s0.
5

3.2. Twisted Variables

Consider the general multiplet S introduced in (2.3), whose bottom component C is

a complex scalar of R-charge r. We can use the Killing spinor ζα to define a multiplet S
of twisted variables:

5 Consider the following example [27]. If the complex manifold M is spin, there exist square-

roots of the canonical bundle K. In order to define
√
K, we must choose a spin structure, or

equivalently a flat Z2 connection. In our context, this amounts to specifying whether the winding

numbers of s0 around one-cycles of M are even or odd.



C = p−
r
2C , X = ip−

r
2 ζχ ,

Xij = p−
r
2 ζσijζ

ζ†χ

|ζ|2 , Mij = p−
r
2 ζσijζ M ,

X̃i =
ip−

r
2

2|ζ|2 ζ
†σiχ̃ , Ai = p−

r
2 ai + i∂iC ,

Ai = p−
r
2 ai + i∇c

iC + r
(
Vi +

1

2
Ui

)
C , L̃i = ip−

r
2 ζσiλ̃ ,

M̃ij = p−
r
2

ζ†σijζ
†

|ζ|4 M̃ , Lij = 2p−
r
2

ζ†σijζ
†

|ζ|4 ζλ− 4
(
∂iX̃j − ∂jX̃i

)
,

L = −ip
− r

2

|ζ|2 ζ†λ , D = p−
r
2D + Jµν∇c

µAν

+ r
(
Vi +

1

2
Ui

)
Ai − r

4
(R − 6V µVµ) C .

(3.8)

They have the following properties:

1.) Since ζα and p are nowhere vanishing, the transformation (3.8) from conventional to

twisted variables is invertible. Note that the fields retain their statistics, e.g. C is a

boson while X is a fermion, since ζα is a commuting spinor.

2.) The twisted variables are sections of K− r
2 ⊗Λn,m, for suitable n,m, where Λn,m is the

bundle of complex (n,m)-forms adapted to the complex structure (3.1). In particular,

all twisted variables have vanishing R-charge.

3.) The change of variables (3.8) is covariant under holomorphic coordinate changes. To

make this manifest, we have expressed all derivatives in terms of the Chern con-

nection ∇c
µ, which is compatible with the metric and the complex structure (see

appendix B for a review). Note that ∇c

i
= ∂i when acting on sections of K.

4.) The main advantage of the twisted variables is that they transform in a particularly

simple way under the supercharge δ corresponding to the Killing spinor ζ. Using (2.4)

with ζ̃ = 0, we find that each line (Y ,Z) of (3.8) transforms as follows,

δY = Z , δZ = 0 , (3.9)

so that δ2 = 0. Explicitly, the twisted variables (3.8) are paired into the following

collection of (Y ,Z)-multiplets with supersymmetry transformations as in (3.9),

(C,X ) , (Xij ,Mij) , (X̃i,Ai) , (Ai, L̃i) , (M̃ij ,Lij) , (L,D) . (3.10)



Note that the components of a given (Y ,Z)-multiplet transform as sections of the

same bundle, e.g. C,X are both scalars. This explicitly shows that the supercharge δ

is a scalar under holomorphic coordinate changes, as was emphasized in [13]. The

simple transformation rules in (3.9) should be compared with those in (2.4), which

are significantly more complicated.

5.) The R-charge r of the multiplet is restricted by the requirement that K− r
2 exists,

which is generally only the case if r ∈ 2Z. If K is topologically trivial, c1(K) = 0,

then K− r
2 exists for all r ∈ R. However, as was discussed at the end of section 3.1,

the definition of K− r
2 generally depends on a choice of homotopy class for s0.

As in section 2, we can take two twisted multiplets S1,S2, whose bottom compo-

nents C1, C2 transform as sections of K−
r1
2 ,K−

r2
2 and construct a product multiplet S,

whose bottom component C = C1C2 transforms as a section of K− 1

2
(r1+r2). The other com-

ponents of S are expressed in terms of the components of S1,S2 using the supersymmetry

transformations (3.9) and (3.10). The resulting multiplication rules for twisted multiplets

are summarized in appendix A.

Having obtained the twisted version of a general multiplet, we will now construct

twisted analogues of vector, chiral, and anti-chiral multiplets.

3.3. Twisted Vector Multiplet

The twisted version of a vector multiplet in WZ-gauge is obtained by applying the

change of variables (3.8) to (2.12). This leads to a twisted multiplet with zero R-charge,

whose only non-vanishing fields are given by

Aµ = aµ , L̃i , L , Lij , D = D +
1

2
Jµνfµν . (3.11)

Here fµν is the field-strength defined in (2.15). As in (2.12), all variables in (3.11) are

valued in the Lie algebra g.

Using the supersymmetry transformations (2.14), we find the following transformation

rules for the twisted variables in (3.11),

δai = L̃i , δL̃i = 0 ,

δL = D , δD = 0 ,

δLij = 4fij , δai = 0 .

(3.12)



Note that the pairs (ai, L̃i), (L,D), (Lij , 4fij) are (X ,Y)-multiplets and transform accord-

ing to (3.9). For later use, it is convenient to express the supersymmetry variation of fµν

in terms of the Chern connection (see appendix B),

δfij = Dc
i L̃j −Dc

j L̃i + i(dJ)
k
ijL̃k ,

δfij = −δfji = −Dc

j
L̃i ,

δfij = 0 .

(3.13)

Here Dc
µ is the gauge-covariant version of the Chern connection,

Dc
µL̃i = ∇c

µL̃i − i[aµ, L̃i] . (3.14)

The transformations (3.12) immediately imply that supersymmetric configurations

for background gauge fields correspond to holomorphic vector bundles [12]. Setting all

fermionic variables L̃i,L,Lij and their supersymmetry variations to zero, we find

fij = 0 , D = 0 . (3.15)

The first equation defines a holomorphic vector bundle over the complex manifold M.

Below, we will mostly focus on Abelian background gauge fields, for which the condi-

tion fij = ∂iaj − ∂jai = 0 defines a holomorphic line bundle. (See [12] and references

therein for additional details.)

3.4. Twisted Chiral Multiplet

The twisted version of a chiral multiplet Φ = (φ, ψα, F ) with R-charge r is obtained

by substituting (2.6) into the change of variables (3.8). The only non-vanishing twisted

fields are given by

C = p−
r
2φ , X =

√
2p−

r
2 ζψ ,

Xij = −
√
2ip−

r
2 ζσijζ

ζ†ψ

|ζ|2 , Mij = −2ip−
r
2 ζσijζF .

(3.16)

The pairs (C,X ) and (Xij ,Mij) transform according to (3.9),

δC = X , δX = 0 ,

δXij = Mij , δMij = 0 .
(3.17)

These formulas remain valid if Φ couples to dynamical or background gauge fields, as long

as we work in WZ-gauge.



3.5. Twisted Anti-Chiral Multiplet

The twisted version of an anti-chiral multiplet Φ̃ = (φ̃, ψ̃α̇, F̃ ) with R-charge −r
similarly follows from substituting (2.8) into (3.8), with r → −r in the latter formula.

Now the non-vanishing twisted fields are given by

C̃ = p
r
2 φ̃ , X̃i = − p

r
2√

2|ζ|2
ζ†σiψ̃ , M̃ij = 2ip

r
2

ζ†σijζ
†

|ζ|4 F̃ ,

Ai = 2i∇c
i C̃ − 2r

(
Vi +

1

2
Ui

)
C̃ , Ai = 2i∂iC̃ , Lij = −4

(
∂iX̃j − ∂jX̃i

)
.

(3.18)

Here we have denoted the twisted version of φ̃ by C̃, in order to distinguish it from the

twisted version C of the chiral field φ.

The supersymmetry transformations of the independent fields C̃, X̃i,M̃ij are obtained

by substituting (3.18) into (3.10) and applying (3.9),

δC̃ = 0 , δX̃i = 2i∂iC̃ , δM̃ij = −4
(
∂iX̃j − ∂jX̃i

)
. (3.19)

Note that these fields cannot be decomposed into (Y ,Z)-multiplets transforming as in (3.9).

Rather, the supercharge is represented by the ∂-operator and the relation δ2 = 0 is a

consequence of the fact that ∂
2
= 0. If Φ̃ transforms in the representation R under some

dynamical or background gauge group, the formulas in (3.19) are modified using (2.22),

δC̃ = 0 , δX̃i = 2i∂̂iC̃ , δM̃ij = −4(∂̂iX̃j − ∂̂jX̃i) + 2Lij C̃ . (3.20)

Here ∂̂i = ∂i − iai is the gauge-covariant ∂-operator and the fields ai,Lij belong to the

twisted vector multiplet under which Φ̃ is charged. As in the discussion around (2.23),

they act on the component fields of Φ̃ in the R-representation, e.g. ∂̂iC̃ = ∂iC̃+ iaaµ (T a
R
)
∗ C̃

and Lij C̃ = −La

ij
(T a

R
)
∗ C̃.

3.6. Twisted Lagrangians

We will now express the supersymmetric D- and F -term Lagrangians constructed in

section 2.3 in terms of twisted variables:

1.) D-Terms: The Lagrangian LD in (2.24) is constructed from a well-defined general

multiplet of vanishing R-charge. Using the transformation (3.8) to twisted variables

(with r = 0), we can rewrite the D-term Lagrangian as follows,

√
gLD = −

√
g

2
(D − 2aµV

µ) = −
√
g

2

(
D − 2AiU

i
)
+ (total derivative) . (3.21)



Here we have used the explicit form for V µ in (3.7), where U i was defined. Since the

multiplet was assumed to be well defined, we can drop the total derivative. It follows

from (3.9) and (3.10) that D = δL and Ai = δX̃i, so that D-terms are Q-exact,

√
gLD = δ

(
−
√
g

2

(
L − 2X̃iU

i
))

. (3.22)

Since δ2 = 0, it is also manifestly supersymmetric. The fact that (3.22) is Q-exact im-

plies that the partition function ZM does not depend on D-term parameters, i.e. cou-

plings that multiply supersymmetric terms of the form (3.21). This does not imply

that we can set all such parameters to zero (or other unphysical values) in the original

Lagrangian, since the resulting path integral may fail to converge, see for instance [1].

2.) Chiral F -Terms: The Lagrangian LF in (2.25) is constructed from a chiral multi-

plet W of R-charge r = 2. Converting to the twisted variables defined in (3.16), we

can rewrite this term as follows,

LF

√
gd4x = FW

√
gd4x =

i

16

√
g Mijdz

i ∧ dzj ∧ dz1 ∧ dz2 . (3.23)

Here Mij is a (2, 0)-form with coefficients in K−1, i.e. a scalar. According to (3.17),

Mij = δXij , so that

LF

√
gd4x =

i

16
δ
(√

g Xijdz
i ∧ dzj ∧ dz1 ∧ dz2

)
, (3.24)

which is Q-exact. Therefore, ZM also does not depend on chiral F -term parameters.

3.) Anti-Chiral F -Terms: The Lagrangian L
F̃

in (2.26) is based on an anti-chiral multi-

plet W̃ of R-charge r = −2. Converting to the twisted variables defined in (3.18) and

using (3.4), we can rewrite L
F̃

as follows,

L
F̃

√
gd4x = F̃

W̃

√
gd4x = − i

64
M̃ijdz

i ∧ dzj ∧ dz1 ∧ dz2 . (3.25)

Note that the factor of
√
g has disappeared. This is due to the fact that M̃ij is

a (0, 2)-form with coefficients in K, i.e. a four-form. The supersymmetry transforma-

tions (3.19) show that M̃ij is not Q-exact. However, we can use them to compute

δL
F̃

√
gd4x =

i

8
d
(
X̃idz

i ∧ dz1 ∧ dz2
)
, (3.26)



which shows that L
F̃

is supersymmetric. We conclude that ZM may depend holo-

morphically on anti-chiral F -term parameters.

The simple supersymmetry transformation properties of the twisted variables allow

us to identify many additional terms that are supersymmetric with respect to the super-

charge Q. A large class is furnished by Q-exact terms, which are trivially supersymmetric

because Q2 = 0. Such terms need not descend from a supergravity Lagrangian or reduce

to an ordinary super-Poincarè-invariant Lagrangian in flat space. A non-trivial example is

provided by a generalization of the two-form mass studied in [3]. This term requires two

ingredients:

• A holomorphic (2, 0)-form ωij , which satisfies ∂ω = 0. We will denote its complex

conjugate by ωij .

• A twisted chiral multiplet (3.16) with r = 0, so thatMij is a (2, 0)-form, and the (0, 2)-

form M̃ij in the conjugate twisted anti-chiral multiplet (3.18).

We can then add the following term to the action,

Sω =

∫ (
ω ∧M+ ω ∧ M̃

)
. (3.27)

According to (3.17),Mij = δXij , so that the ω-term isQ-exact, and hence supersymmetric.

As in the discussion around (3.26), M̃ij is not Q-exact, but it follows from (3.19) that its

supersymmetry variation is a total ∂-derivative. Integrating by parts and using ∂ω = 0,

we see that the ω-term is also supersymmetric. In the remainder of this paper, we will

focus on Lagrangians consisting of conventional D- and F -terms.

3.7. Examples

Consider first the Lagrangian L
Φ̃Φ

in (2.27) for a chiral multiplet of R-charge r. In

terms of the twisted chiral and anti-chiral multiplets in (3.16) and (3.18), it is given by

L
Φ̃Φ

= 2gij∂j C̃
(
∇c

i − ir
(
Vi +

1

2
Ui

))
C − 1

8
M̃ijMij + ∂iX̃jX ij

+ iX̃ i
(
∇c

i − ir
(
Vi +

1

2
Ui

))
X + U i

(
2i∂iC̃C − X̃iX

)
.

(3.28)

Since this Lagrangian is a D-term, it follows from (3.22) that it is Q-exact. This can

be made explicit by using the supersymmetry transformations in (3.17) and (3.19) to

rewrite (3.28) as

L
Φ̃Φ

= δ

(
−iX̃ i

(
∇c

i − ir
(
Vi +

1

2
Ui

))
C − 1

8
M̃ijX ij + U iX̃iC

)
. (3.29)



Similarly, the Lagrangian (2.28) for a chiral multiplet of R-charge r transforming in

the R-representation of the gauge group G can be expressed in terms of twisted chiral and

anti-chiral multiplets, as well as the twisted vector multiplet (3.11),

L
G

Φ̃Φ
= 2gij ∂̂j C̃

(
Dc

i − ir
(
Vi +

1

2
Ui

))
C − 1

8
M̃ijMij + ∂̂iX̃jX ij

+ iX̃ i
(
Dc

i − ir
(
Vi +

1

2
Ui

))
X + U i

(
2i∂̂iC̃C − X̃iX

)

+ C̃DC − C̃LX +
1

4
C̃LijX ij + X̃ iL̃iC .

(3.30)

Here Dc
i is the gauge-covariant version of the Chern connection (3.14) and ∂̂i is the gauge-

covariant ∂-operator introduced in (3.20). For instance,

Dc
i C = ∇c

iC − iaai T
a
R
C , ∂̂iC̃ = ∂iC̃ + iaa

i
(T a

R
)
∗ C̃ . (3.31)

The products in the last line of (3.30) are interpreted as in (2.28). This Lagrangian is

also a D-term, which can be explicitly written in Q-exact form using the supersymmetry

transformations (3.17) and (3.20),

L
G

Φ̃Φ
= δ

(
−iX̃ i

(
Dc

i − ir
(
Vi +

1

2
Ui

))
C − 1

8
M̃ijX ij + U iX̃iC + C̃LC

)
. (3.32)

Finally, the Yang-Mills Lagrangian (2.32) can be written in terms of the twisted vector

multiplet (3.11),

LYM =
τ − τ

8πi
Tr
(
f ijfij −

1

2
D2 + iDgijfij −

1

2
LijDc

i L̃j −
i

4
(dJ)

ijk
LijL̃k

+ igijLDc

j
L̃i

)
+

τ

32πi
εµνρσTr (fµνfρσ) .

(3.33)

Here Dc
µ acts as in (3.14) and τ is the holomorphic gauge coupling (2.30). It follows

from (2.31) that LYM is a chiral F -term, and hence Q-exact, up to a topological term

that depends holomorphically on τ . We can see this explicitly by using (3.12) and (3.13)

to rewrite (3.33) as follows:

LYM =
τ − τ

8πi
δ

(
Tr

(
1

4
Lijfij −

1

2
LD + igijLfij

))

− (2πiτ)

(
1

64π2
εµνρλTr (fµνfρλ)

)
.

(3.34)

The last term in parentheses, which multiplies 2πiτ , is the Pontryagin density, which

integrates to the instanton number. Hence, its contribution to the action does not depend

on the complex structure or the Hermitian metric.



4. Dependence of the Partition Function on the Geometry of M

4.1. Preliminaries

In the previous section, we expressed supersymmetric theories on M in terms of

twisted variables adapted to its complex geometry. This led to a simple proof that D-terms

and chiral F -terms are Q-exact, and hence the supersymmetric partition function ZM

cannot depend on coupling constants that multiply such terms. In this section we will

examine the dependence of ZM on the geometry of M, i.e. its complex structure and

Hermitian metric, as well as holomorphic line bundles corresponding to Abelian background

gauge fields. Using twisted variables, we will show that ZM is independent of the Hermitian

metric, and that it depends holomorphically on complex structure and line bundle moduli.

This constitutes an alternative, more explicit, proof of the results obtained in [12].

As in [12], we will consider infinitesimal deformations in the geometry of M and

examine the associated change ∆L of the Lagrangian. Deformations that lead to a Q-

exact ∆L do not affect ZM. As was emphasized in the introduction, these arguments

are essentially classical and may require modification (or break down) in the presence of

quantum anomalies. Note that Q-exact terms in the Lagrangian, such as D-terms and

chiral F -terms, do not necessarily lead to Q-exact terms in ∆L , since the supercharge is

defined with respect to a fixed background and need not commute with all deformations.

Therefore, Q-exact terms in the Lagrangian can contribute to the dependence of ZM on

the geometry of M, even though changing their coefficients while keeping the geometry

fixed has no effect. (Recall from the discussion after (3.22) that it is not legitimate to set

these coefficients to zero, or other unphysical values.)

In order to determine ∆L , we must decide how to vary the dynamical and background

fields as we deform the geometry. This will be discussed in detail below. Here we will illus-

trate some of the possible subtleties in a simple example. Consider a field theory coupled

to a Riemannian background metric gµν . In order to determine the energy-momentum

tensor Tµν , we can examine the change in the Lagrangian under a deformation ∆gµν of

the background metric, ∆L = −1
2∆g

µνTµν . We typically compute this variation while

holding all fields other than the metric fixed, but this may not always be legitimate. For

dynamical fields it is usually justified using their equations of motion, since any allowed

field variation gives rise to terms that vanish on shell. This argument does not apply to

background fields, but their effects can often be studied at fixed gµν .



An exception arises if some dynamical or background fields obey constraints that

depend on the metric. In order to preserve such constraints, we must also change the fields

whenever we deform the metric. An instructive example arises in twisted N = 2 gauge

theory on a four-manifold [1], which contains a dynamical self-dual two-form field χµν =

1
2εµνρλχ

ρλ. Since the self-duality constraint depends on the metric, a deformation ∆gµν

must be accompanied by a corresponding ∆χµν , so that χµν + ∆χµν is self-dual with

respect to gµν +∆gµν . This completely determines the anti-self-dual part of ∆χµν , which

is linear in ∆gµν . The self-dual part of ∆χµν is arbitrary, but it gives rise to terms that

vanish on shell, and hence it can be set to zero [1]. If we instead consider a situation

where χµν is a self-dual background field, the anti-self-dual part of ∆χµν is still fixed in

terms of ∆gµν , but the self-dual part of ∆χµν now constitutes a non-trivial deformation

of the theory – albeit one that can be studied while keeping the metric fixed.

The procedure outlined above is model dependent: we need to know what fields

appear in the Lagrangian L and how they change when we deform the geometry of M.

By contrast, the analysis in [12] did not require a Lagrangian description, since linearized

deformations around flat space are parameterized by the supercurrent multiplet of the

flat-space field theory in a model-independent way. Here we will focus on a large class of

renormalizable theories with chiral and vector multiplets. In twisted variables, the kinetic

terms for the chiral multiplets are given by (3.28) or (3.30), while the vector multiplets

have Yang-Mills kinetic terms (3.33). We also include a superpotential, i.e. a sum over

products of elementary twisted chiral matter multiplets, which are multiplied using the

rules in appendix A, which gives rise to a chiral F -term Lagrangian (3.23). Similarly, the

conjugate anti-chiral F -term (3.25) is constructed out of elementary twisted anti-chiral

matter multiplets. For brevity, we will not discuss FI-terms (2.33) or terms such as (3.27),

although it is straightforward to incorporate them.

4.2. Hermitian Metric

Consider an infinitesimal deformation ∆gij of the Hermitian metric, and the corre-

sponding change ∆L in the Lagrangian. Note the following:

1.) The components of the twisted vector, chiral, and anti-chiral multiplets in (3.11),

(3.16), and (3.18) do not satisfy any constraints that depend on the Hermitian metric.

Hence, we can keep them fixed as we vary gij .



2.) The only background field subject to a metric-dependent constraint is Uµ in (3.6),

which satisfies ∇µU
µ = 0. We must therefore accompany ∆gij by a change ∆Uµ,

whose precise form will not be important.

3.) The supersymmetry transformations (3.12), (3.17), and (3.17) or (3.20) for twisted

vector, chiral, and anti-chiral multiplets do not depend on gij or Uµ. In particular,

the derivatives that appear in the supersymmetry variations (3.17) or (3.20) for twisted

anti-chiral multiplets only involve the (gauge-covariant) ∂-operator.

Therefore, supersymmetry transformations commute with the deformation ∆gij . This

means that Q-exact terms in the Lagrangian lead to Q-exact terms in ∆L , which do not

affect ZM. This applies to the D-terms and chiral F -terms in (3.22) and (3.24), as well as

the Yang-Mills Lagrangian (3.34), which is Q-exact up to a topological term.

We must now examine the anti-chiral F -term Lagrangian (3.25), which is not Q-

exact. In our setup, the only such term is the anti-chiral part of the superpotential. It is

constructed from elementary twisted anti-chiral superfields (2.9) using the multiplication

rules in appendix A, which do not depend on the Hermitian metric gij or on Uµ. This

implies that the twisted variable M̃ij in (3.25) does not change when we vary gij, because

the elementary twisted anti-chiral fields are held fixed. Since there is no other source of

metric dependence in (3.25), this term does not change as we vary the Hermitian metric.6

We conclude that the partition function ZM does not depend on the Hermitian metric.

Our proof generalizes the discussion in [2], which used twisted variables to argue for the

metric independence of various observables in certain N = 1 theories on Kähler manifolds.

Note that the need to vary Uµ as we deform gij , which was explained in point 2.) above,

did not play an essential role. This is due to the fact that Uµ only appears inside Q-exact

terms and that the supersymmetry transformations do not depend on it. Therefore, the

partition function ZM does not depend on Uµ either.7

6 Note that this argument does not apply to the anti-chiral F -term part of the Yang-Mills

Lagrangian (3.33), which is proportional to τ . This term is not a product of elementary twisted

anti-chiral multiplets (3.18) and it explicitly depends on the Hermitian metric g
ij
. However, as

we have explained above, it is Q-exact up to a topological term, which does not depend on g
ij
.

7 This is consistent with the results of [12], where it was shown that Uµ can only affect the

partition function ZM if the flat-space theory does not possess a Ferrara-Zumino supercurrent

multiplet. This does not happen for theories constructed out of conventional D- and F -terms,

but it is known to occur in the presence of an FI-term (2.33).



4.3. Holomorphic Line Bundles

As was explained around (3.15), supersymmetric configurations for an Abelian back-

ground gauge field aµ satisfy fij = 0 and hence define a holomorphic line bundle over the

complex manifold M. Consider an infinitesimal deformation a′µ = aµ +∆aµ, where ∆aµ

is a well-defined one-form. In order for the (0, 2)-part of the new field strength to vanish,

∆ai must satisfy

∂i
(
∆aj

)
− ∂j

(
∆ai

)
= 0 . (4.1)

Dividing by complexified background gauge transformations, we see that deformations of

the holomorphic line bundle defined by aµ are parameterized by the Dolbeault cohomology

class
[
∆ai

]
∈ H0,1(M). Since M is compact, the dimension of H0,1(M), which counts

the number of bundle moduli, is finite.

Consider the change ∆L in the Lagrangian induced by ∆aµ. As in the previous sub-

section, we keep all twisted variables, as well as all other background fields, fixed. There-

fore, the anti-chiral F -term superpotential (3.25) does not change as we vary aµ. We are

left to examine the Q-exact D-terms and chiral F -terms (3.22) and (3.24). While the su-

persymmetry transformations (3.12) and (3.17) for dynamical vector and chiral multiplets

are independent of aµ, the transformation rules (3.20) for charged anti-chiral multiplets de-

pend on ai, but not ai, through the gauge-covariant ∂-operator ∂̂i. Thus, supersymmetry

transformations commute with the deformation ∆aµ, up to terms that only depend on ∆ai.

We conclude that Q-exact terms in the Lagrangian lead to Q-exact terms in ∆L , up to

terms that depend on ∆ai, but not on ∆ai. This shows that ZM is a locally holomorphic

function of the line bundle moduli.8

4.4. Complex Structure

An infinitesimal complex structure deformation takes the form J ′µ
ν = Jµ

ν +∆Jµ
ν .

In order for J ′µ
ν to be an integrable complex structure, ∆Jµ

ν must satisfy

∆J i
j = ∆J i

j = 0 , ∂j
(
∆J i

k

)
− ∂

k

(
∆J i

j

)
= 0 , (4.2)

where we continue to use holomorphic coordinates adapted to undeformed complex struc-

ture Jµ
ν . Infinitesimal diffeomorphisms induce deformations of the form ∆J i

j = ∂jε
i,

8 As in [12] we are only considering infinitesimal deformations of the bundle moduli, which are

not sensitive to the global structure of the moduli space, e.g. its singularities.



which do not change the complex structure. We must also deform the metric, g′µν =

gµν +∆gµν , so that it remains Hermitian with respect to the deformed complex structure,

∆gij =
i

2

(
g
ik
∆Jk

j + g
jk
∆Jk

i

)
, ∆gij = − i

2

(
gki∆J

k
j + gkj∆J

k
i

)
. (4.3)

Deformations of the form ∆gij , which are compatible with the undeformed complex struc-

ture, were discussed in section 4.2, and hence we can set them to zero here.

As we saw in section 3, the definition of the supercharge Q, the twisted variables, and

their transformation rules crucially depends on the complex structure. We must carefully

determine how they change under the deformation ∆Jµ
ν . This analysis, though greatly

simplified by the use of twisted variables, is somewhat lengthy and will be presented in

section 4.5. Here we will need the following two results:

1.) When acting on twisted variables, the commutator [∆, δ] of the complex structure

deformation ∆Jµ
ν and a supersymmetry transformation δ does not depend on ∆J i

j ,

[∆, δ] = holomorphic in ∆J i
j . (4.4)

2.) Under the complex structure deformation ∆Jµ
ν , the following fields in a twisted anti-

chiral multiplet (3.18) no not change,

∆C̃ =
(
∆X̃

)
i
=
(
∆M

)
ij
= 0 . (4.5)

We will now prove that the partition function ZM is a locally holomorphic function

of the complex structure moduli. This follows immediately for Q-exact terms in the La-

grangian, since we can use (4.4) to commute the complex structure deformation through

the supercharge δ, at the expense of terms that are holomorphic in ∆J i
j . Therefore, Q-

exact terms in the Lagrangian give rise to Q-exact terms in ∆L , up to terms holomorphic

in ∆J i
j . Again, this applies to D-terms (3.22) and chiral F -terms (3.24), as well as the

Yang-Mills Lagrangian (3.34), which is Q-exact up to a topological term that does not

depend on the complex structure.

As before, we must separately examine the anti-chiral F -term superpotential (3.25),

which is not Q-exact. It is written in terms of a twisted variable M̃ij , which is constructed

by combining elementary twisted anti-chiral multiplets according to the multiplication

rules in appendix A. These rules do not explicitly depend on the complex structure or any

other background fields that may shift under ∆Jµ
ν . Since the components (4.5) of the

elementary twisted anti-chiral fields are held fixed, the same is true for M̃ij . Therefore,

the anti-chiral F -term superpotential does not change as we deform the complex structure.



4.5. Proof that [∆, δ] is Holomorphic in ∆J i
j

We will now analyze how dynamical twisted vector, chiral, and anti-chiral multiplets,

as well as their supersymmetry transformations, change when we deform the complex

structure. Background fields require additional care and will be discussed at the end.

This allows us to explicitly compute the commutator [∆, δ] of the complex structure de-

formation ∆Jµ
ν and a supersymmetry transformation δ, and hence to prove that it is

holomorphic in ∆J i
j as stated in (4.4). Along the way, we will also establish (4.5).

Twisted Vector Multiplet:

The components of this multiplet and its supersymmetry transformations are given

by (3.11) and (3.12), respectively. The scalars L, D and the one-form aµ do not satisfy

any constraints, and hence we can hold them fixed as we deform the complex structure.

However, L̃i is a (1, 0)-form and Lij is a (0, 2)-form,

(δνµ + iJν
µ) L̃ν = 0 ,

Lµν = L[µν] , (δρµ − iJρ
µ)Lρν = 0 .

(4.6)

As discussed in section 4.1, the fact that these constraints depend on Jµ
ν requires us to

accompany the deformation ∆Jµ
ν by changes L̃′

µ = L̃µ + ∆L̃µ and L′
µν = Lµν + ∆Lµν .

We can set ∆L̃i = ∆Lij = 0, since they satisfy the constraints in (4.6) and thus give rise

to terms that vanish on shell. Solving for the remaining components of ∆L̃µ and ∆Lµν ,

we find

(∆L̃)i = − i

2
∆Jj

iL̃j ,

(∆L)ij = −(∆L)ji =
i

2
∆Jk

iLkj
, (∆L)ij = 0 .

(4.7)

In order to compute the commutator [∆, δ], it is helpful to express the transformation

rules (3.12) in a general coordinate system,

δaµ = L̃µ , δL̃µ = 0 ,

δL = D , δD = 0 ,

δLµν = (δαµ + iJα
µ)
(
δβν + iJβ

ν

)
fαβ .

(4.8)

Keeping aµ fixed, i.e. ∆aµ = 0, this leads to

[∆, δ]aµ = ∆(δaµ) = ∆L̃µ . (4.9)



Substituting (4.7), we obtain

([∆, δ]a)i = 0 , ([∆, δ]a)i = − i

2
∆Jj

iL̃j . (4.10)

Similarly, L and D are fixed, ∆L = ∆D = 0, so that (4.8) implies

[∆, δ]L = [∆, δ]D = 0 . (4.11)

Finally, we use (4.8) to compute

[∆, δ]Lµν = i
(
∆Jα

µ

(
δβν + iJβ

ν

)
+ (δαβ + iJα

β)∆J
β
ν

)
fαβ − δ(∆Lµν) . (4.12)

Substituting for ∆Lµν from (4.7), we find

([∆, δ]L)ij = 2i∆Jk
ifkj + 2i∆Jk

jfik ,

([∆, δ]L)ij = ([∆, δ]L)ji = ([∆, δ]L)ij = 0 .
(4.13)

The commutators in (4.10), (4.11), and (4.13) only depend on ∆J i
j , but not its complex

conjugate ∆J i
j . This proves (4.4) when acting on twisted vector multiplets.

Twisted Chiral Multiplet:

The supersymmetry transformations for a twisted chiral multiplet (3.16) of R-charge r

are given by (3.17). The fields C and X are sections of K− r
2 , where K is the canonical

bundle corresponding to the complex structure Jµ
ν . Nevertheless, we will now argue that

it is legitimate to hold C and X fixed as we deform Jµ
ν . For simplicity, we first consider the

case r = −2, so that C is a section of K. It follows from the definition (3.16) of C in terms of

the trivializing section p = P12 in (3.3) that C = C12, where Cij is a (2, 0)-form. Explicitly,

Cµν = Pµνφ, with φ the scalar component of the original untwisted chiral multiplet, and

hence Cµν satisfies

Cµν = C[µν] , (δρµ + iJρ
µ) Cρν = 0 . (4.14)

In a coordinate patch, we can express the relationship between Cµν and C through the

symbol εµν , which satisfies the constraints (4.14) and is normalized as ε12 = 1,

Cµν = Cεµν . (4.15)



Thus εµν is a local basis for sections of the line bundle K, and C is the projection of Cµν
onto this basis. Due to the constraint in (4.14), we must accompany the deformation ∆Jµ

ν

by a change C′
µν = Cµν +∆Cµν , where

(∆C)ij = 0 , (∆C)ij = − (∆C)ji = − i

2
∆Jk

jCik , (∆C)ij = 0 . (4.16)

Since εµν satisfies the same constraints as Cµν , it must change in exactly the same way.

It then follows from (4.15) that the coefficient function C is held fixed as we deform the

complex structure, i.e. ∆C = 0. A completely analogous discussion applies for arbitrary

powers of K, so that we can keep C and X fixed under the deformation ∆Jµ
ν for any

value r of the R-charge,

∆C = ∆X = 0 . (4.17)

The other two fields Xij , Mij in (3.16) are (2, 0)-forms with coefficients in K− r
2 .

Following the same logic, we treat these fields as (2, 0)-forms, i.e. exactly as in (4.16),

(∆X )ij = 0 , (∆X )ij = − (∆X )ji = − i

2
∆Jk

jXik , (∆X )ij = 0 ,

(∆M)ij = 0 , (∆M)ij = − (∆M)ji = − i

2
∆Jk

jMik , (∆M)ij = 0 .

(4.18)

We can now use (3.17), (4.17), and (4.18) to compute the commutator [∆, δ] on the com-

ponent fields of a twisted chiral multiplet,

[∆, δ]C = [∆, δ]X = ([∆, δ]X )µν = ([∆, δ]M)µν = 0 , (4.19)

so that (4.4) is trivially satisfied in this case.

Twisted Anti-Chiral Multiplet:

The independent fields in a twisted anti-chiral multiplet (3.18) of R-charge −r are C̃,
which is a section of K r

2 , a (0, 1)-form X̃i with coefficients in K r
2 , and a (0, 2)-form M̃ij

with coefficients in K r
2 . As before, we can hold C̃ fixed as we deform the complex structure,

while X̃µ and M̃µν change like (0, 1)-forms and (0, 2)-forms,

∆C̃ = 0 ,

(
∆X̃

)
i
= 0 ,

(
∆X̃

)
i
=
i

2
∆Jj

iX̃j ,

(
∆M̃

)
ij
= 0 ,

(
∆M̃

)
ij
= −

(
∆M̃

)
ji
=
i

2
∆Jk

iM̃kj
,

(
∆M̃

)
ij
= 0 ,

(4.20)



so that we have established (4.5). As in (4.8), it is helpful to rewrite the supersymmetry

transformations (3.19) in an arbitrary coordinate system before computing the commu-

tator [∆, δ]. Since these transformations contain ∂-operators acting on sections of the

canonical bundle, their covariant version involves the Chern connection, which leads to a

cumbersome calculation. Instead, we will work out the case r = 0, where C̃ is a scalar, X̃i

a (0, 1)-form, and M̃ij a (0, 2)-form, so that we can use conventional exterior derivatives.

The results for general r can then be inferred using covariance.

When r = 0, it is straightforward to express the supersymmetry transformations (3.19)

in general coordinates,

δC̃ = 0 ,

δX̃µ = i (δνµ + iJν
µ) ∂ν C̃ ,

δM̃µν = − (δαµ + iJα
µ)
(
δβν + iJβ

ν

) (
∂αX̃β − ∂βX̃α

)
.

(4.21)

Together with (4.20), this allows us to compute [∆, δ] for the case r = 0,

[∆, δ]C̃ = 0 ,

([∆, δ]X̃ )i = 0 , ([∆, δ]X̃ )i = −∆Jj
i∂j C̃ ,

([∆, δ]M̃)ij = ([∆, δ]M̃)ij = ([∆, δ]M̃)ji = 0 ,

([∆, δ]M̃)ij = −2i∆Jk
i∂kX̃j + 2i∆Jk

j∂kX̃i .

(4.22)

For r = 0, these formulas are covariant under holomorphic coordinate changes. In gen-

eral C, X̃i, M̃ij are sections of K
r
2 , so that the derivatives in (4.22) are no longer covariant.

This forces us to add additional terms, which are uniquely determined by dimensional anal-

ysis and covariance. The formulas in (4.22) that must be modified take the following form:

([∆, δ]X̃ )i = −∆Jj
i∂j C̃ − r

2
∂j(∆J

j
i)C̃ ,

([∆, δ]M̃)ij = −2i∆Jk
i∂kX̃j + 2i∆Jk

j∂kX̃i − ir∂k(∆J
k
i)X̃j + ir∂k(∆J

k
j)X̃i .

(4.23)

It can be checked that these expressions transform covariantly under holomorphic coordi-

nate changes. As before, we find that all commutators [∆, δ] are holomorphic in ∆J i
j .

So far we have only discussed neutral twisted chiral and anti-chiral multiplets. The

inclusion of dynamical gauge fields aµ is achieved by replacing ∂i → ∂̂i = ∂i− iai in (4.23),

while the vanishing commutators in (4.19) and (4.22) are not modified. Background gauge

fields that couple to global symmetries will be discussed below.



Background Fields:

As explained in section 4.1, background fields that satisfy Jµ
ν-dependent constraints

require additional care. For instance, the vector field Uµ in (3.7) is anti-holomorphic

with respect to Jµ
ν , i.e. U

i = 0. We must therefore accompany the complex structure

deformation ∆Jµ
ν by a change in Uµ, but since Uµ never enters the supersymmetry

transformations, this does not affect the commutators [∆, δ].

A more interesting example is furnished by an Abelian background vector multiplet.

Supersymmetry requires that the bosonic fields satisfy (3.15),

fij = 0 , D = 0 . (4.24)

The first equation defines a holomorphic vector bundle with respect to the complex struc-

ture Jµ
ν . We must therefore accompany ∆Jµ

ν by a change ∆aµ to ensure that aµ +∆aµ

defines a holomorphic line bundle with respect to the new complex structure, while D = 0

does not change. In order to determine ∆aµ it is convenient to rewrite the first equation

in (4.24) in a general coordinate system,

(δαµ + iJα
µ)
(
δβν + iJβ

ν

)
(∂αaβ − ∂βaα) = 0 . (4.25)

Varying the complex structure, we find that ∆ai is unconstrained. Such deformations were

shown to be Q-exact in section 4.3, and hence we do not need to discuss them here. By

contrast, ∆ai satisfies the following constraint:

∂i
(
∆aj

)
− ∂j

(
∆ai

)
=
i

2
∆Jk

ifjk − i

2
∆Jk

jfik . (4.26)

Since ∆ai is a well-defined (0, 1)-form, this equation may not admit a solution if the (0, 2)-

form on the right-hand side defines a non-trivial cohomology class in H0,2(M). Such an

obstruction typically signals the presence of a singularity in the moduli space of holomor-

phic line bundles, viewed as a fibration over the complex structure moduli space of the base

manifold (see for instance [28]). Here we will only discuss suitably generic points, where

this obstruction is absent, so that (4.26) determines ∆ai in terms of the complex structure

deformation and the curvature of the undeformed background gauge field. Note that the

right-hand side of (4.26) is holomorphic in ∆J i
j , and hence the same is true for ∆ai.



The fact that ∆ai 6= 0 does not affect twisted vector and chiral multiplets, since aµ

does not enter their supersymmetry transformations. However, it leads to a modification

of the formulas in (4.23) for twisted anti-chiral multiplets,

([∆, δ]X̃ )i = −∆Jj
i (∂j − iaj) C̃ − r

2
∂j(∆J

j
i)C̃ + 2∆aiC̃ ,

([∆, δ]M̃)ij = −2i∆Jk
i (∂k − iak) X̃j + 2i∆Jk

j (∂k − iak) X̃i

− ir∂k(∆J
k
i)X̃j + ir∂k(∆J

k
j)X̃i

+ 4i
(
∆aiX̃j −∆ajX̃i

)
,

(4.27)

since (4.23) was derived for dynamical gauge fields, which satisfy ∆aµ = 0. Unsurprisingly,

the derivatives in (4.27) have been rendered background gauge-covariant, but there are

also additional terms that explicitly depend on ∆ai. They do not spoil the fact that

the commutators [∆, δ] are holomorphic in ∆J i
j , since ∆ai also has this property. This

completes the proof of (4.4).

5. Dependence of the Partition Function on the R-Symmetry

In this section we will analyze the dependence of the partition function ZM on the

choice of R-symmetry that enters the supersymmetric Lagrangian on M. Here we phrase

much of the discussion in the linearized language of [12], but we will also show how to

derive some key results using twisted variables. As an example, we discuss the R-symmetry

dependence of partition functions on primary Hopf surfaces, which are closely related to

supersymmetric indices on S3 × S1.

5.1. Varying the R-Symmetry

In flat space, there is often more than one choice of U(1)R symmetry. Given an

Abelian flavor current jµ, we can shift the R-current j
(R)
µ as follows,

j(R)
µ → j(R)

µ + tjµ , t ∈ R . (5.1)

Here we require both j
(R)
µ and jµ to be conserved. The real parameter t quantifies the

mixing between the two symmetries. Note the following:

1.) There is an independent mixing parameter for every Abelian flavor symmetry, but in

order to simplify the discussion, we will focus on a single t.



2.) In flat space, t is arbitrary, but it may be restricted once we place the theory on a

non-trivial manifold (see below).

3.) If the theory is superconformal, there is a unique choice of t that corresponds to the R-

symmetry residing in the superconformal algebra. It can be determined in flat space

using a-maximization [29].

We will now briefly review how jµ, j
(R)
µ , and their superpartners couple to background

fields at the linearized level around flat space, following the discussion and conventions

of [12]. The flavor current jµ resides in a real linear multiplet, together with a scalar J

and the fermions jα, j̃α̇. These operators couple to a background gauge field aµ, a scalar D

and the gauginos λα, λ̃α̇,

Lflavor = aµjµ +DJ + λαjα + λ̃α̇j̃
α̇ + · · · , (5.2)

where the ellipsis denotes higher-order terms in the background fields, which are required

by gauge invariance.9 Supersymmetric configurations are determined by setting the gaug-

inos λα, λ̃α̇ and their supersymmetry variations to zero, which leads to (3.15) and the

statement that aµ defines a holomorphic line bundle L over the complex manifold M.

The topology of L is fixed by its Chern class c1(L) ∈ H2(M,Z), while its holomorphic

structure is specified by a finite number of complex moduli. Locally, the moduli space is

described by the Dolbeault cohomlogy H0,1(M), but the moduli are typically subject to

global identifications.

The R-current j
(R)
µ resides in the same supermultiplet as the energy-momentum ten-

sor Tµν and a closed two-form Fµν , as well as the supersymmetry currents Sµα, S̃µα̇. The

corresponding background fields reside in the linearized version of the new-minimal super-

gravity multiplet, whose bosonic components are the R-symmetry gauge field A
(R)
µ , the

linearized metric hµν ,
10 and a two-form gauge field Bµν , whose dual field strength is the

conserved vector V µ = i
2ε

µνρλ∂νBρλ. Supersymmetric configurations are determined by

setting the gravitinos Ψµα, Ψ̃µα̇ and their variations to zero, which leads to the Killing

spinor equations (1.1). The couplings to supergravity background fields are then given by

LSUGRA = −hµνTµν +A(R)µj(R)
µ +

i

4
εµνρλFµνBµν + · · · . (5.3)

9 A standard example is the seagull term aµaµφ̃φ, which arises from the gauge-covariant deriva-

tives in a scalar kinetic term Dµφ̃Dµφ.
10 Here hµν is normalized so that gµν = δµν+2hµν . In the notation of [12], we have ∆gµν = 2hµν .



As in (5.2), the ellipsis signifies higher-order terms in the supergravity fields, which are

required for invariance under diffeomorphisms, as well as local supersymmetry and R-

symmetry transformations. The non-linear completion of (5.3) is the rigid limit of matter-

coupled new minimal supergravity, which was reviewed in section 2.

By supersymmetry, the shift of the R-current in (5.1) must be accompanied by changes

of the other operators in its supermultiplet, which take the form of improvements [15,16],

j(R)
µ → j(R)

µ + tjµ ,

Tµν → Tµν − t

2

(
∂µ∂ν − δµν∂

2
)
J ,

Fµν → Fµν +
3t

2
(∂µjν − ∂νjµ) ,

(5.4)

and similarly for Sµα, S̃µα̇. Substituting into (5.3) and comparing with (5.2), we find that

these improvements lead to the following changes in the background fields,

∆aµ = t
(
A(R)

µ +
3

2
Vµ

)
, ∆D = − t

4
R+O(V 2) , (5.5)

where R = 2
(
∂2hµµ − ∂µ∂νhµν

)
+O(h2) is the Ricci scalar. Therefore, the flavor gauge

field aµ and its D-term are shifted by a certain vector multiplet constructed out of the su-

pergravity fields.11 Immediately worrisome is the fact that A
(R)
µ is a gauge field, while ∆aµ

should be a well-defined one-form. We will return to this important point below. Since (5.5)

was derived at the linear level, it may receive higher-order contributions in the supergrav-

ity fields. The only such correction compatible with gauge invariance and dimensional

analysis is a possible V µVµ term in ∆D.

We will now show that such a term is indeed present, and that its coefficient is fixed

by supersymmetry. To see this, note that supersymmetry requires the shifts in (5.5) to

satisfy the integrability conditions (3.15) for background gauge fields,

∂i
(
∆aj

)
− ∂j

(
∆ai

)
= 0 , ∆D = −igij

(
∂i
(
∆aj

)
− ∂j

(
∆ai

))
. (5.6)

The first equation follows from substituting (3.6) into (5.5), while the second equation is

satisfied for a unique choice of V µVµ term in ∆D,

∆D = − t

4
(R − 6V µVµ) . (5.7)

11 This vector multiplet already played an important role in [11].



To check this, it is convenient to use the integrability conditions that follow from evaluat-

ing the right-hand side of the identity 1
2Rµνκλσ

κλζ = [∇µ,∇ν ]ζ using the Killing spinor

equation (1.1).12

Below, we will use the shifts in (5.5) and (5.7) to determine the dependence of ZM

on the R-symmetry mixing parameter t. It is therefore instructive to re-derive these shifts

using twisted variables. For simplicity, we consider a single twisted chiral superfield of R-

charge r and U(1) flavor charge q (and its conjugate twisted anti-chiral superfield) with

Lagrangian (3.30). Shifting the R-symmetry as in (5.1) amounts to r → r + tq. It follows

from (3.16) and (3.18) that the component fields of the twisted chiral and anti-chiral

multiplets change as follows,

(C,X ,Xij,Mij) → p−
tq

2 (C,X ,Xij,Mij) ,
(
C̃, X̃i,M̃ij

)
→ p

tq

2

(
C̃, X̃i,M̃ij

)
. (5.8)

Substituting into the Lagrangian (3.30) and evaluating the various covariant derivatives

with the help of formulas in appendix B, we find that the changes in (5.8) lead to the

following shifts of the background flavor gauge field aµ and its twisted superpartner D,

∆ai = t

(
i

8
∂i log g −

i

2
∂i log s+ Vi +

1

2
Ui

)
,

∆ai = t

(
− i

8
∂i log g −

i

2
∂i log s

)
,

∆D = 0 .

(5.9)

Using (3.6) and (3.7), the first two equations reduce to ∆aµ = t
(
A

(R)
µ + 3

2
Vµ

)
, in agree-

ment with (5.5). The equivalence of ∆D = 0 and (5.7) has already been established above.

5.2. Consequences for the Partition Function

To summarize, we have found that the shift (5.1) of the R-symmetry changes the

background flavor gauge field aµ and its superpartners according to (5.5) and (5.7), or

equivalently (5.9). In terms of the flavor line bundle L and the R-symmetry line bundle L,

this amounts to shifting L → L⊗Lt. Continuous variations of t are therefore only possible

if L is topologically trivial, c1(L) = 0, since the topology of L cannot change continuously.

In this case A
(R)
µ can essentially be treated like a well-defined one-form, so that the ex-

pression for ∆aµ in (5.5) is meaningful. As was shown in [13] and reviewed in section 3.1,

12 The explicit form of these integrability conditions is written out in equation (5.1) of [13].



the holomorphic twist required to place an N = 1 theory on the complex manifold M
identifies L = K− 1

2 , where K is the canonical bundle of M. Therefore t is unrestricted as

long as c1(K) = 0, so that the canonical bundle of M is topologically trivial.13

This notwithstanding, K may be non-trivial as a holomorphic line bundle, so that the

shift L → L⊗K− t
2 leads to a t-dependent change in the holomorphic moduli of the flavor

line bundle L. As we showed in section 4.2, the partition function ZM is a holomorphic

function of these moduli, and hence it can acquire a dependence on t. More precisely,

ZM only depends on the cohomology class of ∆ai in H
0,1(M), with ∆ai given by (5.9),

while ∆ai and ∆D do not affect ZM.

To make this explicit, we choose a basis ω0,1
A for H0,1(M), A = 1, . . . , dimH0,1(M).

Once we have picked a fiducial flavor line bundle L of fixed topology, we can parametrize

all other holomorphic line bundles of the same topology by specifying an element νAω0,1
A ∈

H0,1(M). Up to global identifications, the constants νA ∈ C are coordinates on the moduli

space of holomorphic line bundles whose topology coincides with the topology of L. In

these coordinates, the shift L → L⊗K− t
2 is described by

νA → νA − t

2
νAK , (5.10)

where the constants νAK are determined by comparing (5.9) and (5.10),

i∂ log p = νAKω
0,1
A in H0,1(M) . (5.11)

Here we have used (3.3) to express i
4∂ log g + i∂ log s = i∂ log p, where p is the nowhere

vanishing section that trivializes the line bundle L2 ⊗K.

It follows from (5.10) that the partition function ZM only depends on the R-symmetry

mixing parameter t through its dependence on holomorphic line bundle moduli,

ZM

(
t, νA

)
= ZM

(
0, νA − t

2
νAK

)
. (5.12)

Several comments are in order:

1.) Since ZM(0, νA) is a locally holomorphic function of the line bundle moduli νA,

ZM(t, νA) is locally holomorphic in the complex linear combinations νA − t
2ν

A
K .

13 When c1(K) 6= 0, there are quantization conditions on the allowed R-charges, and hence on t.

In particular, we cannot vary t continuously. See [12] and references therein for further discussion.



2.) The mixing parameter t as defined in (5.1) is real. It is natural to continue it to

complex values, in which case ZM(t, νA) is locally holomorphic in t.

3.) The νAK , which are determined by (5.11), are coordinates that specify the location of

the canonical bundle within the moduli space of of holomorphic line bundles of trivial

topology. Consequently, they depend holomorphically on the complex structure mod-

uli of M, but not the metric. Any apparent metric dependence in (5.11) vanishes in

cohomology. This is required for consistency with the results of section 4.4, according

to which ZM(t, νA) is independent of the Hermitian metric and locally holomorphic

in the complex structure moduli of M for all values of t.

4.) If K is trivial as a holomorphic line bundle, all νAK vanish. In this case the partition

function does not depend on the choice of R-symmetry. This is consistent with the

fact that complex manifolds with holomorphically trivial canonical bundle can serve as

supersymmetric backgrounds for field theories that do not possess an R-symmetry [30].

5.3. Example: S3 × S1 and the Supersymmetric Index

Here we apply (5.12) to analyze the R-symmetry dependence of the partition function

on complex manifolds M that are diffeomorphic to S3 × S1. Such complex manifolds,

known as primary Hopf surfaces, were one of the main examples studied in [12], which

contains further details and references. (See also the recent discussion in [21].)

A primary Hopf surface Mp,q is defined by the following quotient of C2 − (0, 0):

(w, z) ∼ (pw, qz) , 0 < |p| ≤ |q| < 1 . (5.13)

Here p, q are the two complex structure moduli of Mp,q, which we will express as follows,14

p = e2πiσ , Reσ ∼ Reσ + 1 ,

q = e2πiτ , Re τ ∼ Re τ + 1 .
(5.14)

We can trivialize the identifications in (5.13) by introducing real coordinates x, θ, ϕ, χ,

w = e2πiσx cos
θ

2
eiϕ , z = e2πiτx sin

θ

2
eiχ ,

x ∼ x+ 1 , 0 ≤ θ ≤ π , ϕ ∼ ϕ+ 2π , χ ∼ χ+ 2π .
(5.15)

14 In the notation of [12], we have σ =
ϑp

2π
+

iβp

2π
and τ =

ϑq

2π
+

iβq

2π
.



This is an explicit diffeomorphism between Mp,q and S3 × S1, with x running along S1

and θ, ϕ, χ parametrizing S3.

All complex line bundles over Mp,q, including the canonical bundle K, are topo-

logically trivial, and hence the results of section 5.2 apply. The Dolbeault cohomol-

ogy H0,1(M) is one-dimensional, so that all holomorphic line bundles possess a single

modulus. We will choose the following basis element for H0,1(M),

ω0,1 = ∂(−2x) . (5.16)

The (0, 1)-part of a supersymmetric Abelian flavor gauge field aµ can be written as15

(aµdx
µ)

0,1
= νω0,1 , ν ∈ C . (5.17)

In order to apply (5.11) and evaluate νK, we must determine the section p. Demanding

that pdw ∧ dz is well defined and nowhere vanishing, we find that

p = s0e
−2πi(σ+τ)x , (5.18)

where s0 is a well-defined, nowhere vanishing complex function on Mp,q, which must be

invariant under the identifications in (5.13). Note that fixing the ambiguity of σ, τ in (5.14)

amounts to choosing a homotopy class for s0. Substituting (5.18) into (5.11), we find

νK = −π (σ + τ) . (5.19)

Further substituting into (5.10), we obtain the following shift in ν,

ν → ν +
πt

2
(σ + τ) . (5.20)

Note that the properties of νK in (5.19) are consistent with the general comments at the

end of section 5.2: it depends holomorphically on the complex structure moduli σ and τ ,

but it is independent of the metric. (In fact, at no point did we need to specify a metric

on Mp,q.) Moreover, νK is a well-defined number once we fix the ambiguity in Reσ

and Re τ by choosing a homotopy class for s0.

As explained in [12], the partition function ZMp,q(ν) coincides with the supersymmet-

ric index computed on S3 ×R, up to local counterterms and possible quantum anomalies,

I(p, q, u) = TrS3

(
(−1)F pJ3+J ′

3
−R

2 qJ3−J ′

3
−R

2 uQf

)
. (5.21)

15 Our normalization of ν is such that ν = − 1

2
(ar − iai) in the notation of [12].



Here F is the fermion number. The symmetry of the theory on S3×R is SU(2|1)×SU(2)′,

with J3 and J
′
3 the Cartan generators of SU(2) ⊂ SU(2|1) and SU(2)′, respectively. The R-

charge is denoted by R, and Qf is an Abelian flavor charge. The fugacity u conjugate to Qf

is related to the holomorphic line bundle modulus ν in (5.17) as follows (see [12] for details),

u = e−2iν . (5.22)

If we shift R→ R + tQf in the definition (5.21) of the index, we find that

u→ u (pq)
− t

2 , (5.23)

in perfect agreement with (5.20) and (5.22).

6. Generalization to Three Dimensions

The bulk of this paper has been dedicated to four-dimensional N = 1 theories with

a U(1)R symmetry on complex manifolds and their description using twisted variables.

In this section, we sketch the necessary ingredients to generalize these results to three-

dimensional N = 2 theories with a U(1)R symmetry on curved manifolds M. As in

flat space, they closely resemble their four-dimensional counterparts. The underlying ge-

ometric structure is a transversely holomorphic foliation (THF), which endows the three-

manifold M with a near-perfect analogue of complex geometry [23,12]. Below, we briefly

review basic aspects of THFs in three dimensions and indicate how they can be used to

generalize the results of sections 3 and 4. Following the discussion in section 5, we analyze

the R-symmetry dependence of supersymmetric partition functions on M. In particular,

we will obtain an explicit formula for general squashed spheres.

6.1. Killing Spinors and Transversely Holomorphic Foliations

In this section we closely follow the discussion in [23,12], to which we refer for further

reading.16 The bosonic supergravity fields that describe supersymmetric backgrounds for

three-dimensional N = 2 theories with a U(1)R symmetry are the metric gµν , two Abelian

gauge fields A
(R)
µ and Cµ, which couple to the R-symmetry and the central charge, and

a scalar H. The dual field strength V µ = −iεµνρ∂νCρ is a covariantly conserved vector.

The supergravity multiplet also contains complex gravitinos Ψµα, Ψ̃µα. Supersymmetric

16 See also [31-33] for a general discussion of THFs and [34-36] for results in three dimensions.



backgrounds17 are determined by setting the gravitinos and their supersymmetry variations

to zero, which leads to the following Killing spinor equation,

(
∇µ − iA(R)

µ

)
ζ = −1

2
Hγµζ +

i

2
Vµζ −

1

2
εµνρV

νγρζ , (6.1)

and a similar equation for the conjugate spinor ζ̃α, which will not be needed here. A

Killing spinor ζα satisfying (6.1) exists if and only if the three-manifold M admits a THF

and gµν is a compatible transversely Hermitian metric.

On a three-manifold M, a THF consists of a one-dimensional oriented foliation and an

integrable complex structure J on the two-dimensional normal bundle D of the foliation.

It is always possible to find a nowhere vanishing vector field ξµ, whose orbits are the leaves

of the foliation. Given a THF, we can cover M with patches of adapted coordinates τ, z, z.

The real coordinate τ parametrizes the leaves of the foliation, so that ξ = ∂τ , while z is

a holomorphic coordinate on the normal bundle D. Two overlapping adapted coordinate

systems are related by

τ ′ = τ + t(z, z) , z′ = f(z) , (6.2)

where t(z, z) is real and f(z) is holomorphic. In adapted coordinates, a transversely

Hermitian metric takes the following form:

ds2 =
(
dτ + hdz + hdz

)2
+ c2dzdz , (6.3)

where h(τ, z, z) is complex and c(τ, z, z) is real. Note that ξ = ∂τ is generally not a Killing

vector. We can use such a metric to define two useful auxiliary objects,

ηµdx
µ = gµνξ

νdxµ = dτ + hdz + hdz , Φµ
ν = −εµνρξ

ρ =




0 −ih ih

0 i 0
0 0 −i


 . (6.4)

Note that the projection of Φµ
ν onto its z, z components is nothing but the complex

structure of the normal bundle, Φ|D = J .

The properties of THFs, and in particular the form of the coordinate transforma-

tions (6.2), allow the definition of many structures that are familiar from complex geom-

etry. For instance, we can split the bundle of complex differential forms into (p, q)-forms

and define an analogue of the ∂-operator, ∂̃, which maps (p, q)-forms into (p, q + 1)-forms

17 See [37] for a recent discussion of the full supergravity theory in components.



and satisfies ∂̃2 = 0 (see [12] and references therein). For instance, ω1,0 = ω1,0
z dz is

a (1, 0)-form. Under an adapted coordinate change (6.2), it transforms as follows,

(
ω′1,0

)
z′

=
1

f ′(z)
ω1,0
z . (6.5)

In general, we refer to a line bundle whose transition functions are independent of τ and

holomorphic in z as a holomorphic line bundle over M. (As we will review below, super-

symmetric configurations for Abelian background gauge fields correspond to holomorphic

line bundles.) It follows from (6.5) that the complex (1, 0)-forms constitute a holomor-

phic line bundle, which we refer to as the canonical bundle K of the THF. As in complex

geometry, holomorphic line bundles form moduli spaces, which are locally described by

the Dolbeault cohomology H0,1(M) (now defined using the ∂̃-operator), whose dimension

counts the number of moduli. Similarly, the THF itself typically belongs to a complex

moduli space. THFs on compact three-manifolds have been classified in [34-36].

Every non-trivial solution ζα of the Killing spinor equation (6.1) is everywhere non-

zero. The relation between ζα and the THF is then given by the following formula:

ηµ =
1

|ζ|2 ζ
†γµζ . (6.6)

We can also use ζα to construct a nowhere vanishing section Pµ = ζγµζ, which trivializes

the bundle L2 ⊗ K. Here L is the U(1)R line bundle and K is the canonical bundle of

the THF defined by ζα. As in four dimensions, this defines a holomorphic twist that

identifies L = K− 1

2 . After the twist, the supercharge Q corresponding to ζα transforms as

a scalar under adapted coordinate changes (6.2). The Killing spinor equation (6.1) then

essentially determines the supergravity background fields in terms of geometric data,

V µ = εµνρ∂νηρ + Uµ + κηµ ,

H = −1

2
∇µη

µ +
i

2
εµνρηµ∂νηρ + iκ ,

Φµ
νU

ν = −iUµ , ∇µ (U
µ + κηµ) = 0 ,

(6.7)

and

A(R)
µ = Âµ +Aflat

µ − 1

2
εµνρ∂

νηρ +
i

4
ηµ∇νη

ν − i

2
ην∇νηµ ,

Âµ =
1

8
Φν

µ∂ν log g , Aflat
µ = − i

2
∂µ log s .

(6.8)

The formula for Âµ is only valid in coordinates adapted to the THF, while the flat con-

nection Aflat
µ is determined by s = pg−

1

4 with p = Pz and g = det(gµν). The comments at

the end of section 3.1 also apply here.



By comparing the preceding discussion with the four-dimensional setup reviewed in

section 3.1, it is clear that the geometric ingredients are essentially identical. It is therefore

straightforward (but tedious) to start with the untwisted fields and Lagrangians described

in [23] and introduce twisted variables adapted to a choice of THF on M. Similarly, we

could follow the logic of section 4 and use this twisted description to study the dependence

of the supersymmetric partition function ZM on the background geometry. As in four

dimensions, this would lead to an alternative derivation of the results obtained in [12]: the

partition function is a locally holomorphic function of the complex moduli that parametrize

the THF and holomorphic line bundles. However, ZM does not depend on the choice of

transversely Hermitian metric.

6.2. Dependence of the Partition Function on the R-Symmetry

We will now generalize the results of section 5, which did not require the machinery

of twisted variables, to three dimensions. As in (5.1), we consider a t-dependent shift of

the R-current j
(R)
µ by an Abelian flavor current jµ,

j(R)
µ → j(R)

µ + tjµ . (6.9)

The current jµ resides in a real linear multiplet with real scalars J,K and fermions jα, j̃α.

These operators couple to a background gauge field aµ, scalars D, σ and gauginos λα, λ̃α,

Lflavor = aµjµ + σK +DJ + λαjα − λ̃αj̃α + · · · . (6.10)

Supersymmetric configurations are determined by setting λα, λ̃α and their supersymmetry

variations to zero. The resulting constraints on the background fields are conveniently

expressed by introducing a complex gauge field Aµ and its field strength,

Aµ = aµ + iσηµ , Fµν = ∂µAν − ∂νAµ . (6.11)

In adapted coordinates, these constraints take the form

Fτz = 0 , D = −1

2
Φµν

Fµν + ηµ∂µσ + σ

(
1

2
∇µη

µ − i

2
εµνρηµ∂νηρ

)
. (6.12)

It was shown in [12] that the first equation defines a holomorphic line bundle over M, just

as in four dimensions.



The R-current j
(R)
µ resides in the same supermultiplet as the supersymmetry cur-

rents Sµα, S̃µα, the energy-momentum tensor Tµν , the central charge current j
(Z)
µ , and a

real scalar J (Z). Their linearized couplings to the bosonic supergravity fields introduced

in section 6.1 (with gµν = δµν + 2hµν) is given by

LSUGRA = −hµνTµν +A(R)µj(R)
µ + Cµj(Z)

µ +HJ (Z) + · · · . (6.13)

As in four dimensions, the shift (6.9) of the R-current induces improvement transformations

of the other operators in its supermultiplet. For the bosonic operators, we find [16,38]

j(R)
µ → j(R)

µ + tjµ ,

Tµν → Tµν − t

2

(
∂µ∂ν − δµν∂

2
)
J ,

J (Z) → J (Z) + tK ,

j(Z)
µ → j(Z)

µ − itεµνρ∂
νjρ .

(6.14)

Substituting into (6.13) and comparing with (6.10), we find the following linearized shifts:

∆aµ = t
(
A(R)

µ + Vµ
)
, ∆σ = tH , ∆D = − t

4
(R + · · ·) , (6.15)

where the ellipsis in ∆D denotes possible higher-order terms in the supergravity fields that

are allowed by dimensional analysis and gauge invariance. As before, they can be fixed by

demanding that the shifts in (6.15) satisfy the constraints (6.12). A calculation using the

integrability conditions18 that follow from the Killing spinor equation (6.1) shows that

∆D = − t

4

(
R− 2V µVµ − 2H2

)
. (6.16)

We can now repeat the arguments in section 5 to deduce the t-dependence of the

partition function ZM. As was the case there, continuous shifts of t require the canonical

bundle K of the THF to be topologically trivial, c1(K) = 0, which renders the expression

for ∆aµ in (6.15) sufficiently well defined. Recall the following result of [12]: the defor-

mation of the flavor line bundle induced by the shifts (6.15) and (6.16) is parametrized by

the following one-form, appropriately projected onto cohomology,

∆A
0,1 = (∆aµdx

µ + i∆σηµdx
µ)

0,1
in H0,1(M) . (6.17)

18 These integrability conditions are written out in equation (5.8) of [23].



If we choose a basis ω0,1
A for H0,1(M), the moduli space for holomorphic line bundles

of fixed topology is parametrized by linear combinations νAω0,1
A ∈ H0,1(M). The shift

in (6.17) then takes the form

νA → νA − t

2
νAK , (6.18)

where the constants νAK are determined by solving

i∂̃ log p = νAKω
0,1
A in H0,1(M) . (6.19)

Here we have substituted (6.8), (6.15) into (6.17) and used the fact that the trivializing

section of L2⊗K is given by p = g
1

4 s. Note that (6.19) takes the same form as (5.11) if we

replace the ∂-operator by its three-dimensional counterpart ∂̃. Since the partition function

is locally holomorphic in the line bundle moduli νA, its dependence on the R-symmetry

mixing parameter t is completely determined by (6.18), exactly as in (5.12),

ZM

(
t, νA

)
= ZM

(
0, νA − t

2
νAK

)
. (6.20)

The comments at the end of section 5.2 are straightforwardly adapted to the present case.

6.3. Example: Squashed Spheres

We will illustrate the results of the previous subsection by providing an a priori expla-

nation for the R-symmetry dependence of supersymmetric partition functions on squashed

three-spheres, i.e. manifolds diffeomorphic but not necessarily isometric to a round S3. As

was shown in [12], most known examples of supersymmetric squashed three-spheres be-

long to a one-parameter family of THFs on S3. (An example that does not belong to this

family was also constructed there.) In concrete calculations, we can choose any convenient

representative of this one-parameter family. Here we will use the U(1) × U(1)-symmetric

squashed sphere S3
b of [39]. For these backgrounds, the squashing parameter b, which corre-

sponds to the THF modulus, is real. Since the partition function ZS3

b
is locally holomorphic

in b, we can analytically continue to complex b at the end of the calculation [12].

In our conventions, the supergravity background fields that describe the squashed

sphere of [39] take the following form:

ds2 =
1

4
f(θ)2dθ2 + b−2 cos2

θ

2
dϕ2 + b2 sin2

θ

2
dχ2 ,

V µ = 0 , H =
i

f(θ)
,

A(R)
µ dxµ =

1

2

(
1− 1

bf(θ)

)
dϕ+

1

2

(
1− b

f(θ)

)
dχ ,

(6.21)



while the vector field whose orbits determine the leaves of the THF is given by

ηµ∂µ = −b∂ϕ − b−1∂χ . (6.22)

Here 0 ≤ θ ≤ π, ϕ ∼ ϕ + 2π, and χ ∼ χ + 2π. The function f(θ) was chosen to have a

specific form in [39], but it was shown in [40] that f(θ) is essentially arbitrary (up to to

smooth boundary conditions at θ = 0, π) and does not affect the partition function ZS3

b
. In

the language of [12], different choices of f(θ) parametrize distinct transversely Hermitian

metrics for the same THF, and hence these choices do not affect ZS3

b
. Also note that we

have set the overall dimensionful ‘radius’ of the metric to one.

Since all complex line bundles over S3
b are topologically trivial, we can apply the

results of section 6.2. The Dolbeault cohomology H0,1(S3
b ) was explicitly constructed

in [12]. It is one-dimensional and generated by ω0,1
µ = ηµ. Therefore, we can parametrize

supersymmetric Abelian flavor gauge fields on S3
b as follows,

Aµ = νω0,1
µ = νηµ , ν ∈ C . (6.23)

Here Aµ is the complex gauge field defined in (6.11). Instead of using (6.19) to evaluate νK,

we can simply substitute the explicit supergravity background fields (6.21) into (6.15)

and (6.17). After projecting onto ηµ, we find that

νK = b+ b−1 . (6.24)

As expected, this only depends on the THF modulus b. All extraneous data, such as the

function f(θ) that appears in (6.21), has dropped out. Substituting (6.24) into (6.18), we

obtain the change in ν under a t-dependent shift of the R-symmetry,

ν → ν − t

2

(
b+ b−1

)
. (6.25)

Therefore, ZS3

b
only depends on ν and t through a holomorphic function of ν− t

2

(
b+ b−1

)
.

As was explained in [23], turning on a real mass m for the flavor current jµ amounts

to setting ν = im. Therefore, the partition function on S3
b in the presence of the real

mass m is a locally holomorphic function of

m+
it

2

(
b+ b−1

)
, (6.26)

in perfect agreement with the results of [39]. A round sphere preserving four super-

charges [41,24,42] corresponds to b = 1. In this case, the partition function is holomorphic



in m + it. The fact that the R-symmetry mixing parameter t acts as an imaginary part

for the real mass played a crucial role in the proof of the F -maximization principle [24,43],

which determines the superconformal R-symmetry in three-dimensional N = 2 theories.

This holomorphy property was recognized in [24] as an empirical feature of the explicit

partition functions computed in [24,42], and further explored in [4,44]. Our general proof

emphasizes the geometric origin of the various parameters in (6.26), which enabled us to

apply the results of [12] about the dependence of ZM on the background geometry.
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Appendix A. Product Multiplets

Given two general multiplets S1, S2 as in (2.3) with bottom components C1, C2 of R-

charge r1, r2, we define a product multiplet S through its bottom component C = C1C2.

Using the supersymmetry transformations (2.4), we can then obtain multiplication rules

for all other components of S,



C = C1C2 ,

χ = χ1C2 + C1χ2 , χ̃ = χ̃1C2 + C1χ̃2 ,

M =M1C2 + C1M2 − iχ1χ2 , M̃ = M̃1C2 + C1M̃2 + iχ̃1χ̃2 ,

aµ = a1µC2 + C1a2µ +
1

2
(χ1σµχ̃2 − χ̃1 σ̃µχ2) ,

λ =
(
λ1C2 +

i

2
M̃1χ2 +

1

2
σµχ̃1 (a2µ − iDµC2)

)
+ (1 ↔ 2) ,

λ̃ =
(
λ̃1C2 −

i

2
M1χ̃2 −

1

2
σ̃µχ1 (a2µ + iDµC2)

)
+ (1 ↔ 2) ,

D = D1C2 + C1D2 +
1

2
M1M̃2 +

1

2
M̃1M2 − a

µ
1a2µ −DµC1DµC2

− χ1

(
λ2 +

i

2
σµDµχ̃2

)
− χ̃1

(
λ̃2 +

i

2
σ̃µDµχ2

)
−
(
λ1 −

i

2
Dµχ̃1σ̃

µ
)
χ2

−
(
λ̃1 −

i

2
Dµχ1σ

µ
)
χ̃2 +

3

2
Vµ (χ1σ

µχ̃2 − χ̃1σ̃
µχ2) .

(A.1)

In terms of the twisted variables defined in (3.8), we can rewrite these multiplication rules

as follows,

C = C1C2 , X = X1C2 + C1X2 ,

Xij = X1,ijC2 + C1X2,ij , Mij = M1,ijC2 + C1M2,ij + X1X2,ij − X1,ijX2 ,

X̃i = X̃1,iC2 + C1X̃2,i , Ai = A1,iC2 + C1A2,i + X1X̃2,i − X̃1,iX2 ,

Ai = A1,iC2 + C1A2,i + iX1,ijX̃ j
2 − iX̃ j

1X2,ij ,

L̃i =
(
L̃1,iC2 +A1,iX2 − iAj

1X2,ij + iM1,ijX̃ j
2

)
+ (1 ↔ 2) ,

M̃ij = M̃1,ijC2 + C1M̃2,ij + 2i
(
X̃1,iX̃2,j − X̃1,jX̃2,i

)
,

Lij =
(
L1,ijC2 + M̃1,ijX2 + 2i

(
A1,iX̃2,j −A1,jX̃2,i

))
+ (1 ↔ 2) ,

L =

(
L1C2 +

1

4
M̃1,ijX

ij
2 − X̃ i

1

(
A2,i − 2i∇c

iC2 − 2r2
(
Vi +

1

2
Ui

)
C2
))

+ (1 ↔ 2) ,

D =

(
D1C2 − L1X2 +

1

4
L1,ijX

ij
2 +

1

4
M̃1,ijM

ij
2

−Ai
1

(
A2,i − 2i∇c

iC2 − 2r2
(
Vi +

1

2
Ui

)
C2
)

+ X̃ i
1

(
L̃2,i − 2i∇c

iX2 − 2r2
(
Vi +

1

2
Ui

)
X2

))
+ (1 ↔ 2) .

(A.2)

These formulas simplify if we consider products of only twisted chiral multiplets (3.16) or

only twisted anti-chiral multiplets (3.18). In this case the multiplication rules (A.2) do not

explicitly depend on the Hermitian metric or on the vector field Uµ.



Appendix B. Connections on Hermitian Manifolds

Given a Hermitian manifold with integrable complex structure Jµ
ν and Hermitian

metric gµν , we would like to define a connection that is compatible with both Jµ
ν and gµν .

If the manifold is Kähler, then ∇µJ
ν
ρ = 0 and we can use the usual Levi-Civita connec-

tion ∇µ. In general, we have to use a connection with torsion.

A connection ∇̂µ is metric compatible, i.e. ∇̂µgνρ = 0, if its connection coeffi-

cients Γ̂µ
νρ can be expressed as19

Γ̂
µ

νρ = Γµ
νρ +Kµ

νρ ,

Γµ
νρ =

1

2
gµλ (∂νgρλ + ∂ρgνλ − ∂λgνρ) ,

Kµνρ = −Kρνµ .

(B.2)

Here Kµ
νρ is the contorsion tensor, which vanishes for the Levi-Civita connection. It is

related to the torsion tensor Tµ
νρ as follows,20

Tµ
νρ = Kµ

νρ −Kµ
ρν , Kµνρ =

1

2
(Tµνρ + Tρµν − Tνρµ) . (B.3)

If we also demand that ∇̂µ is compatible with the complex structure, i.e. ∇̂µJ
ν
ρ = 0,

we find a one-parameter family of allowed connections, parametrized by the following

choice of contorsion,

Kµνρ =
1− t

2
Jν

λ (dJ)λµρ +
t

2
Jµ

αJν
βJρ

γ (dJ)αβγ , t ∈ R , (B.4)

where (dJ)µνρ = ∇µJνρ +∇νJρµ +∇ρJµν . To verify that ∇̂µJ
ν
ρ = 0, we use the identity

2∇µJνρ + Jν
αJρ

β (dJ)µαβ − (dJ)µνρ = 0 , (B.5)

19 The spin connection corresponding to ∇̂µ is given by

ω̂µνρ = ωµνρ −Kνµρ , (B.1)

where ωµνρ is the spin connection associated with the Levi-Civita connection.
20 Given any one-form Xµ, the torsion tensor Tµ

νρ satisfies the defining relation

∇̂µXν − ∇̂νXµ = ∂µXν − ∂νXµ − T
λ
µνXλ .



which follows from the integrability of Jµ
ν , i.e. the vanishing of its Nijenhuis tensor.21

Some connections in the family (B.4) parametrized by t have various other desirable

properties. We will use the Chern connection ∇c
µ, which corresponds to t = 0. It has the

following useful properties:

1.) The torsion (T c)
µ
νρ of the Chern connection satisfies

(δα
ν + iJα

ν) (δβ
ρ − iJβ

ρ) (T c)
µ
νρ = 0 ⇐⇒ (T c)

µ

ij = 0 , (B.6)

where i, j are holomorphic indices with respect to Jµ
ν . We will also need the fully

holomorphic components,

T k
ij = i(dJ)

k
ij . (B.7)

2.) The Chern connection acts simply on sections ω of the canonical bundle K of com-

plex (2, 0)-forms,

∇c
iω =

(
∂i −

1

2
∂i log g

)
ω , ∇c

i
ω = ∂iω , g = det(gµν) . (B.8)

21 The Nijenhuis tensor of Jµ
ν is defined by

N
µ
νρ = J

λ
ν∇λJ

µ
ρ − J

λ
ρ∇λJ

µ
ν − J

µ
λ∇νJ

λ
ρ + J

µ
λ∇ρJ

λ
ν .
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