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In this work we discuss a new SU(3)C ⊗ SU(3)L ⊗ U(1)X ⊗ U(1)N (3-3-1-1) gauge model that
overhauls the theoretical and phenomenological aspects of the known 3-3-1 models. Additionally, we
sift the outcome of the 3-3-1-1 model from precise electroweak bounds to dark matter observables.
We firstly advocate that if the B−L number is conserved as the electric charge, the extension of the
standard model gauge symmetry to the 3-3-1-1 one provides a minimal, self-contained framework
that unifies all the weak, electromagnetic and B−L interactions, apart from the strong interaction.
The W -parity (similar to the R-parity) arises as a remnant subgroup of the broken 3-3-1-1 symmetry.
The mass spectra of the scalar and gauge sectors are diagonalized when the scale of the 3-3-1-1
breaking is compatible to that of the ordinary 3-3-1 breaking. All the interactions of the gauge bosons
with the fermions and scalars are obtained. The standard model Higgs (H) and gauge (Z) bosons are
realized at the weak scales with consistent masses despite of their mixings with the heavier particles,
respectively. The 3-3-1-1 model provides two dark matters which are stabilized by the W -parity
conservation: one fermion which may be either a Majorana or Dirac fermion and one complex scalar.
We conclude that in the fermion dark matter setup the Z2 gauge boson resonance sets the dark
matter observables, whereas in the scalar one the Higgs portal dictates them. The standard model
GIM mechanism works in the model because of the W -parity conservation. Hence, the dangerous
flavor changing neutral currents due to the ordinary and exotic quark mixing are suppressed, while
those coming from the non-universal couplings of the Z2 and ZN gauge bosons are easily evaded.
Indeed, the K0 − K̄0 and B0

s − B̄0
s mixings limit mZ2,N > 2.037 TeV and mZ2,N > 2.291 TeV,

respectively, while the LEPII searches provide a quite close bound mZ2,N > 2.737 TeV. The
violation of the CKM unitarity due to the loop effects of the Z2 and ZN gauge bosons is negligible.

PACS numbers: 12.10.-g, 12.60.Cn, 12.60.Fr

I. INTRODUCTION

The standard model [1] has been extremely successful. However, it describes only about 5% mass-energy density
of our universe. There remain around 25% dark matter and 70% dark energy that are referred as the physics beyond
the standard model. In addition, the standard model cannot explain the nonzero small masses and mixing of the
neutrinos, the matter-antimatter asymmetry of the universe, and the inflationary expansion of the early universe. On
the theoretical side, the standard model cannot show how the Higgs mass is stabilized against radiative corrections,
what makes the electric charges exist in discrete amounts, and why there are only the three generations of fermions
observed in the nature.

Among the standard model’s extensions for the issues, the recently-proposed SU(3)C ⊗ SU(3)L ⊗ U(1)X ⊗ U(1)N
(3-3-1-1) gauge model has interesting features [2]. (i) The theory arises as a necessary consequence of the 3-3-1
models [3–5] that respects the conservation of lepton and baryon numbers. (ii) The B−L number is naturally gauged
because it is a combination of the SU(3)L and U(1)N charges. And, the resulting theory yields an unification of the
electroweak and B − L interactions, apart from the strong interaction. (iii) The right-handed neutrinos are emerged
as fundamental fermion constituents, and consequently the small masses of the active neutrinos are generated by
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the type I seesaw mechanism. (iv) The W -parity which has the form similarly to the R-parity in supersymmetry
is naturally resulted as a conserved remnant subgroup of the broken 3-3-1-1 gauge symmetry. (v) The dark matter
automatically exists in the model that is stabilized due to the W -parity. It is the lightest particle among the new
particles that characteristically have wrong lepton numbers transforming as odd fields under the W -parity (so-called
W -particles). The dark matter candidate may be a neutral fermion (N) or a neutral complex scalar (H ′).

The 3-3-1-1 model includes all the good features of the 3-3-1 models. Namely, the number of fermion families is just
three as a consequence of anomaly cancelation and QCD asymptotic freedom condition [6]. The third quark generation
transforms under SU(3)L differently from the first two. This explains why the top quark is uncharacteristically-heavy
[7]. The strong CP problem is solved by just its particle content with an appropriate Peccei-Quinn symmetry [8]. The
electric charge quantization is due to a special structure of the gauge symmetry and fermion content [9]. Additionally,
it also provides the mentioned dark matter candidates similarly to [10, 11]. The 3-3-1-1 model can solve the potential
issues of the 3-3-1 models because the unwanted interactions and vacuums that lead to the dangerous tree-level flavor
changing neutral currents (FCNCs) [12] as well as the CPT violation [13] are all suppressed due to the W -parity
conservation [2].

In the previous work [2], the proposal of the 3-3-1-1 model with its direct consequence—the dark matter has been
given. In the current work, we will deliver a detailed study of this new model. Particularly, we consider the new
physics consequences besides the dark matter that are implied by the new extended sectors beyond those of the
3-3-1 model. These sectors include the new neutral gauge boson (C) as associated with U(1)N and the new scalar
(φ) as required for the totally U(1)N breaking with necessary mass generations. The totally U(1)N breaking that
consequently breaks the B−L symmetry, where the B−L is a residual charge related to the N charge and a SU(3)L
generator, can happen closely to the 3-3-1 breaking scale of TeV order. This leads to a finite mixing and interesting
interplay between the new neutral gauge bosons such as the Z ′ of the 3-3-1 model and the C of U(1)N . Notice that
our previous work considers only a special case when the B − L breaking scale is very high like the GUT one [14] as
an example so that the new physics over the ordinary 3-3-1 symmetry is decoupled, which has neglected its imprint
at the low energy [2]. Indeed, the stability of the proton is already ensured by the 3-3-1-1 gauge symmetry, there is
no reason why that scale is not presented at the 3-3-1 scale. Similarly to the new neutral gauge bosons, there is an
interesting mixing among the new neutral scalars that are used to break the above symmetry kinds, the 3-3-1 and the
B − L.

It is interesting to note that the new scalars and new gauge bosons as well as the new fermions can give significant
contributions to the production and decay of the standard model Higgs boson. They might also modify the well-
measured standard model couplings such as those of the photon, W and Z bosons with the fermions. There exist the
hadronic FCNCs due to the contribution of the new neutral gauge bosons. These gauge bosons can also take part in
the electron-positron collisions such as the LEPII and ILC as well as in the dark matter observables. The presence
of the new neutral gauge bosons also induces the apparent violation of the CKM unitarity. In some case, the new
scalar responsible for the U(1)N breaking may act as an inflaton. The decays of some new particles can solve the
matter-antimatter asymmetry via leptogenesis mechanisms.

The scope of this work is given as follows. The 3-3-1-1 model will be calculated in detail. Namely, the scalar
potential and the gauge boson sector are in a general case diagonalized. All the interactions of the gauge bosons
with the fermions as well as with the scalars are derived. The new physics processes through the FCNCs, the LEPII
collider, the violation of the CKM unitarity as well as the dark matter observables are analyzed. Particularly, we
will perform a phenomenological study of the dark matter taking into account the current data as well as the new
contributions of the physics at Λ ∼ ω that have been kept in [2]. The constraints on the new gauge boson and dark
matter masses are also obtained.

The rest of this work is organized as follows. In Sec. II, we give a review of the model. Secs. III and IV are
respectively devoted to the scalar and gauge sectors. In Sec. V we obtain all the gauge interactions of the fermions
and scalars. Sec. VI is aimed at studying the new physics processes and constraints. Finally, we summarize our
results and make concluding remarks in Sec. VII.

II. A REVIEW OF THE 3-3-1-1 MODEL

The 3-3-1-1 model [2] is based on the gauge symmetry,

SU(3)C ⊗ SU(3)L ⊗ U(1)X ⊗ U(1)N , (1)

where the first three groups are the ordinary gauge symmetry of the 3-3-1 models [3–5], while the last one is a
necessary gauge extension of the 3-3-1 models that respects the conservation of lepton (L) and baryon (B) numbers.
Indeed, the 3-3-1 symmetry and B − L symmetry do not commute and also nonclose algebraically. To be concrete,
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for a lepton triplet (see below), we have B−L = diag(−1,−1, 0), which is not commuted with the SU(3)L generators
as Ti = 1

2λi for i = 4, 5, 6, 7. It is easily checked that

[B − L, T4 ± iT5] = ∓(T4 ± iT5) 6= 0,

[B − L, T6 ± iT7] = ∓(T6 ± iT7) 6= 0.

The non-closed algebras can be deduced from the fact that in order for B − L to be some generator of SU(3)L, we
have a linear combination B − L = xiTi (i = 1, 2, 3, ..., 8) and thus Tr(B − L) = 0, which is invalid for the lepton
triplet, Tr(B − L) = −2 6= 0, even for other particle multiplets. In other words, B − L and Ti by themselves do
not make a symmetry under which our theory based on is manifest. Therefore, to have a closed algebra, we must
introduce at least a new Abelian charge N so that B − L is a residual symmetry of closed group SU(3)L ⊗ U(1)N ,
i.e. B − L = xiTi + yN , where the embedding coefficients xi, y 6= 0 are given below (the existence of N can also be
understood by a current algebra approach for Ti and B−L similarly to the case of hyper-charge Y when we combine
SU(2)L with U(1)Q to perform the SU(2)L ⊗U(1)Y electroweak symmetry). Note that N cannot be identified as X
(that defines the electric charge operator) because they generally differ for the particle multiplets (see below); thus
they are independent charges. As a fact, the normal Lagrangian of the 3-3-1 models (including the gauge interactions,
minimal Yukawa Lagrangian and minimal scalar potential) always preserves a U(1)N Abelian symmetry that along
with SU(3)L realizes B−L as a conserved (non-commuting) residual charge, which has actually been investigated in
the literature and given in terms of B = B and L = bT8 + L where b is 3-3-1 model-class dependent and N = B − L
[2, 15]. Note also that a violation in N due to some unwanted interaction, by contrast, would lead to the corresponding
violation in B−L and vice versa. Because Ti are gauged charges, B−L and N must be gauged charges (by contrast,
Ti ∼ (B − L) − yN are global which is incorrect). The gauging of B − L is a consequence of the non-commuting
between B−L and SU(3)L (which is unlike the standard model case). And, the theory is only consistent if it includes
U(1)N as a gauge symmetry which also necessarily makes the resulting theory free from all the nontrivial leptonic
and baryonic anomalies [2]. Otherwise, the 3-3-1 models must contain (abnormal) interactions that explicitly violate
B − L (or N). Equivalently, the 3-3-1 models are only survival if B − L is not a symmetry of such theories, actually
recognized as an approximate symmetry, which has explicitly shown in [16]. To conclude, assuming that the B − L
charge is conserved (that is respected by the experiments, the standard model, even the typical 3-3-1 models [1, 3–5]),
the Abelian factor U(1)N must be included so that the algebras are closed that is needed for a self-consistent theory.
Apart from the strong interaction with SU(3)C group, the SU(3)L ⊗ U(1)X ⊗ U(1)N framework thus presents an
unification of the electroweak and B − L interactions, in the same manner of the standard model electroweak theory
for the weak and electromagnetic ones.

The two Abelian factors of the 3-3-1-1 symmetry associated with the SU(3)L group correspondingly determine the
Q electric charge and B − L operators as residual symmetries, given by

Q = T3 −
1√
3
T8 +X, B − L = − 2√

3
T8 +N, (2)

where Ti (i = 1, 2, 3, ..., 8), X and N are the charges of SU(3)L, U(1)X and U(1)N , respectively (the SU(3)C charges
will be denoted by ti). Note that the above Q and B − L definitions embed the 3-3-1 model with neutral fermions
[5] in the considering theory. However, the coefficients of T8 might be different depending on which class of the 3-3-1
models is embedded in [15].

The Q is conserved responsible for the electromagnetic interaction, whereas the B − L must be broken so that the
U(1)N gauge boson gets a large enough mass to escape from the detectors. Indeed, the B − L is broken down to a
parity (i.e., a Z2 symmetry),

P = (−1)3(B−L)+2s = (−1)−2
√

3T8+3N+2s, (3)

which consequently makes “wrong B − L particles” become stabilized, providing dark matter candidates [2]. We see
that this R-parity has an origin as a residual symmetry of the broken SU(3)L ⊗ U(1)N gauge symmetry, which is
unlike the R-symmetry in supersymmetry [17]. That being said, the parity P is automatically existed, and due to its
nature it will play an important role in the model besides stabilizing the dark matter candidates as shown throughout
the text.
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The fermion content of the 3-3-1-1 model that is anomaly free is given as [2]

ψaL =

 νaL
eaL

(NaR)c

 ∼ (1, 3,−1/3,−2/3), (4)

νaR ∼ (1, 1, 0,−1), eaR ∼ (1, 1,−1,−1), (5)

QαL =

 dαL
−uαL
DαL

 ∼ (3, 3∗, 0, 0), Q3L =

 u3L

d3L

UL

 ∼ (3, 3, 1/3, 2/3) , (6)

uaR ∼ (3, 1, 2/3, 1/3) , daR ∼ (3, 1,−1/3, 1/3) , (7)

UR ∼ (3, 1, 2/3, 4/3) , DαR ∼ (3, 1,−1/3,−2/3) , (8)

where the quantum numbers located in the parentheses are defined upon the gauge symmetries
(SU(3)C , SU(3)L, U(1)X , U(1)N ), respectively. The family indices are a = 1, 2, 3 and α = 1, 2.

The exotic fermions NR, U and D have been included to complete the fundamental representations of the SU(3)L
group, respectively. By the embedding, their electric charges take usual values, Q(NR) = 0, Q(U) = 2/3 and
Q(D) = −1/3. However, their B−L charges get values, [B−L](NR) = 0, [B−L](U) = 4/3 and [B−L](D) = −2/3,
which are abnormal in comparison to those of the standard model particles. These exotic fermions including the
following bosons of this kind have ordinary baryon numbers, however, possessing anomalous lepton numbers as well
as being odd under the parity P (see Table I in more detail) [2]. Such particles are generally called as the wrong-lepton
particles (or W -particles for short) and the parity P is thus named as the W -parity. Whereas, all other particles of
the model including the standard model ones (which have both the ordinary baryon and ordinary lepton numbers or
only differing from the ordinary lepton number by an even lepton number as just the φ scalar given below) are even
under the W -parity, and they can be considered as ordinary particles.

Let us remind that the neutral fermions NaR might have left-handed counterparts, NaL, transforming as singlets
under any gauge symmetry group including the U(1)N . By this view, the NaL are truly sterile which is unlike the
νaR as usually considered in the literature. Interestingly, the sterile fermions NaL are W -particles like the NaR. If the
NaL are not included, the NaR are Majorana fermions. Otherwise, the presence of the NaL yields NaL,R as generic
fermions (which may be Dirac ones). Further, we will exploit this matter by deriving the dark matter observables for
the cases of the Dirac or Majorana fermions.

To break the gauge symmetry and generate the masses for the particles in a correct way, the 3-3-1-1 model needs
the following scalar multiplets [2]:

η =

 η0
1

η−2
η0

3

 ∼ (1, 3,−1/3, 1/3), ρ =

 ρ+
1

ρ0
2

ρ+
3

 ∼ (1, 3, 2/3, 1/3),

χ =

 χ0
1

χ−2
χ0

3

 ∼ (1, 3,−1/3,−2/3), φ ∼ (1, 1, 0, 2), (9)

with the VEVs that conserve Q and P being respectively given by

〈η〉 =
1√
2

(u, 0, 0)T , 〈ρ〉 =
1√
2

(0, v, 0)T , 〈χ〉 =
1√
2

(0, 0, ω)T , 〈φ〉 =
1√
2

Λ. (10)

The VEVs of η, ρ, χ break only SU(3)C ⊗ SU(3)L ⊗ U(1)X ⊗ U(1)N to SU(3)C ⊗ U(1)Q ⊗ U(1)B−L, which leaves
the B − L invariant. The φ breaks U(1)N as well as the B − L that defines the W -parity, U(1)B−L → P , with the
form as given [2]. It provides also the mass for the U(1)N gauge boson as well as the Majorana masses for νaR. Note
that the ρ3, η3 and χ1,2 are the W -particles, while the others including φ are not (i.e., as the ordinary particles). The
electrically-neutral fields η3 and χ1 cannot develop a VEV due to the W -parity conservation. To keep a consistency
with the standard model, we suppose u, v � ω,Λ.

Up to the gauge fixing and ghost terms, the Lagrangian of the 3-3-1-1 model is given by

L =
∑

fermion multiplets

Ψ̄iγµDµΨ +
∑

scalar multiplets

(DµΦ)†(DµΦ)

−1

4
GiµνG

µν
i −

1

4
AiµνA

µν
i −

1

4
BµνB

µν − 1

4
CµνC

µν

−V (ρ, η, χ, φ) + LYukawa, (11)
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with the covariant derivative

Dµ = ∂µ + igstiGiµ + igTiAiµ + igXXBµ + igNNCµ, (12)

and the field strength tensors

Giµν = ∂µGiν − ∂νGiµ − gsfijkGjµGkν ,
Aiµν = ∂µAiν − ∂νAiµ − gfijkAjµAkν ,
Bµν = ∂µBν − ∂νBµ, Cµν = ∂µCν − ∂νCµ. (13)

The Ψ denotes fermion multiplets such as ψaL, Q3L, uaR and so on, whereas the Φ stands for scalar multiplets, φ, η,
ρ and χ. The coupling constants (gs, g, gX , gN ) and the gauge bosons (Giµ, Aiµ, Bµ, Cµ) are defined as coupled to
the generators (ti, Ti, X, N), respectively. It is noted that in a mass basis the W± bosons are associated with T1,2,
the photon γ is with Q, and the Z, Z ′ are with generators that are orthogonal to Q. All these fields including the C
and gluons G are even under the W -parity. However, the new non-Hermitian gauge bosons, X0,0∗ as coupled to T4,5

and Y ± as coupled to T6,7, are the W -particles.
The scalar potential and Yukawa Lagrangian as mentioned above are obtained as follows [2]

LYukawa = heabψ̄aLρebR + hνabψ̄aLηνbR + h′νabν̄
c
aRνbRφ+ hU Q̄3LχUR + hDαβQ̄αLχ

∗DβR

+huaQ̄3LηuaR + hdaQ̄3LρdaR + hdαaQ̄αLη
∗daR + huαaQ̄αLρ

∗uaR +H.c., (14)

V (ρ, η, χ, φ) = µ2
1ρ
†ρ+ µ2

2χ
†χ+ µ2

3η
†η + λ1(ρ†ρ)2 + λ2(χ†χ)2 + λ3(η†η)2

+λ4(ρ†ρ)(χ†χ) + λ5(ρ†ρ)(η†η) + λ6(χ†χ)(η†η)

+λ7(ρ†χ)(χ†ρ) + λ8(ρ†η)(η†ρ) + λ9(χ†η)(η†χ) + (fεmnpηmρnχp +H.c.)

+µ2φ†φ+ λ(φ†φ)2 + λ10(φ†φ)(ρ†ρ) + λ11(φ†φ)(χ†χ) + λ12(φ†φ)(η†η). (15)

Because of the 3-3-1-1 gauge symmetry, the Yukawa Lagrangian and scalar potential as given take the standard forms
that contain no lepton-number violating interactions.

If such violating interactions as well as nonzero VEVs of η3 and χ1 were presented as in the 3-3-1 model, they
would be the sources for the hadronic FCNCs at tree level [12]. The FCNC problem is partially solved by the 3-3-1-1
symmetry and W -parity conservation. Also, the presence of the η3 and χ1 VEVs would imply a mass hierarchy between
the real and imaginary components of the X0 gauge boson due to their different mixings with the neutral gauge bosons.
This leads to the CPT violation that is experimentally unacceptable [13]. The CPT violation encountered with the
3-3-1 model is thus solved by the 3-3-1-1 symmetry and W -parity conservation too.

Table I lists all the model particles with their parity values explicitly provided. The lepton numbers have also
been included for a convenience in reading. However, the baryon numbers were not listed since they can be obtained
as usual (all the quarks u, d, U and D have B = 1/3, whereas the other particles have B = 0). As shown in [2],

Particle ν e u d G γ W Z Z′ C η1,2 ρ1,2 χ3 φ N U D X Y η3 ρ3 χ1,2

L 1 1 0 0 0 0 0 0 0 0 0 0 0 −2 0 −1 1 1 1 −1 −1 1
P + + + + + + + + + + + + + + − − − − − − − −

TABLE I: The W -parity (P ) separates the model particles into the two classes: (i) W -particles that possess P = −1, and (ii)
Ordinary-particles that have P = +1. The first class includes a large portion of the new particles, while the second class is
dominated by the standard model particles.

the X0 gauge boson cannot be a dark matter. However, the neutral fermion (a combination of Na fields) or the
neutral complex scalar (a combination of η0

3 and χ0
1 fields) can be dark matter whatever one of them is the lightest

wrong-lepton particle (LWP) in agreement with [11].
The fermion masses that are obtained from the Yukawa Lagrangian after the gauge symmetry breaking have been

presented in [2] in detail. Below, we will calculate the masses and physical states of the scalar and gauge boson sectors
when the Λ scale of the U(1)N breaking is comparable to the ω scale of the 3-3-1 breaking, which has been neglected
in [2]. Also, all the gauge interactions of fermions and scalars as well as the constraints on the new physics are derived.
We stress again that in the regime Λ � ω the B − L and 3-3-1 symmetries decouple; whereas, when those scales
become comparable, the new physics associated with the B − L and that of the 3-3-1 model are correlated, possibly
happening at the TeV scale, to be all proved by the LHC or the ILC project.
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III. SCALAR SECTOR

Since the W -parity is conserved, only the neutral scalar fields that are even under this parity symmetry can develop
the VEVs as given in (10). We expand the fields around these VEVs as

η = 〈η〉+ η′ =

 u√
2

0
0

+


S1+iA1√

2

η−2
S′3+iA′3√

2

 , ρ = 〈ρ〉+ ρ′ =

 0
v√
2

0

+

 ρ+
1

S2+iA2√
2

ρ+
3

 , (16)

χ = 〈χ〉+ χ′ =

 0
0
ω√
2

+


S′1+iA′1√

2

χ−2
S3+iA3√

2

 , φ = 〈φ〉+ φ′ =
Λ√
2

+
S4 + iA4√

2
, (17)

where in each expansion the first term and last term are denoted as the VEVs and physical fields, respectively. Note
that S1,2,3,4 and A1,2,3,4 are W -even while those with primed signs, S′1,3 and A′1,3, are W -odd. There is no mixing
between the W -even and W -odd fields due to the W -parity conservation. On the other hand, the f parameter in
the scalar potential can be complex (the remaining parameters such as µ2’s and λ’s are all real). However, its phase
can be removed by redefining the fields η, ρ, χ appropriately. Consequently, the scalar potential conserves the CP
symmetry. Assuming that the CP symmetry is also conserved by the vacuum, the VEVs and f can simultaneously be
considered as the real parameters by this work. There is no mixing between the scalars (CP -even) and pseudoscalars
(CP -odd) due to the CP conservation.

To find the mass spectra of the scalar fields, let us expand all the terms of the potential up to the second order
contributions of the fields:

µ2
1(ρ†ρ) = µ2

1(〈ρ〉†〈ρ〉+ 〈ρ〉†ρ′ + ρ′†〈ρ〉+ ρ′†ρ′)

= µ2
1

(
v2

2
+ vS2 + ρ+

1 ρ
−
1 + ρ+

3 ρ
−
3 +

S2
2 +A2

2

2

)
,

µ2
2(χ†χ) = µ2

2

(
ω2

2
+ ωS3 + χ−2 χ

+
2 +

S′21 +A′21 + S2
3 +A2

3

2

)
,

µ2
3(η†η) = µ2

3

(
u2

2
+ uS1 + η−2 η

+
2 +

S2
1 +A2

1 + S′23 +A′23
2

)
,

µ2(φ†φ) = µ2

(
Λ2

2
+ ΛS4 +

S2
4 +A2

4

2

)
,

λ(φ†φ)2 = λ

[
Λ4

4
+ Λ2S2

4 + Λ3S4 +
Λ2

2
(S2

4 +A2
4) + interaction

]
,

λ1(ρ†ρ)2 = λ1

[
v4

4
+ v2S2

2 + v3S2 + v2

(
ρ+

1 ρ
−
1 + ρ+

3 ρ
−
3 +

S2
2 +A2

2

2

)
+ interaction

]
,

λ2(χ†χ)2 = λ2

[
ω4

4
+ ω2S2

3 + ω3S3 + ω2

(
χ−2 χ

+
2 +

S′21 +A′21 + S2
3 +A2

3

2

)
+ interaction

]
,

λ3(η†η)2 = λ3

[
u4

4
+ u2S2

1 + u3S1 + u2

(
η−2 η

+
2 +

S2
1 +A2

1 + S′23 +A′23
2

)
+ interaction

]
,
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λ4(ρ†ρ)(χ†χ) = λ4

[
v2ω2

4
+
ωv2

2
S3 +

vω2

2
S2 + vωS2S3 +

v2

2

(
χ−2 χ

+
2 +

S′21 +A′21 + S2
3 +A2

3

2

)
+
ω2

2

(
ρ+

1 ρ
−
1 + ρ+

3 ρ
−
3 +

S2
2 +A2

2

2

)
+ interaction

]
,

λ5(ρ†ρ)(η†η) = λ5

[
v2u2

4
+
uv2

2
S1 +

vu2

2
S2 + vuS1S2 +

v2

2

(
η−2 η

+
2 +

S2
1 +A2

1 + S′23 +A′23
2

)
+
u2

2

(
ρ+

1 ρ
−
1 + ρ+

3 ρ
−
3 +

S2
2 +A2

2

2

)
+ interaction

]
,

λ6(χ†χ)(η†η) = λ6

[
ω2u2

4
+
uω2

2
S1 +

ωu2

2
S3 + uωS1S3 +

ω2

2

(
η−2 η

+
2 +

S2
1 +A2

1 + S′23 +A′23
2

)
+
u2

2

(
χ+

2 χ
−
2 +

S′21 +A′21 + S2
3 +A2

3

2

)
+ interaction

]
,

λ7(ρ†χ)(χ†ρ) =
λ7

2
(vχ−2 + ωρ−3 )(ωρ+

3 + vχ+
2 ) + interaction,

λ8(ρ†η)(η†ρ) =
λ8

2
(vη−2 + uρ−1 )(uρ+

1 + vη+
2 ) + interaction,

λ9(χ†η)(η†χ) = λ9

[ω
2

(S′3 + iA′3) +
u

2
(S′1 − iA′1)

] [u
2

(S′1 + iA′1) +
ω

2
(S′3 − iA′3)

]
+ interaction,

λ10(φ†φ)(ρ†ρ) = λ10

[
Λ2v2

4
+
vΛ2

2
S2 +

Λv2

2
S4 + vΛS2S4 +

v2

2

(
S2

4 +A2
4

2

)
+

Λ2

2

(
ρ+

1 ρ
−
1 + ρ+

3 ρ
−
3 +

S2
2 +A2

2

2

)
+ interaction

]
,

λ11(φ†φ)(χ†χ) = λ11

[
Λ2ω2

4
+
ωΛ2

2
S3 +

Λω2

2
S4 + ωΛS3S4 +

ω2

2

(
S2

4 +A2
4

2

)
+

Λ2

2

(
χ+

2 χ
−
2 +

S′21 +A′21 + S2
3 +A2

3

2

)
+ interaction

]
,

λ12(φ†φ)(η†η) = λ12

[
Λ2u2

4
+
uΛ2

2
S1 +

Λu2

2
S4 + uΛS1S4 +

u2

2

(
S2

4 +A2
4

2

)
+

Λ2

2

(
η+

2 η
−
2 +

S2
1 +A2

1 + S′23 +A′23
2

)
+ interaction

]
,

fεmnpηmρnχp +H.c. = f

[
uvω√

2
+
uv√

2
S3 +

uω√
2
S2 +

vω√
2
S1 +

u√
2

(S2S3 −A2A3

−ρ+
3 χ
−
2 − ρ

−
3 χ

+
2

)
+

v√
2

(S1S3 −A1A3 − S′1S′3 +A′1A
′
3)

+
ω√
2

(
S1S2 −A1A2 − η−2 ρ

+
1 − η

+
2 ρ
−
1

)]
+ interaction.

The scalar potential that is summed of all the terms above can be rearranged as

V (ρ, η, χ, φ) = Vmin + Vlinear + Vmass + Vinteraction, (18)

where the interactions as stored in Vinteraction need not to be explicitly obtained. The Vmin contains the terms that
are independent of the scalar fields,

Vmin = µ2
1

v2

2
+ µ2

2

ω2

2
+ µ2

3

u2

2
+ µ2 Λ2

2
+ λ2

1

v4

4
+ λ2

2

ω4

4
+ λ2

3

u4

4
+ λ2 Λ4

4

+λ2
4

v2ω2

4
+ λ2

5

v2u2

4
+ λ2

6

u2ω2

4
+ λ2

10

v2Λ2

4
+ λ2

11

Λ2ω2

4
+ λ2

12

u2Λ2

4
+ f

uvω√
2
,
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which contributes to the vacuum energy only. It does not affect to the physical processes.
The Vlinear includes all the terms that linearly depend on the scalar fields,

Vlinear = S1

[
uµ2

3 + λ3u
3 +

1

2
λ5uv

2 +
1

2
λ6uω

2 +

√
2

2
fvω +

1

2
λ12uΛ2

]

+S2

[
vµ2

1 + λ1v
3 +

1

2
λ4vω

2 +
1

2
λ5u

2v +

√
2

2
fuω +

λ10

2
vΛ2

]

+S3

[
ωµ2

2 + λ2ω
3 +

λ4

2
ωv2 +

λ6

2
ωu2 +

√
2

2
fuv +

λ11

2
ωΛ2

]

+S4

[
µ2Λ + λΛ3 +

1

2
λ10v

2Λ +
1

2
λ11Λω2 +

1

2
λ12Λu2

]
. (19)

Because of the gauge invariance, the coefficients vanish,

vµ2
1 + λ1v

3 +
1

2
λ4vω

2 +
1

2
λ5u

2v +

√
2

2
fuω +

λ10

2
vΛ2 = 0, (20)

ωµ2
2 + λ2ω

3 +
λ4

2
ωv2 +

λ6

2
ωu2 +

√
2

2
fuv +

λ11

2
ωΛ2 = 0, (21)

uµ2
3 + λ3u

3 +
1

2
λ5uv

2 +
1

2
λ6uω

2 +

√
2

2
fvω +

1

2
λ12uΛ2 = 0, (22)

µ2 + λΛ2 +
1

2
λ10v

2 +
1

2
λ11ω

2 +
1

2
λ12u

2 = 0, (23)

which are also the conditions of potential minimization,

∂V

∂u
=
∂V

∂v
=
∂V

∂ω
=
∂V

∂Λ
= 0. (24)

The 3-3-1-1 gauge symmetry will be broken in the correct way and the potential bounded from below by imposing
µ2 < 0, µ2

1,2,3 < 0, λ > 0, λ1,2,3 > 0, and other necessary conditions for λ4,5,6,...,12. In this case, the equations of the
potential minimization above give an unique, nonzero solution for the VEVs (u, v, ω, Λ).

The Vmass consists of all the terms in the potential that quadratically depend on the scalar fields. It can be
decomposed into,

Vmass = V charged
mass + V Smass + V Amass + V S

′

mass + V A
′

mass, (25)

where the first term includes all the mass terms of charged scalars while the remaining terms belong to the neutral
scalars with each term for a distinct group of fields characterized by the two values, W - and CP - parities, as mentioned
before.

The mass spectrum of the charged scalars is obtained by

V charged
mass = χ+

2 χ
−
2

(
µ2

2 + λ2ω
2 +

λ4

2
v2 +

λ6

2
u2 +

λ11

2
Λ2

)
+η+

2 η
−
2

(
µ2

3 + λ3u
2 +

1

2
λ5v

2 +
1

2
λ6ω

2 +
1

2
λ12Λ2

)
+(ρ+

1 ρ
−
1 + ρ+

3 ρ
−
3 )

(
µ2

1 + λ1v
2 +

1

2
λ4ω

2 +
1

2
λ5u

2 +
λ10

2
Λ2

)
(26)

+
λ7

2
(vχ−2 + ωρ−3 )(vχ+

2 + ωρ+
3 ) +

λ8

2
(vη−2 + uρ−1 )(uρ+

1 + vη+
2 )

−f u√
2

(ρ+
3 χ
−
2 + ρ−3 χ

+
2 )− f ω√

2
(η−2 ρ

+
1 + η+

2 ρ
−
1 ).

From the potential minimization conditions, we extract µ2
1, µ2

2, µ2
3 and substitute them into the above expression to
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yield

V charged
mass =

(
λ7

2
− fu√

2vω

)
(vχ−2 + ωρ−3 )(vχ+

2 + ωρ+
3 )

+

(
λ8

2
− fω√

2uv

)
(vη−2 + uρ−1 )(vη+

2 + uρ+
1 )

=

(
λ7

2
− fu√

2vω

)
(v2 + ω2)H−4 H

+
4 +

(
λ8

2
− fω√

2vu

)
(v2 + u2)H−5 H

+
5 , (27)

where we have defined,

H±4 ≡
vχ±2 + ωρ±3√
v2 + ω2

, H±5 ≡
vη±2 + uρ±1√
u2 + v2

. (28)

The fields H±4 , H
±
5 by themselves are physical charged scalars with masses respectively given by

m2
H4

=

(
λ7

2
− fu√

2vω

)
(v2 + ω2), m2

H5
=

(
λ8

2
− fω√

2vu

)
(v2 + u2). (29)

The field that is orthogonal to H5, G±W =
uη±2 −vρ

±
1√

u2+v2
, has a zero mass and can be identified as the Goldstone boson of

the W± gauge boson. Similarly, the orthogonal field to H4, G±Y =
ωχ±2 −vρ

±
3√

v2+ω2
, is massless and can be identified as the

Goldstone boson of the new Y ± gauge boson.
For the neutral scalar fields, we start with the A group,

V Amass = A2
1

(
µ2

3

2
+

1

2
λ3u

2 +
1

4
λ5v

2 +
1

4
λ6ω

2 +
1

4
λ12Λ2

)
+A2

2

(
µ2

1

2
+

1

2
λ1v

2 +
1

4
λ4ω

2 +
1

4
λ5u

2 +
λ10

4
vΛ2

)
+A2

3

(
µ2

2

2
+

1

2
λ2ω

2 +
λ4

4
v2 +

λ6

4
u2 +

λ11

4
ωΛ2

)
(30)

+A2
4

(
µ2

2
+

1

2
λΛ2 +

1

4
λ10v

2 +
1

4
λ11ω

2 +
1

4
λ12u

2

)
− fu√

2
A2A3 −

fv√
2
A1A3 −

fω√
2
A1A2

= − f

2
√

2

(vω
u

+
uω

v
+
uv

ω

)(vωA1 + uωA2 + uvA3√
u2v2 + v2ω2 + u2ω2

)2

, (31)

with the help of the potential minimization conditions. Therefore, we have a physical pseudo-scalar field with corre-
sponding mass,

A ≡ vωA1 + uωA2 + uvA3√
u2v2 + v2ω2 + u2ω2

, m2
A = − f√

2

(vω
u

+
uω

v
+
uv

ω

)
. (32)

If u, v, ω > 0 we have f < 0 so that the squared mass is always positive. We realize that the A4 is massless and can
be identified as the Goldstone boson of the new neutral gauge boson C of U(1)N . The remaining massless fields are
orthogonal to A as follows

GZ =
uA1 − vA2√
u2 + v2

,

GZ′ =
−uv(vA1 + uA2) + ω(u2 + v2)A3√

(u2v2 + v2ω2 + u2ω2)(u2 + v2)
. (33)

They are the Goldstone bosons of the neutral gauge bosons Z and Z ′, respectively (where the Z is standard model
like while the Z ′ is 3-3-1 model like).
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For the A′ group, we have

V A
′

mass = A′21

(
µ2

2

2
+

1

2
λ2ω

2 +
λ4

4
v2 +

λ6

4
u2 +

λ11

4
ωΛ2

)
+A′23

(
µ2

3

2
+

1

2
λ2ω

2 +
λ4

4
v2 +

λ6

4
u2 +

λ11

4
ωΛ2

)
+
fv√

2
A′1A

′
3 +

λ9

4
(ωA′3 − uA′1)2

=
1

2

(
λ9

2
− 1√

2

fv

uω

)
(u2 + ω2)

(
ωA′3 − uA′1√
u2 + ω2

)2

,

by using the minimization conditions. Hence, a physical W -odd pseudo-scalar and its mass follow

A′ ≡ ωA′3 − uA′1√
u2 + ω2

, m2
A′ =

(
λ9

2
− 1√

2

fv

uω

)
(u2 + ω2). (34)

Similarly, for the S′ group, we obtain

V S
′

mass =
1

2

(
λ9

2
− 1√

2

fv

uω

)
(u2 + ω2)

(
ωS′3 + uS′1√
u2 + ω2

)2

, (35)

which yields a physical W -odd scalar with corresponding mass,

S′ ≡ ωS′3 + uS′1√
u2 + ω2

, m2
S′ =

(
λ9

2
− 1√

2

fv

uω

)
(u2 + ω2).

The remarks are given in order:

1. We see that the scalar S′ and pseudo-scalar A′ have the same mass. They can be identified as the real and
imaginary components of a physical neutral complex field:

H ′0 ≡ S′ + iA′√
2

=
1√

u2 + ω2
(uχ0∗

1 + ωη0
3),

with the mass

m2
H′ =

(
λ9

2
− 1√

2

fv

uω

)
(u2 + ω2). (36)

2. The field that is orthogonal to H ′, G0
X = 1√

u2+ω2
(ωχ0

1−uη0∗
3 ), is massless and can be identified as the Goldstone

boson of the new neutral non-Hermitian gauge boson X0.

Finally, there remains the S group of the W -even, real scalar fields. Using the potential minimization conditions,
we have

V Smass =

(
λ3u

2 − 1

2
√

2
f
vω

u

)
S2

1 +

(
λ1v

2 − 1

2
√

2
f
uω

v

)
S2

2 +

(
λ2ω

2 − 1

2
√

2
f
vu

ω

)
S2

3

+

(
λ5uv +

1√
2
fω

)
S1S2 +

(
λ6uω +

1√
2
fv

)
S1S3 +

(
λ4ωv +

1√
2
fu

)
S2S3

+λΛ2S2
4 + λ12uΛS1S4 + λ10vΛS2S4 + λ11ωΛS3S4

=
1

2

(
S1 S2 S3 S4

)
M2
S

 S1

S2

S3

S4

 , (37)

where

M2
S ≡


2λ3u

2 − 1√
2
f vωu λ5uv + 1√

2
fω λ6uω + 1√

2
fv λ12uΛ

λ5uv + 1√
2
fω 2λ1v

2 − 1√
2
f uωv λ4ωv + 1√

2
fu λ10vΛ

λ6uω + 1√
2
fv λ4ωv + 1√

2
fu 2λ2ω

2 − 1√
2
f vuω λ11ωΛ

λ12uΛ λ10vΛ λ11ωΛ 2λΛ2

 . (38)
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In [2], the physical states have been derived when the B − L breaking scale is large enough as the GUT one, for
example, so that the S4 is completely decoupled from the remaining three scalars of the 3-3-1 model. In this work
we consider a possibility of the B − L interactions that might happen at a TeV scale like those of the 3-3-1 model,
characterized by the ω, f scales. Therefore, let us assume that the Λ is in the same order with the f, ω and all are
sufficiently large in comparison to the weak scales u, v so that the new physics is safe [2], i.e.

−f ∼ ω ∼ Λ� u ∼ v. (39)

Notice that all the physical scalar fields which have been found so far are new particles with the corresponding masses
given in the ω or

√
|fω| scales.

The mass matrix (38) will provide a small eigenvalue as the mass of the standard model Higgs boson. Whereas,
the remaining eigenvalues will be large to be identified as the corresponding masses of the new neutral scalars. To see
this explicitly, it is appropriately to consider the leading order contributions of the mass matrix (38). Imposing (39)
and keeping only the terms that are proportional to (ω, Λ, f)2, we have the result,

M2
S |LO =


− 1√

2
f vωu

1√
2
fω 0 0

1√
2
fω − 1√

2
f uωv 0 0

0 0 2λ2ω
2 λ11ωΛ

0 0 λ11ωΛ 2λΛ2

 . (40)

The 2× 2 matrix at the first diagonal box gives a zero eigenvalue with corresponding eigenstate:

m2
H = 0, H ≡ uS1 + vS2√

u2 + v2
. (41)

This state is identified as the standard model Higgs boson. The remaining eigenvalue is

m2
H1

= − fω√
2

(u
v

+
v

u

)
∼ ω2, (42)

which corresponds to a new, heavy neutral scalar:

H1 ≡
−vS1 + uS2√

u2 + v2
. (43)

The 2 × 2 matrix at the second diagonal box provides two heavy eigenstates with their masses respectively given in
the ω scale,

H2 ≡ cϕS3 + sϕS4, m2
H2

= λ2ω
2 + λΛ2 −

√
λ2

2ω
4 + (λ2

11 − 2λλ2)ω2Λ2 + λ2Λ4 ∼ ω2,

H3 ≡ −sϕS3 + cϕS4, m2
H3

= λ2ω
2 + λΛ2 +

√
λ2

2ω
4 + (λ2

11 − 2λλ2)ω2Λ2 + λ2Λ4 ∼ ω2,

where the mixing angle is obtained by

t2ϕ = − λ11ωΛ

λΛ2 − λ2ω2
. (44)

We have adopted the notations sx = sinx, cx = cosx, tx = tanx, and so forth, for any x angle like the ϕ and others
throughout this text.

We see that at the leading order, the standard model like Higgs boson has a vanishing mass. Hence, when considering
the next-to-leading order contribution, its mass gets generated to be small due to the perturbative expansion. In fact,
we can write the general mass matrix M2

S in a new basis of the states (H, H1, H2, H3). Since the mass of the
standard model like Higgs boson is much smaller than those of the new particles, the resulting mass matrix will have
a seesaw like form [18] that can transparently be diagonalized. Indeed, putting S1

S2

S3

S4

 = U

 H
H1

H2

H3

 , U ≡


u√

u2+v2
− v√

u2+v2
0 0

v√
u2+v2

u√
u2+v2

0 0

0 0 cϕ −sϕ
0 0 sϕ cϕ

 , (45)
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the mass matrix (38) in the new basis results

M ′2S = UTM2
SU =

(
A1×1 B1×3

BT1×3 C3×3

)
, (46)

where

A ≡ 2
v4λ1 + u4λ3 + u2v2λ5

u2 + v2
,

BT ≡


uv[v2(2λ1−λ5)+u2(−2λ3+λ5)]

u2+v2

sϕΛ(v2λ10+u2λ12)+cϕ(
√

2fuv+v2ωλ4+u2ωλ6)√
u2+v2

−
√

2fsϕuv+cϕΛ(v2λ10+u2λ12)−sϕω(v2λ4+u2λ6)√
u2+v2

 , (47)

and C is a 3× 3 matrix with corresponding components given by

C11 ≡
−
√

2f(u2 + v2)2ω + 4u3v3(λ1 + λ3 − λ5)

2uv(u2 + v2)
,

C12 = C21 ≡
2sϕuvΛ(λ10 − λ12) + cϕ[

√
2f(u2 − v2) + 2uvω(λ4 − λ6)]

2
√
u2 + v2

,

C13 = C31 ≡
√

2fsϕ(−u2 + v2) + 2uv[cϕΛ(λ10 − λ12) + sϕω(−λ4 + λ6)]

2
√
u2 + v2

,

C22 ≡ 2s2
ϕλΛ2 + 2cϕ(−cϕfuv

2
√

2ω
+ sϕωΛλ11 + cϕω

2λ2),

C23 = C32 ≡ (c2ϕ − s2
ϕ)ωΛλ11 + 2cϕsϕ(

fuv

2
√

2ω
+ λΛ2 − ω2λ2),

C33 ≡ −
fs2

ϕuv√
2ω

+ 2cϕΛ(cϕλΛ− sϕωλ11) + 2s2
ϕω

2λ2. (48)

Because of −f ∼ ω ∼ Λ � u ∼ v, we achieve the seesaw form for M ′2S , where ||C|| ∼ ω2 � ||B|| ∼ uω � ||A|| ∼ u2,

with ||A|| ≡
√

Tr(ATA) and so forth. Therefore, the standard model like Higgs boson obtains a mass given by the
seesaw formula [18],

δm2
H = A−BC−1BT ∼ O(u2, v2), (49)

which is realized at the weak scales in spite of the large scales ω, Λ and f (see below). The standard model like Higgs
boson is given by

H + δH = H −BC−1

 H1

H2

H3

 . (50)

The physical heavy scalars are given to be orthogonal to this light state with their masses negligibly changed in
comparison to the leading order values, respectively.

The mass of the standard model like Higgs boson can be approximated as

δm2
H = 2

(
λ3u

4 + λ5u
2v2 + λ1v

4

u2 + v2
+m2

0 +m2
1

f

ω
+m2

2

f2

ω2

)
, (51)

where the mass parameters m0, m1, m2 are given by

m2
0 ≡ −

1

(λ2
11 − 4λλ2)(v2 + u2)

[
−λ2

12λ2u
4 − λ(λ6u

2 + λ4v
2)2

+ λ12u
2(λ11λ6u

2 − 2λ10λ2v
2 + λ11λ4v

2) + λ10v
2(λ11λ6u

2 − λ10λ2v
2 + λ11λ4v

2)
]
, (52)

m2
1 ≡ −

√
2uv

[
(λ11λ12 − 2λλ6)u2 + (λ10λ11 − 2λλ4)v2

]
(λ2

11 − 4λλ2)(u2 + v2)
, (53)

m2
2 ≡

2λu2v2

(λ2
11 − 4λλ2)(u2 + v2)

. (54)
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Because the quantity f/ω is finite, the Higgs mass δm2
H depends on only the weak scales u2, v2 as stated. We will

evaluate the Higgs mass and assign δm2
H = (125 GeV)2 as measured by the LHC [19, 20]. For the purpose, let us

assume u = v, ω = −f that leads to

δm2
H = (λ3 + λ5 + λ1)u2 + 2m2

0 − 2m2
1 + 2m2

2 ≡ λ̄u2. (55)

Here, λ̄ is a function of only the λ’s couplings, which can easily be achieved with the help of (52), (53) and (54) for
the respective m2

0,1,2. In addition, we have u2 +v2 = (246 GeV)2, i.e. u = 246√
2

GeV, that is given from the mass of the

W boson as shown below. Hence, we identify δm2
H = λ̄

(
246√

2
GeV

)2

= (125 GeV)2 that yields λ̄ =
(

125
√

2
246

)2

' 0.5.

This is an expected value for the effective self-interacting scalar coupling.
In summary, we have the eleven Higgs bosons (H0, A0, H0

1,2,3, H±4,5, H ′0,0∗) as well as the nine Goldstone bosons

corresponding to the nine massive gauge bosons (G±W , G0
Z , G0,0∗

X , G±Y , G0
Z′ , G

0
C). Because of the constraints u, v �

ω,Λ,−f , the standard model like Higgs boson (∼ H) results to be light with the mass at the weak scales, whereas all
the new Higgs bosons are heavy with their masses at the ω, Λ or −f scales. In calculating below, we will ignore the
mixing effects of the standard model Higgs boson H with the new particles H1,2,3 (where the mixing angles defined
by BC−1 are typically proportional to u

ω � 1 which is actually small). Therefore, we have the H, H1, H2, H3 as the
physical states found out. Denoting tβ = v/u and taking the effective limit u/ω, v/ω � 1, the physical scalar states
are related to the gauge states as follows(

H
H1

)
'
(

cβ sβ
−sβ cβ

)(
S1

S2

)
,

(
A
GZ

)
'
(

cβ sβ
−sβ cβ

)(
A2

A1

)
,(

H2

H3

)
'
(

cϕ sϕ
−sϕ cϕ

)(
S3

S4

)
,

(
H−5
G−W

)
=

(
cβ sβ
−sβ cβ

)(
ρ−1
η−2

)
,

H4 ' ρ3, GY ' χ2, GX ' χ1, H
′ ' η3, GZ′ ' A3, GC = A4. (56)

As mentioned, the mixings of the standard model Higgs boson H with the new scalars H1,2,3 are proportional
to u/ω where the proportional coefficients depend on the couplings of the scalar potential. Since the strengths of
the scalar self-couplings are mostly unknown, those coefficients are undefined too. Therefore, if the coefficients are
small as expected, the new physics effects via the mixings can be neglected, in similarity to the gauge boson sector
discussed below. Otherwise, it is important to note that the leading-order new-physics effects must include the
O({u, v}/{ω,Λ,−f}) corrections to the couplings of the standard model Higgs boson due to the mixing with the new
scalars as well as the modifications of the H interactions to the new physics processes via those new scalars (H1,2,3).
In this case, the mixing parameters as determined by BC−1 have to be taken into account. However, it is also noted
that even for the proportional coefficients of order unity like a scalar self-coupling in the large strength regime, the
modifications to the standard model Higgs couplings are around |∆κ| ≡ u/ω ∼ 0.1 that easily satisfies the κk bounds
as presented in [1].

Let us remind the reader that apart from the H ′ that will be identified as a viable dark matter candidate, the
remaining scalars in this model would be sufficiently heavy in order to obey the bounds coming from the muon
anomalous magnetic moment [21].

IV. GAUGE SECTOR

The gauge bosons obtain masses when the scalar fields develop the VEVs. Therefore, their mass Lagrangian is
given by

Lgauge
mass =

∑
Φ

(Dµ〈Φ〉)†(Dµ〈Φ〉). (57)
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Substituting the scalar multiplets η, ρ, χ and φ with their covariant derivative, gauge charges and VEVs as given
before, we get

Lgauge
mass =

g2u2

8

[(
A3µ +

A8µ√
3
− 2

3
tXBµ +

2

3
tNCµ

)2

+ 2W+
µ W

−µ + 2X0∗
µ X

0µ

]

+
g2v2

8

[(
−A3µ +

A8µ√
3

+
4

3
tXBµ +

2

3
tNCµ

)2

+ 2W+
µ W

−µ + 2Y +
µ Y

−µ

]

+
g2ω2

8

[(
−2A8µ√

3
− 2

3
tXBµ −

4

3
tNCµ

)2

+ 2Y +
µ Y

−µ + 2X0∗
µ X

0µ

]
+2g2

NΛ2C2
µ, (58)

where we have defined tX ≡ gX
g , tN ≡ gN

g , and

W±µ =
A1µ ∓ iA2µ√

2
, X0,0∗

µ =
A4µ ∓ iA5µ√

2
, Y ∓µ =

A6µ ∓ iA7µ√
2

. (59)

The mass Lagrangian can be rewritten as

Lgauge
mass =

g2

4

(
u2 + v2

)
W+W− +

g2

4

(
v2 + ω2

)
Y +Y − +

g2

4

(
u2 + ω2

)
X0∗X0

+
1

2
(A3 A8 B C)M2

 A3

A8

B
C

 , (60)

where the Lorentz indices have been omitted and should be understood. The squared-mass matrix of the neutral
gauge bosons is found to be,

M2 =
g2

2


1
2 (u2 + v2) u2−v2

2
√

3
− tX(u2+2v2)

3
tN (u2−v2)

3

u2−v2
2
√

3
1
6 (u2 + v2 + 4ω2) − tX(u2−2(v2+ω2))

3
√

3

tN (u2+v2+4ω2)

3
√

3

− tX(u2+2v2)
3 − tX(u2−2(v2+ω2))

3
√

3
2
9 t

2
X(u2 + 4v2 + ω2) − 2

9 tXtN (u2 − 2(v2 + ω2))
tN (u2−v2)

3
tN (u2+v2+4ω2)

3
√

3
− 2

9 tXtN (u2 − 2(v2 + ω2)) 2
9 t

2
N (u2 + v2 + 4(ω2 + 9Λ2))

 .

The non-Hermitian gauge bosons W±, X0,0∗ and Y ± by themselves are physical fields with corresponding masses,

m2
W =

1

4
g2(u2 + v2), m2

X =
1

4
g2(u2 + ω2), m2

Y =
1

4
g2(v2 + ω2). (61)

Because of the constraints u, v � ω, we have mW � mX ' mY . The W is identified as the standard model W boson,
which implies

u2 + v2 = (246 GeV)2. (62)

The X and Y fields are the new gauge bosons with the large masses as given in the ω scale.
The neutral gauge bosons (A3, A8, B, C) mix via the mass matrix M2. It is easily checked that M2 has a zero

eigenvalue with corresponding eigenstate,

m2
A = 0, Aµ =

√
3√

3 + 4t2X

(
tXA3µ −

tX√
3
A8µ +Bµ

)
, (63)

which are independent of the VEVs and identified as those of the photon (notice that all the other eigenvalues of
M2 are nonzero). The independence of the VEVs for the photon field and its mass is a consequence of the electric
charge conservation [22]. With this at hand, electromagnetic vertices can be calculated that result in the form
−eQ(f)f̄γµfAµ, where the electromagnetic coupling constant is identified as e = gsW in which the sine of Weinberg’s
angle is given by [22]

sW =

√
3tX√

3 + 4t2X
. (64)
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The photon field can be rewritten as

Aµ
e

=
A3µ

g
− 1√

3

A8µ

g
+
Bµ
gX

, (65)

which is identical to the electric charge operator expression in (2) if one replaces its generators by the corresponding
gauge bosons over couplings (namely, the Q is replaced by Aµ/e, the Ti by Aiµ/g, and the X by Bµ/gX). Hence,
Aµ can be achieved from Q that need not mention M2. The mass eigenstate Aµ depends on just A3µ, A8µ and Bµ,
whereas the new gauge boson Cµ does not give any contribution, which results from the electric charge conservation
too [22].

To identify the physical gauge bosons, we firstly rewrite the photon field in the form of

A = sWA3 + cW

(
− tW√

3
A8 +

√
1−

t2W
3
B

)
, (66)

with the aid of tX =
√

3sW /
√

3− 4s2
W . In the above expression, the combination in the parenthesis (· · · ) is just

the field that is associated with the weak hyper-charge Y = − 1√
3
T8 + X. The standard model Z boson is therefore

identified as

Z = cWA3 − sW

(
− tW√

3
A8 +

√
1−

t2W
3
B

)
, (67)

which is orthogonal to the A as usual. The 3-3-1 model Z ′ boson, which is a new neutral one, is obtained to be
orthogonal to the field that is coupled to the hyper-charge Y as mentioned (thus it is orthogonal to both the A and
Z bosons),

Z ′ =

√
1−

t2W
3
A8 +

tW√
3
B. (68)

Hence, we can work in a new basis of the form (A, Z, Z ′, C), where the photon is a physical particle and decoupled
while the other fields Z, Z ′ and C mix themselves.

The mass matrix M2 can be diagonalized via several steps. In the first step, we change the basis to:
(A3, A8, B, C)→ (A, Z, Z ′, C),

 A3

A8

B
C

 = U1

 A
Z
Z ′

C

 , U1 =


sW cW 0 0

− sW√
3

sW tW√
3

√
1− t2W

3 0

cW

√
1− t2W

3 −sW
√

1− t2W
3

tW√
3

0

0 0 0 1

 . (69)

In this new basis, the mass matrix M2 becomes

M ′2 = UT1 M
2U1 =

(
0 0
0 M ′2s

)
, (70)

where the 11 component is the zero mass of the photon which is decoupled, while the M ′2s is a 3× 3 mass sub-matrix
of Z, Z ′ and C,

M ′2s ≡

 m2
Z m2

ZZ′ m2
ZC

m2
ZZ′ m2

Z′ m2
Z′C

m2
ZC m2

Z′C m2
C

 =
g2

2
×


(3+4t2X)(u2+v2)

2(3+t2X)

√
3+4t2X((3−2t2X)u2−(3+4t2X)v2)

6(3+t2X)

√
3+4t2XtN (u2−v2)

3
√

3+t2X√
3+4t2X((3−2t2X)u2−(3+4t2X)v2)

6(3+t2X)

(3−2t2X)2u2+(3+4t2X)2v2+4(3+t2X)2ω2

18(3+t2X)

tN ((3−2t2X)u2+(3+4t2X)v2+4(3+t2X)ω2)

9
√

3+t2X√
3+4t2XtN (u2−v2)

3
√

3+t2X

tN ((3−2t2X)u2+(3+4t2X)v2+4(3+t2X)ω2)

9
√

3+t2X

2
9 t

2
N (u2 + v2 + 4(ω2 + 9Λ2))

 .

Because of the conditions, u, v � ω,Λ, we have m2
Z , m

2
ZZ′ , m

2
ZC � m2

Z′ , m
2
Z′C , m

2
C . Hence, in the second step,

the mass matrix M ′2 (or M ′2s ) can be diagonalized by using the seesaw formula [18] to separate the light state (Z)
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from the heavy states (Z ′, C). We denote the new basis as (A, Z1, Z ′, C) so that the A, Z1 are physical fields and
decoupled while the rest mix, A

Z
Z ′

C

 = U2

 A
Z1

Z ′
C

 , M ′′2 = UT2 M
′2U2 =

 0 0 0
0 m2

Z1
0

0 0 M ′′2s

 , (71)

where M ′′2s is a 2× 2 mass sub-matrix of the Z ′, C heavy states, while mZ1 is the mass of the Z1 light state. By the
virtue of seesaw approximation, we have

U2 '

 1 0 0
0 1 E
0 −ET 1

 , E ≡ (m2
ZZ′ m

2
ZC)

(
m2
Z′ m2

Z′C

m2
Z′C m2

C

)−1

, (72)

m2
Z1
' m2

Z − E
(
m2
ZZ′

m2
ZC

)
, M ′′2s '

(
m2
Z′ m2

Z′C

m2
Z′C m2

C

)
. (73)

The E is a two-component vector given by

E1 = −
√

4t2X + 3{3Λ2[(2t2X − 3)u2 + (4t2X + 3)v2] + t2Xω
2(u2 + v2)}

4Λ2(t2X + 3)2ω2
� 1,

E2 =
t2X
√

4t2X + 3(u2 + v2)

8Λ2(t2X + 3)3/2tN
� 1,

which are suppressed at the leading order u, v � ω,Λ. The Z1, Z ′ and C fields are the standard model like, 3-3-1
model like and U(1)N like gauge bosons, respectively. To be concrete, we write Z1 ' Z −E1Z ′ −E2C, Z ′ ' Z ′ + E1Z
and C ' C + E2Z which differ from the Z, Z ′ and C fields by the only small mixing terms, respectively.

Moreover, with the help of tX =
√

3sW /
√

3− 4s2
W , we have

E1 = −
√

3− 4s2
W

4c4W

[
v2 − c2Wu2

ω2
+
s2
W (u2 + v2)

9Λ2

]
, E2 =

s2
W

24c3W tN

u2 + v2

Λ2
. (74)

We realize that the first term in E1 is just the mixing angle of Z-Z ′ in the 3-3-1 model with right-handed neutrinos,
tθ '

√
3− 4s2

W (c2Wu
2 − v2)/(4c4Wω

2) [22], when Λ � ω. With the aid of v2
w ≡ u2 + v2 = (246 GeV)2 (that is the

weak scale and is fixed) as well as 0 < u2, v2 < v2
w, the E1 parameter is bounded by

−
√

3− 4s2
W

4c4W

[(vw

ω

)2

+
s2
W

9

(vw

Λ

)2
]
< E1 < −

√
3− 4s2

W

4c4W

[
−c2W

(vw

ω

)2

+
s2
W

9

(vw

Λ

)2
]
, (75)

where the second terms in the brackets are negligible since Λ >∼ ω. Therefore, the E1 bounds as well as the E2
parameter can be approximated as

−3.5× 10−3 < E1 < 3× 10−3, E2 ' 0.014

(
1

tN

)(vw

Λ

)2

∼ 10−4, (76)

provided that s2
W ' 0.231, tN ∼ 1, Λ ∼ ω and ω > 3.198 TeV as given from the ρ-parameter below. With such small

values of the E1,2 mixing parameters, their corrections to the couplings of the Z boson such as the well-measured
Zff̄ ones (due to the mixing with the new Z ′, C gauge bosons) can be neglected [1]. [But, notice that they can be
changed due to the one-loop effects of Z ′, C as well as of the non-Hermitian X, Y gauge bosons accompanied by the
corresponding new fermions, which subsequently give the constraints on their masses and the gN coupling. A detailed
study on this matter is out of the scope of this work and it should be published elsewhere]. Even, the modifications
of the Z interactions (due to the mixings) to the new physics processes via the Z ′, C bosons are negligible, which will
be explicitly shown when some of those processes are mentioned at the end of this work. Therefore, except for an
evaluation of the mentioned ρ-parameter, we will use only the leading order terms below. In other words, the mixing
of the Z with the Z ′, C bosons can be neglected so that mZ1 ' mZ , Z1 ' Z, Z ′ ' Z ′ and C ' C.

For the final step, it is easily to diagonalize M ′′2 (or M ′′2s ) to obtain the remaining two physical states, denoted by
Z2 and ZN , such that  A

Z1

Z ′
C

 = U3

 A
Z1

Z2

ZN

 , U3 =

 1 0 0 0
0 1 0 0
0 0 cξ −sξ
0 0 sξ cξ

 ,

M ′′′2 = UT3 M
′′2U3 = diag(0,m2

Z1
,m2

Z2
,m2

ZN ). (77)
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The mixing angle and new masses are given by

t2ξ '
4
√

3 + t2XtNω
2

(3 + t2X)ω2 − 4t2N (ω2 + 9Λ2)
, (78)

m2
ZN '

g2

18

(
(3 + t2X)ω2 + 4t2N (ω2 + 9Λ2) +

√
((3 + t2X)ω2 − 4t2N (ω2 + 9Λ2))2 + 16(3 + t2X)t2Nω

4

)
,

(79)

m2
Z2
' g2

18

(
(3 + t2X)ω2 + 4t2N (ω2 + 9Λ2)−

√
((3 + t2X)ω2 − 4t2N (ω2 + 9Λ2))2 + 16(3 + t2X)t2Nω

4

)
.

(80)

It is noteworthy that the mixing of the 3-3-1 model Z ′ boson and U(1)N C boson is finite and may be large since
ω ∼ Λ. The Z2 and ZN are heavy particles with the masses in the ω scale.

In summary, the physical fields are related to the gauge states as A3

A8

B
C

 = U

 A
Z1

Z2

ZN

 , (81)

where

U = U1U2U3 ' U1U3 =


sW cW 0 0

− sW√
3

sW tW√
3

cξ

√
1− t2W

3 −sξ
√

1− t2W
3

cW

√
1− t2W

3 −sW
√

1− t2W
3 cξ

tW√
3

−sξ tW√3

0 0 sξ cξ

 . (82)

The approximation above is given at the leading order {u2, v2}/{ω2,Λ2} � 1 and this means that the standard model
Z boson by itself is a physical field Z ' Z1 that does not mix with the new neutral gauge bosons, Z2 and ZN .

The next-to-leading order term (E) gives a contribution to the ρ-parameter obtained by

ρ =
m2
W

c2Wm
2
Z1

=
m2
Z

m2
Z − E(m2

ZZ′ m
2
ZC)T

' 1 + E(m2
ZZ′ m

2
ZC)T /m2

Z . (83)

Here, notice that mW = cWmZ and m2
Z ∼ m2

ZZ′ ∼ m2
ZC . To have a numerical value, let us put u = v = (246/

√
2)

GeV and ω = Λ. Hence, we get the deviation as

∆ρ ≡ ρ− 1 ' 5s2
W t

4
W

18πα

u2

ω2
' 0.236

u2

ω2
, (84)

with the aid of s2
W = 0.231, α = 1/128 [1]. From the experimental data ∆ρ < 0.0007 [1], we have u/ω < 0.0544 or

ω > 3.198 TeV (provided that u = 246/
√

2 GeV as mentioned). Therefore, the value of ω results in the TeV scale as
expected.

V. INTERACTIONS

A. Fermion–gauge boson interaction

The interactions of fermions with gauge bosons are derived from the Lagrangian,

Lfermion ≡ Ψ̄iγµDµΨ, (85)

where Ψ runs on all the fermion multiplets of the model. The covariant derivative as defined in (12) can be rewritten
as Dµ = ∂µ+igsGµ+igPµ, where Gµ ≡ tiGiµ and Pµ ≡ TiAiµ+tXXBµ+tNNCµ (note that tX = gX/g, tN = gN/g).
Expanding the Lagrangian we find,

Lfermion = Ψ̄iγµ∂µΨ− gsΨ̄γµGµΨ− gΨ̄γµPµΨ, (86)
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where the first term is kinematic whereas the last two give rise to the strong, electroweak and B − L interactions of
the fermions.

Notice that the SU(3)C generators, ti, equal to 0 for leptons and λi
2 for quarks q, where q indicates to all the quarks

of the model such as q = u, d, c, s, t, b, D1,2, U . Hence, the interactions of gluons with fermions as given by the
second term of (86) yield

−gsΨ̄γµGµΨ = −gsq̄Lγµ
λi
2
qLGiµ − gsq̄Rγµ

λi
2
qRGiµ = −gsq̄γµ

λi
2
qGiµ, (87)

which takes the form as usual (only the colored particles have the strong interactions).
Let us separate P = PCC + PNC, where

PCC ≡ T1A1 + T2A2 + T4A4 + T5A5 + T6A6 + T7A7,

PNC ≡ T3A3 + T8A8 + tXXB + tNNC. (88)

Hence, the last term of (86) can be rewritten as

−gΨ̄γµPµΨ = −gΨ̄γµPCC
µ Ψ− gΨ̄γµPNC

µ Ψ. (89)

Here, the first term provides the interactions of the non-Hermitian gauge bosons W∓, X0,0∗, and Y ± with the fermions,
while the last term leads to the interactions of the neutral gauge bosons A, Z1, Z2, and ZN with the fermions.

Substituting the gauge states from (59) into PCC, we get

PCC =
1√
2
T+W+ +

1√
2
U+X0 +

1√
2
V +Y − +H.c., (90)

where the raising and lowering operators are defined as

T± ≡ T1 ± iT2, U± ≡ T4 ± iT5, V ± ≡ T6 ± iT7. (91)

Notice that T±, U± and V ± vanish for the right-handed fermion singlets. Therefore, the interactions of the non-
Hermitian gauge bosons with fermions are obtained by

−gΨ̄γµPCC
µ Ψ = − g√

2
Ψ̄γµ(T+W+

µ + U+X0
µ + V +Y −µ )Ψ +H.c.

= − g√
2

Ψ̄Lγ
µT+ΨLW

+
µ −

g√
2

Ψ̄Lγ
µU+ΨLX

0
µ −

g√
2

Ψ̄Lγ
µV +ΨLY

−
µ +H.c.

= J−µW W+
µ + J0µ

X X0
µ + J+µ

Y Y −µ +H.c, (92)

where the currents as associated with the corresponding non-Hermitian gauge bosons are given by

J−µW ≡ − g√
2

Ψ̄Lγ
µT+ΨL = − g√

2
(ν̄aLγ

µeaL + ūaLγ
µdaL) ,

J0µ
X ≡ − g√

2
Ψ̄Lγ

µU+ΨL = − g√
2

(
ν̄aLγ

µN c
aR + ū3Lγ

µUL − D̄αLγ
µdαL

)
, (93)

J+µ
Y ≡ − g√

2
Ψ̄Lγ

µV +ΨL = − g√
2

(
ēaLγ

µN c
aR + d̄3Lγ

µUL + D̄αLγ
µuαL

)
.

The interactions of the W boson are similar to those of the standard model, while the new interactions with the X
and Y bosons are like those of the ordinary 3-3-1 model.

Substituting the gauge states as given by (81) into PNC, we have

PNC
µ = sWQAµ +

1

cW

(
T3 − s2

WQ
)
Zµ

+
1

cW

[
cξ

(√
3− 4s2

W

3
T8 +

s2
W√

3− 4s2
W

X

)
+ sξcW tNN

]
Z2µ

+
1

cW

[
−sξ

(√
3− 4s2

W

3
T8 +

s2
W√

3− 4s2
W

X

)
+ cξcW tNN

]
ZNµ. (94)
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For this expression, we have used tX =
√

3sW /
√

3− 4s2
W and Q = T3 − T8/

√
3 +X. The interactions of the neutral

gauge bosons with fermions are given by

−gΨ̄γµPNC
µ Ψ = −gsW Ψ̄γµQΨAµ −

g

cW
Ψ̄γµ

(
T3 − s2

WQ
)

ΨZµ

− g

cW
Ψ̄γµ

[
cξ

(√
3− 4s2

W

3
T8 +

s2
W√

3− 4s2
W

X

)
+ sξcW tNN

]
ΨZ2µ

− g

cW
Ψ̄γµ

[
−sξ

(√
3− 4s2

W

3
T8 +

s2
W√

3− 4s2
W

X

)
+ cξcW tNN

]
ΨZNµ. (95)

Three remarks are in order

1. With the help of e = gsW , the interactions of photon with fermions take the normal form

−gsW Ψ̄γµQΨAµ = −eQ(f)f̄γµfAµ, (96)

where f indicates to any fermion of the model.

2. The interactions of Z with fermions can be rewritten as

− g

cW
Ψ̄γµ

(
T3 − s2

WQ
)

ΨZµ = − g

cW

{
f̄Lγ

µ
[
T3(fL)− s2

WQ(fL)
]
fL

+f̄Rγ
µ
[
−s2

WQ(fR)
]
fR
}
Zµ,

= − g

2cW
f̄γµ

[
gZV (f)− gZA(f)γ5

]
fZµ, (97)

where

gZV (f) ≡ T3(fL)− 2s2
WQ(f), gZA(f) ≡ T3(fL). (98)

Therefore, the interactions of Z take the normal form. For a convenience in reading, the couplings of Z with
fermions are given in Table II.

f gZV (f) gZA(f)
νa

1
2

1
2

ea − 1
2

+ 2s2W − 1
2

Na 0 0
ua

1
2
− 4

3
s2W

1
2

da − 1
2

+ 2
3
s2W − 1

2

U − 4
3
s2W 0

Dα
2
3
s2W 0

TABLE II: The couplings of Z with fermions.

3. It is noteworthy that the interactions of Z2 with fermions are identical to those of ZN if one makes a replacement
in the Z2 interactions by cξ → −sξ, sξ → cξ, and vice versa. Thus, we need only to obtain the interactions of
either Z2 or ZN , the remainders are straightforward.

The interactions of Z2 and ZN with fermions can respectively be rewritten in a common form like that of Z.
Therefore, the last two terms of (95) yield

− g

2cW
f̄γµ

[
gZ2

V (f)− gZ2

A (f)γ5

]
fZ2µ −

g

2cW
f̄γµ

[
gZNV (f)− gZNA (f)γ5

]
fZNµ, (99)

where

gZ2

A (f) = − cξs
2
W√

3− 4s2
W

T3(fL) +

( √
3cξc

2
W√

3− 4s2
W

+
2sξcW tN√

3

)
T8(fL),

gZ2

V (f) = gZ2

A (f) + 2
cξs

2
W√

3− 4s2
W

Q(f) + 2sξcW tN (B − L)(f),

gZNA,V = gZ2

A,V (cξ → −sξ, sξ → cξ). (100)

The interactions of Z2 and ZN with fermions are listed in Table III and IV, respectively.
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f gZ2
V (f) gZ2

A (f)

νa
cξc2W

2
√

3−4s2
W

− 5
3
sξcW tN

cξc2W

2
√

3−4s2
W

+ 1
3
sξcW tN

ea
cξ(1−4s2W )

2
√

3−4s2
W

− 5
3
sξcW tN

cξ

2
√

3−4s2
W

+ 1
3
sξcW tN

Na
cξc

2
W√

3−4s2
W

+ 2
3
sξcW tN − cξc

2
W√

3−4s2
W

− 2
3
sξcW tN

uα −
cξ(3−8s2W )

6
√

3−4s2
W

+ 1
3
sξcW tN −

cξ

2
√

3−4s2
W

− 1
3
sξcW tN

u3
cξ(3+2s2W )

6
√

3−4s2
W

+ sξcW tN
cξc2W

2
√

3−4s2
W

+ 1
3
sξcW tN

dα −
cξ(3−2s2W )

6
√

3−4s2
W

+ 1
3
sξcW tN −

cξc2W

2
√

3−4s2
W

− 1
3
sξcW tN

d3
cξ
√

3−4s2
W

6
+ sξcW tN

cξ

2
√

3−4s2
W

+ 1
3
sξcW tN

U − cξ(3−7s2W )

3
√

3−4s2
W

+ 2sξcW tN − cξc
2
W√

3−4s2
W

− 2
3
sξcW tN

Dα
cξ(3−5s2W )

3
√

3−4s2
W

− 2
3
sξcW tN

cξc
2
W√

3−4s2
W

+ 2
3
sξcW tN

TABLE III: The couplings of Z2 with fermions

f gZNV (f) gZNA (f)

νa −
sξc2W

2
√

3−4s2
W

− 5
3
cξcW tN −

sξc2W

2
√

3−4s2
W

+ 1
3
cξcW tN

ea −
sξ(1−4s2W )

2
√

3−4s2
W

− 5
3
cξcW tN −

sξ

2
√

3−4s2
W

+ 1
3
cξcW tN

Na −
sξc

2
W√

3−4s2
W

+ 2
3
cξcW tN

sξc
2
W√

3−4s2
W

− 2
3
cξcW tN

uα
sξ(3−8s2W )

6
√

3−4s2
W

+ 1
3
cξcW tN

sξ

2
√

3−4s2
W

− 1
3
cξcW tN

u3 − sξ(3+2s2W )

6
√

3−4s2
W

+ cξcW tN − sξc2W

2
√

3−4s2
W

+ 1
3
cξcW tN

dα
sξ(3−2s2W )

6
√

3−4s2
W

+ 1
3
cξcW tN

sξc2W

2
√

3−4s2
W

− 1
3
cξcW tN

d3 − sξ
√

3−4s2
W

6
+ cξcW tN − sξ

2
√

3−4s2
W

+ 1
3
cξcW tN

U
sξ(3−7s2W )

3
√

3−4s2
W

+ 2cξcW tN
sξc

2
W√

3−4s2
W

− 2
3
cξcW tN

Dα −
sξ(3−5s2W )

3
√

3−4s2
W

− 2
3
cξcW tN − sξc

2
W√

3−4s2
W

+ 2
3
cξcW tN

TABLE IV: The couplings of ZN with fermions

B. Scalar–gauge boson interaction

The interactions of gauge bosons with scalars arise from

Lscalar ≡ (DµΦ)†(DµΦ), (101)

where Φ runs on all the scalar multiplets of the model. From Eqs. (16) and (17), Φ possesses a common form
Φ = 〈Φ〉 + Φ′. Moreover, the covariant derivative has the form Dµ = ∂µ + igPµ = ∂µ + ig(PCC

µ + PNC
µ ) (see

the previous subsection for details). Notice that the strong interaction vanishes because the scalars are colorless.
Substituting all those into the Lagrangian, we have

Lscalar = (∂µΦ′)†(∂µΦ′) +
[
ig(∂µΦ′)†(Pµ〈Φ〉) +H.c.

]
+ g2〈Φ〉†PµPµ〈Φ〉

+
[
ig(∂µΦ′)†(PµΦ′) +H.c.

]
+
[
g2〈Φ〉PµPµΦ′ +H.c.

]
+ g2Φ′†PµPµΦ′. (102)

The terms in the first line are respectively realized as the kinematic, scalar-gauge mixing and mass terms which are
not relevant to this analysis. The second line includes all the interactions of three and four fields among the scalars
and gauge bosons that we are interested in the investigation.

To calculate the interactions, we need to present Φ and Pµ in terms of the physical fields. Indeed, the gauge part
takes the form Pµ = PCC

µ + PNC
µ , where its terms have already been obtained by (90) and (94), respectively. On the
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other hand, the physical scalars are related to the gauge states by (56). Let us work in a basis that all the Goldstone
bosons are gauged away. In this unitary gauge, the scalar multiplets are given by

η =

 u√
2

0
0

+

 1√
2
(cβH − sβH1 + isβA)

sβH
−
5

H ′

 , ρ =

 0
v√
2

0

+

 cβH
+
5

1√
2
(sβH + cβH1 + icβA)

H+
4

 ,

χ =

 0
0
ω√
2

+

 0
0

1√
2
(cϕH2 − sϕH3)

 , φ =
Λ√
2

+
sϕH2 + cϕH3√

2
. (103)

Notice that in each expansion above for the multiplet Φ = η, ρ, χ, φ, the first term is identified to the 〈Φ〉 while the
second term is the Φ′ with the physical fields explicitly displayed. The denotations for the scalar multiplets including
the gauge bosons in this unitary gauge have conveniently been retained unchanged which should be understood.

The interactions of one gauge boson with two scalars arise from

ig(∂µΦ′)†(PµΦ′) +H.c. = ig(∂µΦ′)†(PCC
µ Φ′) + ig(∂µΦ′)†(PNC

µ Φ′) +H.c. (104)

Substituting all the known multiplets into this expression we have Table V and VI. Let us note that A
←→
∂ B ≡

A(∂B)− (∂A)B is frequently used.

Vertex Coupling Vertex Coupling

W+
µ H

−
5

←→
∂ µH1 − ig

2
W+
µ H

−
5

←→
∂ µA g

2

Y +
µ H

′∗←→∂ µH−5 − igsβ√
2

Y +
µ H

−
4

←→
∂ µH − igsβ

2

Y +
µ H

−
4

←→
∂ µH1 − igcβ

2
Y +
µ H

−
4

←→
∂ µA gcβ

2

X0
µH

+
4

←→
∂ µH−5

igcβ√
2

X0
µH
′←→∂ µH

igcβ
2

X0
µH
′←→∂ µH1 − igsβ

2
X0
µH
′←→∂ µA gsβ

2

TABLE V: The interactions of a non-Hermitian gauge boson with two scalars.

Vertex Coupling Vertex Coupling

AµH
+
5

←→
∂ µH−5 ie AµH

+
4

←→
∂ µH−4 ie

ZµH
+
4

←→
∂ µH−4 − igs

2
W

cW
ZµH

+
5

←→
∂ µH−5

igc2W
2cW

ZµA
←→
∂ µH1

g
2cW

Z2µH1
←→
∂ µA g[

cξ(c
2
β−c2W s2β)

2cW
√

3−4s2
W

+
tNsξc2β

3
]

Z2µH
+
4

←→
∂ µH−4 ig(

−c2W cξ

cW
√

3−4s2
W

+
tNsξ

3
) Z2µH

−
5

←→
∂ µH+

5 ig[
cξ(c

2
β−c2W s2β)

2cW
√

3−4s2
W

+
tNsξc2β

3
]

Z2µH
′←→∂ µH ′∗ −ig(

cW cξ√
3−4s2

W

− tNsξ
3

) Z2µH
←→
∂ µA gs2β

2
(

cW cξ√
3−4s2

W

+
2tNsξ

3
)

ZNµH
+
4

←→
∂ µH−4 ig(

c2W sξ

cW
√

3−4s2
W

+
tN cξ

3
) ZNµH

−
5

←→
∂ µH+

5 ig[
−sξ(c2β−c2W s2β)

2cW
√

3−4s2
W

+
tN cξc2β

3
]

ZNµH
′←→∂µH ′∗ ig(

cW sξ√
3−4s2

W

+
tN cξ

3
) ZNµH

←→
∂ µA gs2β

2
(
−cW sξ√
3−4s2

W

+
2tN cξ

3
)

ZNµH1
←→
∂ µA g[

−sξ(c2β−c2W s2β)

2cW
√

3−4s2
W

+
tN cξc2β

3
]

TABLE VI: The interactions of a neutral gauge boson with two scalars.

The interactions of one scalar with two gauge bosons are given by

g2〈Φ〉PµPµΦ′ +H.c. = g2〈Φ〉PCCµPCC
µ Φ′ + g2〈Φ〉(PCCµPNC

µ + PNCµPCC
µ )Φ′

+g2〈Φ〉PNCµPNC
µ Φ′ +H.c. (105)

These interactions are listed in Table VII, VIII and IX corresponding to the terms in the r.h.s., respectively.
The interactions of two scalars and two gauge bosons are derived from

g2Φ′†PµPµΦ′ = g2Φ′†PCCµPCC
µ Φ′ + g2Φ′†(PCCµPNC

µ + PNCµPCC
µ )Φ′ + g2Φ′†PNCµPNC

µ Φ′, (106)

which result in Table X, XI, XII and XIII, respectively.
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Vertex Coupling Vertex Coupling

H2X
0X0∗ g2ω

2
cϕ H3X

0X0∗ − g
2ω
2
sϕ

H2Y
+Y − g2ω

2
cϕ H3Y

+Y − − g
2ω
2
sϕ

HW+W−
g2
√
u2+v2

2
HX0X0∗ g2u

2
cβ

H−4 W
+X0∗ g2v

2
√
2

H1X
0X0∗ − g

2u
2
sβ

HY +Y − g2v
2
sβ H1Y

+Y − g2v
2
cβ

H−5 X
0Y + g2

√
u2+v2

2
√
2

s2β H ′∗W−Y + g2u

2
√
2

TABLE VII: The interactions of a scalar with two non-Hermitian gauge bosons.

Vertex Coupling

H+
5 W

−Z2 g2usβ(
cW cξ√
3−4s2

W

+
2tNsξ

3
)

H+
5 W

−ZN g2usβ(− cW sξ√
3−4s2

W

+
2tN cξ

3
)

H ′X0Z g2u
4cW

H ′X0Z2
g2u
2

(− cξ

2cW
√

3−4s2
W

+ 2tN
3
sξ)

H ′X0ZN
g2u
2

(
sξ

2cW
√

3−4s2
W

+ 2tN
3
cξ)

H−4 Y
+A gve

2

H−4 Y
+Z − g2v

4cW
(1 + 2s2W )

H−4 Y
+Z2

g2v
2

[
(1−2c2W )cξ

2cW
√

3−4s2
W

+
2tNsξ

3
]

H−4 Y
+ZN

g2v
2

[− (1−2c2W )sξ

2cW
√

3−4s2
W

+
2tN cξ

3
]

TABLE VIII: The interactions of a scalar with a non-Hermitian gauge boson and a neutral gauge boson.

VI. NEW PHYSICS EFFECTS AND CONSTRAINTS

A. Dark matter: Complex scalar H ′

The spectrum of scalar particles in the model contains an electrically-neutral particle H ′ that is odd under the
W -parity. Because the W -parity symmetry is exact and unbroken by the VEVs, the H ′ is stabilized that cannot
decay if it is the lightest particle among the W -particles. Under this regime we obtain the relic density of the H ′ at
present day and derive some constraints on its mass. Such scalar is within the context of the so-called Higgs portal
which has been intensively exploited in the literature [23, 24] due to its interaction with the standard model Higgs
boson via the scalar potential regime. We will show that the H ′ can be a viable dark matter which yields the right
abundance (Ωh2 = 0.11− 0.12) as well as obeying the direct detection bounds [37].

In the early universe, the H ′ was in thermal equilibrium with the standard model particles. As the universe
expanded and cooled down, it reaches a point where the temperature is roughly equal to the H ′ mass, preventing the
H ′ particles to be produced from the annihilation of the standard model particles, and only the annihilations between
the H ′ particles take place. However, as the universe keeps expanding, there is a point where the H ′ particles can
no longer annihilate themselves into the standard model particles, the so-called freeze-out. Then the H ′ leftovers
from the freeze-out episode populate the universe today. In order to accurately find the relic density of a dark matter
particle one would need to solve the Boltzmann equation [25] as we will do for the fermion dark matter case. However,
since the H ′ is a scalar dark matter there are only s-wave contributions to the annihilation cross-section and thus the
abundance can be approximated as

ΩH′h
2 ' 0.1 pb

〈σvrel〉
. (107)

Here, the 〈σvrel〉 is the thermal average over the cross-section for two H ′ annihilation into the standard model particles
multiplied by the relative velocity between the two H ′ particles.

For the dark matter masses below the mH/2 the Higgs portal is quite constrained as discussed in Refs. [23, 24].
For the dark matter masses larger than the Higgs mass the annihilation channel H ′H ′ → HH plays a major role in
determining the abundance. Therefore, we will focus on the Higgs portal below in order to estimate the abundance
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Vertex Coupling

H2Z2Z2 4Λg2t2Nsϕs
2
ξ + ωcϕg

2(
cW cξ√
3−4s2

W

+ 2tN
3
sξ)

2

H2ZNZN 4Λg2t2Nsϕc
2
ξ + ωcϕg

2(− cW sξ√
3−4s2

W

+ 2tN
3
cξ)

2

H2Z2ZN 4Λg2t2Nsϕs2ξ + 2ωcϕg
2(

cW cξ√
3−4s2

W

+ 2tN
3
sξ)(−

cW sξ√
3−4s2

W

+ 2tN
3
cξ)

H3Z2Z2 4Λg2t2Ncϕs
2
ξ − ωsϕg2(

cW cξ√
3−4s2

W

+ 2tN
3
sξ)

2

H3ZNZN 4Λg2t2Ncϕc
2
ξ − ωsϕg2(− cW sξ√

3−4s2
W

+ 2tN
3
cξ)

2

H3Z2ZN 4Λg2t2Ncϕs2ξ − 2ωsϕg
2(

cW cξ√
3−4s2

W

+ 2tN
3
sξ)(−

cW sξ√
3−4s2

W

+ 2tN
3
cξ)

HZZ g2

4c2
W

√
u2 + v2

HZ2Z2 g2[ucβ(
c2W cξ

2cW
√

3−4s2
W

+ tN
3
sξ)

2 + vsβ(
cξ

2cW
√

3−4s2
W

+ tN
3
sξ)

2]

HZNZN g2[ucβ(
−c2W sξ

2cW
√

3−4s2
W

+ tN
3
cξ)

2 + vsβ(
−sξ

2cW
√

3−4s2
W

+ tN
3
cξ)

2]

HZZ2
g2

cW
[ucβ(

c2W cξ

2cW
√

3−4s2
W

+ tN
3
sξ)− vsβ(

cξ

2cW
√

3−4s2
W

+ tN
3
sξ)]

HZZN
g2

cW
[ucβ(

−c2W sξ

2cW
√

3−4s2
W

+ tN
3
cξ)− vsβ(

−sξ
2cW
√

3−4s2
W

+ tN
3
cξ]

HZ2ZN 2g2[ucβ(
c2W cξ

2cW
√

3−4s2
W

+ tN
3
sξ)(

−c2W sξ

2cW
√

3−4s2
W

+ tN
3
cξ)

+vsβ(
cξ

2cW
√

3−4s2
W

+ tN
3
sξ)(

−sξ
2cW
√

3−4s2
W

+ tN
3
cξ)]

H1Z2Z2 g2[−usβ(
c2W cξ

2cW
√

3−4s2
W

+ tN
3
sξ)

2 + vcβ(
cξ

2cW
√

3−4s2
W

+ tN
3
sξ)

2]

H1ZNZN g2[−usβ(
−c2W sξ

2cW
√

3−4s2
W

+ tN
3
cξ)

2 + vcβ(
−sξ

2cW
√

3−4s2
W

+ tN
3
cξ)

2]

H1ZZ2 − g2

cW
[usβ(

c2W cξ

2cW
√

3−4s2
W

+ tN
3
sξ) + vcβ(

cξ

2cW
√

3−4s2
W

+ tN
3
sξ)]

H1ZZN − g2

cW
[usβ(

−c2W sξ

2cW
√

3−4s2
W

+ tN
3
cξ) + vcβ(

−sξ
2cW
√

3−4s2
W

+ tN
3
cξ)]

H1Z2ZN 2g2[−usβ(
c2W cξ

2cW
√

3−4s2
W

+ tN
3
sξ)(

−c2W sξ

2cW
√

3−4s2
W

+ tN
3
cξ)

+vcβ(
cξ

2cW
√

3−4s2
W

+ tN
3
sξ)(

−sξ
2cW
√

3−4s2
W

+ tN
3
cξ)]

TABLE IX: The interactions of a scalar with two neutral gauge bosons.

Vertex Coupling Vertex Coupling

X0X0∗H2H2
g2

4
c2ϕ X0X0∗H3H3

g2

4
s2ϕ

X0X0∗H2H3 − g
2

4
s2ϕ Y +Y −H2H2

g2

4
c2ϕ

Y +Y −H3H3
g2

4
s2ϕ Y +Y −H2H3 − g

2

4
s2ϕ

W+W−H+
5 H

−
5

g2

2
X0X0∗H+

5 H
−
5

g2

2
c2β

X0X0∗H+
4 H

−
4

g2

2
Y +Y −H+

4 H
−
4

g2

2

W+W−HH g2

4
W+W−H1H1

g2

4

W+W−AA g2

4
Y +Y −HH g2

4
s2β

Y +Y −H1H1
g2

4
c2β Y +Y −HH1

g2

4
s2β

Y +Y −AA g2

4
c2β X0Y +H−5 H

g2

2
√
2
s2β

X0Y +H−5 H1
g2

2
√
2
c2β X0Y +H−5 A i g

2

2
√
2
c2β

W+Y −H+
4 H

−
5

g2

2
cβ W−X0HH+

4
g2

2
√
2
sβ

W−X0H1H
+
4

g2

2
√
2
cβ W−X0AH+

4
−ig2

2
√
2
cβ

X0∗X0HH g2

4
c2β X0∗X0H1H1

g2

4
s2β

X0∗X0HH1 − g
2

4
s2β X0∗X0AA g2

4
s2β

Y +Y −H+
5 H

−
5

g2

2
s2β X0∗X0H ′∗H ′ g2

2

Y +Y −H ′∗H ′ g2

2
W+Y −HH ′ g2

2
√
2
cβ

W+Y −H1H
′ − g2

2
√
2
sβ W+Y −AH ′ −ig2

2
√
2
sβ

W−X0H+
5 H

′ g2sβ
2

TABLE X: The interactions of two non-Hermitian gauge bosons and two scalars.
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H1H
−
5 W

+A ge/2 AH−5 W+A ige/2

H1H
−
5 W

+Z g2

4cW
(c2W − 1) AH−5 W+Z ig2

4cW
(c2W − 1)

HH−5 W
+Z2

1
2
g2s2β(

cξcW√
3−4s2

W

+
2tNsξ

3
) HH−5 W

+ZN
1
2
g2s2β(

−sξcW√
3−4s2

W

+
2tN cξ

3
)

H1H
−
5 W

+Z2 g2[
cξ(c

2
β−s

2
βc2W )

2cW
√

3−4s2
W

+ tN
3
sξc2β ] H1H

−
5 W

+ZN g2[
−sξ(c2β−s

2
βc2W )

2cW
√

3−4s2
W

+ tN
3
cξc2β ]

AH−5 W+Z2 ig2[
cξ(c

2
β−s

2
βc2W )

2cW
√

3−4s2
W

+ tN
3
sξc2β ] AH−5 W+ZN ig2[

−sξ(c2β−s
2
βc2W )

2cW
√

3−4s2
W

+ tN
3
cξc2β ]

H−5 H
+
4 X

0A
√

2gecβ H−5 H
+
4 X

0Z
g2cβ

2
√
2cW

(4c2W − 3)

H−5 H
+
4 X

0Z2
g2cβ√

2
[
cξ(3−4c2W )

2cW
√

3−4s2
W

+
2tNsξ

3
] H−5 H

+
4 X

0ZN
g2cβ√

2
[
−sξ(3−4c2W )

2cW
√

3−4s2
W

+
2tN cξ

3
]

HH+
4 Y
−A

gesβ
2

H1H
+
4 Y
−A

gecβ
2

AH+
4 Y
−A

−igecβ
2

HH+
4 Y
−Z

−g2sβ(2−c2W )

4cW

H1H
+
4 Y
−Z

−g2cβ(2−c2W )

4cW
AH+

4 Y
−Z

ig2cβ(2−c2W )

4cW

HH+
4 Y
−Z2

g2sβ
2

[
cξ(1−2c2W )

2cW
√

3−4s2
W

+
2tNsξ

3
] H1H

+
4 Y
−Z2

g2cβ
2

[
cξ(1−2c2W )

2cW
√

3−4s2
W

+
2tNsξ

3
]

AH+
4 Y
−Z2

−ig2cβ
2

[
cξ(1−2c2W )

2cW
√

3−4s2
W

+
2tNsξ

3
] HH+

4 Y
−ZN

g2sβ
2

[
−sξ(1−2c2W )

2cW
√

3−4s2
W

+
2tN cξ

3
]

H1H
+
4 Y
−ZN

g2cβ
2

[
−sξ(1−2c2W )

2cW
√

3−4s2
W

+
2tN cξ

3
] AH+

4 Y
−ZN

−ig2cβ
2

[
−sξ(1−2c2W )

2cW
√

3−4s2
W

+
2tN cξ

3
]

HH ′X0Z
g2cβ
4cW

H1H
′X0Z

−g2sβ
4cW

AH ′X0Z
−ig2sβ
4cW

HH ′X0Z2
g2cβ

2
(

−cξ
2cW
√

3−4s2
W

+
2tNsξ

3
)

H1H
′X0Z2

−g2sβ
2

(
−cξ

2cW
√

3−4s2
W

+
2tNsξ

3
) AH ′X0Z2 − ig

2sβ
2

(
−cξ

2cW
√

3−4s2
W

+
2tNsξ

3
)

HH ′X0ZN
g2cβ

2
(

sξ

2cW
√

3−4s2
W

+
2tN cξ

3
) H1H

′X0ZN
−g2sβ

2
(

sξ

2cW
√

3−4s2
W

+
2tN cξ

3
)

AH ′X0ZN − ig
2sβ
2

(
sξ

2cW
√

3−4s2
W

+
2tN cξ

3
) H+

5 H
′Y −A

−gesβ√
2

H+
5 H

′Y −Z
−g2sβc2W
2
√
2cW

H+
5 H

′Y −Z2
g2sβ√

2
(

−cξ
2cW
√

3−4s2
W

+
2tNsξ

3
)

H+
5 H

′Y −ZN
g2sβ√

2
(

sξ

2cW
√

3−4s2
W

+
2tN cξ

3
)

TABLE XI: The interactions of two scalars with a non-Hermitian gauge boson and a neutral gauge boson.

and derive a bound on the scalar dark matter candidate. That being said, the interaction of H ′ with H is obtained
as follows

LH′−H =

(
λ5

2
+ λ3

)
H2H ′∗H ′. (108)

We have the scattering amplitude for H ′H ′ → HH,

iM(H ′H ′ → HH) = i(λ5 + 2λ3) ≡ iλ′. (109)

It is also noted that there may be other contributions to λ′ as mediated by the Higgs H, the new scalars and new
gauge bosons. However, such corrections are subleading with the assumption that the λ′ coupling is in order of unity
as well as the H ′ is heavy enough. Therefore, the differential cross-section in the center-of-mass frame is given by

dσ

dΩ
=
|M(H ′H ′ → HH)|2|~k|

64π2s|~p|
.
1

2
, (110)

where the H ′ has an energy and momentum H ′(E, ~p) and thus H ′∗(E,−~p). Also, the two out-going Higgs bosons

possess H(E,~k) and H(E,−~k). The coefficient 1
2 is due to the creation of the two identical particles. We have√

s = 2E.
From the experimental side, the dark matter is non-relativistic (v ∼ 10−3c). We approximate

E =
mH′√
1− v2

' mH′(1 +
1

2
v2), (111)
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H2H2Z2Z2 g2[2t2Ns
2
ϕs

2
ξ + 1

2
c2ϕ(

cW cξ√
3−4s2

W

+
2tNsξ

3
)2]

H2H2ZNZN g2[2t2Ns
2
ϕc

2
ξ + 1

2
c2ϕ(

−cW sξ√
3−4s2

W

+
2tN cξ

3
)2]

H2H2Z2ZN g2[2t2Ns
2
ϕs2ξ + c2ϕ(

cW cξ√
3−4s2

W

+
2tNsξ

3
)(
−cW sξ√
3−4s2

W

+
2tN cξ

3
)]

H3H3Z2Z2 g2[2t2Nc
2
ϕs

2
ξ + 1

2
s2ϕ(

cW cξ√
3−4s2

W

+
2tNsξ

3
)2]

H3H3ZNZN g2[2t2Nc
2
ϕc

2
ξ + 1

2
s2ϕ(

−cW sξ√
3−4s2

W

+
2tN cξ

3
)2]

H3H3Z2ZN g2[2t2Ns2ξc
2
ϕ + s2ϕ(

cW cξ√
3−4s2

W

+
2tNsξ

3
)(
−cW sξ√
3−4s2

W

+
2tN cξ

3
)]

H2H3Z2Z2 g2[2t2Ns2ϕs
2
ξ −

s2ϕ
2

(
cW cξ√
3−4s2

W

+
2tNsξ

3
)2]

H2H3ZNZN g2[2t2Ns2ϕc
2
ξ −

s2ϕ
2

(
−cW sξ√
3−4s2

W

+
2tN cξ

3
)2]

H2H3Z2ZN g2[2t2Ns2ϕs2ξ − s2ϕ(
cW cξ√
3−4s2

W

+
2tNsξ

3
)(
−cW sξ√
3−4s2

W

+
2tN cξ

3
)]

H+
5 H

−
5 AA e2

H+
5 H

−
5 ZZ

g2c22W
4c2
W

H+
5 H

−
5 Z2Z2 g2[c2β(

cξ

2cW
√

3−4s2
W

+
tNsξ

3
)2 + s2β(

cξc2W

2cW
√

3−4s2
W

+
tNsξ

3
)2]

H+
5 H

−
5 ZNZN g2[c2β(

−sξ
2cW
√

3−4s2
W

+
tN cξ

3
)2 + s2β(

−sξc2W
2cW
√

3−4s2
W

+
tN cξ

3
)2]

H+
5 H

−
5 AZ

egc2W
cW

H+
5 H

−
5 ZZ2

g2c2W
cW

[c2β(
cξ

2cW
√

3−4s2
W

+
tNsξ

3
)− s2β(

cξc2W

2cW
√

3−4s2
W

+
tNsξ

3
)]

H+
5 H

−
5 ZZN

g2c2W
cW

[c2β(
−sξ

2cW
√

3−4s2
W

+
tN cξ

3
)− s2β(

−sξc2W
2cW
√

3−4s2
W

+
tN cξ

3
)]

H+
5 H

−
5 Z2ZN 2g2[c2β(

cξ

2cW
√

3−4s2
W

+
tNsξ

3
)(

−sξ
2cW
√

3−4s2
W

+
tN cξ

3
)

+s2β(
cξc2W

2cW
√

3−4s2
W

+
tNsξ

3
)(

−sξc2W
2cW
√

3−4s2
W

+
tN cξ

3
)]

H+
4 H

−
4 AA e2

H+
4 H

−
4 ZZ

g2s4W
c2
W

H+
4 H

−
4 Z2Z2 g2(

−c2W cξ

cW
√

3−4s2
W

+
tNsξ

3
)2

H+
4 H

−
4 ZNZN g2(

c2W sξ

cW
√

3−4s2
W

+
tN cξ

3
)2

H+
4 H

−
4 AZ

−2egs2W
cW

H+
4 H

−
4 AZ2 2eg(

−c2W cξ

cW
√

3−4s2
W

+
tNsξ

3
)

H+
4 H

−
4 AZN 2eg(

c2W sξ

cW
√

3−4s2
W

+
tN cξ

3
)

H+
4 H

−
4 ZZ2

−2g2s2W
cW

(
−c2W cξ

cW
√

3−4s2
W

+
tNsξ

3
)

H+
4 H

−
4 ZZN

−2g2s2W
cW

(
c2W sξ

cW
√

3−4s2
W

+
tN cξ

3
)

H+
4 H

−
4 Z2ZN 2g2(

−c2W cξ

cW
√

3−4s2
W

+
tNsξ

3
)(

c2W sξ

cW
√

3−4s2
W

+
tN cξ

3
)

HHZZ g2

8c2
W

HHZNZN
g2

2
[s2β(

−sξ
2cW
√

3−4s2
W

+
tN cξ

3
)2 + c2β(

−sξc2W
2cW
√

3−4s2
W

+
tN cξ

3
)2]

TABLE XII: The interactions of two scalars with two neutral gauge bosons.

where the v is the velocity of the dark matter given in natural units, v � 1. We have also

s = 4E2 ' 4m2
H′(1 + v2), |~p| = mH′v√

1− v2
' mH′v(1 +

1

2
v2) ' mH′v. (112)

The Einstein relation implies

|~k| =
√
E2 −m2

H '
√
m2
H′(1 + v2)−m2

H

' mH′

√
1 + v2 −

m2
H

m2
H′
' mH′

(
1 +

v2

2
− m2

H

2m2
H′

)
. (113)
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H1H1ZZ
g2

8c2
W

H1H1Z2Z2
g2

2
[c2β(

cξ

2cW
√

3−4s2
W

+
tNsξ

3
)2 + s2β(

cξc2W

2cW
√

3−4s2
W

+
tNsξ

3
)2]

H1H1ZNZN
g2

2
[c2β(

−sξ
2cW
√

3−4s2
W

+
tN cξ

3
)2 + s2β(

−sξc2W
2cW
√

3−4s2
W

+
tN cξ

3
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H1HZ2Z2
1
2
g2s2β(

c2ξs
2
2W

4c2
W

(3−4s2
W

)
+

tNs2ξs
2
W

3cW
√

3−4s2
W
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H1HZNZN
1
2
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2
2W
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W
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W

)
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W
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√
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W
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[c2β(

cξc2W
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√
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W

+
tNsξ

3
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cξ
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√
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W

+
tNsξ

3
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√

3−4s2
W

+
tN cξ
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2cW
√
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tN cξ

3
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√
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√
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2cW
√

3−4s2
W

+
tNsξ

3
)− c2β(

cξ
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tN cξ
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cξ
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tN cξ
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3
)
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3
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tN cξ
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cW cξ√
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W
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3
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−cW sξ√
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W
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3
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cW cξ√
3−4s2

W
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3
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W

− tN cξ
3
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AAZZ g2

8c2
W
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g2

2
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2cW
√
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W

+
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3
)2 + c2β(

cξ
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√
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W
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3
)2]
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√
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W

+
tN cξ

3
)2 + c2β(

−sξ
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√
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W

+
tN cξ

3
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AAZZ2
g2
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[
cξ(c

2
β−c2W s2β)

cW
√
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W

+
2tNsξc2β
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]

AAZZN g2
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[
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√
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W

+
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3
]
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√
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W

+
tNsξ

3
)(
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√
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W

+
tN cξ

3
)

+c2β(
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3
)(

−sξ
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W

+
tN cξ
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)]

TABLE XIII: The interactions of two scalars with two neutral gauge bosons (continued).

Therefore, the differential cross-section takes the form

dσ

dΩ
'
λ′2mH′

(
1 + v2

2 −
m2
H

2m2
H′

)
64π24m2

H′(1 + v2)mH′2v
. (114)

It is clear that the r.h.s is independent of the solid angle, where dΩ = dϕ sin θdθ. Hence, integrating out over the total
space is simply multiplied by 4π, σ =

∫
dσ
dΩdΩ = 4π dσdΩ . Because the relative velocity between the two dark matters is

vrel = 2v, we find out

σvrel ' 4π.2v
λ′2mH′

(
1 + v2

2 −
m2
H

2m2
H′

)
64π24m2

H′(1 + v2)mH′2v
' λ′2

64π

1

m2
H′

(
1− v2

2
− m2

H

2m2
H′

)
. (115)
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Taking the thermal average over both sides, we get

〈σvrel〉 '
λ′2

64π

1

m2
H′

(
1− 〈v

2〉
2
− m2

H

2m2
H′

)
. (116)

Notice that 〈v2〉 = 3
2xF

and xF = mH′
TF
' 20 is given at the freeze-out temperature [25]. As aforementioned, we are in

the regime m2
H � m2

H′ thus

〈σvrel〉 '
( α

150 GeV

)2

λ′2
(

1.328 TeV

mH′

)2

. (117)

The relic density of the dark matter (H ′) satisfies the Boltzmann equation with the solution as given by ΩH′h
2 '

0.1 pb
〈σvrel〉 ' 0.11. It follows 〈σvrel〉 ' 1 pb. Since

(
α

150 GeV

)2 ' 1 pb, we get

λ′2
(

1.328 TeV

mH′

)2

' 1, (118)

which leads to the condition for the dark matter H ′ mass,

mH′ ' λ′ × 1.328 TeV. (119)

To conclude, the H ′ is a dark matter if it has a mass mH′ ' 1.328 TeV, provided that λ′ ' 1. In the context of the
Higgs portal, for the couplings of order unity the direct detection bounds demand the dark matter masses of order of
TeV (see Refs. [23, 24]). Therefore, this scalar is a viable dark matter candidate for providing the right abundance and
obeying the direct detection bounds simultaneously. Hereunder, we will focus our attention on the neutral fermion of
the model which is a natural dark matter candidate because it can be easily chosen to be the lightest particle among
the W -odd particles under the parity symmetry discussed previously.

B. Dark matter: Dirac vs Majorana fermion

Among the neutral fermions, Na, the lightest one will be denoted as N , which should not be confused with the
U(1)N charge as well as the subscripts of this charge to the ZN gauge boson, the gN gauge coupling and the tN
parameter. The neutrino and charged lepton that directly couple to this neutral fermion (N) via the X and Y gauge
bosons are defined by ν and l, respectively. There remain two other flavors of the neutrinos and charged leptons to be
put as να and lα, respectively. In this section we will not dwell on unnecessary details regarding the abundance and
direct detection computation. Although we would like to show in Fig.1 the diagrams that contribute the abundance
and direct detection signals of the fermion candidate N . Surely, the diagram that contributes to the direct detection
signal is actually the t-channel diagram of Fig. 1 right panel.

FIG. 1: Diagrams that contribute to the abundance of the neutral fermion. The neutral fermion scattering off nuclei diagram
can be immediately found because it is just the t-channel of the right panel, mediated by the Z′-type gauge bosons (Z2 and
ZN ). The Z2 mediated processes are the most relevant ones though, as we shall see further.

As explicitly shown at the end of Subsection VI E, the modifications to the couplings of the Z and Z2,N gauge
bosons with fermions due to the mixing effects (Z with Z2,N ) are so small that can be neglected by this analysis.
Similarly, the modifications to the Z2,NZH couplings due to those mixings as well as the neutral scalar mixings (H
with H1,2,3) are negligible.
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In addition, it is well-known that the interactions of Z2 and ZN are exchangeable which are only differed by a
replacement (cξ → −sξ; sξ → cξ), respectively. Therefore, given that these massive gauge bosons (Z2,N ) are active
particles (i.e. their scales and couplings are equivalent), they play quite the same role in new physical processes (some
of these can also be seen obviously in the subsequent subsections). Hence, to keep a simplicity we might consider one
particle (Z2) to be active that dominantly sets the dark matter observables while the other one (ZN ) almost decouples
(which gives negligible contributions). For this aim, we firstly assume Λ > ω but not so much larger than the ω so
that our postulate of the Λ scale, that is comparable to ω, is unbroken (still correlated). Hence, choose Λ = 10 TeV
and vary ω below this value so that 0.1 < ω/Λ < 1 (detailedly shown in the cases below). Besides the ω and Λ as
determined, the Z2,N masses as well as their mixing angle (ξ) still depend on their gauge couplings, respectively. The
g, gX were fixed via the electromagnetic coupling e and the Weinberg angle, whereas the gN is unknown. But, we

could demand αN ≡ g2N
4π < 1 or |gN | < 2

√
π so that this interaction to be perturbative. Without loss of generality,

we set 0 < tN < 2
√
π/g = sW√

α
' 5.43. When tN is large, tN <∼ 5.43, we have mZN � mZ2 and the mixing is so

small, t2ξ ' − cW
3
√

3−4s2W tN

ω2

Λ2 ' − 0.146
tN

ω2

Λ2 � 1, as given from (78). This is the case considered for the relic density

of the fermion candidate as a function of its mass (mf ), and tN = 5.43 is taken into account. Notice that the dark

matter annihilation is via s-channels mediated by Z2,N . The contribution of Z2 is like g2

s−m2
Z2

, while that of ZN is

g2N
s−m2

ZN

' − g2N
m2
ZN

∼ − 1
Λ2 where s ≡ 4m2

f ∼ m2
Z2
� m2

ZN
. Therefore, the ZN gives a smaller contribution of ω2/Λ2

order which almost vanishes, whereas the relic density is sensitive to the Z2.
Provided that the relic density of the dark matter gets the right value, we consider both the contributions of Z2,N .

This is done by varying 0 < tN < 5.43, and respectively −π/2 < ξ < 0 as derived from (78). When tN <∼ 5.43, the
Z2 dominates the annihilation as given above. But, when tN is decreased to tN ' cW

2
√

3−4s2W

ω
Λ ' 0.219ωΛ or ξ ' −π/4,

which is the pole of t2ξ as obtained from (78), the mZN becomes comparable to mZ2 as well as the Z2 and ZN possess
the equivalent gauge couplings due to the large mixing. In this case, the Z2 and ZN bosons simultaneously give
dominant contributions to the dark matter annihilation despite the fact that ω � Λ. Finally, when tN approximates
zero, tN ≈ 0, the ZN boson governs the annihilation cross-section, while the contribution of Z2 is negligible. The
regime that the ZN dominantly contributes to the dark matter annihilation is very narrow since it is bounded by the
maximal mixing value at tN ' 0.219ω/Λ which is close to zero due to ω < Λ. On the other hand, the regime that the
Z2 dominates the dark matter annihilation is mostly given in the total tN -range. This is the reason why the Z2 was
predicted to govern the dark matter observables while the ZN is almost neglected, provided that ω < Λ. It is also clear
from all the above analysis that the Z2 and ZN can be large mixing in spite of small ω/Λ, given that tN ' 0.219ω/Λ.

Vice versa, the large regime tN <∼ 5.43 implies that those gauge bosons can slightly mix t2ξ ' − 0.146
tN

ω2

Λ2 � 1 even if

ω/Λ is close to one. Below, we will display the detailed computations for all the cases mentioned.
In case the candidate N is a Dirac fermion, it has both vector and axial-vector couplings with the neutral gauge

bosons. The abundance is shown in Fig. 2. [In this figure and the following ones, the ω is sometimes denoted as
w instead that should not be confused]. It is clear from Fig. 2 that the gauge boson Z2 overwhelms the remaining
annihilation channels in agreement with Ref. [10], and the resonance at the mZ2

/2 is crucial in determining the
abundance. Moreover, we see that the mass region 100 − 200 GeV for ω = 3 TeV, 100 − 500 GeV for ω = 5 TeV,
or 100 − 1000 GeV for ω = 7 TeV provides the right abundance. Additionally, we exhibit in the left panel of Fig.
3 the region of the parameter space cos(ξ) × the neutral fermion mass that yields the right abundance, where ξ is
the Z2 and ZN mixing angle. When this angle goes to zero the coupling Z2-quarks decreases and for this reason the
scattering cross section rapidly decreases as shown in the right panel of Fig. 3. There, and throughout this work
we let cosine of this mixing angle free to float from zero to unity. [Correspondingly, the ξ (tN ) run from −π/2 (0)
to 0 (5.43)]. As for the Majorana case, the overall abundance is enhanced and hence we find a larger region of the
parameter space that yields the right abundance as can seen in Fig. 4.

As for the direct detection signal, the Dirac fermion dark matter candidates give rise to spin-independent (vector)
and spin-dependent (axial-vector) scattering cross-sections. But, due to the A2 enhancement that is typical of heavy
targets used in direct detection experiments, the spin-independent bounds are the most stringent ones. One can see
in Fig. 3. On the other hand, the Majorana fermions have zero vector current. This is because the current of a
fermion is equal to the current of an anti-fermion, but if one applies the Majorana condition (ψ = ψc) one find that
the vector current must vanish (which has also been used for the abundance computation aforementioned). Therefore,
only the spin-dependent bounds apply. In Fig. 5 we show those bounds. The LUX collaboration has not reported
their spin-dependent bounds yet, so the strongest constraints come from XENON100 [26]. One should conclude from
Fig. 5 that the XENON100 bounds are quite loose for the Majorana fermion.
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FIG. 2: Abundance of the Dirac fermion N as a function of its mass for different scales of the symmetry breaking. The shaded
region is excluded for inducing the WIMP decay such as N → Xν. One can clearly see that the Z2 resonance plays a major
role in the annihilation computation. See text for more detail.
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C. Monojet and dijet bounds

Monojet and dijet resonances have been searched at Tevatron, ATLAS and CMS with null results so far. Such
signals have been intensively exploited in the literature. In particular, the dijet bounds are neither sensitive to the
dark matter mass nor to the Z2-dark matter couplings, but on the other hand it is quite sensitive to the Z2-quarks
couplings. In Ref. [27] lower bounds namely MZ′ ∼ 1.7 TeV have been found under the assumption that the Z ′

boson couples similarly to the standard model Z boson and for the dark matter masses smaller than 500 GeV. One
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FIG. 5: Left: Mixing angle × fermion mass plane which yields the right abundance for a Majorana fermion. Right: Spin-
dependent scattering cross section in terms of the Majorana fermion mass for different values of the symmetry breaking. One
can easily conclude that the current XENON100 bounds are rather loose.

might notice in fact that the Z2 gauge boson couples similarly to the Z boson. Therefore, the bounds found in Ref.
[27] apply here up to some extent since the couplings are not precisely identical. That being said, the result shown
in the leftmost panel of Fig. 2 might be in tension with the existing dijet bounds. The remaining plots do obey the
dijet bounds since they are obtained at the Z2 masses greater than 1.7 TeV. It is important to keep in mind that
the collider bounds derived from simplified models are more comprehensive than the ones using an effective operator
approach, because the production cross-sections using the effective operator either over-estimate or under-estimate
the collider bounds as discussed in Refs. [28, 29]. Concerning the monojet bounds, it has been shown that the current
direct detection limits coming from LUX are typically more stringent. Therefore, we will not refer to the monojet
bounds hereafter.

D. FCNCs

The fermions get masses from the Yukawa interactions when the scalar fields develop VEVs as presented in [2].
Due to the W -parity conservation, the up quarks (ua) do not mix with U and the down quarks (da) do not mix with
Dα (remind that the exotic quarks are W -odd while the ordinary quarks are W -even). The exotic quarks gain large
masses in ω scale and decoupled, whereas the ordinary quarks concerned mix by themselves via a mass Lagrangian
of the form,

Lu,dmass = −ūaLmu
abubR − d̄aLmd

abdbR +H.c., (120)

where

mu
αa =

1√
2
huαav, mu

3a = − 1√
2
huau,

md
αa = − 1√

2
hdαau, md

3a = − 1√
2
hdav. (121)

The mass matrices mu = {mu
ab} and md = {md

ab} can be diagonalized to yield physical states and masses such as

uL = VuL(u c t)TL, uR = VuR(u c t)TR, dL = VdL(d s b)TL, dR = VdR(d s b)TR, (122)

V †uLm
uVuR = diag(mu, mc, mt), V †dLm

dVdR = diag(md, ms, mb), (123)

where u = {ua} and d = {da}. The CKM matrix [30] is defined as VCKM = V †uLVdL.
All the mixing matrices VuL, VdL, VuR, VdR including VCKM are unitary. The GIM mechanism [31] of the standard

model works in this model, which is a consequence of the W -parity conservation. Let us note that in the 3-3-1
model with right-handed neutrinos, the ordinary quarks and exotic quarks that have different T3 weak isospins mix
by contrast (which results from the unwanted nonzero VEVs of η0

3 and χ0
1 as well as the lepton-number violating
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interactions Q̄3LχuaR, Q̄3LηUR, Q̄3LρDαR, Q̄αLχ
∗daR, Q̄αLη

∗DβR, Q̄αLρ
∗UR and their Hermitian conjugation, that

directly couple ordinary quarks to exotic quarks via mass terms [35]). Hence, in that model, the dangerous tree-level
FCNCs of Z boson happen due to the non-unitarity of the mixing matrices as listed above (VuL, VdL, VuR, VdR).
Even, the dangerous FCNCs also come from one-loop contributions of W boson due to the non-unitarity of the CKM
matrix (VCKM). Therefore, the standard model GIM mechanism does not work. This will particularly be analyzed at
the end of this subsection.

In this model, the tree level FCNCs happen only with the new gauge bosons Z2 and ZN (notice that there is a
negligible contribution coming from the Z boson due to the mixing with Z2,N as explicitly shown below). This is
due to the non-universal property of quark representations under SU(3)L that the third quark generation differs from
the first two generations. Indeed, from (95) for the interactions of Z2,N , the right-handed flavors (ΨR) are conserved
since T8 = 0, X = Q and N = B − L which are universal for ordinary up- and down-quarks. But, the left-handed
flavors (ΨL) are changing due to the fact that T8 differs for quark triplets and antitriplets [note that X and N are
related to T8 by (2); the source for the FCNCs is due to the T8 only since T3 is also universal for ordinary up-quarks
and down-quarks as the same reason of the flavor-conserved Z current]. The interactions that lead to flavor changing
can be derived from (95) as

LT8
= Ψ̄Lγ

µT8ΨL(g2Z2µ + gNZNµ), (124)

g2 ≡ −g

(
cξ

1√
1− t2W /3

+ sξ
2tN√

3

)
,

gN ≡ g2(cξ → −sξ; sξ → cξ),

where ΨL indicates to all ordinary left-handed quarks. We can rewrite

LT8
= (ūLγ

µTuuL + d̄Lγ
µTddL)(g2Z2µ + gNZNµ)

= [ū′Lγ
µ(V †uLTuVuL)u′L + d̄′Lγ

µ(V †dLTdVdL)d′L](g2Z2µ + gNZNµ), (125)

where u′ = (u, c, t), d′ = (d, s, b) and Tu = Td = 1
2
√

3
diag(−1,−1, 1). Hence, the tree-level FCNCs are described by

the Lagrangian,

LFCNC = q̄′iLγ
µq′jL

1√
3

(V ∗qL)3i(VqL)3j(g2Z2µ + gNZNµ) (i 6= j), (126)

where we have denoted q as u either d.
The FCNCs lead to hadronic mixings such as K0 − K̄0, D0 − D̄0, B0 − B̄0 and B0

s − B̄0
s , caused by pairs (q′i, q

′
j) =

(d, s), (u, c), (d, b), (s, b), respectively. These mixings are described by the effective interactions as obtained from the
above Lagrangian via Z2,N exchanges as

Leff
FCNC = (q̄′iLγ

µq′jL)2 1

3
[(V ∗qL)3i(VqL)3j ]

2

(
g2

2

m2
Z2

+
g2
N

m2
ZN

)
. (127)

The strongest constraint comes from the K0 − K̄0 mixing [1] that

1

3
[(V ∗dL)31(VdL)32]2

(
g2

2

m2
Z2

+
g2
N

m2
ZN

)
<

1

(104 TeV)2
. (128)

Assuming that ua is flavor-diagonal, the CKM matrix is just VdL (i.e. VCKM = VdL). Therefore, |(V ∗dL)31(VdL)32| '
3.6× 10−4 [1] and we have √

g2
2

m2
Z2

+
g2
N

m2
ZN

<
1

2 TeV
. (129)

This gives constraints on the mass and coupling of the new neutral gauge bosons, that is

mZ2,N
> g2,N × 2 TeV. (130)

There is another bound coming from the B0
s − B̄0

s mixing that is given by [1]

1

3
[(V ∗dL)32(VdL)33]2

(
g2

2

m2
Z2

+
g2
N

m2
ZN

)
<

1

(100 TeV)2
. (131)
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In this case, the CKM factor is |(V ∗dL)32(VdL)33| ' 3.9× 10−2 [1]. Therefore, we have√
g2

2

m2
Z2

+
g2
N

m2
ZN

<
1

2.25 TeV
, (132)

which implies

mZ2,N
> g2,N × 2.25 TeV. (133)

To be concrete, suppose that Z2 and ZN have approximately equal masses and tN = gN/g = 1 so that the B − L
interaction strength is equivalent to that of the weak interaction. From (129), we get

mZ2
≈ mZN > 2.037 TeV, (134)

while the relation (132) yields

mZ2 ≈ mZN > 2.291 TeV. (135)

Here, we have used g2 = 4πα/s2
W with s2

W = 0.231 and α = 1/128. This is in good agreement with the recent bound
[32]. Notice that we have used mZN � mZ2

in the dark matter subsections though which translates to mZ2
>∼ 1 TeV.

Finally, let us give some remarks on the FCNCs due to the mixing effect of the neutral gauge bosons. In this case,
the Lagrangian (124) is changed with the replacement by

g2Z2µ + gNZNµ −→ g1Z1µ + g2Z2µ + gNZNµ, (136)

where

g1 ≡ g2(cξ → −E1; sξ → −E2) = −
√

3g

4c3W

v2 − c2Wu2

ω2
. (137)

Correspondingly, the effective interactions for the FCNCs given by (127) is also changed with the replacement as
follows

g2
2

m2
Z2

+
g2
N

m2
ZN

−→ g2
1

m2
Z1

+
g2

2

m2
Z2

+
g2
N

m2
ZN

. (138)

Let us compare the new contribution with the existing one,

R ≡
g2

1/m
2
Z1

(g2
2/m

2
Z2

) + (g2
N/m

2
ZN

)
. (139)

It is sufficient to consider two cases, Λ � ω and Λ ∼ ω. For the first case, the R is similar to (becomes) the 3-3-1
model with right-handed neutrinos that

R '
g2

1/m
2
Z1

g2
2/m

2
Z2

' 1

4c4W

(v2 − c2Wu2)2

ω2(u2 + v2)
<

1

4c4W

(vw

ω

)2

< 0.0025, (140)

which is very small. Above, we have used m2
Z1
' g2(u2 + v2)/(4c2W ), m2

Z2
' g2c2Wω

2/(3 − 4s2
W ), v2

w = u2 + v2 =

(246 GeV)2, and ω > 3.198 TeV as derived from the ρ parameter. For the second case, the contributions of Z2 and ZN
are equivalent. So, the first remark is R ∼ (g2

1/g
2
2,N )(m2

Z2,N
/m2

Z1
) ∼ E2

1,2(m2
Z2,N

/m2
Z1

) ∼ (u4/ω4)(ω2/u2) = u2/ω2,

which starts from the (u/ω)2 order and must be small too. Indeed, let us show this explicitly

R ≤
g2

1/m
2
Z1

2|g2gN |/(mZ2
mZN )

=
1

8c3W tN |s2ξ|
√

3− 4s2
W

(v2 − c2Wu2)2

ωΛ(u2 + v2)

<
1

8c3W tN |s2ξ|
√

3− 4s2
W

v2
w

ωΛ
' 0.00076, (141)

provided that tN = 1, ξ = −π/4 (s2ξ is finite due to the large mixing of Z2 and ZN , thus such value could be chosen),

and Λ = ω = 3.198 TeV. Above, we have also used mZ2
mZN = 2g2cW tNωΛ/

√
3− 4s2

W , which can be derived from



33

(79) and (80), the expression (78) for the ξ mixing angle, and the m2
Z1

as approximated before. In summary, the
mixing effects with the Z boson do not affect to the FCNCs.

For the sake of completeness, let us point out the dangerous FCNCs of Z boson due to the mixing of the or-
dinary quarks and exotic quarks that happens in the 3-3-1 model with right-handed neutrinos, which should be
suppressed. The mixing matrices are redefined as (u1 u2 u3 U)TL,R = VuL,R(u c t T )TL,R and (d1 d2 d3 D1 D2)TL,R =

VdL,R(d s b D S)TL,R so that the 4 × 4 mass matrix of up-quarks (ua, U) and the 5 × 5 mass matrix of down-quarks

(da, Dα) are diagonalized, respectively [35]. The Lagrangian that describes the FCNCs of Z boson is given by
(±) g

2cW
q̄′iLγ

µq′jL(V ∗qL)Ii(VqL)IjZµ, where I = 4 for Vu and the plus sign is applied, but I = 4, 5 for Vd and the minus

sign is taken (note, however, that the right chiral currents of Zµ do not flavor-change since T3 = 0 for any right-handed
fermion). All these lead to the effective interactions for the hadronic mixings due to the exchange of Z boson as

(q̄′iLγ
µq′jL)2[(V ∗qL)Ii(VqL)Ij ]

2 1

u2 + v2
, (142)

where we have used m2
Z = g2(u2+v2)/(4c2W ) and notice that v2

w ≡ u2+v2 = (246 GeV)2. In the 3-3-1 model with right-

handed neutrinos, the Lagrangian for the FCNCs of Z ′ boson is easily obtained as −g√
1−t2W /3

q̄′iLγ
µq′jL

1√
3
[V †qLVqL]ijZ

′
µ,

where [V †uLVuL]ij ≡ (V ∗uL)3i(VuL)3j − 1
2 (V ∗uL)4i(VuL)4j and [V †dLVdL]ij ≡ (V ∗dL)3i(VdL)3j + 3

2 (V ∗dL)Ii(VdL)Ij . Hence, the
effective interactions for the hadronic mixings due to the Z ′ contribution is given by

(q̄′iLγ
µq′jL)2[V †qLVqL]2ij

1

ω2
, (143)

where we have adopted m2
Z′ '

g2c2W
3−4s2W

ω2 [22]. Since the weak scale vw in (142) is too low in comparison to the 3-3-1

scale ω in (143), it is clear that if the mixing of the ordinary quarks and exotic quarks is similar in size to that of the
ordinary quarks, (V ∗qL)Ii(VqL)Ij ∼ (V ∗qL)3i(VqL)3j , the FCNCs due to the Z boson (142) is too large (∼ ω2/v2

w ∼ 102

times the one coming from Z ′ or the bound for the K0 − K̄0 mixing) as such the theory is invalid. Hence, the
FCNCs due to the ordinary and exotic quark mixing are more dangerous than those coming from the non-universal
interactions of Z ′ boson. To avoid the large FCNCs, one must assume |(V ∗qL)Ii(VqL)Ij | � |(V ∗qL)3i(VqL)3j | (and the

FCNCs of Z ′ are dominated by the ordinary quark mixing, [V †qLVqL]ij ' (V ∗qL)3i(VqL)3j). Indeed, the K0−K̄0 mixing

constrains (142) to be,

|(V ∗dL)I1(VdL)I2| <∼ 10−5. (144)

This mixing of the exotic and ordinary quarks is much smaller than the smallest mixing element (about 5× 10−3) of
the ordinary quark flavors by the CKM matrix [1]. Therefore, the 3-3-1-1 gauge symmetry as well as the resulting
W -parity provide a more natural framework that not only solves those problems (including the large FCNCs, the
unitarity of the CKM matrix, the lepton and baryon number symmetries and the CPT theorem that have strictly
been proved by the experiments [1]), but also gives the neutrino small masses and the dark matter candidates.

E. LEPII searches for Z2 and ZN

LEPII searches for new neutral gauge bosons via the channel e+e− → ff̄ , where f is any ordinary fermion [33]. In
this model, the new physics effect in such process is due to the dominant contribution of Z2 and ZN gauge bosons,
which is s-channel exchanges for f 6= e. The effective interaction for these contributions can be derived with the help
of (99) as

Leff
LEP2 =

g2

c2Wm
2
I

[ēγµ(aIL(e)PL + aIR(e)PR)e][f̄γµ(aIL(f)PL + aIR(f)PR)f ] (I = Z2, ZN ), (145)

where the chiral couplings are given by

aIL(f) =
gIV (f) + gIA(f)

2
, aIR(f) =

gIV (f)− gIA(f)

2
. (146)

Let us study a particular process for f = µ, e+e− → µ+µ−. The chiral couplings can be obtained from Table III
and IV as

aZ2

L (ea) =
cξc2W

2
√

3− 4s2
W

− 2

3
sξcW tN , aZ2

R (ea) = − cξs
2
W√

3− 4s2
W

− sξcW tN ,

aZNL,R = aZ2

L,R(cξ → −sξ; sξ → cξ). (147)
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The effective interaction can be rewritten by

Leff
LEP2 =

g2

c2W

(
[aZ2

L (e)]2

m2
Z2

+
[aZNL (e)]2

m2
ZN

)
(ēγµPLe)(µ̄γµPLµ) + (LR) + (RL) + (RR), (148)

where the last three terms differ the first one only in chiral structures.
Notice that LEPII searches for such chiral interactions and gives several constrains on the respective couplings,

which are commonly given in the order of a few TeV [33]. Therefore, let us choose a typical value

g2

c2W

(
[aZ2

L (e)]2

m2
Z2

+
[aZNL (e)]2

m2
ZN

)
<

1

(6 TeV)2
. (149)

It is noted that this value, 6 TeV, is also a bound derived for the case of U(1)B−L gauge boson [34].
Similarly to the previous subsection, we suppose that Z2 and ZN have approximately equal masses (mZ2 ≈ mZN )

and tN = 1. The above constraint leads to

mZ2 ≈ mZN > 2.737 TeV. (150)

This bound is in good agreement with the limit in the previous subsection via the FCNC and the ones given in the
literature [32]. As we previously emphasized, in the dark matter subsections we have adopted mZN � mZ2

and
therefore in this regime a bound in mZ2

∼ TeV rises.
Finally, let us discuss the contribution of the mixing effects of the neutral gauge bosons to the above process. When

the mixing is turned on, the interacting Lagrangian of the neutral gauge bosons takes the form, − g
cW
f̄γµ[ãZiL (f)PL +

ãZiR (f)PR]fZiµ, where i = 1, 2, N and the (chiral) couplings of the neutral gauge bosons are correspondingly changed
as follows

aZL,R(f) −→ ãZ1

L,R(f) ≡ aZL,R(f) + aZ2

L,R(f)(cξ → −E1; sξ → −E2),

aZ2

L,R(f) −→ ãZ2

L,R(f) ≡ aZ2

L,R(f) + aZL,R(f)× (E1cξ + E2sξ), (151)

aZNL,R(f) −→ ãZNL,R(f) ≡ aZNL,R(f) + aZL,R(f)× (−E1sξ + E2cξ).

We realize that all the second terms are the E1,2 corrections corresponding to the existing couplings due to the
mixing, which can be neglected because of the so small E1,2 values as given in (76). Indeed, for the concerned process
e+e− → µ+µ−, let us consider the ratios of the corrections to the respective existing couplings for f = ea (the charged
leptons). With the Z1 couplings, we have∣∣∣∣∣aZ2

L (ea)(cξ → −E1; sξ → −E2)

aZL(ea)

∣∣∣∣∣ =

∣∣∣∣∣ E1√
3− 4s2

W

− 4cW tN
3c2W

E2

∣∣∣∣∣ < 2.43× 10−3, (152)∣∣∣∣∣aZ2

R (ea)(cξ → −E1; sξ → −E2)

aZR(ea)

∣∣∣∣∣ =

∣∣∣∣∣ E1√
3− 4s2

W

+
cW tN
s2
W

E2

∣∣∣∣∣ < 2.43× 10−3, (153)

which are easily obtained with the help of (76), s2
W = 0.231 and Λ ∼ ω > 3.198 TeV. Similarly, for the Z2 couplings,

we have ∣∣∣∣∣aZL(ea)× (E1cξ + E2sξ)
aZ2

L (ea)

∣∣∣∣∣ =

∣∣∣∣∣∣ E1cξ + E2sξ
cξ√

3−4s2W
− 4cW

3c2W
tNsξ

∣∣∣∣∣∣ < 5.04× 10−3, (154)

∣∣∣∣∣aZR(ea)× (E1cξ + E2sξ)
aZ2

R (ea)

∣∣∣∣∣ =

∣∣∣∣∣∣ E1cξ + E2sξ
cξ√

3−4s2W
+ cW

s2W
tNsξ

∣∣∣∣∣∣ < 5.04× 10−3, (155)

where notice that the mixing angle of the Z ′, C gauge bosons is bounded by −π/4 < ξ < 0 if tN > 0 either 0 < ξ < π/4
if tN < 0. The corrections to the ZN couplings are so small too. Therefore, the mixing effects of the neutral gauge
bosons do not affect to the standard model e+e− → µ+µ− process as well as our results given above with the Z2,N

exchanges in the absence of the mixing.
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F. Radiative β decays involving Z2,N and the violation of CKM unitarity

The CKM unitarity implies
∑
d′=d,s,b V

∗
u′d′Vu′′d′ = δu′u′′ and

∑
u′=u,c,t V

∗
u′d′Vu′d′′ = δd′d′′ , where the elements of the

CKM matrix Vu′d′ ≡ (V †uLVdL)u′d′ (u′ = u, c, t and d′ = d, s, b) are defined as before. The standard model calculations
have provided a very good agreement with the above relations [1]. However, if there is a possible deviation, it is the
sign for the violation of the CKM unitarity. Taking for the first row, the experimental bound yields [1]

∆CKM = 1−
∑

d′=d,s,b

|Vud′ |2 < 10−3. (156)

This violation can give the constraints on the new neutral Z2,N gauge bosons as a result of their loop effects that
contribute to ∆CKM.

Indeed, the ∆CKM deviation is derived from the one-loop radiative corrections via the new Z2,N and W bosons
to quark β decay amplitudes from which the Vud, Vus and Vub elements are extracted, including muon decay which
normalizes the quark β decay amplitudes. These have previously been studied in other theories [36] with the respective
diagrams to quark and muon β decays similarly displayed therein. Generalizing the results in [36], the deviation is
obtained as

∆CKM ' −
3

4π2

∑
I=Z2,ZN

m2
W

m2
I

ln

(
m2
W

m2
I

)
(GIeL)11

[
(GIeL)11 −

(GIdL)11 + (GIuL)11

2

]
, (157)

where the lepton and quark couplings are given in the physical basis of the left chiral fields when coupled to Z2,N ,

i.e. f̄ ′Lγ
µGIfLf

′
LIµ with GIfL ≡ −

g
cW
V †fLa

I
L(f)VfL, that results

(GIeL)11 = (GIνL)11 = − g

cW
aIL(ea), (GZ2

uL)11 =
gcξ
√

3− 4s2
W

6cW
, (GZNuL )11 =

−gsξ
√

3− 4s2
W

6cW
,

(GZ2

dL
)11 =

gcξ
√

3− 4s2
W

6cW
− g

cW

(
cξc

2
W√

3− 4s2
W

+
2

3
sξcW tN

)
|(VdL)31|2,

(GZNdL )11 = (GZ2

dL
)11(cξ → −sξ; sξ → cξ). (158)

Notice that the mixing effect of the neutral gauge bosons (Z with Z2,N ) do not affect to the considering processes as
explicitly pointed out in the previous subsection.

Therefore, we have

∆CKM ' − 3g2

4π2

m2
W

m2
Z2

ln

(
m2
W

m2
Z2

)[
2

3
sξtN −

cξc2W

2cW
√

3− 4s2
W

][
2

3
sξtN −

cξ(3− 5s2
W )

3cW
√

3− 4s2
W

]
+(Z2 → ZN ; cξ → −sξ; sξ → cξ). (159)

We consider two typical cases, Λ� ω and Λ ∼ ω. In the first case, the ZN does not contribute, i.e. the second term
above vanishes, and ξ = 0. Therefore, this is the case of the 3-3-1 model with right-handed neutrinos. We have

∆CKM ' −0.0033
m2
W

m2
Z2

ln

(
m2
W

m2
Z2

)
. (160)

Using the bound (156) and mW = 80.4 GeV, the Z2 mass is constrained by mZ2
> 200 GeV. In fact, the Z2 mass

should be in TeV range due to the other constraints as given above. For example, taking mZ2
> 1 TeV, we get

∆CKM < 10−4. Consequently, this case gives a very small contribution to the violation of the CKM unitarity and
thus the model is easily to evade the experimental bound. In the second case, assuming that the new neutral gauge
bosons have approximately equal masses (mZ2

' mZN ) and tN = 1, we derive

∆CKM ' −0.0143
m2
W

m2
Z2,N

ln

(
m2
W

m2
Z2,N

)
. (161)

Using the bound (156) we have m2
Z2
' m2

ZN
> 600 GeV. The model in this case is easily to evade the experimental

bound too. To conclude, the new neutral gauge bosons Z2,N give the negligible contribution to the violation of the
CKM unitarity.
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VII. DISCUSSION AND CONCLUSION

In the standard model, the fermions come in generations, the subsequent generation is a replication of the former.
The gauge anomaly is cancelled out over every generation. Thus, on this theoretical ground the number of the
generations can be left arbitrarily. This may be due to the fact that the SU(2)L anomaly trivially vanishes for any
chiral fermion representation. If the SU(2)L is minimally extended to SU(3)L with a corresponding enlargement of
the lepton and quark representations (the doublets enlarged to triplets/antitriplets while the singlets retain, but for
some cases the lepton singlets are put in the corresponding triplets/antitriplets as well), the new SU(3)L anomaly
generally does not vanish for each nontrivial representation. Subsequently, this constrains the generation number
to be an integer multiple of three—the fundamental color number—in order to cancel that anomaly over the total
fermion content, which provides a partial solution to the number of the generation paradigms. Besides this feature,
some very fundamental aspects of the standard model can also be understood by the presence of the SU(3)L that
causes the electric charge quantization [9], the Peccei-Quinn like symmetry for the strong CP [8] and the oddly-heavy
top-quark [7]. On the other hand, the B − L number and Q electric charge operators do not commute and also
nonclose algebraically with the SU(3)L generators. Supposing that the B − L is conserved similarly to the Q, such
SU(3)L theory is only manifest if it includes two extra Abelian factors so that all the algebras are closed, and the
resulting gauge symmetry SU(3)L ⊗ U(1)X ⊗ U(1)N yields an unification of the weak, electromagnetic and B − L
interactions (apart from the strong interaction by the SU(3)C gauge group). Besides the B, L symmetries, some very
fundamental matters of the 3-3-1 model can also be understood by this setup.

Firstly, the breakdown of the 3-3-1-1 gauge symmetry produces a conserved Z2 subgroup (as a remnant) named the
W -parity similar to the R-parity in supersymmetry that plays an important role as well as yielding insights in the
present model. The lightest wrong-lepton particle is stabilized due to the W -parity conservation, which is responsible
for dark matter. The two dark matter particles have been recognized, a neutral complex scalar H ′ and a neutral
fermion N of either Dirac or Majorana nature. The GIM mechanism for the standard model currents works in this
model due to the W -parity conservation, while the new FCNCs are strictly suppressed. In fact, the experimental
bounds can be easily evaded with the expected masses for the new neutral gauge bosons Z2,N in a few TeV. Because
of the W -parity conservation, the new neutral non-Hermitian gauge boson X does not mix with the neutral Z1,2,N

gauge bosons. Hence, there is no mass splitting within the real and imaginary components of the X that ensures the
conservation of CPT symmetry. Those problems of the 3-3-1 model with right-handed neutrinos have been solved.

We have shown that the B−L interactions can coexist with the new 3-3-1 interactions at the TeV scale. To realize
this, the scales of the 3-3-1-1 and 3-3-1 breakings are taken to lie in the same energy scale Λ ∼ ω. In this regime, the
scalar potential has been diagonalized. The number of Goldstone bosons matches the number of the massive gauge
bosons. There are eleven physical scalar fields, one of them is identified as the standard model Higgs boson. The new
physical scalar fields H0

1,2,3, A0, H±4,5, and H ′0,0∗ are heavy with their masses in the ω, Λ or
√
|ωf | scales. There is

a finite mixing between the Higgs scalars—the S4 for the U(1)N breaking and the S3 for the 3-3-1 breaking—that
results two physical fields the H2,3. The standard model Higgs boson is light with a mass given in the weak scale due
to the seesaw-type mechanism associated with the little hierarchy u, v � ω,Λ,−f . The Higgs mass gets a right value
of 125 GeV provided that the effective coupling λ̄ ' 0.5 with the assumption u = v, ω = −f . All the physical scalar
fields are W -even except for the H ′ and H4 that are W -odd, known as the W -particles.

In the proposed regime Λ ∼ ω, the gauge sector has been diagonalized with a recognition of the standard model
gauge bosons W±, A and Z. Moreover, we have six new gauge bosons X0,0∗, Y ±, Z2,N . Although the Z boson
mixes with the new neutral gauge bosons, it is realized to be light due to a seesaw-type mechanism in the gauge
sector. In order to reproduce the standard model W boson mass, we have constrained u2 + v2 = (246 GeV)2. From
the experimental bound on the rho parameter, we get ω > 3.198 TeV provided that Λ ' ω and u ' v. There is a
finite mixing between the U(1)N gauge boson and the Z ′ of the 3-3-1 model that produces two physical states by
the diagonalization as the 3-3-1 like gauge boson Z2 and the U(1)N like gauge boson ZN . All the gauge bosons are
W -even except for the X, Y that are the W -particles. The new neutral complex gauge boson X cannot be a dark
matter because it entirely annihilates into the standard model particles before the thermal equilibrium process ended
[2].

All the interactions of the gauge bosons with the fermions and scalars have been obtained. The result yields that
every interaction conserves the W -parity. The corresponding standard model interactions are recovered. The new
interactions as well as their implication to the new physics phenomenological processes are rich to be devoted to further
studies. In this work, some of them have particularly been used for analyzing the new FCNCs, the LEPII collider,
the violation of the CKM unitarity, and the fermionic dark matter observables. Because of the seesaw-type mixing
suppression between the light and heavy states, namely between the Z and new Z2,N gauge bosons as well as between
the H and new H1,2,3 Higgs bosons, the mixing effects are radically small. The new physics effects via those mixings
in the gauge sector have explicitly been pointed out to be safely neglected. For the scalar sector, the new physics
effects via those mixings are also negligible as disregarded for the most cases of the small scalar self-couplings (see
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the text in more detail). Only if the scalar self-couplings are more strong, they may give considerable contributions
but are still in the current bounds. The accuracy of the standard model Higgs mechanism if it is the case could give
some constraints on those mixing effects.

Supposing that the scalar dark matter H ′ dominantly annihilates into the standard model Higgs boson H via the
Higgs portal, the relic density of H ′ has been calculated. It gets the right value compatibly to the experiment data
if mH′ = 1.328 TeV assumed that the H ′∗H ′ → HH coupling equals to unity, λ′ = 1. As for the neutral fermion
candidate as a Dirac particle we conclude that a ω scale of the symmetry breaking greater than ∼ 5 TeV is required
in order to obey the LUX2013 bounds. Whereas when the neutral fermion is a Majorana particle, the direct detection
bounds are quite loose and a larger region of the parameter space has been found that yields the right abundance.
The fermion dark matter observables are governed by the Z2 gauge boson provided that Λ > ω. Only if gN � g with
Λ ∼ ω either the Λ is rare smaller than the ω with gN ∼ g, the ZN contribution becomes comparable to that of the
Z2 boson.

We have shown that the CKM matrix is unitary as well as the ordinary GIM mechanism of the standard model
works in this model, due to the W -parity conservation. We have also discussed that this mechanism does not work in
the 3-3-1 model with right-handed neutrinos, and in such case the tree-level FCNCs due to the ordinary and exotic
quark mixing are more dangerous than those coming from the non-universal couplings of the Z2,N gauge bosons. All
the FCNCs associated with the Z boson due to the above fermion mixing are prevented because of the W -parity
conservation. Also, the new FCNCs coupled to the Z2,N are highly suppressed too. In fact, the FCNCs due to the
Z2,N can present but they can be easily evaded by the new physics in the TeV range. Using the current bound on the
K0 − K̄0 system, we have shown mZ2,N

> 2.037 TeV under the assumption that the Z2 and ZN have approximately

equal masses as well as tN = 1 (the B−L interaction strength equals to that of the weak interaction). For the B0
s−B̄0

s

system, the bound is mZ2,N
> 2.291 under the same assumptions as the previous case. For hierarchical masses of Z2

and ZN , the smaller mass will take a smaller bound, e.g mZ2
> g2 × 2 TeV corresponding to the K0 − K̄0 system,

where g2 is the reduced gauge coupling that has a natural value smaller than unity.
The new neutral currents in the model are now under the experimental detections. We have calculated the con-

tributions of Z2 and ZN , which dominate the corrections of the new physics, to the process e+e− → µ+µ− at the
LEPII collider. From the experimental bounds, we have shown that mZ2,N

> 2.737 TeV provided that these gauge
bosons have approximately equal masses and tN = 1. Similarly, for the hierarchal Z2 and ZN masses, the smaller
mass will possess a smaller bound than the above result. Moreover, we have also indicated that the violation of the
CKM unitarity due to the one-loop effects of the new neutral gauge bosons Z2,N are negligible if the Z2,N masses are
given in the TeV range as expected.

Finally, the 3-3-1-1 model that unifies the electroweak and B−L interactions along with the strong interaction is a
self-consistent extension of the standard model that solves the potential problems of the 3-3-1 model in the consistency
with the B, L, and CPT symmetries as well as curing the large FCNCs. The new physics of the 3-3-1-1 model is
interesting with the outcomes in the TeV region. For all the reasons aforementioned, we believe that the 3-3-1-1 model
is a compelling theory which is called for much experimental attention.
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