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The abundance of massive dark matter halos hosting galaxy clusters provides an important test
of the masses of relic neutrino species. The dominant effect of neutrino mass is to lower the typical
amplitude of density perturbations that eventually form halos, but for neutrino masses ∼

> 0.4eV the
threshold for halo formation can be changed significantly as well. We study the spherical collapse
model for halo formation in cosmologies with neutrino masses in the range mνi = 0.05eV - 1eV
and find that halo formation is differently sensitive to Ων and mν . That is, different neutrino
hierarchies with common Ων are in principle distinguishable. The added sensitivity to mν is small
but potentially important for scenarios with heavier sterile neutrinos. Massive neutrinos cause
the evolution of density perturbations to be scale-dependent at high redshift which complicates
the usual mapping between the collapse threshold and halo abundance. We propose one way of
handling this and compute the correction to the halo mass function within this framework. For∑

mνi ∼
< 0.3eV , our prescription for the halo abundance is only ∼

< 15% different than the standard

calculation. However for larger neutrino masses the differences approach 50−100% which, if verified
by simulations, could alter neutrino mass constraints from cluster abundance.

PACS numbers:

I. INTRODUCTION

The exquisite measurements of temperature anisotropies in the cosmic microwave background (CMB) by Planck
[1], WMAP, [2], SPT [3] and ACT [4] reveal a universe that, on large scales, can be remarkably well-characterized by
just a few cosmological parameters. One parameter that is not currently required is the energy density in massive
relic neutrinos. Cosmological evidence for massive neutrinos is, at present undetected, and as such is considered an
extension to the ΛCDM model. Neutrino oscillation experiments require that massive neutrinos contribute at least
a few tenths of a percent to the cosmic energy budget today Ωνh

2
∼> 0.06eV/94eV [5].

The presence of massive neutrinos changes the evolution of matter perturbations. Matter perturbations with
wavelengths smaller than the neutrino free-streaming length are suppressed and a detection of this suppression would
provide a measure of the energy density in relic neutrinos (for a review see [6]). The neutrino-induced suppression
to the matter power spectrum scales primarily with

∑

i mνi and current bounds on the sum of the neutrino masses
from cosmological datasets are

∑

imνi ∼< 0.2eV − 1eV (see e.g. [1–4] for CMB constraints, [7–16] for constraints from
galaxy and Lyman-alpha forest surveys, and [17–22] for constraints from the abundance of galaxy clusters).
The standard model of particle physics includes three active neutrino species and three neutrino mass eigenstates.

However, there are a number of anomalies in particle physics, nuclear physics, and astrophysics datasets that suggest
the presence of additional light neutrino species with mass ∼ 1eV (for a review see [23, 24] and also [25–27]). The
invisible decay width of the Z boson limits the number of weakly interacting neutrinos to three, so if an additional
neutrino species exists it must be sterile [5]. Cosmological datasets bound the effective number of all (active and
sterile) neutrinos species (i.e. the number of relativistic fermionic degrees of freedom in the early universe). Current
constraints from Planck are 2.72 < Neff < 4.04 at 95% confidence [1].
As discussed in [28] neutrinos with massesmν ∼> 0.2eV (and the standard temperature of Tν ∼ 1.7×10−4eV ) cluster

much more strongly around dark matter halos so one might expect correspondingly larger effects on halo formation
and abundance. While the evidence for an additional, more massive, sterile species is far from strong, one motivation
for this work is to provide a framework for understanding the signatures of neutrinos with masses as large as 1eV on
halo formation and abundance. In any case, massive neutrinos exist and are one of two known components of dark
matter in the universe today. It is therefore important to understand how calculations of cold dark matter (CDM)
structure formation are altered by the neutrino component.
In this paper, we consider the effects of massive neutrinos on the simplest, spherical collapse model of halo formation

[29]. The effects of massive neutrinos on spherical collapse were first studied by Ichiki and Takada [30] and this paper
largely follows their approach. The main differences between this work and [30] are: (i) we start the spherical collapse
calculations at later times when the perturbations are subhorizon using the initial conditions from the publicly available
CAMB code [31] and (ii) we allow for multiple massive neutrino species and larger individual neutrino masses than
considered by [30]. Including multiple massive species allows us to separately study the effects of mν and Ων on
spherical collapse. Larger neutrino masses also cause greater changes to the evolution of spherical overdensities which
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is helpful to understand the different physical effects and ultimately may be important to model to constrain a sterile
species.
The semi-analytic spherical collapse model we consider here is, of course, not a precise description of cold dark

matter structure formation in the universe. The current community standard for modeling structure formation is
high-resolution N-body simulations (see e.g. [32] and references therein). Nevertheless, the spherical collapse model is
a useful testing ground for developing an understanding of how non-standard cosmologies impact halo formation (e.g.
[33–39]). Furthermore, at present there are only a handful of N-body simulations that include the effects of massive
neutrinos [40–43, 43–47] and even fewer that include both cold dark matter and neutrino particles in simulations
[40, 41, 43, 44, 46, 48–50]. In the mixed-dark-matter simulations of [44–46] the Sheth-Tormen model for the halo
mass function [51] was found to continue to describe the halo abundance in a cosmology with massive neutrinos with
mνi ∼< 0.2eV provided one makes the replacement Ωm → Ωc +Ωb (i.e. the neutrino contribution to Ωm is neglected).
In [50] the same replacement was found to give good agreement between the νCDM mass functions and the Tinker
spherical-overdensity mass function [32] as long as the CDM power spectrum was used to calculate the variance of
mass fluctuations on scale M (rather than the total matter power spectrum). These descriptions of the change to the
halo mass function are in qualitative agreement with our calculations that show that the collapse threshold is changed
by ∼< 0.5% for

∑

imνi ∼< 0.3eV and M ≤ 1015M⊙ (see also [30]). It would be interesting to compare our calculations
that include larger values of neutrino masses to mixed dark matter N-body simulations.
In the plots and numerical examples shown throughout this paper we use Planck [1] values of the standard, flat

ΛCDM cosmological parameters: Hubble parameter h = 0.67, cold dark matter (CDM) density Ωch
2 = 0.1199

and baryon density Ωbh
2 = 0.022. When solving for the evolution of spherical overdensities we treat baryons and

CDM as a single fluid (for a discussion of baryon effects on spherical collapse calculations see [30, 52]). We assume
three species of massive neutrinos with variable masses mν1, mν2 and mν3. Massive neutrinos contribute a fraction
Ωνh

2 ≈ ∑mνi/(94eV ) to the critical energy density so for fixed CDM and baryon densities, changing the neutrino
masses leads to a different total matter (Ωm = Ωc+Ωb +Ων) densities today. We adjust ΩΛ to keep the universe flat,
that is ΩΛ = 1−Ωc−Ωb −Ων −Ωγ and these plots are referred to as at fixed Ωc. In this paper, “Inverted Hierarchy”
means mν1 = mν2 = 0.05eV and mν = 0eV , and “no massive ν” means mν1 = mν2 = mν3 = 0eV . We also make
comparisons between cosmologies with massive neutrinos and a cosmology with massless neutrinos and the same total
matter density, Ωcomparison

c = Ωc + Ων , we refer to the difference between these to cases as changes with fixed Ωm.
In numerical examples, we consider several representative scenarios for the neutrino mass hierarchy which are not all
compatible with oscillation data, but allow us to compare scenarios with a fixed Ων but different individual neutrino
masses. We solve for the background cosmology and spherical halo collapse self-consistently for each set of neutrino
masses.
The rest of this paper is organized as follows. In §II we outline our method for solving spherical collapse in νΛCDM

and present numerical calculations of the halo evolution in this model. In §III we relate spherical collapse results to
halo abundance in νΛCDM cosmologies. Massive neutrinos cause the evolution of density perturbations to depend
on scale and this fact leads to some subtleties in relating spherical collapse calculations to halo abundance so we
review the framework in detail. Numerical results for the neutrino-induced changes to the collapse threshold and halo
abundance are presented in the same section. Conclusions are given in §IV. Appendix A describes how we set up the
initial conditions using the output of CAMB [31]. Appendix B presents tests of whether our results are sensitive to
the approximation used to calculate the neutrino mass that clusters inside the halo during collapse (they are not).
Appendix C further explores the meaning of the collapse threshold in νΛCDM and presents a comparison of several
approaches to defining this quantity.

II. SPHERICAL COLLAPSE IN νΛCDM UNIVERSE

In this section we develop the spherical collapse model for halo formation in a universe with multiple components to
the energy density. Our halo is a homogenous spherical overdensity in CDM and baryons that accumulates neutrino
mass as the amplitude of the CDM and baryon perturbation grows during gravitational collapse.
The unperturbed background universe evolves according to the Friedmann equation,

H2(a) =
8πG

3
(ρ̄c(a) + ρ̄b(a) + ρ̄ν(a) + ρ̄γ(a) + ρ̄Λ) (1)

where a is the scale factor and we have included CDM ρ̄c, baryons ρ̄b, neutrinos ρ̄ν , photons ρ̄γ , and a cosmological
constant ρ̄Λ. The number density, energy density, and pressure of a single neutrino mass eigenstate with mass mνi is
given by

n̄νi = 2

∫

d3p

(2π)3
1

ep/Tν + 1
, ρ̄νi = 2

∫

d3p

(2π)3

√

p2 +m2
νi

ep/Tν + 1
, P̄νi = 2

∫

d3p

(2π)3
p2

3
√

p2 +m2
νi

1

ep/Tν + 1
. (2)
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where the neutrino temperature is Tν(a) = 1.95491K/a and the total neutrino energy density is ρ̄ν =
∑

i ρ̄νi. The
other components evolve as ρ̄c ∝ 1/a3, ρ̄b ∝ 1/a3, ρ̄γ ∝ 1/a4, and ρ̄Λ = const..

A. Equation of motion for R

We follow the evolution of the radius R(t) enclosing a constant CDM and baryon mass M . We start our calculations
at zinit = 200. At this redshift the density perturbations that form halos at late times have amplitudes δinit ∼ O(10−2)
so we may set the initial conditions using linear theory (see Appendix A for further discussion). However, zinit = 200
is late enough that the perturbations of interest are all well within the horizon. Furthermore, perturbations in the
baryon density have nearly caught up with perturbations of the CDM so we will treat them as a single fluid with
energy density ρ̄cb ≡ ρ̄c + ρ̄b. The CDM and baryon density perturbations are given by

δcb ≡
ρ̄cδc + ρ̄bδb
ρ̄c + ρ̄b

. (3)

The equation of motion for a mass-shell of radius R enclosing constant (CDM + baryon) mass M is

R̈ = −GM

R2
− 4πG

∫ R

0
drr2(ρrest(r, t) + 3Prest(r, t))

R2
, (4)

where ˙ indicates a derivative with respect to time, ρrest and Prest are the energy density and pressure of photons,
neutrinos, and cosmological constant. For a halo of mass M , we use the linear initial conditions for R

Rinit = R̄init

(

1− 1

3
δcb,init

)

, Ṙinit = HinitR̄init

(

1− 1

3
δcb,init −

1

3
H−1

initδ̇cb,init

)

, R̄init =

(

3M

4πρ̄cb

)1/3

(5)
where ¯ indicates unperturbed quantities and we use the subscript init to indicate quantities at the initial redshift
zinit. In a cosmology with massive neutrinos, the growth of linear density perturbations is different for perturbations
with wavelengths above and below the neutrino free-streaming scale. In this paper we will use CAMB to find δ̇cb/δcb
at the initial time but it is instructive to study the analytic expressions for an Ωm = 1 universe to get a sense of
how massive neutrinos affect the initial conditions for R(t). In an exactly matter-dominated phase the linear growing
mode with wavenumber k evolves as

δcb(k, a) ∝
{

a for k ∼< kfree−streaming

a1−3/5fν for k ∼> kfree−streaming
(6)

where kfree−streaming ∼ aH(a)mν/Tν(a) and fν ≡ Ων/(Ωc+Ωb+Ων). The perturbations that form halos at late times
are predominantly on scales smaller than the neutrino free-streaming scale. Therefore we expect that the presence of
massive neutrinos will delay halo formation.
The evolution of R(t) shown in Eq. (4) is sensitive to perturbations in the non-CDM components as well. By

zinit = 200, the linear perturbations in photons and neutrinos are completely subdominant on the scales of interest (see
Appendix A). However, at late times massive neutrinos can cluster nonlinearly in the collapsing density perturbations
so we allow for a contribution from the clustering of massive neutrinos given by

δMν(< R, t) =

∫

VR

d3r δρν(r, t) (7)

where VR = 4
3
πR3.

The final expression that we use to solve for for the subhorizon, non-linear evolution of R(t) is then,

R̈ = −GM

R2
− 4πG

3

(

2ρ̄r(t) + ρ̄ν(t) + 3P̄ν − 2ρ̄Λ(t)
)

R− GδMν(< R, t)

R2
, (8)

with the initial conditions in Eq. (5).
Before proceeding it is helpful to rewrite Eq. (8) as a nonlinear equation for the density perturbation δcb. Using

M = 4
3
πR3ρ̄cb(1 + δcb) = const we have

δ̈cb + 2Hδ̇cb −
4

3

δ̇2cb
1 + δcb

− 3

2
H2 (Ωcbδcb +Ωνδν) (1 + δcb) = 0 (9)
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FIG. 1: Left panel: The total neutrino mass fluctuation within radius R for neutrinos with mν = 1eV , calculated using the
linearized Boltzmann Eq. (10) and Eq. (11) for halos of M = 1015M⊙ that collapse at several different times. For the halo that
collapses latest, we have also plotted δMν calculated using the exact calculation (see Appendix §B for details). Right panel:
The neutrino density fluctuation interior to R, δMν/M̄ν (solid lines), compared with the CDM + baryon density fluctuation
(dashed lines), and the initial linear neutrino fluctuation from CAMB (dotted lines). The divergences in the density fluctuations
correspond to the redshift at which R → 0.

where Ωcb = Ωc(a) + Ωb(a) and δν = δMν/M̄ν . Collapse of a halo occurs when R → 0 or equivalently δcb → ∞. In
the absence of neutrino perturbations δν (which depend on halo mass M) the equation of motion for δcb Eq. (9) is
completely independent of halo mass. Therefore, in the absence of neutrino clustering a given set of initial conditions
δcb,init, δ̇cb,init will collapse at the same time, regardless of the halo mass. The value of δ̇cb(zinit)/δcb(zinit), however,
is cosmology dependent and there are percent-level changes for the different choices of mν and Ωm (see Appendix A).
In this paper we are particularly interested in the importance of the final δMν term. Calculations that ignore the
δMν term are referred to as neglecting neutrino clustering while those that incorporate a non-zero δMν are said to
include neutrino clustering. In the next section we outline our methods for calculating δMν .

B. Expression for δMν(< R, t)

The neutrino mass perturbation interior to R, δMν , is calculated by treating the halo as an external potential for
the neutrinos. We use the no-neutrino-clustering solution (that is, the solution to Eq. (8) with δMν = 0) for R(t) to
determine the potential due to the CDM + baryon density perturbation. We then use this potential as input into the
linearized Boltzmann equation for the evolution of the first-order perturbation to the neutrino distribution function
(see [53–55]).
The neutrino mass fluctuation interior to R at time t from a single species of mass mν is given by

δMν(< R, t) = mν

∫

Vc

d3r

∫

d3q

(2π)3
f1(q, r, t) (10)

where q = ap and p is the particle momentum, f1 is a linear perturbation to the neutrino distribution function
(f = f0 + f1 where f0 is a Fermi-Dirac distribution with temperature Tν) and Vc ≡ 4

3
πR3(t)/a3(t).

For f1, we use an approximate solution to the Boltzmann equation for non-relativistic particles in an external
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potential (for details see [28]). For neutrinos around a spherical top-hat halo, this reads

f1(rcomoving,q, η) = 2
mν

Tν

∫ t

t0

dt′

a(t′)

eq/Tν

(eq/Tν + 1)2
GδM(t′)

r2

(

α
q

Tν
− q̂ · r̂

)

(11)

{

a3(t′)r3

R3
Θ
(

r2(1 + q2/T 2
να

2 − 2q/Tναr̂ · q̂) < R(t′)2/a2(t′)
)

+
Θ
(

r2(1 + q2/T 2
να

2 − 2q/Tναr̂ · q̂) ≥ R(t′)2/a2(t′)
)

(1 + q2/T 2
να

2 − 2q/Tναr̂ · q̂)3/2

}

where δM(t) = M − 4
3
πρ̄cbR

3, Θ is the Heaviside step function, α ≡ Tν(η − η′)/mνr, and η is a time variable defined

by a2dη = dt. Figure 1 shows δMν along with the fractional overdensity δMν/M̄ν for a single neutrino species with
mν = 1eV in halos of M = 1014M⊙ collapsing at several different times.
The linearized solution in Eq. (11) underestimates the neutrino clustering on scales interior to R [28, 56], this

can be seen explicitly in Figure 1 where we have also plotted an example calculation of δMν from a full non-linear
solution to the Boltzmann Equation for mν = 1eV . The difference between the linear approximation for δMν and
the exact solution is large, particularly at late times. However, we found in [28] that for mν ∼< 0.2eV , significant
differences between the linearized and exact calculations of the neutrino mass in an external potential do not become
important until after the halo has begun to collapse, at this point the cold dark matter overdensity is large and the
dynamics of R dominated by the CDM. As shown in Appendix §B, even for more massive neutrinos (mν = 1eV ) the
linearized solution is sufficient to determine the evolution of R and the collapse time to about a percent. The fractional
differences between the values of tcollapse for a given δcb,i using the linearized Boltzmann solution and using the exact
solution for δMν remain about an order of magnitude smaller than the fractional differences between tcollapse(δMν)
and tcollapse(δMν = 0).
In panel (b) of Figure 1 we compare the the fractional overdensity in neutrinos accumulating in the halo (calculated

using the linearized Boltzmann solution), the fractional overdensity in CDM and baryons, and the initial linear density
fluctuation in neutrinos from the CAMB transfer functions. On halo scales, the initial linear fluctuation in the neutrino
density has damped away and is irrelevant in comparison to the neutrino mass that accumulates in the halo at later
times.
In panel (a) of Fig. 2 we plot solutions to Eq. (8) with δMν(< R) = 0 for halos with the same initial δcb(zinit)

(and therefore the same Rinit) but in cosmologies with different neutrino masses so the δ̇cb(zinit) and the background
evolution differ. Increasing the neutrino mass delays the evolution and subsequent collapse of the halos. In panel
(b) we show the effect of neutrino clustering on the evolution of R(t). As expected, neutrino clustering interior to R
causes a slight decrease in the collapse time.

III. FROM SPHERICAL COLLAPSE TO HALO ABUNDANCE

In this section we relate the spherical collapse calculations from the previous section to the abundance of halos at
late times. As we will discuss below, the scale-dependent evolution of density perturbations in νΛCDM introduces
some subtleties that are not present in the CDM -only case so we review the spherical collapse framework for halo
abundance and our assumptions in detail.

A. The critical overdensity

In the spherical collapse model, one approximates the nonlinear evolution of the initial density field smoothed on
scale R with the evolution of a spherical top-hat density perturbation with the same initial amplitude δcb(zinit) and

velocity δ̇cb(zinit). From the solution to the equation of motion for R(t) one can determine how large δcb(zinit) and

δ̇cb(zinit) need to be for a halo to have collapsed (R → 0) by a given redshift. The critical value of δcb(zinit) required
for a spherical halo to collapse by redshift z is called the collapse threshold or critical overdensity, δcrit(zinit), and is
a key ingredient in analytic models of the halo abundance (see for instance, [57, 58]). In the next few paragraphs we
discuss our approach for determining δcrit(zinit).
The initial amplitude of the smoothed density field around a point x is given by

δcb,R(x, zinit) =

∫

d3k

(2π)3
eik·xW (kR)δcb(k, zinit) (12)
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FIG. 2: Left panel: Spherical collapse solutions for halos with common values of δinit but in cosmologies with different mν ,
each curve above has mν1 = mν2 = mν3 and from bottom to top they are mνi = 0eV , 0.1eV , 0.2eV , 0.4eV . These curves
neglect neutrino clustering (δMν(< R) = 0). In cosmologies with massive neutrinos the linear growth is slower and collapse
occurs later. Right: A comparison of the spherical collapse solutions including and neglecting neutrino clustering interior to R
for a cosmology with mνi = 0.4eV .

and the initial velocity of the pertrubation is

δ̇cb,R(x, zinit) =

∫

d3k

(2π)3
eik·xW (kR)

d ln δcb
dt

(k, zinit)δcb(k, zinit) . (13)

The initial perturbation amplitude δcb,R(x, zinit) is a Gaussian random variable with zero mean and variance

σ2(M, z) ≡ 〈δ2R〉 =
∫

dk

k
|W (kR)|2 k3Pcb(k, z)

2π2
(14)

evaluated at z = zinit, where Pcb(k, z) is the power spectrum of cold dark matter plus baryon perturbations and

W (k,R) =
3j1(kR(M)

kR(M)
(15)

j1(x) is the the spherical Bessel function and R(M) = (3M/(4πρ̄cb))
1/3. The variance of the velocity of the initial

perturbations is

σ̇2(M, zinit) ≡ 〈δ̇2R〉 =
∫

dk

k
|W (kR)|2

(

d ln δcb
dt

(k, zinit)

)2
k3Pcb(k, zinit)

2π2
. (16)

where d ln δ/dt(k, zinit) is the linear evolution of the growing mode (as determined by CAMB, for instance).
If the linear evolution is scale-independent d ln δcb/dt can be pulled out of the integrals in Eq. (13) so that

δ̇cb,R(x, zinit) is proportional to δcb,R(x, zinit) regardless of the density profile around x. That is, for scale-independent

evolution the value of δcb,R(x, zinit) alone (rather than the full profile δcb(k, zinit)) completely specifies δ̇cb,R(x, zinit).
On the other hand, in a cosmology with scale-dependent growth (such as the case with massive neutrinos) d ln δcb/dt(k)

can not be factored out of Eq. (13) and the value of δcb,R(x, zinit) alone does not determine δ̇cb,R(x, zinit).
To determine the collapse threshold for a halo of mass M we solve Eq. (8) for the evolution of R for a top-hat

perturbation with some initial amplitude δcb,init and initial velocity

δ̇cb,init ≡
σ̇(M, zinit)

σ(M, zinit)
δcb,init . (17)
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FIG. 3: Left: The linearly extrapolated value of the initial density perturbation δcb(zinit), required to collapse at zcollapse (see
Eq. (18)). Here we have fixed Ωc and Ωb so curves with different Ων have different total matter density Ωm. Right: The
fractional change to the collapse threshold when neutrino clustering interior to R is included. In both panels M = 1014M⊙ and
the order of the curves matches the order of the legends.

We then determine how large δcb(zinit) needs to be for the perturbation to collapse by a given redshift z. This defines
the critical overdensity at the initial time δcrit,init. With this definition the critical overdensity linearly extrapolated
to a different redshift is

δcrit(z) ≡
σ(M, z)

σ(M, zinit)
δcrit,init . (18)

We have chosen Eq. (17) and Eq. (18) to define the collapse threshold because Eq. (17) is representative of typical ini-
tial conditions for the quantity δcb,R(x, zinit). Moreover, from Eq. (18) we can see that the rarity of perturbations large
enough to collapse as characterized by the ratio δcrit(z)/σ(M, z) is independent of redshift. In contrast, the linear evo-
lution of an initial density perturbation with an exact top-hat density profile, δtop−hat(k, zinit) = 4π/(2π)3k2W (kR)
differs from the linear evolution of σ(M, z) if d ln δ/dt(k) is k-dependent because δtop−hat and σ(M, z) depend differ-
ently on k. In Appendix C we discuss this issue in detail and make comparisons between the definition used here and
some alternative approaches.
In Figure 3 we plot the collapse threshold linearly extrapolated to the collapse redshift, δcrit(zcollapse), for a range

of neutrino mass heirarchies. Increasing the total amount of neutrino mass increases the barrier for collapse, but in
a way that depends on the individual neutrino masses (as opposed to just Ων ∝∑i mνi). For instance, the scenario
mν1 = 0.6eV , mν2 = mν3 = 0eV and the degenerate hierarchy mνi = 0.2eV have common values of

∑

i mνi (and
therefore Ων once the neutrinos are nonrelativistic) but the δcrit(z) clearly differ. The non-linear dependence on mν is

partially due to the nonlinear clustering of massive neutrinos during collapse (roughly δMν ∼∑im
5/2
νi [28]), which is

shown in panel (b) of Figure 3. However, even in the absence of nonlinear neutrino clustering δcrit has some sensitivity
to the individual neutrino masses through the suppression in linear growth: the net suppression in small-scale density
perturbations depends on both the fraction of mass in neutrinos and the redshift at which the neutrinos become
nonrelativistic (aNR ≈ 3Tν/mν) which gives an additional sensitivity to the masses [59].
In Fig. (4) we show the dependence of the change to the collapse threshold δcrit(zcollapse) on the abundance of

relic neutrinos and their individual masses. For the range of neutrino masses and halo masses we have considered
(1014M⊙ < M < 1016M⊙ and 0.05eV < mνi < 1eV ) increasing n̄ν causes a linear increase in δcrit. On the other hand,
δcrit(zcollapse) depends non-linearly on the masses of the individual neutrinos. This means that observables dependent
on δcrit(zcollapse) such as the halo mass function are in principle able to distinguish between different scenarios for the
neutrino mass hierarchy. In practice, the non-linear dependence of δcrit(zcollapse) on the neutrino masses is probably
only important for scenarios with an additional sterile species but it is nevertheless important to keep in mind.
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FIG. 4: The change to δcrit(zcollapse) due to massive neutrinos (including neutrino clustering and compared at fixed Ωc). Left
panel shows the dependence on the number density of massive neutrinos, plotted for several different neutrino masses in units
of n̄1ν – the relic abundance of a single neutrino and antineutrino species given in Eq. (2). The change to the collapse threshold
is roughly linear in n̄1ν . Right: The change to the linearly extrapolated collapse threshold plotted as a function of neutrino
mass mν . The change to δcrit(zcollapse) depends non-linearly on the masses of the individual neutrinos.

B. The halo abundance

The calculations of the collapse threshold from §III A can be used to estimate the effects massive neutrinos on the
halo mass function. To convert the changes to δcrit(zcollapse) and σ(M, z) into predictions for changes to the halo
abundance we will need to make the assumption that the changes to the halo mass function are characterized entirely
by these two parameters – an assumption that will need to be tested against N-body simulations with neutrino masses
across the ranges that we consider.
To study neutrino mass effects on the halo mass function, we use the fitting formula of Bhattacharya et al [60]

which is calibrated off of high-resolution CDM-only N-body simulations. Their expression for the number density of
halos with masses between M and M + dM is

nB(M, z) = − ρ̄cb
M

d lnσ(M, z)

dM
fB

(

ν ≡ δcrit(z)

σ(M, z)
, z

)

, (19)

where

fB(
δcrit
σ

, z) = A

√

2

π
exp

{

−a

2

δ2crit
σ2

}(

1 +

(

σ2

aδ2crit

)p)(
δcrit

√
a

σ

)q

, (20)

with A(z) = 0.333/(1 + z)0.11, a = 0.788/(1 + z)0.01, p = 0.807, q = 1.795, and σ = σ(M, z). This fitting function
was calibrated off of N-body simulations of ΛCDM using a constant linearly extrapolated spherical collapse threshold
δcrit(z) = 1.686. To study the effects of massive neutrinos on halo abundance we will therefore use

δcrit → 1.686
δcrit(z|mν)

δcrit(z|mν = 0)
(21)

in Eq. (19) where δcrit(z|mν) and δcrit(z|mν = 0) are our calculated collapse thresholds from Eq. (18) [66] . We use
σ(M, z) from Eq. (14) including the effects of massive neutrinos on the linear CDM and baryon power spectrum.
For comparison, we will also consider the predicted changes to the Sheth-Tormen mass function

nST (M, z) = −
√

2qST

π
AST

(

1 +

(

qST δ
2
crit

σ2

)−pST
)

ρ̄cb
M2

δcrit
σ

d lnσ

d lnM
exp

(

−qST δ
2
crit

σ2

)

(22)

where qST =
√
2/2, AST = 0.322184, and pST = 0.3.
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FIG. 5: Left: The neutrino-induced suppression in the amplitude of σ(M) – the CDM and baryon density fluctuations smoothed
on scale M (Eq. (14)). Right: The change to the halo abundance in a cosmology with massive neutrinos at z = 0.15 using the
corrections to δcrit for mν 6= 0 calculated in this paper and the mass functions of Bhattacharya (solid lines) and Sheth-Tormen
(dot-dashed lines). In both panels the order of the legend matches the order of the curves.

In Fig. (5), we show the suppression in variance of CDM and baryon density fluctuations σ(M) due to massive
neutrinos (Eq. (14)). The fractional change in σ(M) due to massive neutrinos is large compared to the shifts in
δcrit shown in Figs. 3 and 4. One can also see in panel (a) of Fig. (5) that the suppression in σ(M) is not entirely
characterized by Ων : there are small differences between curves with common Ων but different mνi and this causes
n(M) to retain some sensitivity to individual neutrino masses even if δcrit is independent of neutrino mass hierarchy.
In panel (b) of Fig. (5) we show the changes to the halo mass function for cosmologies with massive neutrinos.

We show the fractional correction to the both the Bhattacharya mass function and the Sheth-Tormen mass function.
The dominant changes to the mass function are from the shift in σ(M) rather than δcrit shown in Fig. 11 and Fig. 4.
While scenarios with common Ων but different mνi are not completely degenerate, the differences are small and it
would be very challenging to distinguish between them.
In Fig. 6 we show the fractional difference between the mass function using our neutrino mass dependent values of

δcrit and the standard value of 1.686. The standard collapse threshold δcrit = 1.686 predicts more massive halos than
our calculated δcrit(mν). That is, our prescription for the halo mass function predicts that massive neutrinos cause
greater changes to n(M) than the standard prescription which leaves δcrit fixed to the Ωm = 1 value. The fractional
difference between our n(M) and the standard prescription using δcrit = 1.686 increases with slightly with increasing
redshift. For

∑

i mν,i ∼< 0.3eV , the error in using δcrit = 1.686 remains ∼< 10% until M = 1015h−1M⊙ for all redshifts
between z ∼ 0− 1.
Throughout this paper we have used the variance of CDM and baryon fluctuations (σ(M) defined in Eq (14)) in the

spherical collapse model (this is also the prescription of [30, 50]). A number of authors [44, 45], including the analyses
papers of [18–20], have used the variance of the total (CDM + baryon + neutrino) mass fluctuations to calculate the
mass function. That is, in the halo mass function they have used σm(M)

σm(M) ≡
∫

dk

k
|W (kR)|2 k3Pm(k, z)

2π2
(23)

where Pm is the total matter power spectrum including massive neutrinos, rather than σ(M) calculated from the
CDM and baryons alone (defined in Eq. (14)). In Fig. 7 we compare the difference between the halo mass functions
calculated with our δcrit from Eq. (21) and σ(M) with the mass function calculated with δcrit = 1.686 and σm(M).
On halo scales massive neutrinos suppress σm(M) more than σ(M) so the combination of using δcrit = 1.686, which
is lower than δcrit(mν) and σm(M) which is also lower than σ(M) yields a final mass function that is closer to our
prediction than the δcrit = 1.686, σ(M) shown in Fig. 6.
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FIG. 6: The fractional difference between the halo abundance n(M) using δcrit = 1.686 and n(M) calculated using our
corrections to δcrit(mν). Massive neutrinos increase δcrit relative to 1.686 so the abundance calculated assuming δcrit = 1.686
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IV. CONCLUSIONS

In this paper we have extended the spherical collapse model to cosmologies with massive neutrinos with mν up to
1eV . In our calculations of spherical collapse we take the effects of massive neutrinos into account in three places: (i)
in setting up the initial conditions for R(t), (ii) in the background cosmology entering in the equation of motion for
R(t), and (iii) in that we allow for neutrino clustering in the halo during collapse. As expected, massive neutrinos
delay the time of collapse (R → 0). Including nonlinear clustering of neutrinos interior to the halo slightly decreases
the delay in the collapse time but the net change due to massive neutrinos is still to delay collapse.
In cosmologies with massive neutrinos the evolution of density perturbations becomes scale-dependent once the

neutrinos become non-relativistic. This scale-dependent evolution introduces some subtleties in mapping between
spherical collapse solutions and halo abundance (see also [61] and [62, 63] for a discussion of scale-dependent evolution
and halo bias). We have developed an approach to studying spherical collapse in non-standard cosmologies with
scale-dependent growth at early times which is outlined in §II and §III. We apply this to calculate the effect of
massive neutrinos on the linearly extrapolated collapse threshold δcrit(zcollapse). We find that for cosmologies with
∑

imνi ∼< 0.5eV , the changes to δcrit are ∼< 1%, in agreement with previous works [30, 44–46, 50].
For scenarios with larger neutrino masses the changes to δcrit are considerably larger. The dominant effects of

neutrino mass on δcrit come from two competing effects: the suppression in the growth of density perturbations
on halos scales increases the collapse threshold, while non-linear clustering of massive neutrinos interior to the halo
decreases the collapse threshold. The suppression in the growth of halo-scale perturbations dominates over the
neutrino clustering in all the examples we consider. Interestingly, we find that the effects of massive neutrinos on
δcrit (and σ(M)) are not entirely characterized by Ων . That is, we find that the predicted changes to δcrit and n(M)
for cosmologies with different neutrino mass hierarchies (values of mν1, mν2, mν3) but the same Ων are not exactly
the same (see Fig. 4). This difference is also seen in the mixed dark matter simulations of [50]. In our framework
the different dependence on mνi and Ων is predominantly due to the fact that the neutrino-induced suppression in
the growth of structure depends on both the energy density in neutrinos and the redshift at which they became
nonrelativistic (see e.g. [6, 59]). Clustering of neutrinos interior to the halo during collapse also causes changes to
δcrit that depend nonlinearly on the neutrino masses (Fig. 3) but the sense of this effect on δcrit is opposite to that
of the scale-dependent growth and is subdominant in all cases we consider.
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FIG. 7: The fractional difference between the halo abundance n(M) calculated using δcrit = 1.686 and σ2

m(M,mν) given in
Eq. (23) (the variance of the total matter fluctuations including CDM, baryons, and neutrinos) – as is sometimes done in the
literature – compared to our prescription using δcrit(mν) and the variance of CDM and baryons only (σ2(M) as in Eq. (14)).
The order of the legend corresponds to the order of the curves.

In practice, distinguishing between neutrino mass hierarchies with halo abundance should be extraordinarily chal-
lenging. At the level of the spherical collapse model, the theoretical uncertainty in n(M) is easily as large as the
difference between the effects of different mass hierarchies (see e.g. [60]). It is nevertheless important to note that the
halo mass function should not be entirely determined by Ων . We view the theoretical uncertainties here as additional
motivation for N-body simulations with a range of neutrino mass hierarchies.
An increasing number of authors have studied halo abundance in N-body simulations with mixed dark matter

(νΛCDM) cosmologies [44–46, 50]. This literature includes simulations with three degenerate neutrino masses ranging
from mνi = 0.05eV – 0.40eV and measurements of halo abundance for masses M ∼< h−11015M⊙. For three degenerate
neutrinos with mνi ∼< 0.2eV our predicted changes to δcrit are ∼< 1% leading to a fractional change in n(M) of only

(few)% at M = 1014M⊙ but give a suppression of ∼ 10% at M = 1015M⊙ at z = 0 and ∼ 20% at z = 1. Our
predictions for the changes to n(M, z) appear to be consistent with the halo abundance measured from simulations
shown in Figure 2 in [50].
On the other hand, for

∑

imνi = 1.2eV , we predict that δcrit is ∼ 2% larger at M = 1015M⊙ which leads to a
suppression in n(M) at this mass of ∼ 30% for fixed σ(M). The authors of [44] find that the Sheth-Tormen mass
function with δcrit = 1.686 and σ(M) calculated using the total matter power spectrum describes the halo abundance
at z = 0 in their simulations to better than ∼ 5− 10%. The difference between n(M) predicted here (calculated with
the larger value of δcrit and σ(M) calculated using the CDM + baryon power spectrum) and the approach of [44]
(using δcrit = 1.686 and σm(M) calculated using the total matter power spectrum) is 10 − 15% for

∑

imνi = 1.2eV
at z ∼ 0 and larger at higher redshift, which is marginally inconsistent with [44]. It would be interesting to study the
halo mass function in N-body simulations for the more extreme scenarios considered here (e.g. mνi ∼ 1eV ) where we
find more significant corrections to δcrit and n(M) (e.g. Fig. 5). The difference between different prescriptions for
the mass function is small for

∑

i mνi ∼< 0.3eV , but for larger neutrino masses the variation between predictions is
larger and could therefore alter the constraints on heavy neutrino species from cluster abundance.
In our discussion of the halo mass function we have neglected the neutrino contribution to the mass of the halos.

For neutrino masses ∼< 0.2eV the neutrino contribution to the halo mass should be ∼< 10−3 so neglecting the neutrinos
is justified [28]. On the other hand we found in [28] that for neutrino masses O(1eV ) the neutrino mass associated
with the halo could reach ∼ 10% (though the neutrino mass interior to the virial radius is ∼< 1% of the CDM mass).
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Even a few % shift in the halo masses can have a substantial effect on n(M) so we caution that Figs. 5, 6, and 7,
which are written in terms of the CDM mass only, do not directly give the corrections to the observed halo abundance.
The density profile of neutrinos is different from the density profile of CDM [28, 46, 64] so it is not obvious how the
neutrino contribution will change the inferred halo mass and the answer will likely depend on the observable. We
leave this question to further study.
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Appendix A: Initial conditions for δcb(t)

The CAMB code gives the values of δc(k, z), δb(k, z), and δν(k, z) for a unit-magnitude initial curvature perturbation
in the adiabatic mode. We modify the CAMB code so that the time derivatives of the density perturbations in
CDM and baryons, δ̇c(z, k) and δ̇b(z, k), are output as well. To set up the initial conditions for R and Ṙ we need

d ln δcb/dt(k) = δ̇cb(k, z)/δcb(k, z) (which is independent of δcb for linear perturbations).
For an initial density perturbation with a top-hat profile, the initial velocity is given by

d ln δcb
dt

=

∫

d3kW (kR)δ̇cb(k, zinit)/δcb(k, z)
∫

d3kW (kR)
, (A1)

where W (kR) = 3j1(kR(M)/(kR(M)) and δ̇cb(k, z)/δcb(k, z) is the ratio of the amplitudes in each Fourier mode
which can be gotten from the transfer functions given by CAMB. Note that for δcb independent of k, the integrals
just return a constant. That is,

∫

d3k

(2π)3
W (kR) =

∫

d3k

∫

4
3πR

3

d3xe−ik·x = 1 , (A2)

but Eq. (A2) doesn’t converge numerically. However, the ratio of the two expressions in Eq. (A1) plotted as a function
of the maximum value k does reach an asymptote. In Figure 8 we plot

d ln δcb
dt

(k) =

∫ k

0
k′2dk′ W (k′R)δ̇cb(k

′, zinit)/δcb(k
′, zinit)

∫ k

0
k′2dk′ W (k′R)

, (A3)

along with the ratio δ̇cb(k, z)/δcb(k). In Figure 8 we see that δ̇cb(zinit) as given in Eq. (A3) does not depend on halo
mass for the range of masses considered but it does depend on the neutrino masses – the difference at low k is due to
the different Ωm(zinit)’s but the larger suppression at high k is due to mν > 0. We can also see that by k ∼ 1h/Mpc

the values of Eq. (A3) and δ̇cb(k, z)/δcb(k) nearly identical. We therefore use d ln δcb/dt = δ̇cb(k, z)/δcb(k) evaluated
at k = 10Mpc−1 to determine the initial conditions of R for a top-hat initial density perturbation. As discussed in
§III the calculations of the critical overdensity in the plots of the body of this paper use the root mean square value
of the initial velocity given in Eq. (16), rather than Eq. (A3). We have used top-hat initial conditions of Eq. (A3) in
Fig. 2, Fig. 10, and Fig. 11.
For adiabatic initial conditions there are perturbations in the other components δν and δγ at the initial time as

well. A top-hat initial density perturbation in CDM and baryons with amplitude δcb,init and radius R has Fourier
components given by

δcb(k) = δcb,initW (kR) , (A4)

which allows us to determine the amplitude of the primordial curvature perturbation in each Fourier mode, and
therefore the perturbations the other components

δcb,i(k, zinit) = Tcb(k, zinit)ζ(k) → δν(k, zinit) =
Tν(k, zinit)

Tcb,i(k, zinit)
δcb(zinit)W (kR) , (A5)
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FIG. 8: Left: The initial δ̇cb(zinit) from CAMB. The solid curves show Eq. (A3) as a function of k, the curves for M =

1013M⊙, 10
14M⊙, and 1015M⊙ are indistinguishable. The dotted curves are the ratio δ̇cb(k, zinit)/δcb(k, zinit) – which at

high-k is nearly identical to Eq. (A3). All curves are at z = 200 in units of H(z). Right: The linear neutrino perturbation,
δν(z) =

∫
d3kTν(k, z)/Tcb(k, zinit)δcb(zinit)W (kR), plotted as a function of redshift in units of δcb(zinit) for a range of halo

masses.

where ζ(k) is the primordial curvature. The linear evolution of the initial density perturbation, δν(z) =
∫

d3kTν(k, z)/Tcb(k, zinit)δcb(zinit)W (kR), for a top-hat CDM and baryon perturbation is plotted in Figure 8.
At our start time, zinit = 200, the amplitude of density perturbations that collapse by z ∼< 1 is ∼ 10−2. The

amplitude of non-linear corrections to our initial conditions (which we have ignored) is O(δ2init) ∼ 10−3 − 10−4 which
is not very different from magnitude of the neutrino mass effects on δcrit for some of the smaller neutrino masses.
However, to make non-linear corrections completely subdominant we would need to start our calculation before
decoupling and then follow the subhorizon evolution of the baryons independently of the CDM until z ∼ 200. The
total density perturbation would no longer have a top-hat profile in this case and this seems like overkill for a model
that is anyway intended to be a crude approximation to halo formation. However, we have tested the sensitivity of
our calculations to the initial conditions in two ways: (i) by changing zinit to earlier times and repeating the spherical
collapse calculation and (ii) by shifting zinit but keeping δinit fixed between calculations with different values of
the neutrino mass (so that the magnitude of the non-linear corrections are similar). In both cases the changes to
(δcrit(mν) − δcrit(mν = 0))/δcrit are ∼< (few)10−3. Changing the ratios of CDM to baryons has an effect that is
comparable in magnitude. We therefore consider our calculations of δcrit to be accurate (independent of zinit and Ωb)
to about ∼ 0.5%.

Appendix B: How accurate is the expression for δMν? Does it matter for δlinear
cb (zcollapse)?

In §II B we used a solution to the linearized Boltzmann equation to calculate the neutrino mass interior to R,
δMν(< R). The linearized Boltzmann solution is accurate at early times before the CDM density fluctuation has
become nonlinear, but significantly underestimates the late-time non-linear clustering of neutrinos (e.g. [28, 56]). In
this section we explore the sensitivity of our results to the approximation for δMν(< R) used in §II B. Our reference
point for a more accurate calculation of δMν numerically integrates neutrino trajectories traveling in the external
potential of the collapsing halo. The initial conditions for the neutrino trajectories sample the initial phase space and
δMν(< R, t) is obtained by summing elements of phase space with trajectories interior to R at time t (for details see
[28]). We refer to this calculation as the “exact” calculation because it is an exact solution to the Boltzmann equation
for neutrinos in an external potential. Our exact calculation, however, still makes the approximation that δMν can
be calculated using a halo potential described by the solution to R(t) with δMν = 0.
Figure (9) shows the difference between the linearized Boltzmann solution for δMν and the exact calculation for

halos with M = 1014M⊙, M = 1015M⊙, and single massive neutrino species with mν = 1eV . The difference between
the exact calculation and the linear approximation is large. Plotted in the right panel of Figure (9) are the solutions
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FIG. 9: Left: Several calculations of the neutrino mass interior to R, δMν . Plotted for a cosmology with one massive neutrino
with mν = 1eV and halos ofM = 1014M⊙ andM = 1015M⊙. Shown is the linearized Boltzmann solution, the exact calculation,
and a hybrid solution that uses the linearized Boltzmann solution at early times, where the exact calculation hasn’t converged
and the exact calculation at late times once δMν,exact > δMν,linear. Right: The solutions to Eq. (8) using δMν = 0, the linearized
Boltzmann solution for δMν , and the hybrid exact-linear solution shown in the right panel. Despite the large differences in
δMν in the right panel, the solutions for R(t) are very similar – the collapse time changes by ∼

< 1% for M = 1015M⊙ and

< 0.5% for M = 1014M⊙. These changes in tcollapse and are small compared to the change due to the effect we are interested
in, nonzero δMν .

for R(t) from Eq. (8) with δMν = 0, δMν from the linearized Boltzmann equation, and δMν using the linearized
Boltzmann equation at early times and the exact calculation once δMν,exact > δMν,linear. As discussed in §II non-
zero δMν has a large effect on the evolution of R(t) and the collapse time. However, the difference between R(t)
including the larger δMνexact and the linearized δMνlinear is negligible. For the examples we have considered, halos
with M = 1014M⊙ and M = 1015M⊙, the collapse times change by < 0.5%, < 1%. Apparently, the effect of δMν on
the final collapse time of R is most important at early times. Nonlinear clustering of neutrinos depends strongly on
the neutrino mass. Since the error in tcollapse from using the linearized Boltzmann calculation for δMν is unimportant
for mν = 1eV we conclude that it is a safe approximation for all neutrino mass hierarchies considered in this paper.

Appendix C: Calculating δcrit(z) in a cosmology with scale dependent evolution

There are a number of analytic models of halo abundance, from the original Press-Schechter ansatz [57] to more
sophisticated excursion set and peaks calculations ([58, 65]). These models make use of the fact that the linear
evolution of the density field is well-understood and identify regions of the early-time, linear density field that satisfy
certain criteria, with halos at late times. For instance, a halo of mass M forming at redshift z can be associated with
a region in the early-time density field δcb,init smoothed on scale R = (3M/(4πρcb))

1/3 that exceeds the threshold for
collapse (δcb(zinit) > δcrit(zinit)) and/or is a peak ( ∇δcb(x, zinit) = 0 and det(∇i∇jδcb(x, zinit)) < 0). If the statistics
of the linear density field are known (in the standard cosmology they are Gaussian) then the fraction of the initial
volume, and therefore the mass, that satisfies the halo criteria (peaks or thresholds) can be calculated.
For instance, the excursion set model relates the abundance of halos at z to the distribution of first crossings of the

barrier δcrit,i(z) which (in the limit of a Fourier-space top-hat smoothing function) gives the usual Press-Schechter
mass function

nPS(M, z) = −2
ρ̄cb
M

d

dM

[

∫ ∞

δcb(zcollapse,zinit)

σ(M,zinit)

dν
e−1/2ν2

√
2π

]

, (C1)

where δcb(zcollapse, zinit) is the value of the density fluctuation at zinit required to collapse by redshift zcollapse.
Typically, one works with the collapse threshold and the density field linearly extrapolated to the present time. This
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FIG. 10: . A comparison of the neutrino induced changes to the linearly extrapolated collapse threshold calculated in two
ways. First, using the initial velocity δ̇cb(zinit)/δcb(zinit) ≡ σ̇/σ and the linear extrapolation given in Eq. (18) as in the body
of this paper (solid lines). Second, using the initial conditions and linear extrapolation of a top-hat perturbation at z = 1000
(dashed lines). The two approaches are in agreement at the ∼

< 20% level.

is a convenient choice because δcrit(zcollapse, zcollapse) is nearly independent of redshift. And, for a cosmology with
scale-independent growth a top-hat density perturbation (or a density perturbation of any profile) δcb(z) evolves in
the same way as σ(M, z) so the ratio δcb(z)/σ(M, z) is constant.
In cosmologies with massive neutrinos, or any scale-dependent growth, the growth rates of density perturbations

depend on their profile. To be completely explicit,

δcb(z) =

∫

d3k

(2π)3
Tcb(k, z)

Tcb(k, zinit)
δcb(k, zinit) (C2)

where Tcb(k, z) are the transfer functions. Furthermore, the scale-dependent growth will change the density profiles of
perturbations – e.g. an initially top-hat density perturbation can evolve into a perturbation with a slightly different
profile.
Quantities that describe the statistics of the density field will evolve differently from individual density perturbations.

For instance, the variance of density fluctuations evolves as

σ2(R, z) =

∫

d3k

(2π)3
|W (kR)|2

∣

∣

∣

∣

Tcb(k, z)

Tcb(k, zinit)

∣

∣

∣

∣

2

Pcb(k, zinit) (C3)

so the ratio δcb(z)/σ(M, z) may depend on redshift z because the numerator and denominator are weighted towards

different k ranges. On the other hand the ratio δcb(k)/
√

k3Pcb(k) is time independent. However one has to be cautious
in using the statistics of the initial density field smoothed on some scale δcb,R(zinit) to define halos at late times so
that the description of halo abundance does not depend on the initial time.
The issue of scale-dependent growth and the definition of the collapse threshold was also discussed by [61] in

the context of modified gravity theories. In the example of [61], the growth is scale-independent at early times so

that δcb,R(zinit) is sufficient to specify δ̇cb,R(zinit). Those authors note that the relevant quantity for calculating
the halo abundance is δcb,R(zinit)/σ(M, zinit). To evaluate δcrit at a different redshift while preserving the ratio
δcb,R(zinit)/σ(M, zinit) one would use δcrit(z) ≡ δcb,R(zinit)σ(M, z)/σ(M, zinit) which is consistent with Eq. (18) in
this paper. However, in [61] the scale-dependent growth does not become important until late times so the initial
velocity of a top-hat perturbation and the root-mean-square value of top-hat perturbations σ̇(M, zinit)/σ(M, zinit)
are the same and there is no ambiguity in setting the initial conditions for R(t).
In this paper we have chosen to use σ̇(M, zinit)/σ(M, zinit) to set the initial conditions for R(t) for two reasons: (i)

this choice represents typical initial conditions for δcb,R(x) and (ii) it allows Eq. (18), which should represent the rarity
of initial conditions that collapse by z, to be independent of zinit. Note that there still may be residual sensitivity
to the initial time, due to the fact that we set initial conditions using σ(M, z) which does not evolve according to
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the same equation of motion as the linear perturbation δcb. In principle we could start our calculations at earlier
times before neutrinos become nonrelativistic (hence before they induce scale-dependent growth) so that we would

avoid the need to make this choice for δ̇cb,R. Unfortunately this does not get around the issue because at such early
times the linear evolution is scale-dependent because of the presence of radiation and the fact that baryons are not
exactly tracking CDM. However, as a sanity check we can compare our predicted change to the collapse threshold in
the presence of massive neutrinos from Eq (18) and Eq. (17) to an alternative definition of δcrit using top-hat initial
conditions at early times when the scale-dependent growth due to massive neutrinos is small. Specifically, we define

δearlycrit (zcollapse) =
δtop−hat
crit (z = 1000)

σ(M, z = 1000)
σ(M, zcollapse) (C4)

where δtop−hat
crit (z = 1000) is the critical value of a top-hat density perturbation, with δ̇cb calculated for top-hat initial

conditions as in Appendix A linearly extrapolated to z = 1000. This definition is in the same spirit as the approach
of [61]. A comparison between the neutrino corrections to δcrit calculated using Eq. (C4) and Eq. (18) is plotted in
Fig. 10. The neutrino-corrections from the two calculations are in agreement at the ∼< 20% level.
Another approach for treating the scale dependent growth would be to determine the correlated requirements on

both δcb,R(zinit) and δ̇cb,R(zinit) for a halo to collapse by a given time. Then one could associate regions in the initial
density field that satisfy the joint criteria with halos forming at the collapse redshift. Developing such a model would
be quite interesting but is beyond the scope of this paper.
Finally, we have so far treated the threshold for collapse as a criteria on the initial density field, δcb(zinit) with

statistics characterized by the initial power spectrum Pcb(k, znit) and looked for consistent ways of imposing this
criteria on the density field linearly extrapolated to late times. One could instead treat the linearly extrapolated value
of of a top-hat perturbation δcb(zinit) as the parameter of interest, for instance as a quantity in a fitting function.

That is, one could use the initial conditions of a true top-hat density perturbation δcb,init, with δ̇cb,init as given in
Eq. (A3), for the initial conditions for R(t) and linearly evolve δcb,init to zcollapse using the true top-hat evolution.
This gives

δtop−hat
crit (z) ≡

∫

d3k Tcb(k, z)/Tcb(k, zinit)W (kR)
∫

d3kW (kR)
δcb,i . (C5)

This approach results in quite different values of δcrit(z) for cosmologies with large scale-dependent growth near
the halo scale (for massive neutrinos this happens when mν,i ∼> 0.3eV ). More importantly, in these cases

δcrit(z)/σ(M, z) 6= δcb,i/σ(M, zinit) so the linearly extrapolated δtop−hat
crit can not be straightforwardly interpreted

as a collapse threshold. For comparison, we show these calculations in Fig. (11). Interestingly, the sensitivity to

neutrino mass in δtop−hat
crit (z) is almost entirely due to the clustering of neutrinos interior to R. If δMν(< R) = 0, the

“top-hat” collapse threshold for cosmologies with massive neutrinos in Eq. (C5) is ∼< 0.5% different from Eq. (C5)

for cosmologies with mνi = 0. The change to δtop−hat
crit from δMν 6= 0 is nearly identical to the change to δcrit using

Eq. (18).
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FIG. 11: Left: The linearly extrapolated value of initial amplitude of the density perturbation δcb(zinit) required to collapse

at zcollapse, where the initial δ̇cb(zinit) and the linear extrapolation are done for an exactly top-hat density profile at z = 200
(see Eq. (C5) and surrounding text). The solid lines include neutrino clustering, while the fainter dotted lines neglect it
(δMν(< R) = 0 in Eq. (8)). Here we have fixed Ωc and Ωb so curves with different Ων have different total matter density Ωm.
Right: The fractional change to the collapse threshold when neutrino clustering interior to R is included. In both panels the
order of the curves matches the order of the legends.
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