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Abstract

We show that at tree level, on-shell gauge invariance can be used to fully determine the first

subleading soft-gluon behavior and the first two subleading soft-graviton behaviors. Our proofs of

the behaviors for n-gluon and n-graviton tree amplitudes are valid in D dimensions and are similar

to Low’s proof of universality of the first subleading behavior of photons. In contrast to photons

coupling to massive particles, in four dimensions the soft behaviors of gluons and gravitons are

corrected by loop effects. We comment on how such corrections arise from this perspective. We

also show that loop corrections in graviton amplitudes arising from scalar loops appear only at

the second soft subleading order. This case is particularly transparent because it is not entangled

with graviton infrared singularities. Our result suggests that if we set aside the issue of infrared

singularities, soft-graviton Ward identities of extended BMS symmetry are not anomalous through

the first subleading order.
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I. INTRODUCTION

Interest in the soft behavior of gravitons and gluons has recently been renewed by a pro-

posal from Strominger and collaborators [1, 2] showing that soft-graviton behavior follows

from Ward identities of extended Bondi, van der Burg, Metzner and Sachs (BMS) symme-

try [3, 4]. This has stimulated a variety of studies of the subleading soft behavior of gravitons

and gluons. In four spacetime dimensions, Cachazo and Strominger [2] showed that tree-

level graviton amplitudes have a universal behavior through second subleading order in the

soft-graviton momentum. In Ref. [5] an analogous description of tree-level soft behavior for

gluons at first subleading order was given. Interestingly, these universal behaviors hold in

D dimensions as well [6]. In four dimensions, there is an interesting connection between

the subleading soft behavior in gauge theory and conformal invariance [7, 8]. There are

also recent constructions of twistor-related theories with the desired soft properties [9]. Soft

behavior in string theory and for higher-dimension operators has also been discussed [8, 10].

Soft theorems have a long history and were recognized in the 1950s and 1960s to be an

important consequence of local on-shell gauge invariance [11–14]. (For a discussion of the

low-energy theorem for photons see Chapter 3 of Ref. [15].) For photons, Low’s theorem [12]

determines the amplitudes with a soft photon from the corresponding amplitudes without a

photon, through O(q0), where q is the soft-photon momentum. The theorem links the first

subleading soft behavior to the universal leading behavior via gauge invariance.

The universal leading soft-graviton behavior was first discussed by Weinberg [13]. The

leading behavior is uncorrected to all loop orders [16]. Using dispersion relations, Gross and

Jackiw analyzed the particular example of Compton scattering of gravitons on massive scalar

particles [17]. They showed that, for fixed angle, the Born contributions have no corrections

up to, but not including, fourth order in the soft momentum. Jackiw then applied gauge-

invariance arguments similar to those of Low to reanalyze this case [18]. However, for our

purposes this case is too special because the degenerate kinematics of 2 → 2 scattering

leads to extra suppression not only at tree level, but at loop level as well. In particular,

the soft limits are finite at fixed angle. This may be contrasted with the behavior for larger

numbers of legs, where the amplitudes at all loop orders diverge as a graviton becomes soft,

matching the tree behavior. Thus, the results of Refs. [17, 18] cannot be directly applied

to our discussion of n-point behavior. A more recent discussion of the generic subleading
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behavior of soft gluons and gravitons is given in Refs. [19, 20].

Soft-gluon and graviton behaviors are, in general, modified by loop effects [21, 22]. This

is not surprising given that loop corrections arising from infrared singularities occur in QCD,

starting with the leading behavior [23, 24]. We note that Ref. [25] proposed that by keeping

the dimensional-regularization parameter ǫ = (4−D)/2 < 0 finite as one takes the soft limit,

loop corrections can be avoided, as explicitly shown in five-point N = 4 super-Yang-Mills

examples. However, this prescription is not physically sensible because it does not get soft

physics correct and, in particular, ruins the cancellation of leading infrared divergences in

QCD. One can instead view this as a prescription on integrands prior to loop integration;

in this way, the five-point N = 4 super-Yang-Mills results in Ref. [25] were extended to all

numbers of loops and legs for planar amplitudes [8].

Extended BMS symmetry gives us a remarkable new understanding for the behavior of

soft gravitons in four spacetime dimensions [1]. However, given that universal soft behavior

holds also in D dimensions as well as for gluons, we expect that there is a more general

explanation not tied to four dimensions. In this paper, we show that, just as for photons [12],

on-shell gauge invariance can be used to fully determine subleading behavior. We show that

in nonabelian gauge theory, on-shell gauge invariance dictates that at tree level the first

subleading term is universal and controlled by the amplitude with the soft gluon removed.

Similarly, in gravity the first two subleading terms at tree level are universal. Our proof

is valid in D dimensions because it uses only on-shell gauge invariance together with D-

dimensional three-point vertices.

We shall also explain how loop corrections arise in this context. In nonabelian gauge

theory and gravity, there are “factorizing” loop corrections to the three-vertex controlling

the soft behavior. However, in gravity, generically the dimensionful nature of the coupling

implies that there are no loop corrections to the leading behavior [16], no corrections beyond

one loop to the first subleading behavior, and no corrections beyond two loops to the second

subleading behavior [21].

As shown long ago, the factorizing contributions are suppressed in gauge theory: They

vanish at leading order in the soft limit [23, 24] but are nontrivial at the first subleading

order [21, 22]. Similarly, in gravity we prove that for the case of a scalar circulating in

the loop, the loop corrections to the soft-graviton behavior vanish not only for the leading

order but for the first subleading order as well. This case is particularly transparent because
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there are no infrared singularities [26] or contributions to the soft operators arising from

them. We expect that for all other particles circulating in the loop, only contributions

associated with infrared singularities will appear at the first subleading soft order. Indeed,

this suppression has been observed in the explicit examples of infrared-finite amplitudes

studied in Refs. [21, 22]. These results suggest that, up to issues associated with infrared

singularites, the soft Ward identities of BMS symmetry [1] are not anomalous. We note that

while there are loop corrections to the first subleading soft-graviton behavior linked with

infrared singularities, they come from a well-understood source and therefore should not be

too disruptive when studying the connection to BMS symmetry.

This paper is organized as follows. In Sect. II, we review Low’s theorem for the case

of a soft photon coupled to n scalars, showing how gauge invariance determines the first

subleading behavior. In Sect. III, we repeat the analysis for a soft graviton. Next, in

Sect. IV, we study the case of a soft gluon where all external particles are gluons and discuss

spin contributions in some detail. The analysis for a soft graviton is extended to the case

where all external particles are gravitons in Sect. V. In Sect. VI, we explain how loop

corrections to the soft operators arise from the perspective of on-shell gauge invariance and

show that there are no corrections to the first subleading soft-graviton behavior for scalars

in the loop. We give our conclusions in Sect. VII.

Added note

While this manuscript was being finalized, a paper appeared constraining soft behavior

using Poincaré and gauge invariance, as well as from a condition arising from the distribu-

tional nature of scattering amplitudes [27]. In this way, the authors determine the form of

the subleading soft differential operators up to a numerical constant for every leg.

II. PHOTON SOFT LIMIT WITH n SCALAR PARTICLES

In this section, we review the classic theorem due to Low [12] on the subleading soft

behavior of photons, for simplicity focusing on the case of a single photon coupled to n

scalars. As explained by Low in 1958, gauge invariance enforces the universality of the first

subleading behavior, allowing us to fully determine it in terms of the amplitude without the
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(a) (b)

FIG. 1: Diagrams of the form (a) give universal leading soft behavior. The subleading behavior

comes from both diagrams types (a) and (b).

soft photon. In subsequent sections, we will apply a similar analysis to cases with gravitons

and gluons.

As illustrated in Fig. 1, the scattering amplitude of a single photon and n scalar particles

arises from (a) contributions with a pole in the soft momentum q and (b) contributions with

no pole:

Aµ
n(q; k1, . . . , kn) =

n
∑

i=1

ei
kµ
i

ki · q
Tn(k1, . . . , ki + q, . . . , kn) +Nµ

n (q; k1, . . . , kn) . (2.1)

For our purposes, it is convenient to not include the polarization vectors until the end of

the discussion. The full amplitude is obtained by contracting Aµ
n with the physical photon

polarization εqµ. The first term in Eq. (2.1) corresponds to the emission of the photon from

one of the scalar external lines as illustrated in Fig. 1(a) and is divergent in the soft-photon

limit, while the second term, illustrated in Fig. 1(b), is finite in the soft-photon limit. The

electric charge of particle i is ei.

On-shell gauge invariance implies

0 = qµA
µ
n(q; k1, . . . , kn)

=
n

∑

i=1

eiTn(k1, . . . , ki + q, . . . , kn) + qµN
µ
n (q; k1, . . . , kn) , (2.2)

valid for any value of q. Expanding around q = 0, we have

0 =

n
∑

i=1

ei

[

Tn(k1, . . . , ki, . . . , kn) + qµ
∂

∂kiµ
Tn(k1, . . . , ki, . . . , kn)

]

+ qµN
µ
n (q = 0; k1, . . . , kn) +O(q2) . (2.3)

At leading order, this equation is
n

∑

i=1

ei = 0 , (2.4)
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which is simply a statement of charge conservation [13]. At the next order, we have

qµN
µ
n (0; k1, . . . , kn) = −

n
∑

i=1

eiqµ
∂

∂kiµ
Tn(k1, . . . , kn) . (2.5)

This equation tells us that Nµ
n (0; k1, . . . , kn) is entirely determined up to potential pieces

that are separately gauge invariant. However, it is easy to see that the only expressions local

in q that vanish under the gauge-invariance condition qµE
µ = 0 are of the form,

Eµ = (B1 · q)Bµ
2 − (B2 · q)Bµ

1 , (2.6)

where Bµ
1 and Bµ

2 are arbitrary vectors that are local in q and constructed with the momenta

of the scalar particles. The explicit factor of the soft momentum q in each term means that

they are suppressed in the soft limit and do not contribute to Nµ
n (0; k1, . . . , kn). We can

therefore remove the qµ from Eq. (2.5), leaving

Nµ
n (0; k1, . . . , kn) = −

n
∑

i=1

ei
∂

∂kiµ
Tn(k1, . . . , kn) , (2.7)

thereby determining Nµ
n (0; k1, . . . , kn) as a function of the amplitude without the photon.

Inserting this into Eq. (2.1) yields

Aµ
n(q; k1, . . . , kn) =

n
∑

i=1

ei
ki · q

[kµ
i − iqνJ

µν
i ]Tn(k1, . . . , kn) +O(q) , (2.8)

where

Jµν
i ≡ i

(

kµ
i

∂

∂kiν
− kν

i

∂

∂kiµ

)

, (2.9)

is the orbital angular-momentum operator and Tn(k1, . . . , kn) is the scattering amplitude

involving n scalar particles. Eq. (2.8) is Low’s theorem for the case of one photon and n

scalars.

Low’s theorem is unchanged at loop level for the simple reason that even at loop level, all

diagrams containing a pole in the soft momentum are of the form shown in Fig. 1(a), with

loops appearing only in the blob and not correcting the external vertex. If the scalars are

massive, the integrals will not have infrared discontinuities that could lead to loop corrections

of the type described in Ref. [21].

It is also interesting to see if there is any further information at higher orders in the soft

expansion. If we go one order further in the expansion, we find the extra condition,

1

2

n
∑

i=1

eiqµqν
∂2

∂kiµ∂kiν
Tn(k1, . . . , kn) + qµqν

∂Nµ
n

∂qν
(0; k1, . . . , kn) = 0 . (2.10)
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This implies

n
∑

i=1

ei
∂2

∂kiµ∂kiν
Tn(k1, . . . , kn) +

[

∂Nµ
n

∂qν
+

∂Nν
n

∂qµ

]

(0; k1, . . . , kn) = 0 , (2.11)

where the final set of arguments belongs to both terms in the bracket. Gauge invariance

determines only the symmetric part of the quantity ∂Nν
n

∂qµ
(0; k1, . . . , kn). The antisymmetric

part is not fixed by gauge invariance; indeed, this corresponds exactly to terms of the type

in Eq. (2.6). Then, up to this order, we have

Aµ
n(q; k1, . . . , kn) =

n
∑

i=1

ei
ki · q

[

kµ
i − iqνJ

µν
i

(

1 +
1

2
qρ

∂

∂kiρ

)]

Tn(k1, . . . , kn)

+
1

2
qν

[

∂Nµ
n

∂qν
− ∂Nν

n

∂qµ

]

(0; k1, . . . , kn) +O(q2) . (2.12)

It is straightforward to see that one gets zero by saturating the previous expression with qµ.

In order to write our universal expression in terms of the amplitude, we contract

Aµ
n(q; k1, . . . , kn) with the photon polarization εqµ. From Eq. (2.8), we have the soft-photon

limit of the single-photon, n-scalar amplitude:

An(q; k1, . . . , kn) →
[

S(0) + S(1)
]

Tn(k1, . . . , kn) +O(q) , (2.13)

where

S(0) ≡
n

∑

i=1

ei
ki · εq
ki · q

,

S(1) ≡ −i
n

∑

i=1

ei
εqµqνJ

µν
i

ki · q
, (2.14)

and Jµν
i is given in Eq. (2.9).

III. GRAVITON SOFT LIMIT WITH n SCALAR PARTICLES

We now turn to the case of gravitons coupled to n scalars. We shall see that in the graviton

case, gauge invariance can be used to fully determine the first two subleading orders in the

soft-graviton momentum q. Together with the subsequent sections, this shows that the tree

behavior through second subleading soft order uncovered in Ref. [2] can be understood as a

consequence of on-shell gauge invariance.
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In the case of a graviton scattering on n scalar particles, Eq. (2.1) becomes

Mµν
n (q; k1, . . . , kn) =

n
∑

i=1

kµ
i k

ν
i

ki · q
Tn(k1, . . . , ki + q, . . . , kn) +Nµν

n (q; k1, . . . , kn) , (3.1)

where Nµν
n (q; k1, . . . , kn) is symmetric under the exchange of µ and ν. For simplicity, we

have set the gravitational coupling constant to unity. Similar to the gauge-theory case, we

contract with the graviton polarization tensor εqµν at the end. On-shell gauge invariance

of the soft leg requires that the amplitude be invariant under the shift in the polarization

tensor,

εqµν → εqµν + qµεqνf(q, ki) , (3.2)

where εqν satisfies εqν · q = 0 and f(q, ki) is an arbitrary function of the momenta. This

implies that

0 = qµM
µν
n (q; k1, . . . , kn)

=
n

∑

i=1

kν
i Tn(k1, . . . , ki + q, . . . , kn) + qµN

µν
n (q; k1, . . . , kn) . (3.3)

Strictly speaking, Eq. (3.3) is true only after contracting the ν index with either εqν or a

conserved current. Since we contract with polarizations at the end, we can use Eq. (3.3).

At leading order in q, we then have

n
∑

i=1

kµ
i = 0 , (3.4)

which is satisfied due to momentum conservation. (As noted by Weinberg [13], had there

been different couplings to the different particles, it would have prevented this from vanishing

in general; this shows that gravitons have universal coupling.)

At first order in q, Eq. (3.3) implies

n
∑

i=1

kν
i

∂

∂kiµ
Tn(k1, . . . , kn) +Nµν

n (0; k1, . . . , kn) = 0 , (3.5)

while at second order in q, it gives

n
∑

i=1

kν
i

∂2

∂kiµ∂kiρ
Tn(k1, . . . , kn) +

[

∂Nµν
n

∂qρ
+

∂Nρν
n

∂qµ

]

(0; k1, . . . , kn) = 0 . (3.6)

As in the case of the photon, this is true up to gauge-invariant contributions to Nµν
n . How-

ever, the requirement of locality prevents us from writing any expression that is local in q
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yet not sufficiently suppressed in q. In fact, the most general local expression that obeys

the gauge-invariance condition qµE
µν = qνE

µν = 0 is of the form,

Eµν =
(

(B1 · q)Bµ
2 − (B2 · q)Bµ

1

)(

(B3 · q)Bν
4 − (B4 · q)Bν

3

)

, (3.7)

where the Bµ
i are local in q and constructed in terms of the momenta of the scalar par-

ticles. In the amplitude, Eµν will be contracted against the symmetric traceless graviton-

polarization tensor εqµν , so there is no need to include potential terms proportional to qµ, qν

or ηµν . Terms of the form in Eq. (3.7) have two powers of q and therefore will not contribute

to the soft expansion at the orders in which we are interested.

Using Eqs. (3.5) and (3.6) in Eq. (3.1), we write the expression for a soft graviton as

Mµν
n (q; k1 . . . kn) =

n
∑

i=1

kν
i

ki · q

[

kµ
i − iqρJ

µρ
i

(

1 +
1

2
qσ

∂

∂kiσ

)]

Tn(k1, . . . , kn)

+
1

2
qρ

[

∂Nµν
n

∂qρ
− ∂Nρν

n

∂qµ

]

(0; k1, . . . , kn) +O(q2) . (3.8)

This is essentially the same as Eq. (2.12) for the photon except that there is a second

Lorentz index in the graviton case. We will show that, unlike the case of the photon, the

antisymmetric quantity in the second line of the previous equation can also be determined

from the amplitude Tn(k1, . . . , kn) without the graviton.

But, before we proceed further, let us check gauge invariance. Saturating the previous

expression with qµ, we see that the first term is vanishing because of momentum conser-

vation, while all other terms are vanishing because qµqρ is saturated with terms that are

antisymmetric in µ and ρ. If, instead, we saturate the amplitude with qν , the first term is

vanishing as before due to momentum conservation, while the first term depending on an-

gular momentum is vanishing because of angular-momentum conservation. The remaining

terms are

qνM
µν
n (q; k1, . . . , kn) =

1

2
qρqσ

{ n
∑

i=1

(

kµ
i

∂

∂kiρ
− kρ

i

∂

∂kiµ

)

∂

∂kiσ
Tn(k1, . . . , kn)

+

[

∂Nµσ
n

∂qρ
− ∂Nρσ

n

∂qµ

]

(0; k1, . . . , kn)

}

= 0 , (3.9)

where the vanishing follows from Eq. (3.6), remembering that Nµν
n is a symmetric matrix.

Therefore the amplitude in Eq. (3.8) is gauge invariant. Actually, Eq. (3.6) allows us to
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write the relation ,

−i
n

∑

i=1

Jµρ
i

∂

∂kiσ
Tn(k1, . . . , kn) =

[

∂Nρσ
n

∂qµ
− ∂Nµσ

n

∂qρ

]

(0; k1, . . . , kn) , (3.10)

which fixes the antisymmetric part of the derivative of Nµν
n in terms of the amplitude

Tn(k1, . . . , kn) without the graviton. Inserting this into Eq. (3.8), we can then rewrite the

terms of O(q) as follows:

Mµν
n (q; k1, . . . , kn)

∣

∣

O(q)
= − i

2

n
∑

i=1

qρqσ
ki · q

[

kν
i J

µρ
i

∂

∂kiσ
− kσ

i J
µρ
i

∂

∂kiν

]

Tn(k1, . . . , kn)

= − i

2

n
∑

i=1

qρqσ
ki · q

[

Jµρ
i kν

i

∂

∂kiσ
− (Jµρ

i kiν)
∂

∂kiσ

−Jµρ
i kσ

i

∂

∂kiν
+ (Jµρ

i kσ
i )

∂

∂kiν

]

Tn(k1, . . . , kn)

=
1

2

n
∑

i=1

1

ki · q

[

(

(ki · q)(ηµνqσ − qµηνσ)− kµ
i q

νqσ
) ∂

∂kσ
i

− qρJ
µρ
i qσJ

νσ
i

]

Tn(k1, . . . , kn) . (3.11)

Finally, we wish to write our soft-limit expression in terms of the amplitude, so we contract

with the physical polarization tensor of the soft graviton, εqµν . We see that the physical-

state conditions set to zero the terms in Eq. (3.11) that are proportional to ηµν , qµ and qν .

We are then left with the following expression for the graviton soft limit of a single-graviton,

n-scalar amplitude:

Mn(q; k1, . . . , kn) →
[

S(0) + S(1) + S(2)
]

Tn(k1, . . . , kn) +O(q2) , (3.12)

where

S(0) ≡
n

∑

i=1

εµνk
µ
i k

ν
i

ki · q
,

S(1) ≡ −i
n

∑

i=1

εµνk
µ
i qρJ

νρ
i

ki · q
,

S(2) ≡ −1

2

n
∑

i=1

εµνqρJ
µρ
i qσJ

νσ
i

ki · q
. (3.13)

These soft factors follow from gauge invariance and agree with those computed in Ref. [2].

We have also looked at higher-order terms and found that gauge invariance does not fully

determine them in terms of derivatives acting on Tn(k1, . . . , kn).
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n

1

(a)

n− 1

1

n

(c)

n

n− 1

(b)

FIG. 2: Diagrams (a) and (b) give leading universal soft-gluon behavior. The first subleading

behavior of the amplitude contained in the non-pole diagram (c) can be determined via on-shell

gauge invariance.

IV. SOFT LIMIT OF n-GLUON AMPLITUDES

A. Behavior of gluon tree amplitudes

In this section, we generalize the procedure of Sect. II to the case of n-gluon tree ampli-

tudes prior to turning to the case of n gravitons in the next section. As we shall discuss in

Sect. VI, the soft-gluon behavior has loop corrections.

We consider a tree-level color-ordered amplitude (see e.g. Ref. [28]) where gluon n be-

comes soft, where we define q ≡ kn. As before, we find it convenient to contract the

expression with polarization vectors only at the end to obtain the full amplitude. In the

case of n gluons, we have two pole terms: one where the soft gluon is attached to leg 1 (see

Fig. 2(a)) and the other where the soft gluon is attached to leg n − 1 (see Fig. 2(b)). In

addition to the contributions containing a pole in the soft momentum, we have the usual

term Nµ;µ1···µn−1

n (q; k1, . . . , kn−1) that is regular in the soft limit (see Fig. 2(c)). Together,

the contributions in Fig. 2 give

Aµ;µ1···µn−1

n (q; k1, . . . , kn−1)

=
δµ1

ρ kµ
1 + ηµµ1qρ − δµρ q

µ1

√
2(k1 · q)

A
ρµ2···µn−1

n−1 (k1 + q, k2, . . . , kn−1)

− δµn−1

ρ kµ
n−1 + ηµn−1µqρ − δµρ q

µn−1

√
2(kn−1 · q)

A
µ1···µn−2ρ
n−1 (k1, . . . , kn−2, kn−1 + q)

+Nµ;µ1···µn−1

n (q; k1, . . . , kn−1) . (4.1)

We have dropped terms from the three-gluon vertex that vanish when saturated with the
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external-gluon polarization vectors in addition to using the current-conservation conditions,

(k1 + q)ρA
ρµ2···µn−1

n−1 (k1 + q, k2, . . . , kn−1) = 0 ,

(kn−1 + q)ρ A
µ1···µn−2ρ
n−1 (k1, . . . , kn−2, kn−1 + q) = 0 , (4.2)

which are valid once we contract with the polarization vectors carrying the µj indices. By

introducing the spin-one angular-momentum operator,

(Σµσ
i )µiρ ≡ i (ηµµiηρσ − ηµρηµiσ) , (4.3)

we can write Eq. (4.1) as

Aµ;µ1···µn−1

n (q; k1, . . . , kn−1)

=
δµ1

ρ kµ
1 − iqσ(Σ

µσ
1 )µ1

ρ√
2(k1 · q)

A
ρµ2···µn−1

n−1 (k1 + q, k2, . . . , kn−1)

−
δµn−1

ρ kµ
n−1 − iqσ(Σ

µσ
n−1)

µn−1

ρ√
2(kn−1 · q)

A
µ1···µn−2ρ
n−1 (k1, . . . , kn−2, kn−1 + q)

+Nµ;µ1···µn−1

n (q; k1, . . . , kn−1) . (4.4)

Notice that the spin-one terms independently vanish when contracted with qµ.

The on-shell gauge invariance of Eq. (4.4) requires

0 = qµA
µ;µ1···µn−1

n (q; k1, . . . , kn−1)

=
1√
2
A

µ1µ2···µn−1

n−1 (k1 + q, k2, . . . , kn−1)−
1√
2
A

µ1···µn−2µn−1

n−1 (k1, . . . , kn−2, kn−1 + q)

+ qµN
µ;µ1···µn−1

n (q; k1, . . . , kn−1) . (4.5)

For q = 0, this is automatically satisfied. At the next order in q, we obtain

− 1√
2

[

∂

∂k1µ
− ∂

∂kn−1µ

]

A
µ1···µn−1

n−1 (k1, k2 . . . kn−1) = Nµ;µ1···µn−1

n (0; k1, . . . , kn−1) . (4.6)

Similar to the photon case, we ignore local gauge-invariant terms in Nµ;µ1···µn−1

n because

they are necessarily of a higher order in q. Thus, Nµ;µ1···µn−1

n (0; k1, . . . , kn−1) is determined

in terms of an expression without the soft gluon. With this, the total expression in Eq. (4.4)

becomes

Aµ;µ1···µn−1

n (q; k1 . . . kn−1) =

(

kµ
1√

2(k1 · q)
− kµ

n−1√
2(kn−1 · q)

)

A
µ1···µn−1

n−1 (k1, . . . , kn−1)

− i
qσ(J

µσ
1 )µ1

ρ√
2(k1 · q)

A
ρµ2···µn−1

n−1 (k1, . . . , kn−1)

+ i
qσ(J

µσ
n−1)

µn−1

ρ√
2(kn−1 · q)

A
µ1···µn−2ρ
n−1 (k1, . . . , kn−1) +O(q) , (4.7)
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where

(Jµσ
i )µiρ ≡ Lµσ

i ηµiρ + (Σµσ
i )µiρ, (4.8)

the spin-one angular-momentum operator is given in Eq. (4.3), and the orbital angular-

momentum operator is

Lµσ
i ≡ i

(

kµ
i

∂

∂kiσ
− kσ

i

∂

∂kiµ

)

. (4.9)

Both angular-momentum operators satisfy the same commutation relations,

[Lµν
i , Lρσ

i ] = i (ηνρLµσ
i + ηµρLσν

i + ηµσLνρ
i + ηνσLρµ

i ) ,

[Σµν
i ,Σρσ

i ] = i (ηνρΣµσ
i + ηµρΣσν

i + ηµσΣνρ
i + ηνσΣρµ

i ) , (4.10)

where the suppressed indices on Σµν
i should be treated as matrix indices.

In order to write the final result in terms of full amplitudes, we contract with external

polarization vectors. On the right-hand side of Eq. (4.7), we must pass polarization vectors

ε1µ1
and εn−1µn−1

through the spin-one angular-momentum operator such that they will con-

tract with the ρ index of, respectively, A
ρµ2···µn−1

n−1 (k1, . . . , kn−1) and A
µ1···µn−2ρ
n−1 (k1, . . . , kn−1).

It is convenient write the spin angular-momentum operator as

εiµi
(Σµσ

i )µi

ρA
ρ = i

(

εµi
∂

∂εiσ
− εσi

∂

∂εiµ

)

εiρA
ρ . (4.11)

We may therefore write

An(q; k1, . . . , kn−1) →
[

S(0)
n + S(1)

n

]

An−1(k1, . . . , kn−1) +O(q) , (4.12)

where

S(0)
n ≡ k1 · εn√

2 (k1 · q)
− kn−1 · εn√

2 (kn−1 · q)
,

S(1)
n ≡ −iεnµqσ

(

Jµσ
1√

2 (k1 · q)
− Jµσ

n−1√
2 (kn−1 · q)

)

. (4.13)

Here

Jµσ
i ≡ Lµσ

i + Σµσ
i , (4.14)

where

Σµσ
i ≡ i

(

εµi
∂

∂εiσ
− εσi

∂

∂εiµ

)

. (4.15)
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In using Eq. (4.12), one must interpret Lµσ
i as not acting on explicit polarization vectors,

i.e., Lµσ
i εi = 0. If one instead interprets polarization vectors as functions of momenta (see

e.g. Sect. 5.9 of Ref. [29]) and returns a nonzero value for Lµσ
i εi, then one should not include

the spin term (4.15). To be concrete, we define the action of the total angular-momentum

operator on momenta and polarizations by

Jµσ
i kρ

i = i (ησρkµ
i − ηµρkσ

i ) ,

Jµσ
i ερi = i (ησρεµi − ηµρεσi ) . (4.16)

We comment more on the action of the operator on polarization vectors in Sect. IVB.

In conclusion, the first two leading terms in the soft-gluon expansion of an n-gluon am-

plitude are given directly in terms of the amplitude without the soft gluon. This derivation

is valid in D dimensions. We have explicitly checked the soft-gluon formula (4.12) using

explicit four-, five- and six-gluon tree amplitudes of gauge theory in terms of formal polar-

ization vectors.

B. Connection to spinor helicity

To connect with the spinor-helicity formalism used in e.g. Refs. [2, 21, 22], we show

that, up to a gauge transformation, the action of the above subleading soft operators on

polarization vectors expressed in terms of spinor helicity is identical to the ones defined as

differential operators acting on spinors. In the spinor-helicity formalism, polarization vectors

are expressed directly in terms of spinors depending on the momenta:

ε+ ρ
i (ki, kr) =

〈r| γρ |i]√
2 〈r i〉

, ε− ρ
i (ki, kr) = −〈i| γρ |r]√

2 [r i]
, (4.17)

where ki is the momentum of gluon i and kr is a null reference momentum. Henceforth, we

will leave the ki argument implicit and only display the reference momentum. The spinors

are standard Weyl spinors. We follow the conventions of Ref. [28] aside from our use of angle

and square brackets instead of the ± angle-bracket convention. In our convention, we have

〈i| = 〈i−| , [i| = 〈i+| , |i〉 = |i+〉 , |i] = |i−〉 . (4.18)

In terms of spinors, the subleading soft factor for a tree-level gauge-theory amplitude

is [5]

S(1)λ
n =

1

〈(n− 1)n〉 λ̃
α̇
n

∂

∂λ̃α̇
n−1

− 1

〈1n〉 λ̃
α̇
n

∂

∂λ̃α̇
1

, (4.19)
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where λα ≡ |i+〉α and λ̃α̇ ≡ |i−〉α̇. We consider the explicit action of S
(1)λ
n in Eq. (4.19) and

S
(1)
n in Eq. (4.13) on ε± ρ

1 (kr1) to show equivalence after contraction with the polarization-

stripped amplitude. The action on ε± ρ
n−1(krn−1

) follows similarly. We act with Eq. (4.19) on

the vectors in Eq. (4.17)—with i → 1 and kr → kr1—in turn:

S(1)λ
n ε+ ρ

1 (kr1) = − 1

〈1n〉
〈r1| γρ |n]√
2 〈r1 1〉

= − 〈r1 n〉
〈r1 1〉 〈1n〉

ε+ ρ
n (kr1) , (4.20)

and

S(1)λ
n ε− ρ

1 (kr1) = − 1

〈1n〉

(

−〈1| γρ |r1]√
2

)(

− [r1 n]

[r1 1]
2

)

=
[r1 n]

[r1 1] 〈1n〉
ε− ρ
1 (kr1)

=
[r1 n]

[r1 1] 〈1n〉

[

ε− ρ
1 (kn) +

√
2 [r1 n]

[r1 1] [n 1]
kρ
1

]

=
[r1 n]

[r1 1] [1n]

[

ε+ ρ
n (k1)−

√
2 [r1 n]

[r1 1] 〈1n〉
kρ
1

]

, (4.21)

where we used

ε−ρ
i (kr) = ε−ρ

i (kr̃) +

√
2 [r r̃]

[r i] [r̃ i]
kρ
i , (4.22)

in the second-to-last line. The last line of Eq. (4.21) follows from

ε+ ρ
j (ki) =

[i j]

〈i j〉 ε
− ρ
i (kj) . (4.23)

We can write Eq. (4.21) more simply as

S(1)λ
n ε− ρ

1 (kr1)
∼= [r1 n]

[r1 1] [1n]
ε+ ρ
n (k1) , (4.24)

where the symbol ∼= denotes equivalence up to a term proportional to kρ
1 . Such terms will

vanish when contracted with the polarization-stripped (n−1)-point amplitude, so we are free

to drop them. Similar spinor-helicity algebra reveals that the action of S
(1)
n from Eq. (4.13)

on ε± ρ
1 (kr1) yields

S(1)
n ε+ ρ

1 (kr1) = −iε+nµ(krn)knσ

Σµσ
1√

2 (k1 · kn)
ε+ ρ
1 (kr1)

= − 〈r1 n〉
〈r1 1〉 〈1n〉

ε+ ρ
n (kr1) , (4.25)
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and

S(1)
n ε− ρ

1 (kr1) =
[r1 n]

[r1 1] [1n]
ε+ ρ
n (k1) . (4.26)

We can summarize the action of the operators as

S(1)λ
n ε± ρ

1 (kr1)
∼= S(1)

n ε± ρ
1 (kr1) = −

(

ε±1 (kr1) · pn√
2(p1 · pn)

)

×











ε+ ρ
n (kr1), for + ,

ε+ ρ
n (k1), for − .

(4.27)

We see that, up to terms proportional to kρ
1, the action of S

(1)λ
n and S

(1)
n on the polarization

vectors yield completely equivalent expressions as expected.

V. SOFT LIMIT OF n-GRAVITON AMPLITUDES

In this section, we generalize what has been done for the case of n gluons to the case of

n gravitons. As before, we write the amplitude as a sum of two pieces: the first contains

terms where the soft graviton is attached to one of the other n−1 external gravitons, giving

a contribution divergent as 1/q for q → 0, while in the second the soft graviton attaches to

one of the internal graviton lines and is of O(q0) in the same limit. Leaving the expression

uncontracted with polarization tensors for now, we write

Mµν;µ1ν1···µn−1νn−1

n (q; k1, . . . , kn−1)

=
n−1
∑

i=1

1

ki · q
[kµ

i η
µiα − iqρ(Σ

µρ
i )µiα]

[

kν
i η

νiβ − iqσ(Σ
µσ
i )νiβ

]

×M
µ1ν1··· ···µn−1νn−1

n−1 αβ (k1, . . . , ki + q, . . . , kn−1)

+Nµν;µ1ν1···µn−1νn−1

n (q; k1, . . . , kn−1) , (5.1)

where

(Σµρ
i )µiα ≡ i (ηµµiηαρ − ηµαηµiρ) . (5.2)

The simple form of the three-vertex used in Eq. (5.1) can be obtained from the standard one

using current conservation and the tracelessness properties of external polarization tensors

and Mn−1, as well as assigning terms to Nn where the i/ki · q propagator cancels. We note

that it is important to keep the lowered indices of Mn−1 in their appropriate slots. On-shell
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gauge invariance implies

0 = qµM
µν;µ1ν1···µn−1νn−1

n (q; k1, . . . , kn−1)

=

n−1
∑

i=1

[

kν
i η

νiβ − iqρ(Σ
νρ
i )νiβ

]

M
µ1ν1···µi ···µn−1νn−1

n−1 β (k1, . . . , ki + q, . . . , kn−1)

+ qµN
µν;µ1ν1···µn−1νn−1

n (q; k1, . . . , kn−1) , (5.3)

provided that, as usual, we contract all free indices of Mn with polarization tensors at the

end. This includes contracting the ν index with a polarization vector ενn satisfying εn ·q = 0.

Expanding the previous expression for small q, we find that the leading term vanishes because

of momentum conservation, while the next-to-leading term gives two conditions by taking

the symmetric and antisymmetric parts:

1

2

n−1
∑

i=1

ηµiαηνiβ
(

kµ
i

∂

∂kiν
+ kν

i

∂

∂kiµ

)

M
µ1ν1··· ···µn−1νn−1

n−1 αβ (k1, . . . , ki, . . . , kn−1)

= −Nµν;µ1ν1···µn−1νn−1

n (0; k1, . . . , kn−1) , (5.4)

and

n−1
∑

i=1

[

Lνρ
i ηνiβ + 2(Σνρ

i )νiβ
]

M
µ1ν1···µi ···µn−1νn−1

n−1 β (k1, . . . , ki, . . . , kn−1) = 0 . (5.5)

As in the earlier cases, we can ignore potential terms that are local in q and vanish when

dotted into qµ since they will not contribute to the desired order. The first condition deter-

mines Nµν;µ1ν1···µn−1νn−1

n (0; k1, . . . , kn−1) in terms of the amplitude without the soft graviton,

while the second one reflects conservation of total angular momentum. The factor of 2 in

front of the spin term in Eq. (5.5) reflects the fact that the graviton has spin 2.

Finally, the terms of order q2 in Eq. (5.3) imply the following condition:

n−1
∑

i=1

qρ

[

kν
i η

νiβ
∂2

∂kiρ∂kiµ
− 2i(Σνρ

i )νiβ
∂

∂kiµ

]

M
µ1ν1···µi ···µn−1νn−1

n−1 β (k1, . . . , ki, . . . , kn−1)

= −qρ

[

∂Nµν;µ1ν1···µn−1νn−1

n

∂qρ
+

∂Nρν;µ1ν1···µn−1νn−1

n

∂qµ

]

(0; k1, . . . , kn−1) . (5.6)
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Using the previous results, for a soft graviton of momentum q, we have

Mµν;µ1ν1···µn−1νn−1

n (q; k1, . . . , kn−1)

=

n−1
∑

i=1

1

ki · q

{

kµ
i k

ν
i η

µiαηνiβ

− i

2
qρ

[

kµ
i η

µiα
[

Lνρ
i ηνiβ + 2(Σνρ

i )νiβ
]

+ kν
i η

νiβ [Lµρ
i ηµiα + 2(Σµρ

i )µiα]
]

− i

2
qρqσ

[

kν
i η

µiαηνiβLµρ
i

∂

∂kiσ
− 2i(Σµρ

i )µiα(Σνσ
i )νiβ − 2kσ

i η
νiβ(Σνρ

i )νiβ
∂

∂kiµ

+ 2
[

ηµiαkµ
i (Σ

νρ
i )νiβ + ηνiβkν

i (Σ
µρ
i )µiα

] ∂

∂kiσ

]}

×M
µ1ν1··· ···µn−1νn−1

n−1 αβ (k1, . . . , ki, . . . , kn−1)

+
1

2
qρ

[

∂Nµν;µ1ν1···µn−1νn−1

n

∂qρ
− ∂Nρν;µ1ν1···µn−1νn−1

n

∂qµ

]

(0; k1, . . . , kn−1)

+O(q2) . (5.7)

As in the case of gluon scattering, it may seem that we cannot determine the order q

contributions in terms of Mn−1 because the antisymmetric part of the matrix Nn is still

present in Eq. (5.7). However, it turns out that there is additional information from on-shell

gauge invariance. When we saturate it with qµ, we get of course zero because this is the way

that Eq. (5.7) is constructed. When we saturate it with qν , however, we obtain the extra

condition:

0 = qνM
µν;µ1ν1···µn−1νn−1

n (q; k1, . . . , kn−1)

= qρqσ

{

n−1
∑

i=1

[Lµρ
i ηµiα + 2(Σµρ

i )µiα]
∂

∂kiσ
M

µ1ν1··· νi···µn−1νn−1

n−1 α (k1, . . . , ki, . . . , kn−1)

+ i

[

∂Nµσ;µ1ν1···µn−1νn−1

n

∂qρ
− ∂Nρσ;µ1ν1···µn−1νn−1

n

∂qµ

]

(0; k1, . . . , kn−1)

}

, (5.8)

which implies

n−1
∑

i=1

qρ [L
µρ
i ηµiα + 2(Σµρ

i )µiα]
∂

∂kiσ
M

µ1ν1··· νi···µn−1νn−1

n−1 α (k1, . . . , ki, . . . , kn−1)

= −iqρ

[

∂Nµσ;µ1ν1···µn−1νn−1

n

∂qρ
− ∂Nρσ;µ1ν1···µn−1νn−1

n

∂qµ

]

(0; k1, . . . , kn−1) . (5.9)

We can now use it in Eq. (5.7) to obtain our final expression giving the soft limit entirely
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in terms of the (n− 1)-point amplitude:

Mµν;µ1ν1···µn−1νn−1

n (q; k1, . . . , kn−1)

=

n−1
∑

i=1

1

ki · q

{

kµ
i k

ν
i η

µiαηνiβ

− i

2
qρ

[

kµ
i η

µiα
[

Lνρ
i ηνiβ + 2(Σνρ

i )νiβ
]

+ kν
i η

νiβ [Lµρ
i ηµiα + 2(Σµρ

i )µiα]
]

− 1

2
qρqσ

[

[Lµρ
i ηµiα + 2(Σµρ

i )µiα]
[

Lνσ
i ηνiβ + 2(Σνσ

i )νiβ
]

− 2(Σµρ
i )µiα(Σνσ

i )νiβ
]

}

×M
µ1ν1··· ···µn−1νn−1

n−1 αβ (k1, . . . , ki, . . . , kn−1) +O(q2) . (5.10)

In order to write our expression in terms of amplitudes, we saturate with graviton polariza-

tion tensors using εµν → εµεν where εµ are spin-one polarization vectors. As we did for the

case with gluons, we must pass the polarization vectors through the spin-one operators. We

are then left with

Mn(q; k1, . . . , kn−1) =
[

S(0)
n + S(1)

n + S(2)
n

]

Mn−1(k1, . . . , kn−1) +O(q2) , (5.11)

where

S(0)
n ≡

n−1
∑

i=1

εµνk
µ
i k

ν
i

ki · q
,

S(1)
n ≡ −i

n−1
∑

i=1

εµνk
µ
i qρJ

νρ
i

ki · q
,

S(2)
n ≡ −1

2

n−1
∑

i=1

εµνqρJ
µρ
i qσJ

νσ
i

ki · q
. (5.12)

Here

Jµσ
i ≡ Lµσ

i + Σµσ
i , (5.13)

with

Lµσ
i ≡ i

(

kµ
i

∂

∂kiσ
− kσ

i

∂

∂kiµ

)

, Σµσ
i ≡ i

(

εµi
∂

∂εiσ
− εσi

∂

∂εiµ

)

. (5.14)

Since the graviton polarization tensor is quadratic in spin-one polarization vectors εµi , the

differential operator in Eq. (5.14) picks up factors of 2 as required for Eq. (5.11) to be

compatible with Eq. (5.10).
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In conclusion, in the case of a soft graviton, on-shell gauge invariance completely deter-

mines the first two subleading contributions. Using the Kawai-Lewellen-Tye relations [30] we

have generated graviton amplitudes with formal polarization tensors up to six points. Using

these we analytically confirmed Eq. (5.11) through five points and numerically through six

points.

VI. COMMENTS ON LOOP CORRECTIONS

In gauge and gravity theories in four dimensions, the operators describing the soft be-

havior have nontrivial loop corrections [21, 22]. Indeed, in QCD, loop corrections linked

to infrared singularities are present already at leading order in the soft limit [23, 24]. One

may wonder how loop corrections to the soft operators arise from the perspective of the

constraints imposed by on-shell gauge invariance. In this section we explain this. We first

describe the case of gauge theory before turning to gravity.

a

n

µ

FIG. 3: The potential factorizing contributions to the one-loop corrections to the soft operators.

Leg n is the soft leg which carries momentum q.

As explained in Ref. [23], we can separate the contributions into two distinct sources.

The first source of potential corrections is the “factorizing” one that arises from loop cor-

rections of the form displayed in Fig. 3 [21–23]. The second source of contributions is the

“nonfactorizing” infrared-divergent one that can come from discontinuities in the amplitudes

associated with infrared divergences [31]. (Alternatively, these nonfactorizing contributions

can be pushed into factorizing contributions that have light-cone denominators coming from

a careful application of unitarity [24].)

Here we will focus on the factorizing pieces. In gauge theory, we will explain why they do

not enter in the leading soft behavior [23, 24]. In gravity, for the case of scalars in the loops,

which is an especially clean case since there are no infrared singularities even for massless

scalars, we show that there are no loop corrections at the leading and first subleading orders

20



of the soft-graviton expansion. This suppression was noticed earlier in explicit examples of

soft limits of one-loop infrared-finite gravity amplitudes [21, 22].

A. Gauge theory

=

n

a

µ +

n

a

µ +

n

a

µ

a

n

µ

FIG. 4: The diagrams contributing to the factorizing contribution to the one-loop soft function.

As a warm up for the gravity case, we first discuss the well-understood gauge-theory

case. The explicit forms of the factorizing one-loop corrections to the soft behavior have

been described in some detail in Refs. [23, 24] for QCD at leading order in the soft (and

collinear) limits.

For the case of external gluons, the potential factorizing contributions to one-loop mod-

ifications of the soft behavior are shown in Fig. 3. We can expand these corrections into

triangle and bubble diagrams as shown in Fig. 4. As derived in Ref. [23], these diagrams

evaluate to

Dµ,fact =
i√
2

1

3

1

(4π)2

(

1− nf
Nc

+
ns

Nc

)

(q − ka)
µ
[

(εn · εa)−
(q · εa)(ka · εn)

(ka · q)
]

, (6.1)

where nf is the number of fundamental representation fermions, ns the number of funda-

mental representation complex scalars (using the normalization conventions of Ref. [23]),

and Nc is the number of colors. As usual we take the soft momentum of leg n to be q. After

integration this result is both ultraviolet- and infrared-finite, so we have taken ǫ = 0 in the

final integrated result. The all orders in ǫ form of Eq. (6.1) is given in Refs. [23, 24].

The result (6.1) has a few surprising features that explain how it evades the link between

the leading and first subleading soft contributions via gauge invariance. The first feature is

that the correction to the three-vertex is nonlocal because of the pole in q · ka that arises

from the loop integration. Indeed, after we include the intermediate propagator−i/(ka+q)2,

21



there is a double pole1 in q · ka. A second curious feature is that the leading contribution

is gauge invariant by itself; it vanishes when εµn is replaced by qµ ≡ kµ
n for any value of

the intermediate off-shell momentum. The nonlocal nature of the result is what allows us

to write such a gauge-invariant term with the correct dimensions. A third feature is that,

in fact, there is no contribution from Eq. (6.1) to the leading one-loop correction to the

soft function, as noted in Refs. [23, 24]. To see this, we sew Eq. (6.1) onto the rest of the

amplitude across the factorization channel:

Dfact
µ

−i

2q · ka
J µ , (6.2)

as illustrated in Fig. 3. We observe that J µ is a conserved current:

(q + ka)µJ µ = 0 , (6.3)

assuming that all of the remaining legs are contracted with on-shell polarizations. This

immediately implies

Dfact
µ

−i

2q · ka
J µ = O(q0) , (6.4)

because Dfact
µ is proportional to (q − ka)µ which is equivalent to 2qµ when dotted into a

conserved current. This reproduces the fact that there is no leading, O(1/q), factorizing

contribution to the one-loop soft function [23, 24].

Unfortunately, the O(q0) terms in Eq. (6.4) are not under control via gauge invariance.

Once we allow for an extra 1/(q · ka) nonlocality arising from the loop integration, we lose

control over the subleading piece. This cannot happen at tree level because there is no source

of a second factor of 1/(q ·ka). The O(q0) contribution from Eq. (6.4) is not constrained from

gauge invariance. These types of contributions have already been described in some detail at

one loop on a case-by-case basis in Refs. [32, 33]. Unfortunately, no universal factorization

formula is known for these types of corrections, although case-by-case their forms appear to

be relatively simple.

Interestingly, these contributions resemble an anomaly that seemingly vanishes if we take

the loop integrand strictly in four dimensions. This arises from the integration where a 1/ǫ

ultraviolet pole cancels a factor of ǫ from numerator algebra, leaving terms of O(1). This

1 While this might seem to violate basic factorization properties of field theories, in fact it does not, because

for real momenta the double pole is reduced to a single pole. See Ref. [32] for a detailed discussion of this

phenomenon.
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is reminiscent of the way the chiral anomaly arises from triangle diagrams in dimensional

regularization. Indeed, for the single-minus-helicity case discussed in Refs. [21, 22], not only

does this contribution vanish but the entire amplitude would vanish if we were not careful

to keep in the integrand in D = 4 − 2ǫ instead of four dimensions. It is interesting that

these types of contributions do not appear in supersymmetric theories.

Besides the loop contributions described above, there is a second type of loop correction

to the soft operators (4.13) arising from non-smoothness in the amplitude due to infrared

singularities [31]. In QED the integrals are smooth because the electron mass acts as an

infrared cutoff, but in QCD or gravity there is no such physical cutoff on gluons or gravi-

tons. It is therefore much more difficult to consistently introduce a mass regulator without

breaking gauge symmetry or altering the number of propagating degrees of freedom. As is

standard practice, it is far simpler to use dimensional regularization. As discussed in some

detail in Refs. [21, 23, 31], as gluons become soft or collinear, the matrix elements develop

discontinuities that are absorbed into modifications of the loop splitting or soft operators.

Alternatively, by using light-cone gauge or carefully applying unitarity, one introduces light-

cone denominators containing a reference momentum, and one can push all contributions

into factorizing diagrams [24, 34]. Either way, the conclusion is the same: There are non-

trivial contributions due to infrared singularities not accounted for in the naive tree-level

soft limit.

B. Gravity

n

a

µ

ν
=

n

a

µ

ν
+

n

a

µ

ν
+

n

a

µ

ν

FIG. 5: The diagrams with potential factorizing contributions to the one-loop soft operator in

gravity with a scalar in the loop.

We now show that the situation in gravity is similar. Here, the dimensionful coupling

ensures that there are no loop corrections at leading order [16], only one-loop corrections

at the first subleading order, and only up to two-loop corrections at second subleading
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order [21]. Thus, we need only to analyze one loop to show that the factorizing contributions

do not modify the soft operator at first subleading order.

We focus on the case of a scalar in the loop. This case is particularly transparent because

there are no infrared singularities associated with scalars circulating in a loop [26]. This

allows us to study the soft behavior without being entangled with the issue of infrared

divergences. We can determine the behavior through the first subleading soft order simply

by computing the diagrams in Fig. 5.

We have carried out the analogous computation to the one performed in Ref. [23] for

gluons, but for gravity with a real scalar in the loop. The result of this computation is

Dµν,fact,s = − i

(4π)2

(κ

2

)3 1

30q · ka

(

(εn · εa)(q · ka)− (q · εa)(ka · εn)
)2

kµ
ak

ν
a +O(q2) , (6.5)

where we have kept all terms involving no more than one overall power of the soft momentum

q ≡ kn. Such terms naively appear to contribute at the first subleading order in the correction

to the amplitude. However, as in the gauge-theory case, the diagrams Dµν,fact,s contract into

a current Jµν which results in a suppression of an extra factor of the soft momentum q. In

the gravity case we find

(ka + q)µJµν = f(ki, εi)(ka + q)ν , (6.6)

where f is some function of the momenta and polarizations of both the hard and soft legs.

With kµ
ak

ν
a contracting with Jµν , we then have

kµ
ak

ν
aJµν = (ka + q)µ(ka + q)νJµν +O(q)

= f(ki, εi)(ka + q)2 +O(q)

= 2f(ki, εi)q · ka +O(q)

= O(q) . (6.7)

Therefore, as far as the correction to the amplitude is concerned, we can effectively view

Dµν,fact,s as being of order q2. We then finally have

Dµν,fact,s i

2q · ka
Jµν = O(q) . (6.8)

After including the 1/q from the intermediate propagator, we find the potential correction to

the soft operator is of O(q) and therefore does not modify the first subleading soft behavior.
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Unfortunately, for the second subleading soft behavior we lose control, in much the same way

that we did for the first subleading behavior of gauge theory. Indeed, nontrivial contributions

are found in explicit examples [21, 22].

As in the QCD case (6.1), we expect the cases with other particles circulating in the loop

to be similar and that factorizing contributions not linked to infrared singularities should

appear starting only at the second subleading order in the soft expansion. In addition, the

explicit gravity examples studied in Refs. [21, 22] are exactly in line with this expectation.

We leave a discussion of cases with infrared singularities to future work.

VII. CONCLUSIONS

In this paper, we extended Low’s proof of the universality of subleading behavior of

photons to nonabelian gauge theory and to gravity. In particular, we showed that in gauge

theory, on-shell gauge invariance can be used to fully determine the first subleading soft-

gluon behavior at tree level. In gravity, the first two subleading terms in the soft expansion

found in Ref. [2] can also be fully determined from on-shell gauge invariance. Our discussion

is similar to the ones given by Low [12] for photons and by Jackiw [18] for gravitons coupled

to a scalar at four points. We focused mainly on n-gluon and n-graviton amplitudes but

also discussed simpler cases with scalars.

A motivation for studying soft-graviton theorems is to understand their relation to the

extended BMS symmetry. It will, of course, be very important to understand how BMS

symmetry relates to the proof of soft properties in n-graviton amplitudes given here.

Unlike the case of photons, for gluons there are loop corrections to the soft operators

starting at leading order. In gauge theory, leading-order corrections are linked to infrared

singularities, while subleading-order corrections can also arise from contributions not linked

to infrared singularities. Gravity also has loop corrections but not at leading order. In

this paper, we proved that for the case of a scalar circulating in the loop, there is no

modification to the soft behavior of graviton amplitudes until the second subleading order.

We expect this to hold in general for contributions not linked to infrared singularities. On

the other hand, graviton loop contributions that are infrared divergent give corrections to

the soft operators starting at the first subleading order [21], using the standard definition

of dimensional regularization. Since infrared singularities are well-understood, we do not
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expect this to be too disruptive for studying the consequences of extended BMS symmetry

at loop level. We will describe loop level in more detail elsewhere.
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