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The large-scale distribution of cold dark matter halos is generally assumed to trace the large-scale
distribution of matter. In a universe with multiple types of matter fluctuations, as is the case with
massive neutrinos, the relation between the halo field and the matter fluctuations may be more
complicated. We develop a method for calculating the linear bias factor relating fluctuations in the
halo number density to fluctuations in the mass density in the presence of multiple fluctuating com-
ponents of the energy density. In the presence of massive neutrinos we find a small but pronounced
feature in the halo bias near the neutrino free-streaming scale. The neutrino feature is a small step
with amplitude that increases with halo mass and neutrino mass density. The scale-dependent halo
bias lessens the suppression of the small-scale halo power spectrum and should therefore weaken
constraints on neutrino mass from the galaxy auto-power spectrum and correlation function. On
the other hand, the feature in the bias is itself a novel signature of massive neutrinos that can be
studied independently.

PACS numbers:

I. INTRODUCTION

Mapping the large-scale structure of the universe, e.g. through the large-scale distribution of galaxies and quasars,
is a primary means for learning about cosmology. The clustering statistics of cold dark matter (CDM) halos hosting
galaxies and quasars contains key information about the late-time expansion history and matter contents – in particular
the energy density in massive neutrinos [1–11]. A crucial ingredient in interpreting measurements of the galaxy
clustering is an understanding of how the large-scale halo distribution traces the large-scale distribution of mass. On
very large scales, there is a linear relationship between the fluctuations in the matter density δm ≡ δρm/ρm and
fluctuations in the number density of halos δn ≡ δn/n

δn ≈ b δm (1)

where b is the halo bias. The matter density ρm consists of CDM ρc, baryons ρb, and a tiny fraction of massive
neutrinos ρν .
On scales larger than the baryonic Jeans scale, the behavior of CDM and baryons is indistinguishable. For the

purposes of calculating the gravitational evolution of structure on these large scales, CDM and baryons may be treated
as a single fluid. (Indeed, for the rest of this paper we treat them as a single fluid identified by the subscript c.)
Cosmic background neutrinos have a temperature Tν ≈ 1.95K and therefore neutrinos of mass mν may have a large
thermal velocity uν ∼ mν/Tν that permits them to free-stream out of overdense regions. Perturbations in the neutrino
energy density therefore differ from perturbations in the CDM and baryons on scales smaller than the neutrino free-
streaming length λfs ∼ uν/(aH) where a is the scale factor and H is the Hubble parameter (for a review of cosmology
with massive neutrinos see [12]). The absence of neutrino perturbations on small scales reduces the amplitude of
δm and further slows the growth of small-scale perturbations in CDM. On the largest scales perturbations in the
neutrino energy density and CDM behave indistinguishably. Massive neutrinos, therefore, cause the evolution of
density perturbations δm and δc to be scale-dependent.
The absolute value of the neutrino mass has yet to be detected. Neutrino oscillation data in combination with

the inferred relic abundance of neutrinos [13–16] require that massive neutrinos contribute at least a few tenths of a
percent to the cosmic energy budget today Ωνh

2

∼> 0.06 eV/94 eV [17]. Current bounds on the sum of the neutrino
masses from cosmological datasets are

∑

i mνi ∼< 0.2 eV − 1 eV , depending on the dataset (see e.g. [13–16] for cosmic
microwave background constraints, [3, 5–11, 18, 19] for constraints from galaxy and Lyman-alpha forest surveys, and
[20–25] for constraints from the abundance of galaxy clusters).
The purpose of this paper is to develop an analytic model for halo bias in the presence of massive neutrinos. As we

shall see massive neutrinos generate a scale-dependent feature in the halo bias near the neutrino free-streaming scale.
The scale-dependence of the bias arises from two effects: (i) the scale-dependent growth of density perturbations
cause the Lagrangian halo bias with respect to the CDM to be scale-dependent and (ii) the halo field traces the CDM
density fluctuations, rather than the total mass fluctuations, and the scale-dependent relationship between δc and
δm = fcδc + fνδν causes additional scale-dependence in the relationship between δn and δm.
The authors of [26, 27] noted that scale-dependent growth gives rise to scale-dependent halo bias and studied this in

detail for cosmologies with scale-dependent growth associated with the late-time accelerated expansion. In the case of
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massive neutrinos, the scale-dependent growth starts at earlier times and this motivates us to develop a framework for
calculating halo bias in a cosmology with perturbations in multiple components of the energy density at early times.
Our approach is simply to solve the spherical collapse model for halo abundance [28] in the presence of long-wavelength
fluctuations in the energy density and pressure of the all of the different constituents. The spherical collapse results
can then be used as input to the peak-background split calculation of the halo bias [29, 30]. The spherical collapse
model for halo abundance, is at best, a crude approximation to halo formation. Nevertheless, the halo bias factor
calculated from the spherical collapse model and the peak-background split is relatively robust [31]. Our goal here
is simply to estimate the amplitude and develop a physical understanding of the effect of massive neutrinos on halo
bias and for this purpose the spherical collapse model is sufficient. The analysis here assumes that neutrino clustering
interior to halos is unimportant for calculating halo evolution and for identifying the mass of the halo. That is the
neutrino contribution to the halo mass is negligible. This should be a safe assumption for the range of neutrino masses
we consider [32, 33].
There are of course an increasing number of N-body simulations of large-scale structure in neutrino + CDM

cosmologies (see e.g. [34–37, 37–41] and [34, 35, 37, 38, 40, 42–44] for simulations that include both neutrino and
CDM particles). Interestingly, the simulations of [42, 43] (which appeared while this work was in preparation)
show evidence for the scale-dependent halo bias described here. Where possible we make a comparison between our
calculations and those results. It would be very exciting to make a systematic comparison between halo bias from
simulations and our predictions.
The effect discussed here is a neutrino-induced scale-dependent correction to the very large-scale (k < 0.1Mpc−1)

linear bias. Even in CDM-only cosmologies the constant linear bias model is too simplistic. In recent years there has
been substantial progress in developing more sophisticated models of halo biasing (see, e.g. [45–55] and references
therein). Some of the additional ingredients (e.g. including nonlinear gravitational evolution, nonlinear halo biasing,
imposing the constraint that proto-halos live in peaks of the initial density field, and halo exclusion effects) introduce
additional sources of scale-dependence to the relationship between the statistics of the halo field and the dark matter
field. These contributions to scale-dependence are primarily important on smaller scales (k ∼

> 0.1Mpc−1, which is
generally smaller than the neutrino free-streaming scale) so we do not include them here and instead truncate our
predictions for the halo bias at k ∼ 0.1Mpc−1. Such additional ingredients will be necessary to model the galaxy
power spectrum and galaxy-matter cross-power spectrum across the entire observable range of scales but a complete
model is beyond the scope of this paper.
Ref. [55], which appeared after this paper was completed, finds scale-dependent halo bias that is changed in the

presence of massive neutrinos. They find that massive neutrinos alter the amplitude of the coefficients of terms that
are nonlinear in the density field, the coefficient of a k2-term that appears from the peak constraint (corrections not
considered in this paper), and change the amplitude of the bias above the neutrino free-streaming scale because halos
trace fluctuations in the CDM density rather than total matter density (one of two contributions to the bias feature
identified in this paper and also discussed in [42, 43]). The additional large-scale, scale-dependent feature in this
paper (the scale-dependent Lagrangian bias with respect to CDM) is only ∼< (few)% for

∑

i mνi ≤ 0.6 eV so there
does not appear to be any contradiction with [55], which find agreement between their prediction and the simulations
of [42] at the ∼ 3% level for the same neutrino mass range.
The rest of this paper is organized as follows. In §II we outline the calculation of halo bias in a cosmology with

perturbations in additional non-CDM components. In §III we review the calculation of spherical collapse in a νΛCDM
universe, and then in §IV develop the calculation of spherical collapse in the presence of long-wavelength fluctuations
in the energy density. Numerical results for the spherical collapse threshold in the presence of long wavelength modes
are presented in §V. In §VI we combine the results from §II and §IV to calculate the scale-dependent halo bias.
Conclusions and a discussion of future directions are given in §VII.

II. HALO BIAS IN A MIXED DARK MATTER COSMOLOGY

We would like to calculate the halo power spectrum in a mixed dark matter (neutrino + CDM) universe. In a
universe with neutrino and CDM perturbations, the fluctuations in the total matter density are

δm =
δρc + δρν
ρc + ρν

, (2)

≡ fcδc + fνδν , (3)

where fc, fν are the fractions of the matter density that are cold dark matter and neutrinos (fc + fν = 1) and δc, δν
are the fractional perturbations to the CDM and neutrino energy densities. In the standard cosmology, the neutrino
and CDM perturbations are coherent on large scales (k ≪ kfs where kfs is the neutrino free-streaming scale), but on
scales below the neutrino free-streaming scale, neutrino perturbations are damped.
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FIG. 1: Left: The scale-dependent changes to the matter power spectrum in a cosmology with a single massive neutrino
mν = 0.1 eV . Right: The ratio of the CDM power spectrum and CDM-matter cross-power spectrum to the matter power
spectrum in a cosmology with a single massive neutrino mν = 0.1 eV . Both quantities are plotted at z = 0.

Long-wavelength fluctuations in the different matter components can modulate the number density of dark matter
halos. But the way that long wavelength perturbations in CDM alter halo abundance may be different from the way
long wavelength perturbations in the neutrino density alter halo abundance. For now, we write fluctuations in the
number density of halos as

δn =
∑

X

bXδX,L , (4)

where δX,L is a long wavelength fluctuation in CDM, baryons, neutrinos or whichever component of the energy density
we are considering and bX are the to-be-determined bias factors. For adiabatic initial conditions, a single parameter
specifies the amplitude of fluctuations in each component. For instance, we can specify the amplitude of the long
wavelength CDM perturbation, δc(kL, z) and the perturbations in other components are given by

δX(k, z) =
TX(k, z)

Tc(k, z)
δc(k, z) , (5)

where Tc(k) is the transfer function for cold dark matter and TX(k, z) is the transfer function for component X (i.e.
X = c, ν, and γ).
To determine the bias factors in Eq. (4), we adopt the peak-background split argument [30, 56, 57]. Namely, that the

critical value of the halo-scale CDM density perturbation required for a halo to form is modulated by the background
density. We calculate the critical overdensity using the spherical collapse model in the presence of a long-wavelength,
adiabatic fluctuation in all the matter components. From this, we can determine change in the value of the critical
amplitude density fluctuation in CDM required for a spherical halo to collapse by redshift z,

dδcrit
dδc,L

(k) =
δcrit(z|δc,L(k))− δcrit(z|δc,L = 0)

δc,L(k)
, (6)

and we have allowed for the possibility that the derivative above depends on the wavenumber of the long wavelength
mode k. Again, for adiabatic initial conditions specifying the amplitude of the initial fluctuation in one component
is sufficient to determine the linear fluctuations in all other components and we choose to use the amplitude of the
CDM and baryon fluctuation δc,L to specify the long wavelength modes.
Equation (6) along with an expression for the halo mass function n gives the Lagrangian bias as

bLagrangian
X ≡

∂ lnn

∂δcrit

dδcrit
dδX,L

. (7)

To map between the Lagrangian halo density and the final, Eulerian halo density we need to relate the volumes in
Lagrangian and Eulerian space. The cold dark matter mass in an infinitesimal volume d3xL is conserved (unlike the



4

neutrino mass, which will stream out of small regions due to the large peculiar velocities). Using the CDM mass to
label volumes gives the relationship between Eulerian and Lagrangian volume elements as

(1 + δEulerian
c )d3xE = (1 + δLagrangian

c )d3xL ≈ d3xL . (8)

Note that if neutrinos, or some other component were tracking CDM identically, we could use any one of them to
map between Eulerian and Lagrangian volumes and our result would not differ.
Eqs. (7) and (8) gives a final expression for linear fluctuations in Eulerian number density of halos

δn =

(

1 +
∂ lnn

∂δcrit

dδcrit
dδc,L

(k)

)

δc,L(k) . (9)

With this, the halo-matter cross-power spectrum is given by

Pnm(k) =

(

1 +
∂ lnn

∂δcrit

dδcrit
dδc,L

(k)

)

(fcPcc(k) + fνPcν(k)) (10)

where Pcc(k) is the CDM autopower spectrum, and Pcν is the CDM-neutrino cross power spectrum. The halo-halo
autopower spectrum is given by

Pnn(k) =

(

1 +
∂ lnn

∂δcrit

dδcrit
dδc,L

(k)

)2

Pcc(k) (11)

and the matter-matter auto-power spectrum is given by

Pmm(k) = f2

cPcc(k) + 2fcfνPcν(k) + f2

νPνν(k) . (12)

The observed bias factor is then

b(k) ≡
Pnm(k)

Pmm(k)
, (13)

=

(

1 +
∂ lnn

∂δcrit

dδcrit
dδc,L

(k)

)

fcPcc(k) + fνPcν(k)

f2
c Pcc(k) + 2fcfνPcν(k) + f2

νPνν(k)
. (14)

The neutrino-induced suppression in the matter power spectrum, along with the ratio of the CDM-matter cross-
power spectrum to the matter-matter auto-power spectrum needed in Eq. (14) are plotted in Fig. 1. On scales that
are large compared to the neutrino free-streaming scale, Pcc ≈ Pcν ≈ Pνν , while on smaller scales Pνν ≈ Pcν ≈ 0.
This results in

b(k) =

(

1 +
∂ lnn

∂δcrit

dδcrit
dδc,L

(k)

){

1 k ≪ kfs
1/fc k ≫ kfs

}

, (15)

where kfs is the comoving neutrino free-streaming scale at redshift z defined by

kfs =

√

3/2mνH(z)

3.15Tν(1 + z)
. (16)

Equation (14) is our final expression for the scale-dependent halo bias. In the next section we outline the calculation
of dδcrit/dδc,L(k) in the spherical collapse model which we can then use in Eq. (14) to calculate b(k).
The scale-dependence in Eq. (14), (15) is, of course, not the only change to the halo bias from massive neutrinos.

The suppression in the CDM power spectrum suppresses the variance of mass fluctuations on scale M ,

σ2(M, z) =

∫ ∞

0

k2dk2π2W (kR(M))|2Pcc(k, z) (17)

where W (kR) = 3 sin(kR)/(kR)3 − 3 cos(kR)/(kR)2 and R = (3M/(4πρc))
1/3. At fixed halo mass, the decrease in

σ(M, z) decreases the abundance of halos and increases the bias. This change to the halo bias is constant with k and
therefore unobservable in measurements of galaxy clustering that treat the overall amplitude as a free parameter.
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III. REVIEW OF SPHERICAL COLLAPSE IN νΛCDM UNIVERSE

In νΛCDM , the scale factor a evolves according to

H2(a) =
8πG

3
(ρ̄c(a) + ρ̄ν(a) + ρ̄γ(a) + ρ̄Λ) , (18)

where ρc is the CDM density, ρν the neutrino energy density, ργ the photon energy density, and ρΛ is the energy
density in cosmological constant. The energy density and pressure of the neutrinos is given by

ρ̄ν = 2
∑

i

∫

d3p

(2π)3

√

p2 +m2
νi

ep/Tν + 1
, P̄ν = 2

∑

i

∫

d3p

(2π)3
p2

3
√

p2 +m2
νi

1

ep/Tν + 1
, (19)

where the neutrino temperature is given by Tν(a) = 1.95491K/a. The other components evolve as ρc ∝ 1/a3,
ργ ∝ 1/a4, and ρΛ = const..

A. Equation of motion for R

The sub-horizon equation of motion for a spherical mass shell of radius R enclosing constant (CDM + baryon) mass
M is

R̈ = −
GM

R2
−

4πG
∫ R

0
drr2(ρrest(r, t) + 3Prest(r, t))

R2
, (20)

where ρrest and Prest are the energy density and pressure of radiation, neutrinos, and cosmological constant. The
condition M = 4

3
πR3ρc(1 + δc) relates R to δ and allows us to set the initial conditions for R in terms of δc,i and δ̇c,i

Ri = R̄i

(

1−
1

3
δc,i

)

, Ṙi = HiR̄i

(

1−
1

3
δc,i −

1

3
H−1

i δ̇c,i

)

, R̄i =

(

3M

4πρc

)1/3

. (21)

The CAMB code can be used to find the numerical value of δ̇c,i/δc at any redshift for adiabatic initial perturbations
[33, 58].
The final expression that we use to solve for for the subhorizon, non-linear evolution of R(t) is then,

R̈ = −
GM

R2
−

4πG

3

(

2ρ̄γ(t) + ρ̄ν(t) + 3P̄ν − 2ρ̄Λ(t)
)

R , (22)

where ργ is the photon energy density, ρν and Pν the energy density and pressure of neutrinos, and ρΛ the energy
density in cosmological constant. In Eq. (22) we have ignored any terms due to gravitational clustering of neutrinos
(or anything other than CDM and baryons) because they are small for the range of neutrino masses we consider
[32, 33].

IV. SPHERICAL COLLAPSE ON A LONG-WAVELENGTH MODE

We now consider spherical collapse in the presence of a longer-wavelength density perturbation, which may include
CDM, baryons, neutrinos, or photons. The equation of motion in the presence of a long-wavelength mode is

R̈ = −
GM

R2
−

4πG

3

(

2ργ(t) + 2ρνmassless(t) + ρνmassive(t) + 3P̄νmassive(t)− 2ρ̄Λ(t)
)

R . (23)

The energy densities above (without the ¯ ) are given by

ργ = ρ̄γ(1 + δγ,L(t)) , (24)

ρνmassless = ρ̄νmassless(1 + δνmassless,L(t)) , (25)

ρνmassive = ρ̄νmassive(1 + δνmassive,L(t)) . (26)
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The small-scale density fluctuation δc,S is defined relative to the local background density which includes the large-
scale fluctuation, i.e. δc,S = ρc/(ρ̄c(1+ δc,L))− 1. The long-wavelength perturbation in the CDM and baryon density,
δc,L does not appear in the equation of motion for R, but appears in expression relating the halo mass to the radius
M = 4

3
πR3ρ̄c(1 + δc,S)(1 + δc,L). The initial conditions are then

Ri = R̄i

(

1−
1

3
(δc,iS + δc,iL)

)

, Ṙi = HiRi

(

1−
1

3
H−1

i

(

δ̇c,iS + δ̇c,iL

)

)

, R̄i =

(

3M

4πρc

)1/3

. (27)

We set the initial velocity of the small-scale perturbations by δ̇c,iS = σ̇(M)/σ(M)δc,iS and will linearly extrapolate
δc,iS to the collapse time using δc,S(z) = σ(M, z)/σ(M, zi)δc,iS as in [33]. However, we have checked that for all
neutrino and halo masses considered in this paper the amplitude of the neutrino feature in the halo bias is unchanged
if we instead used the initial velocity and linear evolution for an exactly top-hat small-scale perturbation δc,iS.
For a fixed amplitude perturbation in CDM and baryons at zi given by δc,i, the corresponding perturbations in the

other components are given by

δγ(k, z) = δc,i(k)
Tγ(k, z)

Tc(k, zi)
, (28)

δνmassless(k, z) = δc,i(k)
Tνmassless(k, z)

Tc(k, zi)
, (29)

δνmassive(k, z) = δc,i(k)
Tνmassive(k, z)

Tc(k, zi)
, (30)

where Tγ(k, z), Tνmassless(k, z), Tνmassive(k, z), Tc(k, z) are the transfer functions, e.g. δν(k, z) = Tν(k, z)ζ(k) and
δc(k, z) = Tc(k, z)ζ(k) – standard output from CAMB.
We consider spherically symmetric long wavelength perturbations with contributions from Fourier modes of a fixed

wavelength. That is, for wavenumber kL and initial amplitude δc,iL, the Fourier-space perturbation is

δc,iL(k) = δc,iL
(2π)3

4π

δD(|k| − kL)

k2L
so that

1

VR

∫

VR

d3x δc,iL(x) = W (kLR)δc,iL ≈ δc,iL (31)

where δD is the Dirac delta function, W (kR) is a top-hat window function, and the last approximation is valid for
kLR ≪ 1. Equation (23), along with the initial conditions in (27), and the expressions for δX,L in Eqs. (28) - (30) are
the ingredients needed to determine the effect of long-wavelength density perturbations on the small-scale spherical
collapse solution.
There are a few points to be made before studying the numerical solutions to Eq. (23). First, note that in the

absence of δX,L(t) and neglecting any difference between δ̇c,iS/δc,iS and δ̇c,iL/δc,iL (as shown in Figure 2, δ̇c,i/δc is
scale-dependent so these terms are different), we have R(t, δS , δL) = R(t, δS + δL, δL = 0). In particular, if δc,iS is the
critical value of the initial density perturbation for R to have collapsed by zcollapse the critical value in a region with
a long-wavelength density perturbation δc,iL is just shifted to δc,Si − δc,iL.
Furthermore, in this limit the mapping δc,iS → δc,iS − δc,iL does not depend on the magnitude or wavelength of

δc(k). Second, we note that even if the relationship δc,iS → δc,iS − δc,iL is k-independent, when expressed in terms
of the linearly evolved quantities δc,S(z) and δc,L(k, z) there may be scale dependence if the evolution of δc(k, z) is
scale-dependent, this is the source of scale-dependent bias in [27].

V. NUMERICAL RESULTS FOR SPHERICAL COLLAPSE ON A LONG-WAVELENGTH MODE

In this section we show numerical results for the dependence of the spherical collapse threshold on the amplitude
and wavelength of the long wavelength mode δc,L, which allows us to calculate the derivative dδcrit/dδc,L(k), and
finally the scale-dependent halo bias in Eq. (14).
In the numerical calculations presented here, we solve equation of motion for R(t) in Eq. (23), using the initial

conditions in Eq. (27), and the expressions for δν,L and δγ,L in Eqs. (28)- (30). We use CAMB to calculate all

the linear quantities δc,iS , δ̇c,iS , δc,L(k, z), δν,L(k, z), δγ,L(k, z). We assume a flat ΛCDM cosmology with Hubble
parameter h = 0.67 and baryon density Ωbh

2 = 0.022 (we treat baryons and CDM identically). We assume three
species of massive neutrinos with variable masses mν1, mν2 and mν3. Massive neutrinos contribute a fraction Ωνh

2 ≈
∑

mνi/(94 eV ) to the critical energy density. For fixed CDM and baryon densities, changing the neutrino masses then
leads to a different total matter (Ωm = Ωc +Ωb +Ων) density today. Plots with this scenario are referred to as with
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FIG. 2: Left: The scale-dependence of δ̇c/δc at zi, plotted for a number of different neutrino mass hierarchies. Also shown is
the horizon scale at zi = 200 and the matter radiation equality scale. Right: The scale dependence of the linear evolution of
CDM and baryon perturbations between z = 200 and z = 0. In both panels Ωc is fixed so varying Ων changes the total matter
density Ωm.

fixed Ωc. The vacuum energy density ΩΛ is adjusted to keep the universe flat (ΩΛ = 1−Ωc−Ωb−Ων −Ωγ). We also
study neutrino mass effects at fixed Ωm and ΩΛ by setting Ωch

2 = 0.1199−Ωνh
2. We consider a number of examples

of neutrino hierarchies and each figure is labeled with all three masses. In this paper, “Normal Hierarchy” means
mν1 = 0.05 eV , mν2 = 0.01 eV , mν3 = 0 eV and “Inverted Hierarchy” means mν1 = mν2 = 0.05 eV and mν3 = 0 eV .
First, we consider the effect of a long-wavelength mode on the critical value of δc,iS required to have collapsed by

redshift zcollapse. In Figure 3, we plot this quantity for a cosmology with massless neutrinos only and a cosmology with
a single massive neutrino of mass mν = 0.05 eV for a range of values of k, the wave number of the long wavelength
mode. In both cases, the relationship between δcrit,i and δc,iL is linear but the slopes vary with the wavelength k
of the long wavelength mode δc,L. In Figure 4 we plot the same quantities linearly extrapolated to zcollapse – the
relationship remains linear but the dependence on k is reduced.
In Figure 5 we plot the slopes of the lines in Figure 3 and Figure 4 as a function of k. There is clearly a k-dependent

feature in the slope of the relation between the values of δcrit,i and δc,iL at the initial time. The scale-dependence
of dδcrit,i/dδc,iL is present in cosmologies with massive and massless neutrinos but the amplitude of the difference
between dδcrit,i/dδc,iL at low and high k increases with increasing neutrino mass. In panel (b) of the same figure
we plot the slopes of the lines relating the values of δcrit and δc,L linearly extrapolated to the collapse time. The
scale-dependence of dδcrit/dδc,L for the linearly extrapolated quantities is smaller, but still present and this scale
dependence will lead to scale dependence in the Lagrangian bias factor.

VI. SCALE DEPENDENT BIAS FACTORS

The calculations of dδcrit/dδc,L from the previous section along with an expression for the halo mass function allow
us to calculate the scale-dependent halo bias in the presence of massive neutrinos. The halo mass function of [59]
gives,

d lnn

dδcrit
=

q − a(δcrit/σ)
2

δcrit
−

2p/δcrit
1 + (aδ2crit/σ

2)p
(32)

where q = 1.795, a = 0.788/(1 + z)0.01, and p = 0.807. The Lagrangian bias with respect to the CDM is then

bLagrangian
c (k,mν) =

d lnn

dδcrit

dδcrit
dδc,L

(k) (33)

and the Eulerian bias is

b(k,mν) =

(

1 +
d lnn

dδcrit

dδcrit
dδc,L

(k)

)

fcPcc(k) + fνPcν(k)

Pmm(k)
. (34)
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FIG. 3: Plotted is the relationship between the initial perturbation values δc,iS and δc,iL(k) for halos of M = 1013M⊙ that
collapse at the same time zcollapse = 0.5 for a range of k, the wave number of the long-wavelength mode. Left: mν1 = mν2 =
mν3 = 0 eV , Right: mν1 = 0.05 eV , mν2 = mν3 = 0 eV .

0.00 0.05 0.10 0.15 0.20 0.25 0.30

δcb,L(k,zcollapse)

1.3

1.4

1.5

1.6

1.7

1.8

δ c
b,
S
(z

co
ll
a
p
se
)

zcollapse=0.50 mν =0.00eV mν =0.00eV mν =0.00eV

k=0.00011/Mpc

k=0.00081/Mpc

k=0.00601/Mpc

k=0.04641/Mpc

k=0.35941/Mpc

δcb,S(zcollapse)−δcb,L(zcollapse)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

δcb,L(k,zcollapse)

1.3

1.4

1.5

1.6

1.7

1.8

δ c
b,
S
(z

co
ll
a
p
se
)

zcollapse=0.50 mν =0.05eV mν =0.00eV mν =0.00eV

k=0.00011/Mpc

k=0.00081/Mpc

k=0.00601/Mpc

k=0.04641/Mpc

k=0.35941/Mpc

δcb,S(zcollapse)−δcb,L(zcollapse)

FIG. 4: Plotted is the relationship between δc,S(zcollapse) and δc,iL(k, zcollapse) (the initial perturbation amplitudes linearly
extrapolated to the present) for halos of M = 1013M⊙ that collapse at the same time zcollapse = 0.5 for a range of values of k.
Left: mν1 = mν2 = mν3 = 0 eV , Right: mν1 = 0.05 eV , mν2 = mν3 = 0 eV .

Numerical results for the scale-dependent Eulerian and Lagrangian biases are plotted for halos of mass M = 1013M⊙

and M = 1014M⊙ in Figure 6. The neutrino feature is a visible step in the halo bias around the neutrino free-
streaming scale (for neutrino mass hierarchies that are not degenerate we’ve shown the free-streaming scale defined
by the most massive neutrino eigenstate). The size of the neutrino step is larger for more massive halos and increases
with increasing Ων . For neutrino mass hierarchies with common Ων but different individual mνi the bias feature is
similar but clearly distinguishable. For instance, comparing the scenarios with mν1 = 0.3 eV , mν2 = mν3 = 0 eV and
mνi = 0.1 eV in Fig. 6 we can see that for three degenerate neutrino mass eigenstates the amplitude of the feature is
larger and shifted to larger scales than the feature in the bias for a single massive neutrino with mν =

∑

imνi.
The sensitivity of the neutrino step in the bias to Ων and M is illustrated in Fig. 7. In that figure we show the

size of the step, simply defined as the fractional difference between b(k) at k = 10−4Mpc−1 and k = 1Mpc−1, for a
range of neutrino mass hierarchies. The step feature is clearly present in both the Lagrangian and Eulerian biases
and, as expected from the analytic estimates in §II, the size of the feature increases roughly linearly with increasing
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FIG. 5: The slopes of the relationships plotted in Fig. (4) – that is the slope of the line relating δc,S to δc,L. The left panel
plots the relationship between the initial values of the two quantities. The right panel plots it with δc,S and δc,L evaluated at
zcollapse (using the scale-dependent linear growth functions). Each curve has a fixed Ωm, but varying Ωc and Ων ≈

∑
i
mνi

where the neutrino masses are listed in the plot legend.

total neutrino mass. The fractional step size in the Lagrangian bias with respect to the CDM is nearly independent
of b (or M). On the other hand, from Eqs. (15) and (33) the step size in the Eulerian halo bias is roughly

∆b(k)

b
≈ fν +

b− 1

b

∆bLagrangian
c

bLagrangian
c

(35)

so the feature in the Eulerian halo bias depends on the population of halos (through b) even if ∆bLagrangian
c /bLagrangian

c

is independent of halo mass.
Recall that the neutrino-induced suppression in the linear matter power spectrum is ∼ 8fν [2]. For a scale-

independent bias the suppression the the halo or galaxy autopower spectrum is identical to the suppression in the
matter power spectrum and the constraints on fν are independent of the population of galaxies. In cosmologies with
massive neutrinos, the halo bias increases on scales below the neutrino free-streaming scale. This increase causes the
halo auto-power spectrum to be less suppressed on small-scales than one would naively find by assuming a constant
bias factor, and from Eq. (35) the amount by which the small-scale power is suppressed depends on b(M).
The change to the halo auto-power spectrum from scale-dependent bias shown in Fig. (8). The halo auto-power

spectrum, including both scale-dependent bias and the scale dependence in Pmm(k), is clearly suppressed on small
scales and the amount of suppression increases with increasing neutrino mass fraction (solid lines). However the net
suppression in Pnn(k), including the scale-dependent bias is smaller than one would have found if a constant bias
factor was assumed (dotted lines). This fact should cause the constraints on neutrino mass from galaxy surveys to
relax slightly. Comparing the two panels in Fig. 7 or 8 one can see that the change to the neutrino mass constraints
from scale-dependent halo bias depends on the population of galaxies so we do not attempt to quantify this here. A
very rough estimate can, however, be obtained from Eq. (35) and the fact that ∆bLagrangian

c /bLagrangian
c ∼ fν, in this

case the suppression in Pnn is reduced from −8fν to (−6+2(b− 1)/b)fν so for a population of galaxies with b ≈ 2 the
sensitivity to fν is decreased by about 40%. From our numerical calculations for halos of M = 1013M⊙, M = 1014M⊙

with bias factors roughly b ∼ 1, b ∼ 2 respectively, we find that the suppression in the halo auto-power spectra is
decreased by ∼ 30% relative to the matter power spectrum. For comparable populations of halos, the constraints on
fν from the suppression in the halo autopower spectrum would be expected to relax by a similar amount.

VII. CONCLUSION

In this paper we have studied halo bias in cosmologies with massive neutrinos and cold dark matter. To do this,
we developed a simple framework for calculating the Lagrangian bias from spherical collapse on a long-wavelength
mode. The change to the local collapse threshold in the presence of a long-wavelength mode, together with an analytic
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FIG. 6: The shift in the Eulerian bias (left column) and Lagrangian bias with respect to the CDM (right column) relative to
the values of the bias factors at very large scales. Precisely, the plotted quantity is b(k)/b(k = 10−4Mpc−1). The top row is
b(M) for M = 1013M⊙ halos and the bottom row shows the shift in the bias for M = 1014M⊙ halos. In all plots the value of
Ωm is fixed, but Ωc and Ων vary. The neutrino free-streaming scale for each hierarchy, Eq. (16), is shown by the vertical dotted
lines of the same color. In both panels the order of the legend matches the order of the curves.

expression for the mass function give the linear halo bias in cosmologies with massive neutrinos. In our calculations we
have assumed that the fluctuations in the energy density are adiabatic, that is, we have assumed that the fluctuations
in the energy density of different components are coherent. An important extension of these calculations would be to
repeat the calculations here in the presence of isocurvature perturbations.
Interestingly, we find that the halo bias is scale-dependent. In cosmologies with massive neutrinos there is a small

scale-dependent step in the halo bias around the neutrino free-streaming scale (see Fig. 6). The amplitude of the
feature is larger for more massive halos and in cosmologies with larger Ων . We further find that even in a cosmology
with massless neutrinos the halo bias is not precisely scale invariant, in this case there is a tiny feature around the
matter radiation equality scale. Part of the scale-dependent bias studied here can be understood in terms of the scale-
dependent growth of fluctuations in the matter density and is similar to the analysis of [27]. In [27] scale-dependent
halo bias arises from scale-dependent growth associated with the late-time accelerated expansion of the universe. In
our case, the growth of perturbations is scale-dependent at earlier times due to the presence of massive neutrinos,
and to a small extent radiation.
Interestingly, scale-dependent bias has been seen in the recent neutrino-CDM simulations of [42, 43]. In those works,

the authors find a suppression in the halo bias which, from Figure 6 of [43] appears to be in excellent agreement with our
calculations over the same range of scales. Moreover, the authors find that the scale-dependent bias is reduced when
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FIG. 8: The suppression in the halo power spectrum in the presence of massive neutrinos, relative to cosmologies without
massive neutrinos. Precisely, the plotted quantity is the fractional difference between Pnn(k|mν)/Pnn(k = 10−4Mpc−1|mν)
and Pnn(k|mν = 0)/Pnn(k = 10−4Mpc−1|mν = 0). The solid lines include the scale-dependent bias calculated in this paper, the
dotted lines use the standard prediction of a constant value of b defined by b = 1+ bLagrangian

c where bLagrangian
c is calculated

assuming dδcrit/dδc,L = −1.

they consider the bias with respect to the CDM fluctuations only bc(k) ≡ Pnc/Pcc. For the bias defined with respect to
the CDM only, we predict bc(k) = 1+bLagrangian

c (k|mν). This bias factor is still scale-dependent but the magnitude of
the scale-dependent feature is considerably smaller than in b(k) = Pnm(k)/Pmm(k) ≈ bc(k)Pcm(k)/Pmm(k). Finally,
the scale-dependent halo bias predicted here increases on scales smaller than the neutrino free-streaming length. This
means that the suppression in the galaxy power spectrum on scales below kfs is reduced, diminishing the sensitivity
of the galaxy power spectrum to Ων (see Fig. 8). We leave the examination of precisely how this effect alters the
constraints on neutrino mass from galaxy surveys to further study.
Finally, the existence of a scale-dependent bias feature offers the opportunity for a new method for constraining

neutrino mass through the measurement of the location and/or amplitude of the neutrino feature in the bias. We
explore possibility of constraining neutrino mass from the scale-dependent halo bias in a separate paper [60].
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