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In this work we discuss a new SU(3)c ® SU3)L @ U(1)x ® U(1)~ (3-3-1-1) gauge model that
overhauls the theoretical and phenomenological aspects of the known 3-3-1 models. Additionally, we
sift the outcome of the 3-3-1-1 model from precise electroweak bounds to dark matter observables.
We firstly advocate that if the B — L number is conserved as the electric charge, the extension of the
standard model gauge symmetry to the 3-3-1-1 one provides a minimal, self-contained framework
that unifies all the weak, electromagnetic and B — L interactions, apart from the strong interaction.
The W-parity (similar to the R-parity) arises as a remnant subgroup of the broken 3-3-1-1 symmetry.
The mass spectra of the scalar and gauge sectors are diagonalized when the scale of the 3-3-1-1
breaking is compatible to that of the ordinary 3-3-1 breaking. All the interactions of the gauge bosons
with the fermions and scalars are obtained. The standard model Higgs (H) and gauge (Z) bosons are
realized at the weak scales with consistent masses despite of their mixings with the heavier particles,
respectively. The 3-3-1-1 model provides two dark matters which are stabilized by the W-parity
conservation: one fermion which may be either a Majorana or Dirac fermion and one complex scalar.
We conclude that in the fermion dark matter setup the Z> gauge boson resonance sets the dark
matter observables, whereas in the scalar one the Higgs portal dictates them. The standard model
GIM mechanism works in the model because of the W-parity conservation. Hence, the dangerous
flavor changing neutral currents due to the ordinary and exotic quark mixing are suppressed, while
those coming from the non-universal couplings of the Z> and Zn gauge bosons are easily evaded.
Indeed, the K° — K° and By — B mixings limit mz, , > 2.037 TeV and mz, , > 2.291 TeV,
respectively, while the LEPII searches provide a quite close bound mz, , > 2.737 TeV. The
violation of the CKM unitarity due to the loop effects of the Z> and Zn gauge bosons is negligible.

PACS numbers: 12.10.-g, 12.60.Cn, 12.60.Fr

I. INTRODUCTION

The standard model [1] has been extremely successful. However, it describes only about 5% mass-energy density
of our universe. There remain around 25% dark matter and 70% dark energy that are referred as the physics beyond
the standard model. In addition, the standard model cannot explain the nonzero small masses and mixing of the
neutrinos, the matter-antimatter asymmetry of the universe, and the inflationary expansion of the early universe. On
the theoretical side, the standard model cannot show how the Higgs mass is stabilized against radiative corrections,
what makes the electric charges exist in discrete amounts, and why there are only the three generations of fermions
observed in the nature.

Among the standard model’s extensions for the issues, the recently-proposed SU(3)c @ SUB), @ U(1)x @ U(1)n
(3-3-1-1) gauge model has interesting features [2]. (i) The theory arises as a necessary consequence of the 3-3-1
models [3-5] that respects the conservation of lepton and baryon numbers. (ii) The B — L number is naturally gauged
because it is a combination of the SU(3)r, and U(1)y charges. And, the resulting theory yields an unification of the
electroweak and B — L interactions, apart from the strong interaction. (iii) The right-handed neutrinos are emerged
as fundamental fermion constituents, and consequently the small masses of the active neutrinos are generated by
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the type I seesaw mechanism. (iv) The W-parity which has the form similarly to the R-parity in supersymmetry
is naturally resulted as a conserved remnant subgroup of the broken 3-3-1-1 gauge symmetry. (v) The dark matter
automatically exists in the model that is stabilized due to the W-parity. It is the lightest particle among the new
particles that characteristically have wrong lepton numbers transforming as odd fields under the W-parity (so-called
W-particles). The dark matter candidate may be a neutral fermion (N) or a neutral complex scalar (H’).

The 3-3-1-1 model includes all the good features of the 3-3-1 models. Namely, the number of fermion families is just
three as a consequence of anomaly cancelation and QCD asymptotic freedom condition [6]. The third quark generation
transforms under SU(3), differently from the first two. This explains why the top quark is uncharacteristically-heavy
[7]. The strong C'P problem is solved by just its particle content with an appropriate Peccei-Quinn symmetry [8]. The
electric charge quantization is due to a special structure of the gauge symmetry and fermion content [9]. Additionally,
it also provides the mentioned dark matter candidates similarly to [10, 11]. The 3-3-1-1 model can solve the potential
issues of the 3-3-1 models because the unwanted interactions and vacuums that lead to the dangerous tree-level flavor
changing neutral currents (FCNCs) [12] as well as the C'PT violation [13] are all suppressed due to the W-parity
conservation [2].

In the previous work [2], the proposal of the 3-3-1-1 model with its direct consequence—the dark matter has been
given. In the current work, we will deliver a detailed study of this new model. Particularly, we consider the new
physics consequences besides the dark matter that are implied by the new extended sectors beyond those of the
3-3-1 model. These sectors include the new neutral gauge boson (C) as associated with U(1)x and the new scalar
(¢) as required for the totally U(1)x breaking with necessary mass generations. The totally U(1)y breaking that
consequently breaks the B — L symmetry, where the B — L is a residual charge related to the N charge and a SU(3)p,
generator, can happen closely to the 3-3-1 breaking scale of TeV order. This leads to a finite mixing and interesting
interplay between the new neutral gauge bosons such as the Z’ of the 3-3-1 model and the C of U(1)y. Notice that
our previous work considers only a special case when the B — L breaking scale is very high like the GUT one [14] as
an example so that the new physics over the ordinary 3-3-1 symmetry is decoupled, which has neglected its imprint
at the low energy [2]. Indeed, the stability of the proton is already ensured by the 3-3-1-1 gauge symmetry, there is
no reason why that scale is not presented at the 3-3-1 scale. Similarly to the new neutral gauge bosons, there is an
interesting mixing among the new neutral scalars that are used to break the above symmetry kinds, the 3-3-1 and the
B-L.

It is interesting to note that the new scalars and new gauge bosons as well as the new fermions can give significant
contributions to the production and decay of the standard model Higgs boson. They might also modify the well-
measured standard model couplings such as those of the photon, W and Z bosons with the fermions. There exist the
hadronic FCNCs due to the contribution of the new neutral gauge bosons. These gauge bosons can also take part in
the electron-positron collisions such as the LEPII and ILC as well as in the dark matter observables. The presence
of the new neutral gauge bosons also induces the apparent violation of the CKM unitarity. In some case, the new
scalar responsible for the U(1)y breaking may act as an inflaton. The decays of some new particles can solve the
matter-antimatter asymmetry via leptogenesis mechanisms.

The scope of this work is given as follows. The 3-3-1-1 model will be calculated in detail. Namely, the scalar
potential and the gauge boson sector are in a general case diagonalized. All the interactions of the gauge bosons
with the fermions as well as with the scalars are derived. The new physics processes through the FCNCs, the LEPII
collider, the violation of the CKM unitarity as well as the dark matter observables are analyzed. Particularly, we
will perform a phenomenological study of the dark matter taking into account the current data as well as the new
contributions of the physics at A ~ w that have been kept in [2]. The constraints on the new gauge boson and dark
matter masses are also obtained.

The rest of this work is organized as follows. In Sec. II, we give a review of the model. Secs. III and IV are
respectively devoted to the scalar and gauge sectors. In Sec. V we obtain all the gauge interactions of the fermions
and scalars. Sec. VI is aimed at studying the new physics processes and constraints. Finally, we summarize our
results and make concluding remarks in Sec. VII.

II. A REVIEW OF THE 3-3-1-1 MODEL

The 3-3-1-1 model [2] is based on the gauge symmetry,
SUB)c@SUB)L@U(l)x @ U(1)n, (1)

where the first three groups are the ordinary gauge symmetry of the 3-3-1 models [3-5], while the last one is a
necessary gauge extension of the 3-3-1 models that respects the conservation of lepton (L) and baryon (B) numbers.
Indeed, the 3-3-1 symmetry and B — L symmetry do not commute and also nonclose algebraically. To be concrete,



for a lepton triplet (see below), we have B — L = diag(—1, —1,0), which is not commuted with the SU(3) generators
as T; = %)\i for i =4,5,6,7. It is easily checked that

[B — L, Ty +iTs] = F(Ty +iTs) # 0,
[B — L,Ts +iT5] = F(Ts & iTy) # 0.

The non-closed algebras can be deduced from the fact that in order for B — L to be some generator of SU(3)y, we
have a linear combination B — L = z;T; (1 = 1,2,3,...,8) and thus Tr(B — L) = 0, which is invalid for the lepton
triplet, Tr(B — L) = —2 # 0, even for other particle multiplets. In other words, B — L and T; by themselves do
not make a symmetry under which our theory based on is manifest. Therefore, to have a closed algebra, we must
introduce at least a new Abelian charge N so that B — L is a residual symmetry of closed group SU(3), @ U(1)n,
ie. B— L =z;T; +yN, where the embedding coefficients z;,y # 0 are given below (the existence of N can also be
understood by a current algebra approach for T; and B — L similarly to the case of hyper-charge Y when we combine
SU(2)r, with U(1)g to perform the SU(2); ® U(1)y electroweak symmetry). Note that N cannot be identified as X
(that defines the electric charge operator) because they generally differ for the particle multiplets (see below); thus
they are independent charges. As a fact, the normal Lagrangian of the 3-3-1 models (including the gauge interactions,
minimal Yukawa Lagrangian and minimal scalar potential) always preserves a U(1)y Abelian symmetry that along
with SU(3), realizes B — L as a conserved (non-commuting) residual charge, which has actually been investigated in
the literature and given in terms of B = B and L = bTg + L where b is 3-3-1 model-class dependent and N = B — L
[2, 15]. Note also that a violation in N due to some unwanted interaction, by contrast, would lead to the corresponding
violation in B — L and vice versa. Because T; are gauged charges, B — L and N must be gauged charges (by contrast,
T; ~ (B — L) — yN are global which is incorrect). The gauging of B — L is a consequence of the non-commuting
between B — L and SU(3), (which is unlike the standard model case). And, the theory is only consistent if it includes
U(1l)ny as a gauge symmetry which also necessarily makes the resulting theory free from all the nontrivial leptonic
and baryonic anomalies [2]. Otherwise, the 3-3-1 models must contain (abnormal) interactions that explicitly violate
B — L (or N). Equivalently, the 3-3-1 models are only survival if B — L is not a symmetry of such theories, actually
recognized as an approximate symmetry, which has explicitly shown in [16]. To conclude, assuming that the B — L
charge is conserved (that is respected by the experiments, the standard model, even the typical 3-3-1 models [1, 3-5]),
the Abelian factor U(1)y must be included so that the algebras are closed that is needed for a self-consistent theory.
Apart from the strong interaction with SU(3)¢ group, the SU(3)r ® U(1)x ® U(1)n framework thus presents an
unification of the electroweak and B — L interactions, in the same manner of the standard model electroweak theory
for the weak and electromagnetic ones.

The two Abelian factors of the 3-3-1-1 symmetry associated with the SU(3) group correspondingly determine the
Q electric charge and B — L operators as residual symmetries, given by

1 2
V3 V3

where T; (i = 1,2,3,...,8), X and N are the charges of SU(3)r, U(1)x and U(1)y, respectively (the SU(3)¢c charges
will be denoted by t;). Note that the above @ and B — L definitions embed the 3-3-1 model with neutral fermions
[5] in the considering theory. However, the coefficients of Ty might be different depending on which class of the 3-3-1
models is embedded in [15].

The @ is conserved responsible for the electromagnetic interaction, whereas the B — L must be broken so that the
U(1)n gauge boson gets a large enough mass to escape from the detectors. Indeed, the B — L is broken down to a
parity (i.e., a Zy symmetry),

Q=1T3—-—7=1T3+X, B-L Ts + N, (2)

P = (_1)3(B—L)+2s _ (_1)—2\/§T3+3N+2s) (3)

which consequently makes “wrong B — L particles” become stabilized, providing dark matter candidates [2]. We see
that this R-parity has an origin as a residual symmetry of the broken SU(3);, ® U(1)y gauge symmetry, which is
unlike the R-symmetry in supersymmetry [17]. That being said, the parity P is automatically existed, and due to its
nature it will play an important role in the model besides stabilizing the dark matter candidates as shown throughout
the text.



The fermion content of the 3-3-1-1 model that is anomaly free is given as [2]

VaL
waL = €alL ~ (173771/37 72/3)7 (4)
(NaR)C
Var o~ (171a07_1)7 €aR ™ (1a15_17_1)7 (5)
dar usL
QaL = —UqL ~ (3a 3*7O7O)a QBL = d3L ~ (3a 37 1/3a 2/3)7 (6)
Dar, UL
uar ~ (3,1,2/3,1/3), dar ~ (3,1,-1/3,1/3), (7)
Ur ~ (3,1,2/3,4/3), Dog ~ (3,1,-1/3,-2/3), (8)

where the quantum numbers located in the parentheses are defined wupon the gauge symmetries
(SU(3)¢, SU(3)L, U(1)x, U(1)n), respectively. The family indices are a = 1,2,3 and o = 1, 2.

The exotic fermions Ng, U and D have been included to complete the fundamental representations of the SU(3)p,
group, respectively. By the embedding, their electric charges take usual values, Q(Ng) = 0, Q(U) = 2/3 and
Q(D) = —1/3. However, their B — L charges get values, [B— L|(Ng) =0, [B—L|(U) =4/3 and [B — L|(D) = —2/3,
which are abnormal in comparison to those of the standard model particles. These exotic fermions including the
following bosons of this kind have ordinary baryon numbers, however, possessing anomalous lepton numbers as well
as being odd under the parity P (see Table I in more detail) [2]. Such particles are generally called as the wrong-lepton
particles (or W-particles for short) and the parity P is thus named as the W-parity. Whereas, all other particles of
the model including the standard model ones (which have both the ordinary baryon and ordinary lepton numbers or
only differing from the ordinary lepton number by an even lepton number as just the ¢ scalar given below) are even
under the W-parity, and they can be considered as ordinary particles.

Let us remind that the neutral fermions N,z might have left-handed counterparts, N,r, transforming as singlets
under any gauge symmetry group including the U(1)y. By this view, the N, are truly sterile which is unlike the
vor as usually considered in the literature. Interestingly, the sterile fermions N, are W-particles like the N,g. If the
N, 1, are not included, the N,r are Majorana fermions. Otherwise, the presence of the N,y yields N,r, r as generic
fermions (which may be Dirac ones). Further, we will exploit this matter by deriving the dark matter observables for
the cases of the Dirac or Majorana fermions.

To break the gauge symmetry and generate the masses for the particles in a correct way, the 3-3-1-1 model needs
the following scalar multiplets [2]:

0 +
77£ p%)
n = Ub) ~ (1735_1/351/3)7 p = P2 ~ (15372/351/3)7
0 +
UE! P3
XY
X = xs | ~(1,3,-1/3,-2/3), ¢~ (1,1,0,2), (9)
X3
with the VEVs that conserve (Q and P being respectively given by
1 T 1 T 1 T 1
<77> = 7(“’70’0) ) <p> = 7(057}70) ) <X> = 7(0,0,&]) ) <¢> = —=A. (10)

V2 V2 V2 V2

The VEVs of , p, x break only SU(3)c ® SU3)r @ U(1)x @ U(1)n to SU3)c @ U(1)g ® U(1)p—r, which leaves
the B — L invariant. The ¢ breaks U(1)y as well as the B — L that defines the W-parity, U(1)g_, — P, with the
form as given [2]. It provides also the mass for the U(1) gauge boson as well as the Majorana masses for v,z. Note
that the ps, n3 and x1,2 are the W-particles, while the others including ¢ are not (i.e., as the ordinary particles). The
electrically-neutral fields 13 and x; cannot develop a VEV due to the W-parity conservation. To keep a consistency
with the standard model, we suppose u,v < w, A.

Up to the gauge fixing and ghost terms, the Lagrangian of the 3-3-1-1 model is given by

L = > Uink D, + > (D"){(D,®)

fermion multiplets scalar multiplets

1 1 1 1
_iGiquéw — ZAW,AQW — ZB’WBW — ECWC”“’

—V(P»U7X7¢) +£Yukawa7 (11)



with the covariant derivative
D, =0, +igst;Giy + 19T Aiyy + igx X B, + ignNC,, (12)
and the field strength tensors

Giuu = apLGiV - 8uGiu - gsfijijquV7
Ai/u/ = ap,Ail/ - aVAiu - gfijkAjMAk:V7
B,, = 0.,B,—-0,B,, Cu =0.,C,—0,C,. (13)

The ¥ denotes fermion multiplets such as .1, @31, uqer and so on, whereas the ® stands for scalar multiplets, ¢, 1,
p and x. The coupling constants (¢gs, g, gx, gn) and the gauge bosons (G, Ai., By, C,) are defined as coupled to
the generators (t;, T;, X, N), respectively. It is noted that in a mass basis the W= bosons are associated with T 1,2,
the photon ~ is with @, and the Z, Z’ are with generators that are orthogonal to Q. All these fields including the C
and gluons G are even under the W-parity. However, the new non-Hermitian gauge bosons, X%%* as coupled to Ty 5
and Y+ as coupled to Ts,7, are the W-particles.

The scalar potential and Yukawa Lagrangian as mentioned above are obtained as follows [2]

Lyukawa = heybarpesr + hoybarnvsr + b0 pusrd + hY Qs xUr + hggQaLX*DﬁR
+hYQsLnuar + hiQsrpdar + hiaQarn dar + hityQarLp tar + H.c., (14)
1300 + paxtx + pantn + X (p'p)? + Aa(xTx)? + As(nn)?

+Aa(p ) (XTX) + As (0T p) (nn) + X6 (x T x) (')

+A7 () (XTp) + As(p'm) (T p) + Ao (xIm) (0T x) + (f€™ P pnxp + H.c.)

+126T 0 + A(079)% + Xio(870) (pTp) + A1 (670) (X x) + Mi2(¢78) (). (15)

Because of the 3-3-1-1 gauge symmetry, the Yukawa Lagrangian and scalar potential as given take the standard forms
that contain no lepton-number violating interactions.

If such violating interactions as well as nonzero VEVs of 13 and x; were presented as in the 3-3-1 model, they
would be the sources for the hadronic FCNCs at tree level [12]. The FCNC problem is partially solved by the 3-3-1-1
symmetry and W-parity conservation. Also, the presence of the n3 and x; VEVs would imply a mass hierarchy between
the real and imaginary components of the X° gauge boson due to their different mixings with the neutral gauge bosons.
This leads to the CPT violation that is experimentally unacceptable [13]. The C'PT violation encountered with the
3-3-1 model is thus solved by the 3-3-1-1 symmetry and W-parity conservation too.

Table T lists all the model particles with their parity values explicitly provided. The lepton numbers have also
been included for a convenience in reading. However, the baryon numbers were not listed since they can be obtained
as usual (all the quarks u, d, U and D have B = 1/3, whereas the other particles have B = 0). As shown in [2],

V(p,m,x, )

Particle|v e u dG’yWZZ’Cm,g pi2xs ¢ N U DXY n3 p3 xi1,2
L 1100000O0OO0OO0O0TO0O O O-20-1111-1-11
P ++++++++++ + + + + - - - = = — - -

TABLE I: The W-parity (P) separates the model particles into the two classes: (i) W-particles that possess P = —1, and (ii)
Ordinary-particles that have P = +1. The first class includes a large portion of the new particles, while the second class is
dominated by the standard model particles.

the X gauge boson cannot be a dark matter. However, the neutral fermion (a combination of N, fields) or the
neutral complex scalar (a combination of 7§ and x? fields) can be dark matter whatever one of them is the lightest
wrong-lepton particle (LWP) in agreement with [11].

The fermion masses that are obtained from the Yukawa Lagrangian after the gauge symmetry breaking have been
presented in [2] in detail. Below, we will calculate the masses and physical states of the scalar and gauge boson sectors
when the A scale of the U(1)xy breaking is comparable to the w scale of the 3-3-1 breaking, which has been neglected
in [2]. Also, all the gauge interactions of fermions and scalars as well as the constraints on the new physics are derived.
We stress again that in the regime A > w the B — L and 3-3-1 symmetries decouple; whereas, when those scales
become comparable, the new physics associated with the B — L and that of the 3-3-1 model are correlated, possibly
happening at the TeV scale, to be all proved by the LHC or the ILC project.



III. SCALAR SECTOR

Since the W-parity is conserved, only the neutral scalar fields that are even under this parity symmetry can develop
the VEVs as given in (10). We expand the fields around these VEVs as

w Si+iAy +
([ vz (2 sy
n=m+n=0 |+ m |, p=m+r=| 5|+ Z5" | (16)
0 St s 0 Py
0 81 +iA]
V2 A S, +iA
x=0+xX=| 0 |+| x3 |, ¢=()+¢=—F7+""F7", (17)
W SatiAs V2 V2
V2 V2

where in each expansion the first term and last term are denoted as the VEVs and physical fields, respectively. Note
that Sy 234 and Ay 234 are W-even while those with primed signs, Sj ;3 and A} 5, are W-odd. There is no mixing
between the W-even and W-odd fields due to the W-parity conservation. On the other hand, the f parameter in
the scalar potential can be complex (the remaining parameters such as p?’s and \’s are all real). However, its phase
can be removed by redefining the fields 7, p, x appropriately. Consequently, the scalar potential conserves the C'P
symmetry. Assuming that the C'P symmetry is also conserved by the vacuum, the VEVs and f can simultaneously be
considered as the real parameters by this work. There is no mixing between the scalars (C'P-even) and pseudoscalars
(CP-0odd) due to the C'P conservation.

To find the mass spectra of the scalar fields, let us expand all the terms of the potential up to the second order
contributions of the fields:

w (') = (o) o) + () Tp' + 0T () + p'T0")

= 1 (”2+u52+pfpf +p§p:’?+sgg£>,
ws(x'x) = w3 (W; +wSs + x7 X3 + S12+A/122+S§+A?”>,
pi(n'n) = u3 (U;HLSl +ny s + S%+A%ZS§2+A;’2>,
wole) = ot (G +as+ SEA),

=
<
>,
&
(V)

[

At A?
A [4 + A%S? + A3S, + ?(Sz + A% + interaction] ,

F N2 [v* 2 a2 3 2 + — + - S5+ A3 . .
Mp'p)t = N\ vy + 0S5 +v°Sy +v* | pI p +p3 p3 + s -+ interaction | ,
- 4 S/Q A/? 52 AQ
/\2(XTX)2 = A % + w2S§ + w? S5 + w? <x2_x§r +=2 A4 ;_ 5+ 3) + interaction} ,
- 4 S2 4 A2 4 9§72 4 A2
)\3(77T77)2 = A3 UZ +u?S? +u3S; + u? <772_77;r +=2 A ; g+ ) +interaction} ,




M2w?  wo? Vw2 e S22 4 A2 4 62 4 A2
Mt () = | ——+ -8+ 52+vw5253+ 5 (Xz I 3)
w? S2 + A2 ]
+ 5 P1 py + p3 p3 + T + interaction| ,
-1}2’11,2 ’U/U2 2 7_ 52 +A2+S/2+Al2
Xs(pTp)(n'n) = As 1 +75 52"‘”“5152"‘ 5 (772 o+ : D) . 3)
U2 SQ + A |
+ -5 p1 P+ p3 ps + T + interaction| ,
'w2u2 w2 _7 52 +A2 —I—SZQ +Al2
/\6(XT)<)(77T77) = X¢ 1 + 751 + 753 + uwS153 + 5 (772 77;r L 1 5 3 3 )
_2 S/Q Al2 52 A2
+ % <X2+X2 + =2 ! ;_ i 3) + interaction] ,
At _ . :
M) (xTp) = ?(’UXQ + wp3 ) (wpd +vxd) + interaction,
Ag - . :
Xs(pin)(nfp) = ?(’UT]Q +upy )(upy + vny) + interaction,

w . u , U , w ) . .
XX (Tx) = Ao [§(S§ +iA%) + 5(51 — zA’l)} [E(S{ +iA)) + §(S§ — zAé)} + interaction,

Mol )(p'e) = o[+ 255 B sy (554)
; ( pipT + p3 ps + 52—12”42> + interaction} ,
M) (xTx) = { 2 S3+A Si+wASyS) + 2 <S4j2LAZ)
; < ; X2 _|_ s A/122+S3 + A%) + interaction] ,
Ai2(610)(n'm) = [ LAZ& + A g SituASiS+ 5 <S4 ;AZ)
4 ; <n;772— + 5t + At —;S A{f) + interaction} )
I Iy + B, = 1|2 ? VaSiH g (Sash— dads

—PiXz —P3X3) ﬁ (5183 — A1 Az — 5154 + Ay AYL)

—|—i (Slsg — A1 Ay — n;pf — n;'pl_) + interaction.
V2
The scalar potential that is summed of all the terms above can be rearranged as

V(P7 X5 ¢) = Vimin + Viinear + Vimass + Vinteraction (18)

where the interactions as stored in Vipteraction Need not to be explicitly obtained. The Vi, contains the terms that
are independent of the scalar fields,

02 w2 u2 A2 v Wt ut 2A4
Vmin*,u12+/12?+ﬂ33+ﬂ7+>\ +)\ +)\ +)\
v2w? v2u? ww? v2A2? A2w u2A2 UVW
A2 A2 Y A A2 A2, —
PN N N M A A



which contributes to the vacuum energy only. It does not affect to the physical processes.
The Viinear includes all the terms that linearly depend on the scalar fields,

1 1 2 1
Vinear = S1 uu% + \gu® + §A5uv2 + §A6uw2 + gfvw + §A12uA2

A
+8o |vpf 4+ A0® + )\4vw + )\5u v—|—£f +ﬂ M]

[ . A X6 A
+5; wu§+)\2w3+?4w02+ : +£f +i A2

1 1 1
+S4 ,u2A + AA3 + 5/\10’02[\ + 5)\11/\&)2 + 2)\12Au2:| . (19)

Because of the gauge invariance, the coefficients vanish,

vt + Mo 4 )\4vw + )xsu v+ ifqur “ZuA? =0, (20)
wu§+/\2w3+%wvz+)\2 +£f +— A% =0, (21)
uﬂ% + \gu® + %)\5uv2 + %)\6uw2 + gfvw + iAlguAQ = 0, (22)
w2+ AN+ %)\10@2 + %)\110.)2 + %)\muQ = 0, (23)

which are also the conditions of potential minimization,

ov_ov_ov_ov o
Ju v Oow  OA
The 3-3-1-1 gauge symmetry will be broken in the correct way and the potential bounded from below by imposing
u2 <0, uig’g <0, A >0, A 23>0, and other necessary conditions for A5, ...12. In this case, the equations of the
potential minimization above give an unique, nonzero solution for the VEVs (u v, w, A).

The Viass consists of all the terms in the potential that quadratically depend on the scalar fields. It can be
decomposed into,

charged S A S’ A’
Vinass = ‘/mass + Vmwss + Vmass + ‘/Inass + ‘/mass7 (25)

where the first term includes all the mass terms of charged scalars while the remaining terms belong to the neutral
scalars with each term for a distinct group of fields characterized by the two values, W- and C P- parities, as mentioned
before.

The mass spectrum of the charged scalars is obtained by

A A A
Va2 = x3xa (u% +how? + S 4 D + ;AQ)

1 1 1
035 <u§ +Agu® + S Asv? + S Aew? + 2A12A2>

_ _ 1 1 A
+(pf P + pip3) <u? + A0+ S Aw? + SAsu® + 210/\2> (26)

A

7 Ag o -
+5 (x5 +wps) (g +wpg) + T (ong + upy) (upl +vrgg)

_ _ w _ _
ffﬁ(pﬁxg +p3x3) — ﬁ(nz pf +n3p7).

From the potential minimization conditions, we extract p2, u3, 3 and substitute them into the above expression to



yield
)\7 fu _ _
ycharged - _ <—> vXq +w vxd + wpd
mass 9 \/ﬁvw ( X2 Ps3 )( X2 pS)
)\8 fw _ _
+ < - ) (vny +upy ) (vng +up)
2 2uv
A7 fu ) 5 o <)\8 Jw > 2 2vpr—
= (— - v+ wH H + (= — v} +u?)H; HY, 27
(- ) @ eanmag + (5 - 22 0+ )i @
where we have defined,
pE = DG ey e v bup (28)

Vot w?’ VuZ+02

The fields H. f, H g‘L by themselves are physical charged scalars with masses respectively given by

i = (A2 - f;w) A, ma, = (Az - \/fiwu) (" + o). (29)

£+
The field that is orthogonal to Hs, Gﬁ, = %7 has a zero mass and can be identified as the Goldstone boson of
the W gauge boson. Similarly, the orthogonal field to Hy, G}jE =

Goldstone boson of the new Y+ gauge boson.
For the neutral scalar fields, we start with the A group,

wxg: 7vp§:

VEer et is massless and can be identified as the

2 1 1 1 1
Vrfass = A% (lgi + 5)\3'“2 + Z)\E)'Uz + i)\Gwz + 4)\12A2>

2
ofpi Ly o 1o 15 Ao o
+A2<2+2)\10 +4/\4w —|—4)\5u +—4 vA

2
172 SN VDD ¥ S U B
A2 (2242 — — —wA 30
+3<2+22w+4v+4u+4w (30)
21 1 1 1

42 p L A2 4= 2 |+ 2 1 2
+ 4(2 +2)\ +4)\10U +4)\11w +4)\12U

fu fo fw
—=—A A3 — *=A1 A3 — —A A

NG 243 NG 143 2 142
3 f (vw uw %) (va1 +uwA2+uvA3)2

2v/2 Vu2o? + v2w? + u2w?
with the help of the potential minimization conditions. Therefore, we have a physical pseudo-scalar field with corre-
sponding mass,

(31)

u v w

A

vwA] + uwAs + uvAs 9 fo/row  ww  ww

Comm L (e ey )
Vo2 + 0202 + ulw? V2

If w,v,w > 0 we have f < 0 so that the squared mass is always positive. We realize that the Ay is massless and can

be identified as the Goldstone boson of the new neutral gauge boson C of U(1)y. The remaining massless fields are
orthogonal to A as follows

(2 v w

UA1 — UA2
N
Gy = —uv(vA; + uds) + w(u? + v2)A3. (33)
\/(u%z + v2w2 + u2w?)(u2 + v2)

Gy =

They are the Goldstone bosons of the neutral gauge bosons Z and Z’, respectively (where the Z is standard model
like while the Z’ is 3-3-1 model like).



10

For the A’ group, we have

2
’ 12 1 >\4 )\6 )\11
Vrrj?ass = Al12 (22+2)\2w2+4v2+4u2+4w[x2
2
(ks 1 2, M o As o Al o
+A3 (2 +2)\2w + 1Y + v + 4wA

v o Ag
+=A1A5 + —
\/i 1 3 4
2
_ L2 LS e ey (WAs ALY
2 2 \/5 uw \/u2 + OJ2
by using the minimization conditions. Hence, a physical W-odd pseudo-scalar and its mass follow

_ wAL —uA] 9 Ao 1 fo 9 9
= > " V3 (u® + w?). (34)

(WA —uA))?

Al

y myr =
vu? + w?

Similarly, for the S’ group, we obtain

/ 1/ 1 fo wSh +us)\
s _ A9 2 2 3 1
VmaSS72 (2 \/EUW) (’LL +w )( u2—|—w2> ) (35)
which yields a physical W-odd scalar with corresponding mass,
wS% + uSy A9 1 fo
S = 3 L 2 _ (29 _ 2 2
vt "\ T B )T

The remarks are given in order:

1. We see that the scalar S’ and pseudo-scalar A’ have the same mass. They can be identified as the real and
imaginary components of a physical neutral complex field:

S' A

1
H/O = _ U 0*+w 0 ,
\/i u2—|—w2( Xl 773)
with the mass
A 1 fo
2 9 2 2
== - —=— . 36
mg ( 9 \/§UW> ('LL +w ) ( )

2. The field that is orthogonal to H', G% = ﬁ(wx? —ung*), is massless and can be identified as the Goldstone
boson of the new neutral non-Hermitian gauge boson XV.

Finally, there remains the S group of the W-even, real scalar fields. Using the potential minimization conditions,

we have
VS ()\u21W)52+<)\1)21W)52+<)\w21w)52
mass WL Yo oR e )R R w )

1 1 1
+ (/\5U’U + \/ﬁfw> 5155 + (/\GUOJ + ﬁfv> 5155 + ()\4&11} + \/ifu> S5S3
+)\A2S§ + A12uAS154 + AovAS2Ss + A1wAS3S,
S
= Ls sy 8 s )Mz | 2 (37)
2 3 S1 S5 |
Sy
where
2A3u? — %f%’ Asu;) + ?fw Aeuw + ?fv A1ouA
M2 = Asuv + ﬁfw 2 \v° — Ef% Aqwv + ﬁfu A1ovA (39)

AeUw + %f’l} Agwv + %fu 2Aqw? — %f% AiwA
/\12uA )\101}/\ )\11&)/\ 2)\A2
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In [2], the physical states have been derived when the B — L breaking scale is large enough as the GUT one, for
example, so that the S4 is completely decoupled from the remaining three scalars of the 3-3-1 model. In this work
we consider a possibility of the B — L interactions that might happen at a TeV scale like those of the 3-3-1 model,
characterized by the w, f scales. Therefore, let us assume that the A is in the same order with the f, w and all are
sufficiently large in comparison to the weak scales u, v so that the new physics is safe [2], i.e.

Notice that all the physical scalar fields which have been found so far are new particles with the corresponding masses
given in the w or /| fw| scales.

The mass matrix (38) will provide a small eigenvalue as the mass of the standard model Higgs boson. Whereas,
the remaining eigenvalues will be large to be identified as the corresponding masses of the new neutral scalars. To see
this explicitly, it is appropriately to consider the leading order contributions of the mass matrix (38). Imposing (39)
and keeping only the terms that are proportional to (w, A, f)2, we have the result,

1 vw 1
A PR
Moo= | /v —BIY . 40
sho 0 0 20w? ApwA (40)
0 0 )\11&1/\ 2)\/\2

The 2 x 2 matrix at the first diagonal box gives a zero eigenvalue with corresponding eigenstate:

9 B uS7 + vSs

This state is identified as the standard model Higgs boson. The remaining eigenvalue is

m%, :—{/‘g (S+2)~e?, (42)

which corresponds to a new, heavy neutral scalar:

—0571 + uSsy
H = —. 43
! vu? 4+ v? (43)

The 2 x 2 matrix at the second diagonal box provides two heavy eigenstates with their masses respectively given in
the w scale,

Hy = cpSs+ 5,50 miy, = Xaw? + M2 — /M3t + (A — 20)w?A? + X2AL ~ 0,

Hy = —5,55+cpS1,  my, = daw” + AN + \/A§w4 + (A2 = 220)w?A2 + X244 ~ W
where the mixing angle is obtained by

_ )\uwA (44)

b2 M2~ \w?’

We have adopted the notations s, = sinx, ¢, = cosz, t, = tanz, and so forth, for any x angle like the ¢ and others
throughout this text.

We see that at the leading order, the standard model like Higgs boson has a vanishing mass. Hence, when considering
the next-to-leading order contribution, its mass gets generated to be small due to the perturbative expansion. In fact,
we can write the general mass matrix M2 in a new basis of the states (H, Hy, H», Hs). Since the mass of the
standard model like Higgs boson is much smaller than those of the new particles, the resulting mass matrix will have
a seesaw like form [18] that can transparently be diagonalized. Indeed, putting

S1 H u2u+v2 - u2v+v2 0 0

S oyl B v=| e e 00 |, (45)
S3 Hy 0 0 Cp —Sp

S4 HS 0 0 Sp  Cyp
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the mass matrix (38) in the new basis results

A B
M/QZUTMQU: 1x1 1x3 , 46
S s Bl s Csxs 1)
where
4 = 21)4)\1 +utds + utv? s
- u? + v? ’
uv[v2(2>\1—)\5)+u2(—2>\3+>\5)]
u2+v
BT — 5o A (02 A0t uMia) +eo (V2Fuvto?wlatuwis) (47)
= VuZ+o? ’
—\/ifs¢uv+c¢A(U2>\10+u2)\12)—sww(vz)\4+u2>\6)
Vu2 42

and C'is a 3 X 3 matrix with corresponding components given by

—V2f (u? +v?)2w + 4P (A 4+ Az — Xs)

Ci =
1 2uv(u? 4 v2) ’
Cry = Coy = 25,uvA(Ag — A12) + cg,[\/if(u2 — %) + 2uvw(Ag — g)]
2vVu? + v? ’
Ciy = Oy = \/ifs«,(—u2 + 0?) + 2uv[cy, A(A1g — Ai2) + Spw(—A1 + Ag)]
2v/u?2 + v? ’
Cop = 252AAZ + 20, (— ST A 2)
22 = 25, + 2¢,(— Wi + 5o,wWAA1 + cowA2),
_ 2 2 Juv 2 2
023 = 032 = (Ctp — 3@)WA)\11 + 2C¢S¢(m + AN —w )\2),
fsguv 2 92
Csy3 = — + 2c,A(cp AN — s,wA11) + 255w Mg, (48)

V2w

Because of —f ~ w ~ A > u ~ v, we achieve the seesaw form for MZ, where ||C|| ~ w? > ||B|| ~ uw > ||A]| ~ u?,
with [|A|| = /Tr(AT A) and so forth. Therefore, the standard model like Higgs boson obtains a mass given by the
seesaw formula [18],

odm?% = A— BCTIBT ~ O(u?,v?), (49)

which is realized at the weak scales in spite of the large scales w, A and f (see below). The standard model like Higgs
boson is given by

Hy
H+0H=H-BC™'| Hy |. (50)
Hj

The physical heavy scalars are given to be orthogonal to this light state with their masses negligibly changed in
comparison to the leading order values, respectively.
The mass of the standard model like Higgs boson can be approximated as

Asu? + AsuZo? + Aot f 2
2 _ 3 5 1 2 9 9
omy = 2( w2 + 02 +mo+m1w+m2w2>, (51)
where the mass parameters mg, my, mo are given by
1
= 2 4 2 2,2
= - —AfaAu” — A(A A
o ()\%1 — 4)\)\2)(1)2 + ’LL2) [ 122U ( eU” + AqU )
+ Mo (A det — 20100002 4+ A Aav?) 4+ Aov® (A1 Aeu® — Aohav® + A Agv?)] (52)
m? = — V2uv [()\11)\12 —2XM¢)u? + (A1pA11 — 2)\)\4),02] .
b (A2) — 4X\2) (u? + v?) ?
2\ 2,,2
"= ] (54)

T (A2, — A (w2 4 02)
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Because the quantity f/w is finite, the Higgs mass dm?% depends on only the weak scales u?, v? as stated. We will
evaluate the Higgs mass and assign dm?% = (125 GeV)? as measured by the LHC [19, 20]. For the purpose, let us
assume u = v, w = — f that leads to

om3 = (A3 + A5 + A1) u? +2m3 —2m? + 2m3 = M’ (55)

Here, )\ is a function of only the \’s couplings, which can easily be achieved with the help of (52), (53) and (54) for
the respective mg)m. In addition, we have u? +v? = (246 GeV)?, i.e. u = % GeV, that is given from the mass of the

_ 2 _ 2
W boson as shown below. Hence, we identify dm?, = A (% GeV) = (125 GeV)? that yields A = (122521\(5/5) ~ 0.5.
This is an expected value for the effective self-interacting scalar coupling.

In summary, we have the eleven Higgs bosons (H°, A°, H?,Q,Bv HfS, H'%%%) as well as the nine Goldstone bosons

corresponding to the nine massive gauge bosons (GIJ/EV, GY%, G(;(,O*7 G,jﬁ, GY%,, G%). Because of the constraints u,v <
w, A, —f, the standard model like Higgs boson (~ H) results to be light with the mass at the weak scales, whereas all
the new Higgs bosons are heavy with their masses at the w, A or —f scales. In calculating below, we will ignore the
mixing effects of the standard model Higgs boson H with the new particles H; 2 3 (where the mixing angles defined
by BC~! are typically proportional to % < 1 which is actually small). Therefore, we have the H, Hy, Hy, Hj as the
physical states found out. Denoting t3 = v/u and taking the effective limit u/w, v/w < 1, the physical scalar states
are related to the gauge states as follows

()= (2 2)(5) (@)=(22)(%)
() = (5 ) () (a)=(22)0r)

Hy ~ p3, Gy ~x2, Gx ~x1, H ~n3, Gz ~ A3, Go = Ay. (56)

As mentioned, the mixings of the standard model Higgs boson H with the new scalars H; 23 are proportional
to u/w where the proportional coefficients depend on the couplings of the scalar potential. Since the strengths of
the scalar self-couplings are mostly unknown, those coefficients are undefined too. Therefore, if the coefficients are
small as expected, the new physics effects via the mixings can be neglected, in similarity to the gauge boson sector
discussed below. Otherwise, it is important to note that the leading-order new-physics effects must include the
O({u,v}/{w, A, —f}) corrections to the couplings of the standard model Higgs boson due to the mixing with the new
scalars as well as the modifications of the H interactions to the new physics processes via those new scalars (Hi 23).
In this case, the mixing parameters as determined by BC~! have to be taken into account. However, it is also noted
that even for the proportional coefficients of order unity like a scalar self-coupling in the large strength regime, the
modifications to the standard model Higgs couplings are around |Ax| = u/w ~ 0.1 that easily satisfies the k; bounds
as presented in [1].

Let us remind the reader that apart from the H’ that will be identified as a viable dark matter candidate, the
remaining scalars in this model would be sufficiently heavy in order to obey the bounds coming from the muon
anomalous magnetic moment [21].

IV. GAUGE SECTOR

The gauge bosons obtain masses when the scalar fields develop the VEVs. Therefore, their mass Lagrangian is
given by

Lo = (D)) /(Dy(®)). (57)
<]
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Substituting the scalar multiplets 1, p, x and ¢ with their covariant derivative, gauge charges and VEVs as given
before, we get

g?u? As 2 2 2
L = (Agu - Tg —3ixBu+ 3tNCM> +2W W TH 42X X0
2,2 2
g<v Ag, 4 2 i o
+ 3 (—A3H+\/§+3tXBH+3tNC,L +2W, W L2y Y TR
202 24g, 2 4 2
+I= (— T gtx B 3tNC,L) + VY T 42X X O
L2 A2, (58)
where we have defined tx = 97", ty = QTN, and
Ay Fids «  Agy FiAs Agy FiAr
le: _ l‘ﬁ lL, X'B,O _ #\/5 #7 YH:F _ #\/5 P'. (59)
The mass Lagrangian can be rewritten as
[feauge 972( 2+U2) W+W— + ng (’U2 +w2) Y+y— + 972 (u2+w2) XO*XO
mass 4 4 4
As
1 A
+5 (A3 Ag B C) M? BS , (60)
C

where the Lorentz indices have been omitted and should be understood. The squared-mass matrix of the neutral
gauge bosons is found to be,

1 (u? 4+ 0?) ";\—/gz ,M M
2 | _tx(u 3+2u ) _tx(u ;2\2% +w?)) %tg((uQ + 4v? + w?) —%tXtN(zﬂ Z 200 4 w?))
el WO Byt - 200 +w?) i (4 0?4 4?4 9A%)

The non-Hermitian gauge bosons W+, X% and Y+ by themselves are physical fields with corresponding masses,

1 1 1
mly = R ), = R eR),  m = PR ). (61)
Because of the constraints u, v < w, we have my < mx ~ my. The W is identified as the standard model W boson,
which implies

u? +v? = (246 GeV)?. (62)

The X and Y fields are the new gauge bosons with the large masses as given in the w scale.
The neutral gauge bosons (43, As, B, C) mix via the mass matrix M?. It is easily checked that M? has a zero
eigenvalue with corresponding eigenstate,

V3 ( Ix )
m4y =0, A,=-——— (txAs, — —=Asg, +B, |, 63)
A w EEwTeR 17 SN Z (

which are independent of the VEVs and identified as those of the photon (notice that all the other eigenvalues of
M? are nonzero). The independence of the VEVs for the photon field and its mass is a consequence of the electric
charge conservation [22]. With this at hand, electromagnetic vertices can be calculated that result in the form
—eQ(f)fyf A,,, where the electromagnetic coupling constant is identified as e = gsy in which the sine of Weinberg’s
angle is given by [22]

_ Bty (64)

WS B a
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The photon field can be rewritten as

e 9 V39 @ gx’

which is identical to the electric charge operator expression in (2) if one replaces its generators by the corresponding
gauge bosons over couplings (namely, the @ is replaced by A, /e, the T; by A;,/g, and the X by B, /gx). Hence,
A,, can be achieved from @ that need not mention M?. The mass eigenstate A, depends on just As,, As, and B,
whereas the new gauge boson C,, does not give any contribution, which results from the electric charge conservation
too [22].

To identify the physical gauge bosons, we firstly rewrite the photon field in the form of

t t2
A= sywAs+cw (—\;VgAg—l—\/l—gVB), (66)

with the aid of tx = V3sw/\/3 — 4s%,. In the above expression, the combination in the parenthesis (---) is just
the field that is associated with the weak hyper-charge ¥ = f%TS + X. The standard model Z boson is therefore

identified as
\/3 V 3 ’

which is orthogonal to the A as usual. The 3-3-1 model Z’ boson, which is a new neutral one, is obtained to be
orthogonal to the field that is coupled to the hyper-charge Y as mentioned (thus it is orthogonal to both the A and

Z bosons),
Z’:\/l—@AertﬂB. (68)
3 V3

Hence, we can work in a new basis of the form (A4, Z, Z’, C), where the photon is a physical particle and decoupled
while the other fields Z, Z’ and C' mix themselves.

The mass matrix M? can be diagonalized via several steps. In the first step, we change the basis to:
(Ag, Ag, B7 C) — (A, Z, Z/7 C),

A, A 1 As, B
R (65)

A A SwW Cw 0 0
3 2
_sw swiw W1 - tw
S| 2], wn-= /3 V3 RO (69)
B Z ewy/1— 8 gy /1-f
C C W 3 oW 3 V3
0 0 0 1
In this new basis, the mass matrix M? becomes
0 0
M"? =UM*U, = (o A ) , (70)

where the 11 component is the zero mass of the photon which is decoupled, while the M/? is a 3 x 3 mass sub-matrix
of Z, Z' and C,

2 2 2
My Myz Mzc

2
g
MP=| m%, m% mbeo | = 5 X
2 2 2
Mzc Mzic Mg
(B+4t3) (u+0%) V342 ((3—2t% )u?—(3+4t% )v?) /34412 tn (u2—v?)
2(3+t%) 6(3+t%) 34/3+1%
V3443 ((3—2t5)u” —(3+4t% )v?)  (3—2t%)2u+(3+4t% )20 +4(3+t%)%w®  tn ((3—2t%)u+(34+4t2 )02 +4(3+t% )w?)
6(3+t%) 18(3+t%) 9¢/3+t%
3+4t2 t u2_1)2 92 2 2 4 2 2 4 2 2
v Xt ( ) tn ((B=2t5 )u+(3+4t % )v +4(3+t% Jw*) %t?\,(uZ + 02 4+ 4(w? + 9A2))

34/3+t% 9¢/3+t%

Because of the conditions, u,v < w, A, we have m%, m%,,, m2ZC < m%, mzz,c7 m2c. Hence, in the second step,
the mass matrix M'? (or M!?) can be diagonalized by using the seesaw formula [18] to separate the light state (Z)
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from the heavy states (Z’, C). We denote the new basis as (4, Z;, Z’, C) so that the A, Z; are physical fields and
decoupled while the rest mix,

;‘ ; 00 0
2| =l |, MP=UMPU=|0mE 0 |, (71)
C C 0 0 M

where M!'? is a 2 x 2 mass sub-matrix of the Z’, C heavy states, while my, is the mass of the Z; light state. By the
virtue of seesaw approximation, we have

1 0 O m2, m2 -1
elo 1 &) e=@iy m2ZC>( % ZQ'C) , (72)
0 —&T 1 mzc Mg
9 N 2 5 m2ZZ/ M/l2 ~ m2Z’ m2Z’C (73)
mzl = My m2ZC ) s — mzZ’C m% .

The £ is a two-component vector given by

VAR F3{3A%[(265% — 3)uP + (485 +3)v°] + 1R W (u? + 7))
B 4A2(13 + 3)%w?

&

e — 3 /4% + 3(u? +0v?) <1
T URA2(1% 433 %ty ’
which are suppressed at the leading order u,v < w,A. The Z;, Z’ and C fields are the standard model like, 3-3-1
model like and U(1)y like gauge bosons, respectively. To be concrete, we write 7y ~ Z — 172" — EC, 2/ ~ 7'+ &, Z
and C ~ C + & Z which differ from the Z, Z’ and C fields by the only small mixing terms, respectively.

Moreover, with the help of tx = v/3sy /\/3 — 4s},, we have

<1,

V3 =452, [v2 —copu?®  s% (u? + 02 52, u? +0?
& =— 1 W ;W + W( 5 ) R E = 7;’/[/ 5 - (74)
4y, w 9A ety A

We realize that the first term in & is just the mixing angle of Z-Z’ in the 3-3-1 model with right-handed neutrinos,
to ~ /3 — ds¥, (cowu? — v?)/(4cfyw?) [22], when A > w. With the aid of vZ = u? + v? = (246 GeV)? (that is the
weak scale and is fixed) as well as 0 < u?,v? < v2, the & parameter is bounded by

Boas {(UW)Q i (vwf] ce < V3 sy {_CQW (%w)? L S (vwﬂ 7 (75)

4cty, w 9 \A 4cty, 9 \A

where the second terms in the brackets are negligible since A 2 w. Therefore, the £ bounds as well as the &
parameter can be approximated as
35x103 <& <3x107%, & ~0.014 (1) (LW)2 ~ 1074, (76)
tn A

provided that s, ~0.231, ty ~ 1, A ~w and w > 3.198 TeV as given from the p-parameter below. With such small
values of the & o mixing parameters, their corrections to the couplings of the Z boson such as the well-measured
Z ff ones (due to the mixing with the new Z’, C gauge bosons) can be neglected [1]. [But, notice that they can be
changed due to the one-loop effects of Z’, C as well as of the non-Hermitian X, Y gauge bosons accompanied by the
corresponding new fermions, which subsequently give the constraints on their masses and the gy coupling. A detailed
study on this matter is out of the scope of this work and it should be published elsewhere]. Even, the modifications
of the Z interactions (due to the mixings) to the new physics processes via the Z’, C bosons are negligible, which will
be explicitly shown when some of those processes are mentioned at the end of this work. Therefore, except for an
evaluation of the mentioned p-parameter, we will use only the leading order terms below. In other words, the mixing
of the Z with the Z’, C bosons can be neglected so that mz, ~my, 7y ~ Z, Z' ~ 7' and C ~ C.

For the final step, it is easily to diagonalize M2 (or M!"?) to obtain the remaining two physical states, denoted by
Zy and Zp, such that

A A 100 O
Z | VA (010 O
z! o U3 Z2 ’ U3 B 00 Ce —S¢ ’
C ZN 00 85 Cg

M2 — U'?T]M”QU3 — diag(o, mQZl,mQZ27 mQZN) (77)
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The mixing angle and new masses are given by

44/3 + t5 tyw? (78)

tor ~
T (B4 12w — 412 (w2 + 9A2)’
2
my, =~ i’g(f&—i—tx w? + 4t3 (w? + 9A?) +\/ (3 + 1% )w? 4t?\,(w2+9A2))2—|—16(3+t§()t?\,w4),
(79)
2
my, o~ i’—g ( 3+ 15 )w? + 43 (w? + 9A?) — \/((3+t§()w2—4t?v(w2+9A2))2+16(3+t§()t?\,w4).
(80)

It is noteworthy that the mixing of the 3-3-1 model Z’ boson and U(1)y C boson is finite and may be large since
w ~ A. The Z; and Zy are heavy particles with the masses in the w scale.
In summary, the physical fields are related to the gauge states as

Az A
Ag | Z
sl=vl 2| (81)
C ZN
where
Sw cw 0 0
__Sw. swiw 054/1—@ —5¢ 1_@
U =UUsUs ~ U Us = V3 E— 8 5l (82)
Cw 1—7 —SW 1_TW Cgif 85%
0 O 85 Cg

The approximation above is given at the leading order {u?,v?}/{w? A?} < 1 and this means that the standard model
Z boson by itself is a physical field Z ~ Z; that does not mix with the new neutral gauge bosons, Z; and Zy.
The next-to-leading order term (€) gives a contribution to the p-parameter obtained by

p— "z = 1 E(m o) i (53)
C%szzl my — E(m% 4 mye)"

Here, notice that my, = cyymyz and m% ~ m%,, ~ m%s. To have a numerical value, let us put « = v = (246/v/2)
GeV and w = A. Hence, we get the deviation as

2

2 t4 2
Sswlw u” 0.236—, (84)
w

18mar w?
with the aid of s, = 0.231, a = 1/128 [1]. From the experimental data Ap < 0.0007 [1], we have u/w < 0.0544 or

w > 3.198 TeV (provided that u = 246/v/2 GeV as mentioned). Therefore, the value of w results in the TeV scale as
expected.

Ap=p—1=~

V. INTERACTIONS
A. Fermion—gauge boson interaction

The interactions of fermions with gauge bosons are derived from the Lagrangian,
£ferrnion = \T’W”DM‘I’7 (85)

where U runs on all the fermion multiplets of the model. The covariant derivative as defined in (12) can be rewritten
as D, = 0,,+1i9sG,,+igP,, where G, = t;G;, and P, = T; A;, +tx X B,,+tnNC), (note that tx = gx /g, t~v = gn/g).
Expanding the Lagrangian we find,

‘Cfermion = ‘i’W”au‘I’ - gs@’)/MG/t\Ij - Q‘I”Y”PM‘I’, (86)
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where the first term is kinematic whereas the last two give rise to the strong, electroweak and B — L interactions of
the fermions.

Notice that the SU(3)¢ generators, t;, equal to 0 for leptons and )‘7 for quarks ¢, where ¢ indicates to all the quarks
of the model such as ¢ = u, d, ¢, s, t, b, D;2, U. Hence, the interactions of gluons with fermions as given by the
second term of (86) yield

A

N Y
5 4LGin = 9501V 5 arGip = =950 504G, (87)

—gs UV GV = —g.qy" 5

which takes the form as usual (only the colored particles have the strong interactions).
Let us separate P = P 4+ PNC_ where

PCC = TA] +T5A0 +ThAs +T5A5 + TgAg + T7A7,
PNC = TyA; + TgAg +tx XB + tyNC. (88)

Hence, the last term of (86) can be rewritten as
—gUyH P = —gUyH POCT — gyt PYCW. (89)

Here, the first term provides the interactions of the non-Hermitian gauge bosons W¥, X%0%* ‘and Y+ with the fermions,
while the last term leads to the interactions of the neutral gauge bosons A, Z;, Zs, and Zy with the fermions.
Substituting the gauge states from (59) into P°C, we get

1 1 1
PC = ——TtWt4 —=UTX"+ —
V2 V2 V2

where the raising and lowering operators are defined as

VY~ + He., (90)

T =T +iTy, UT=T,+iTy, VT=Ts+ily. (91)

Notice that T%, U* and V* vanish for the right-handed fermion singlets. Therefore, the interactions of the non-
Hermitian gauge bosons with fermions are obtained by

— g — _
—gU'PIOT = —ﬁ\Iw“(T+W,j+U+X2+V+YH )W + H.c.
g = 9 9 3 -
= —Z U AT O W — U AU U, X0 — =0 A"V, Y + He.
V2 LY LWy NG LY LAy, V2 LY L,

= W+ X0+ Y, + He, (92)

where the currents as associated with the corresponding non-Hermitian gauge bosons are given by

J = —%\I'LV“T+\I/L = —% (Dary"ear + Gar¥"dar) ,

JY = LGty = L (Zary"N§p + 3" UL — Doy dar) (93)
V2 V2

J = _i‘i’L'YHVJF\IJL =L (EazV"Ng + d3py* UL + Dary"uar) -

V2 V2

The interactions of the W boson are similar to those of the standard model, while the new interactions with the X
and Y bosons are like those of the ordinary 3-3-1 model.

Substituting the gauge states as given by (81) into PN, we have

1
PYC = sWQA#+a(Tgfs%V ) Z,,

Loy

3 452 2
Ce < il Ts + Sw X) + SgCWtNN

1 [3—4s%, s
— | = T; X tNN
+CW[ 55( 3 T Boas, ) v

VAN (94)
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For this expression, we have used tx = \/gsw/\/?) — 43%,‘, and Q = T3 — Tg/\/g + X. The interactions of the neutral
gauge bosons with fermions are given by

_ - 9 g
—gUy* PNV = —gsw UFQUA, — J‘I’V” (T3 = swQ) Y2,
g = 3— 48%/‘/ 3%}[/
— LGy e Ts + X | +seewtnN| W2y,
cw 3 3—4sy,
g - 3 —4s?, sty
77\117# —s¢ Ts + X |+ CgCWtNN \IIZN/L' (95)

Three remarks are in order

1. With the help of e = gsy, the interactions of photon with fermions take the normal form
—gsw U QUA, = —eQ(f) fA" fAy, (96)
where f indicates to any fermion of the model.

2. The interactions of Z with fermions can be rewritten as

—i‘i’v” (5 — syQ) ¥Z, = —% {fer" [Ts(fr) — siyQ(fL)] fr
+ /R [=swwQ(fr)] fr} Zu,
= 5 I [ () = A ()] 1 2 (97)
1%
where
g0 (f) = Ts(fr) — 253 Q(f),  94(f) = T5(fr). (98)

Therefore, the interactions of Z take the normal form. For a convenience in reading, the couplings of Z with
fermions are given in Table II.

f gv(f) |9a(f)
” T T

< T 2 2 21
€q —3 + 2SW —3
Ng 0 0
Ge %1_ §25‘2g %1
D, %s‘%v 0

TABLE II: The couplings of Z with fermions.

3. It is noteworthy that the interactions of Zs with fermions are identical to those of Zy if one makes a replacement
in the Zj interactions by ¢ — —s¢, s¢ — c¢, and vice versa. Thus, we need only to obtain the interactions of
either Z5 or Zp, the remainders are straightforward.

The interactions of Zy and Zy with fermions can respectively be rewritten in a common form like that of Z.
Therefore, the last two terms of (95) yield

—ﬁﬁ“ {952 (f) - g3 (f)%] f 22— %fw“ [95N (f) = giN(f)vs} FZNp, (99)
where
_ cesty x/§<:gc%v 2seewtn

Z3 _

2
97 1) = 9 () + 22 Q)+ 2seewtn (B = L)1),
92N = iy (ce = —se, se = ce). (100)

The interactions of Zs and Zy with fermions are listed in Table IIT and IV, respectively.

)Ts(fL),
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f 9> (f) 92> (f)

CECIW 5 CECoaW 1

Vo | — 72— — 3S¢cwin ——— + 3Secwin
2,/37452W 3 2¢/3—4s%, 3

ce(1—4syy) 5 ce

1
— 3S¢cwin ——— + 3ScCcwiN
2,/372435‘, 3 2\/37425’;’” 3
N, &—i—%wwm _&_%%CWT?N
\/3-4s%, 3 \/3—4s%, 3

€a

65(3785%‘/) 1 ce 1

U ey -eseoni + gSgCWtN s A gS&CWtN
6\/3—4S2W 24/3—4sy,

us ce (3+2s7y) cecaw

1
secwt — == 4 2seewt
6,73_45%-% cCwin 2/73_4S%}V+5§WN
(3—2s%,) 1 cecaw 1
Ao | =200 4 Loiopty |[——22W _ _ lg.cpt
a 6/73_48?/‘/+3§WN N 3SeCcwin
c 3—452 c 1
ds ce/3 sy + seewin | ———= + 3S5ccwt
5 3 = 3Secwin
2./3—4SW

U ,MJFQS&thN ,ﬂ 728§thN
2 2 3
31/3—4;SW ‘/3_24SW
D ce(3=5syy) 2 ceciy
«@

2
— Zscewt —=W_ 4 Zgcewt
3¢/3-4s3, 3oEEWEN \/3-4s2, 3OLEWEN

TABLE III: The couplings of Z» with fermions

I ) 93"
— EC2W _ 5 _ £2W 1
Vo | 5oy, 3COWIN [T, Tateowly
e 35(1—45%”) S¢
o | =2

5 1
— 3CeCWiIN | ——F——= + zCeCwiN
P 3 P) 3
21/3—24sw 2‘/3;45"‘/
__s¢cw 2 S¢Cw _ 2
N, mae T scecwin A sCeCwin
W W

p)
s¢(3—8siy) 1 S¢ 1
U -+ 7C§th1\r 7C§CWtN
/ 2 3 / 2 3
6 3—45W 2 3—4sW
w ‘65(3+25%V) SgCaw
3 | — ==

1
+ cecwt ————— 4 zcecwt
61/3—4s2, cEWEN 2¢/3-4s%, 3CECWEN
d .95(3—23%,‘/) sgcow
«

1 1
+ zceewt —=2 _ — Sceewt
64/3—4s%, 3CECWEN 24/3-4s%, 3CECWEN

3—4s2 s 1

d _55\/7‘” ceewin |——=f 4 Lo oot
3 5 + ceewin 2/73745%‘/+3§WN
U 55(377.9%‘/) 55(;%‘,

2cecwt 5w 2cewt
=T + 2cecwin Boiss, 3 cCWIN
55(3755%‘/) 555%‘,
D, | —=5—

2 2
sceewitn | —————= + Zcecwt
3¢/3—4s%, 3% N \/3-4s3, 3 ¢ N

TABLE IV: The couplings of Zx with fermions

B. Scalar—gauge boson interaction

The interactions of gauge bosons with scalars arise from
Lecalar = (D#(I))T(DM(I)), (101)

where ® runs on all the scalar multiplets of the model. From Egs. (16) and (17), ® possesses a common form
® = (®) + ®’. Moreover, the covariant derivative has the form D, = 0, + igP, = 0, + ig(PEC + P}fc) (see
the previous subsection for details). Notice that the strong interaction vanishes because the scalars are colorless.
Substituting all those into the Lagrangian, we have

Locatar = (0"®")1(9,®") + [ig(0"®") (P(®)) + H.c.] + g°(®) PP, (D)
+ [ig(0"@")!(P,®") + H.c] + [¢*(®)P"P,® + H.c] + ¢°®''P*P, 2. (102)

The terms in the first line are respectively realized as the kinematic, scalar-gauge mixing and mass terms which are
not relevant to this analysis. The second line includes all the interactions of three and four fields among the scalars
and gauge bosons that we are interested in the investigation.

To calculate the interactions, we need to present ® and P, in terms of the physical fields. Indeed, the gauge part
takes the form P, = PEC + P}L\IC, where its terms have already been obtained by (90) and (94), respectively. On the
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other hand, the physical scalars are related to the gauge states by (56). Let us work in a basis that all the Goldstone
bosons are gauged away. In this unitary gauge, the scalar multiplets are given by

% %(C@H — 85H1 + 255./4) 0 051{5+
n=1[0 |+ sgHy o=\ 5 |+ | JslseH +csHi+icgA) |,
0 H' 0 Hf
0 0
A H. H
v=[ o0 |+ 0 . b=y SpHa + Colls (103)
2 L5 (cpHa — 5, Hy) V2 V2

Notice that in each expansion above for the multiplet ® =7, p, x, ¢, the first term is identified to the (®) while the

second term is the ®" with the physical fields explicitly displayed. The denotations for the scalar multiplets including

the gauge bosons in this unitary gauge have conveniently been retained unchanged which should be understood.
The interactions of one gauge boson with two scalars arise from

ig(0"®")!(P,®") + H.c. = ig(0"®" ) (PI°®") + ig(0"®")! (PN°®') + H.c. (104)

>
Substituting all the known multiplets into this expression we have Table V and VI. Let us note that A9 B =
A(0B) — (0A)B is frequently used.

Vertex Coupling Vertex Coupling
= =
WiHS o H| =Y \wiHS Al g

.2 2
S 1983 _<z 19Sp
YFH* O H | — YrH 9*H| — =22
14 5 \/i 14 4 2
<= <~
YiHy oy | R v rA|

Ay ; Apng .
XpHF O Hy | D2 XTI |
oy | SR XA | 22

Ay
X H' 0

TABLE V: The interactions of a non-Hermitian gauge boson with two scalars.

Vertex Coupling Vertex Coupling

A HT 9 Hy ie A H O H; ie
ZHHI?”H; _% ZMH;?HHS* igf:iQwW

2, A0 Hy Bew Zou I, 9+ A [‘;ﬁc(j\;ﬂ:é) INsecan )
ZQ;LHI?HHZ ig(ﬁ%%%v tN;ﬁ) ZQHHE,_?”H;' i [c;c(:f\;zz_v;/:;i) + th§c2B]
ZopH' 0 FH'™ _ig(—Swee INse T H O~ 9528 cwce 20N e
InpHOVHT | ig( it + 25%) |y O HT figl - St + ]
ZnuH'OH” = 5| 2w HO A | TR N
ZNMH1<5>"A g[igsf:;f/;,cjzgf) thgcw}

TABLE VI: The interactions of a neutral gauge boson with two scalars.

The interactions of one scalar with two gauge bosons are given by
G (®)PHP,® + Hee. = g*(®)PrPICd + g*(@)(PCO*PYC + PNOrPIC)d!
+9*(®)PN*PYCD + H.c. (105)

These interactions are listed in Table VII, VIII and IX corresponding to the terms in the r.h.s., respectively.
The interactions of two scalars and two gauge bosons are derived from

g2<I>/TP“PM(I>/ — g2(I)/TPCCuPSC(I)/ + 92(1)/‘[' (PCCMPEL\IC + PNC;J,PEC)(I)/ + 92@/TPNCMP£L\IC(I)/, (106)
which result in Table X, XI, XII and XIII, respectively.



Vertex Coupling Vertex |Coupling
HXOX" | 2fe, [ HXOX™ | s,
HzY "Y'~ 5fcp | HsY'TY™ | —%2s,
Hwrw— | SV gyoxos | gtu

H;y WX 2?35 H XOX0 | gy
HY* Y~ Ty | Y'Y T | e
Hy xOy+ |2 o L prepy—y+ | 2a

22

TABLE VII: The interactions of a scalar with two non-Hermitian gauge bosons.

Vertex Coupling
HIW™Z2 | gPuss( 255 + Nty
— cw s 2t
HIW™Zn g2u55(—ﬁ+%)
0 2y
HXZ . 49CW
0 u c 2t
H' X2 |58 (=g o T 730%0)
H' X7 927u( s¢ 4+ %N, )
Nl T2 ey faasy, 3 8
HyYTA 9z
2
HyY'Z — (1 + 2siy)
—— ﬁ (1—2cow )ee 2t se
H, Y™ 2, 2 [2cw\/3—4s‘2/v .
—v+ 9271, _ (1—2cow)se 2tnyce
H Y Zn | 52| 2w J31s + =53]

TABLE VIII: The interactions of a scalar with a non-Hermitian gauge boson and a neutral gauge boson.

VI. NEW PHYSICS EFFECTS AND CONSTRAINTS
A. Dark matter: Complex scalar H’

The spectrum of scalar particles in the model contains an electrically-neutral particle H’ that is odd under the
W-parity. Because the W-parity symmetry is exact and unbroken by the VEVs, the H’ is stabilized that cannot
decay if it is the lightest particle among the W-particles. Under this regime we obtain the relic density of the H' at
present day and derive some constraints on its mass. Such scalar is within the context of the so-called Higgs portal
which has been intensively exploited in the literature [23, 24] due to its interaction with the standard model Higgs
boson via the scalar potential regime. We will show that the H' can be a viable dark matter which yields the right
abundance (Qh? = 0.11 — 0.12) as well as obeying the direct detection bounds [37].

In the early universe, the H’' was in thermal equilibrium with the standard model particles. As the universe
expanded and cooled down, it reaches a point where the temperature is roughly equal to the H' mass, preventing the
H’ particles to be produced from the annihilation of the standard model particles, and only the annihilations between
the H' particles take place. However, as the universe keeps expanding, there is a point where the H' particles can
no longer annihilate themselves into the standard model particles, the so-called freeze-out. Then the H’ leftovers
from the freeze-out episode populate the universe today. In order to accurately find the relic density of a dark matter
particle one would need to solve the Boltzmann equation [25] as we will do for the fermion dark matter case. However,
since the H’ is a scalar dark matter there are only s-wave contributions to the annihilation cross-section and thus the
abundance can be approximated as

(107)

Here, the (o) is the thermal average over the cross-section for two H’ annihilation into the standard model particles
multiplied by the relative velocity between the two H’ particles.

For the dark matter masses below the mg /2 the Higgs portal is quite constrained as discussed in Refs. [23, 24].
For the dark matter masses larger than the Higgs mass the annihilation channel H'H' — HH plays a major role in
determining the abundance. Therefore, we will focus on the Higgs portal below in order to estimate the abundance
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"H]SB(M/C#T%V + %ng)(m + Hree)]
H\Z327Z5 gz[fus@(zcwc\z/%w + Wse) + vcdm N s¢)?]
HiZnZNn gz[—us/a(ﬁ + D) + vcﬂﬁ + Dce)?]
H\ZZ —%[usﬁ(%+%35)+vcﬁ(m+%55)1
H\ZZn —f?[us/;(%wijiswj%%v+%cg)+vcﬁ(%w\/j;ﬁ+ Fee)]
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+Ucﬂ(m + tTNsS)(ZcW\;;iT%V + e

TABLE IX: The interactions of a scalar with two neutral gauge bosons.

Vertex Coupling Vertex Coupling
XX HoH, | 22 | XOXO" HsHs %si
XOX°* Hy H J; s2p | YIY H:Hy | %62
Y'Y HyHs | %53 | YYY T HyHs —és%

WHW - H H; % XX HiHy | L2
XOXOH{H; |4 |YTYHSH; %
WIWSIHH | % |WIWSHH | o
WIW-AA | % | YYY HH gs?g
YY" HiH; %c@ YYYTHH, | 4sas
YTy~ AA ey | XOYYHSH | Drsag
XYt HS H,y %02,@ XV+H; A i%cw
WYY H{Hy | %Gcg | WXPHHY | frss
WoXCH HY | s | W XCAH] | 5%cp
X"X°HH | 2¢ | X X°H,H, %5%
XUXOHH: | ~4sa | XOX°AA | %8
YYY HFH; | £s% | XOX°HCH'| L
vivEeE |2 | Wy HE | e
2 2vg P
WAYTHH' | =gl | WY AR | Sss
W X°HIH | 2

TABLE X: The interactions of two non-Hermitian gauge bosons and two scalars.
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TABLE XI: The interactions of two scalars with a non-Hermitian gauge boson and a neutral gauge boson.
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and derive a bound on the scalar dark matter candidate. That being said, the interaction of H' with H is obtained

as follows

As
Lo = (7 +a

2

We have the scattering amplitude for H'H' — HH,

) H*H™H'.

iM(H'H' — HH) = i(\; + 2)3) = i)

(108)

(109)

It is also noted that there may be other contributions to A’ as mediated by the Higgs H, the new scalars and new
gauge bosons. However, such corrections are subleading with the assumption that the A coupling is in order of unity
as well as the H' is heavy enough. Therefore, the differential cross-section in the center-of-mass frame is given by

do  |M(H'H — HH)|?|k

aQ 6472s|p]

1
ot

(110)

where the H’ has an energy and momentum H'(FE,p) and thus H™*(E, —p). Also, the two out-going Higgs bosons
possess H(E, k) and H(E,—k). The coefficient 1 is due to the creation of the two identical particles. We have

Vs =2E.

From the experimental side, the dark matter is non-relativistic (v ~ 1073¢). We approximate

mpg

F=—
Vv1—0v?

~ mH’(

2

1
1+ —v?),

(111)
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TABLE XII: The interactions of two scalars with two neutral gauge bosons.

where the v is the velocity of the dark matter given in natural units, v < 1. We have also

s =4F? ~4m?2,(1+0%), [pl =

The Einstein relation implies
k| =

~

mgrv

V1—12 2
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m?2 v2 m2
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TABLE XIII: The interactions of two scalars with two neutral gauge bosons (continued).

Therefore, the differential cross-section takes the form

It is clear that the r.h.s is independent of the solid angle, where d2 = dpsin 8df. Hence, integrating out over the total

space is simply multiplied by 47, ¢ = f g—ng = 4m¢Z. Because the relative velocity between the two dark matters is

Vrel = 20, we find out

~ 4m.2v

2 v? _ mi]
do A M (1 T3 2m?,

do
d

dQ ~ 64n24m2, (1 4+ v2)mpy 20

OUrel

2
N (1 + % - %%,) N2l ) V2 m
64m24m?2,, (1 +v2)mp 20~ 641 m%, 2 2m%,
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Taking the thermal average over both sides, we get

A2 q 2 2
(TVper) ~ L (0 ) (116)
64w miy, 2 2myy,
Notice that (v?) = % and xp = mT—’;' ~ 20 is given at the freeze-out temperature [25]. As aforementioned, we are in
the regime m?%, < m#%, thus
a  \2 1.328 TeV \ >
pel) > [(———) N[ ———) . 117
(ovrel) (150 GeV) ( M ) (117)

The relic density of the dark matter (H') satisfies the Boltzmann equation with the solution as given by Qg h? ~

0-Lpb ~ 0.11. It follows (ovye;) ~ 1 pb. Since (ﬁf ~ 1 pb, we get

(ovret) —

2

\2 (1.328 TeV) ~1, (118)
mpg

which leads to the condition for the dark matter H' mass,
mpy ~ XN x 1.328 TeV. (119)

To conclude, the H' is a dark matter if it has a mass mpys ~ 1.328 TeV, provided that A’ ~ 1. In the context of the
Higgs portal, for the couplings of order unity the direct detection bounds demand the dark matter masses of order of
TeV (see Refs. [23, 24]). Therefore, this scalar is a viable dark matter candidate for providing the right abundance and
obeying the direct detection bounds simultaneously. Hereunder, we will focus our attention on the neutral fermion of
the model which is a natural dark matter candidate because it can be easily chosen to be the lightest particle among
the W-odd particles under the parity symmetry discussed previously.

B. Dark matter: Dirac vs Majorana fermion

Among the neutral fermions, N,, the lightest one will be denoted as N, which should not be confused with the
U(1)n charge as well as the subscripts of this charge to the Zn gauge boson, the gy gauge coupling and the ty
parameter. The neutrino and charged lepton that directly couple to this neutral fermion (V) via the X and Y gauge
bosons are defined by v and [, respectively. There remain two other flavors of the neutrinos and charged leptons to be
put as v, and [, respectively. In this section we will not dwell on unnecessary details regarding the abundance and
direct detection computation. Although we would like to show in Fig.1 the diagrams that contribute the abundance
and direct detection signals of the fermion candidate N. Surely, the diagram that contributes to the direct detection
signal is actually the t-channel diagram of Fig. 1 right panel.

v, I N v, I
ZF
X, Y >\W‘fbf\,\<
v, It N v, I

FIG. 1: Diagrams that contribute to the abundance of the neutral fermion. The neutral fermion scattering off nuclei diagram
can be immediately found because it is just the t-channel of the right panel, mediated by the Z’'-type gauge bosons (Z» and
Zn). The Z3 mediated processes are the most relevant ones though, as we shall see further.

s Vs los g0 £

o

sV IE, g, H

As explicitly shown at the end of Subsection VIE, the modifications to the couplings of the Z and Z; y gauge
bosons with fermions due to the mixing effects (Z with Z5 n) are so small that can be neglected by this analysis.
Similarly, the modifications to the Zy yZH couplings due to those mixings as well as the neutral scalar mixings (H
with Hi 2 3) are negligible.



28

In addition, it is well-known that the interactions of Z; and Zy are exchangeable which are only differed by a
replacement (ce — —s¢; ¢ — c¢), respectively. Therefore, given that these massive gauge bosons (Z; n) are active
particles (i.e. their scales and couplings are equivalent), they play quite the same role in new physical processes (some
of these can also be seen obviously in the subsequent subsections). Hence, to keep a simplicity we might consider one
particle (Z3) to be active that dominantly sets the dark matter observables while the other one (Zy) almost decouples
(which gives negligible contributions). For this aim, we firstly assume A > w but not so much larger than the w so
that our postulate of the A scale, that is comparable to w, is unbroken (still correlated). Hence, choose A = 10 TeV
and vary w below this value so that 0.1 < w/A < 1 (detailedly shown in the cases below). Besides the w and A as
determined, the Zy y masses as well as their mixing angle () still depend on their gauge couplings, respectively. The
g, gx were fixed via the electromagnetic coupling e and the Weinberg angle, whereas the gy is unknown. But, we

2
could demand ay = i—’; < 1 or |gn| < 24/ so that this interaction to be perturbative. Without loss of generality,
we set 0 < ty < 2¢/7/g = j/—% ~ 5.43. When ty is large, ty < 5.43, we have mz, > myz, and the mixing is so

w? o _0.146 w?
- tn A2

CW.
3y/3—4s2, tn A

of the fermion candidate as a function of its mass (my), and ty = 5.43 is taken into account. Notice that the dark

small, tor ~ — < 1, as given from (78). This is the case considered for the relic density

2
matter annihilation is via s-channels mediated by Z; . The contribution of Z; is like #, while that of Zy is
Z3

2 2
s_fyflVQZ ~ — ng ~ —4 where s = 4m3 ~ m7, < my . Therefore, the Zy gives a smaller contribution of w?/A?

order which almost vanishes, whereas the relic density is sensitive to the Zs.
Provided that the relic density of the dark matter gets the right value, we consider both the contributions of Z5 .
This is done by varying 0 < ¢y < 5.43, and respectively —m/2 < £ < 0 as derived from (78). When ¢ty < 5.43, the

Z5 dominates the annihilation as given above. But, when ¢ty is decreased to tny ~ #K ~ 0.219% or £ ~ —7/4,
—152,

which is the pole of t2¢ as obtained from (78), the mz, becomes comparable to mz, as well as the Z, and Zy possess
the equivalent gauge couplings due to the large mixing. In this case, the Z; and Zy bosons simultaneously give
dominant contributions to the dark matter annihilation despite the fact that w < A. Finally, when ¢y approximates
zero, ty ~ 0, the Zxn boson governs the annihilation cross-section, while the contribution of Z, is negligible. The
regime that the Z dominantly contributes to the dark matter annihilation is very narrow since it is bounded by the
maximal mixing value at ty ~ 0.219w/A which is close to zero due to w < A. On the other hand, the regime that the
Z5 dominates the dark matter annihilation is mostly given in the total ¢x-range. This is the reason why the Z, was
predicted to govern the dark matter observables while the Zy is almost neglected, provided that w < A. It is also clear
from all the above analysis that the Zs and Zy can be large mixing in spite of small w/A, given that ¢y ~ 0.219w/A.

Vice versa, the large regime ty < 5.43 implies that those gauge bosons can slightly mix to¢ ~ _0.t1];16 X—z < 1 even if

w/A is close to one. Below, we will display the detailed computations for all the cases mentioned.

In case the candidate IV is a Dirac fermion, it has both vector and axial-vector couplings with the neutral gauge
bosons. The abundance is shown in Fig. 2. [In this figure and the following ones, the w is sometimes denoted as
w instead that should not be confused]. It is clear from Fig. 2 that the gauge boson Z; overwhelms the remaining
annihilation channels in agreement with Ref. [10], and the resonance at the my,/2 is crucial in determining the
abundance. Moreover, we see that the mass region 100 — 200 GeV for w = 3 TeV, 100 — 500 GeV for w = 5 TeV,
or 100 — 1000 GeV for w = 7 TeV provides the right abundance. Additionally, we exhibit in the left panel of Fig.
3 the region of the parameter space cos(§) x the neutral fermion mass that yields the right abundance, where ¢ is
the Z5 and Zx mixing angle. When this angle goes to zero the coupling Zs-quarks decreases and for this reason the
scattering cross section rapidly decreases as shown in the right panel of Fig. 3. There, and throughout this work
we let cosine of this mixing angle free to float from zero to unity. [Correspondingly, the £ (¢x) run from —7/2 (0)
to 0 (5.43)]. As for the Majorana case, the overall abundance is enhanced and hence we find a larger region of the
parameter space that yields the right abundance as can seen in Fig. 4.

As for the direct detection signal, the Dirac fermion dark matter candidates give rise to spin-independent (vector)
and spin-dependent (axial-vector) scattering cross-sections. But, due to the A? enhancement that is typical of heavy
targets used in direct detection experiments, the spin-independent bounds are the most stringent ones. One can see
in Fig. 3. On the other hand, the Majorana fermions have zero vector current. This is because the current of a
fermion is equal to the current of an anti-fermion, but if one applies the Majorana condition (¢ = 4¢) one find that
the vector current must vanish (which has also been used for the abundance computation aforementioned). Therefore,
only the spin-dependent bounds apply. In Fig. 5 we show those bounds. The LUX collaboration has not reported
their spin-dependent bounds yet, so the strongest constraints come from XENON100 [26]. One should conclude from
Fig. 5 that the XENON100 bounds are quite loose for the Majorana fermion.
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FIG. 2: Abundance of the Dirac fermion N as a function of its mass for different scales of the symmetry breaking. The shaded
region is excluded for inducing the WIMP decay such as N — Xwv. One can clearly see that the Z> resonance plays a major
role in the annihilation computation. See text for more detail.
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FIG. 3: Left: Mixing angle x fermion mass plane which yields the right abundance for a Dirac fermion. The discontinuity
in the plots has to do with the Z2 resonance that pushes down the overall abundance. Right: Spin-independent scattering
cross-section in terms of the Dirac fermion mass for different values of symmetry breaking. One can easily conclude that the
current LUX bounds require w 2 5 TeV. We have let the mixing angle £ free to float in our analyses. As the mixing angle goes
to zero (cos& — 1) the coupling Z2-quarks decreases as seen from Table V.
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FIG. 4: Abundance of the Majorana fermion N as a function of its mass for different scales of the symmetry breaking. The
shaded region is excluded for inducing the WIMP decay such as N — Xv. One can clearly see that the Z2 resonance plays a
major role in the annihilation computation. See text for more detail.

C. Monojet and dijet bounds

Monojet and dijet resonances have been searched at Tevatron, ATLAS and CMS with null results so far. Such
signals have been intensively exploited in the literature. In particular, the dijet bounds are neither sensitive to the
dark matter mass nor to the Zs-dark matter couplings, but on the other hand it is quite sensitive to the Zs-quarks
couplings. In Ref. [27] lower bounds namely My ~ 1.7 TeV have been found under the assumption that the Z’
boson couples similarly to the standard model Z boson and for the dark matter masses smaller than 500 GeV. One
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FIG. 5: Left: Mixing angle x fermion mass plane which yields the right abundance for a Majorana fermion. Right: Spin-
dependent scattering cross section in terms of the Majorana fermion mass for different values of the symmetry breaking. One
can easily conclude that the current XENON100 bounds are rather loose.

might notice in fact that the Zs gauge boson couples similarly to the Z boson. Therefore, the bounds found in Ref.
[27] apply here up to some extent since the couplings are not precisely identical. That being said, the result shown
in the leftmost panel of Fig. 2 might be in tension with the existing dijet bounds. The remaining plots do obey the
dijet bounds since they are obtained at the Z; masses greater than 1.7 TeV. It is important to keep in mind that
the collider bounds derived from simplified models are more comprehensive than the ones using an effective operator
approach, because the production cross-sections using the effective operator either over-estimate or under-estimate
the collider bounds as discussed in Refs. [28, 29]. Concerning the monojet bounds, it has been shown that the current
direct detection limits coming from LUX are typically more stringent. Therefore, we will not refer to the monojet
bounds hereafter.

D. FCNGCs

The fermions get masses from the Yukawa interactions when the scalar fields develop VEVs as presented in [2].
Due to the W-parity conservation, the up quarks (u,) do not mix with U and the down quarks (d,) do not mix with
D,, (remind that the exotic quarks are W-odd while the ordinary quarks are W-even). The exotic quarks gain large
masses in w scale and decoupled, whereas the ordinary quarks concerned mix by themselves via a mass Lagrangian
of the form,

C;’gss = —ﬂaLmZbubR — CzangbdbR + H.c., (120)
where
1 1
My, = —=hg,v, m5, = ———=hou,
aa \/5 aa 3 \/§
1 1
mé, = ——hdu, mi, =——=hv. (121)

The mass matrices m* = {m% } and m? = {m%,} can be diagonalized to yield physical states and masses such as

uy, = VuL(u C t){, UR = VuR(U C ﬁ)%, dL = VdL(d S b)z, dR = VdR(d S b)%, (122)

VJLm“VuR = diag(my, me, my), VdTLdedR = diag(mgq, ms, mp), (123)

where u = {u,} and d = {d,}. The CKM matrix [30] is defined as Voxm = VJLVdL.

All the mixing matrices V1, Var, Vur, Vagr including Vexu are unitary. The GIM mechanism [31] of the standard
model works in this model, which is a consequence of the W-parity conservation. Let us note that in the 3-3-1
model with right-handed neutrinos, the ordinary quarks and exotic quarks that have different T3 weak isospins mix
by contrast (which results from the unwanted nonzero VEVs of 7§ and x{ as well as the lepton-number violating
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interactions QnguaR, QgLnUR, QngDaR, QaLx*daR, QaLn*DBR, QaLp*UR and their Hermitian conjugation, that
directly couple ordinary quarks to exotic quarks via mass terms [35]). Hence, in that model, the dangerous tree-level
FCNCs of Z boson happen due to the non-unitarity of the mixing matrices as listed above (V,r, Var, Vur, Var)-
Even, the dangerous FCNCs also come from one-loop contributions of W boson due to the non-unitarity of the CKM
matrix (Voxwm ). Therefore, the standard model GIM mechanism does not work. This will particularly be analyzed at
the end of this subsection.

In this model, the tree level FCNCs happen only with the new gauge bosons Zs and Zy (notice that there is a
negligible contribution coming from the Z boson due to the mixing with Z; y as explicitly shown below). This is
due to the non-universal property of quark representations under SU(3)y, that the third quark generation differs from
the first two generations. Indeed, from (95) for the interactions of Z, y, the right-handed flavors (U ) are conserved
since Tg = 0, X = Q and N = B — L which are universal for ordinary up- and down-quarks. But, the left-handed
flavors (¥y,) are changing due to the fact that Ty differs for quark triplets and antitriplets [note that X and N are
related to Ty by (2); the source for the FCNCs is due to the Ty only since T3 is also universal for ordinary up-quarks
and down-quarks as the same reason of the flavor-conserved Z current]. The interactions that lead to flavor changing
can be derived from (95) as

Lry, = Viy'TsV (92220 + N ZNp), (124)

1 2t N
g2 9| = TS |
( VI3 \/§>
gN = ga(ce = —Sg; 8¢ = ce),
where ¥, indicates to all ordinary left-handed quarks. We can rewrite

Ly, = (ﬂL'y“TuuL + gLVALTddL)(gQZQM + gNZNp)
= [ap " (V) TuVar)ul, + dpy* (Vi TaVar)d)) (92 Z2y + g Znvg), (125)
where v’ = (u,¢,t), d = (d,s,b) and T,, = T = ;Wdiag(—l, —1,1). Hence, the tree-level FCNCs are described by
the Lagrangian,

_ 1 . L.
Lrone = QQLW“CI;Lﬁ(%L)sz‘(VqL)sj(me +9nZny)  (EF7), (126)

where we have denoted g as u either d.

The FCNCs lead to hadronic mixings such as K — K% D% — D% BY — BY and B? — BY, caused by pairs (¢, q;) =
(d,s), (u,c), (d,b), (s,b), respectively. These mixings are described by the effective interactions as obtained from the
above Lagrangian via Zs y exchanges as

_ Lo 95 g3
LYTne = (qéL'YMQ;‘L)Qg[(VqL)Bi(VqL)Sj]Q (5 + 2. (127)
mZ2 mZN

The strongest constraint comes from the K — K9 mixing [1] that

Vi Va2 (2o 4 I ) oL (128)
3 TdL/3IidL )5z my,  my (104 TeV)2’

Assuming that u, is flavor-diagonal, the CKM matrix is just Vyr, (i.e. Voxm = Vgr). Therefore, |(V}7)31(Var)s2| =~
3.6 x 10~ [1] and we have

2 2 1
T 129
This gives constraints on the mass and coupling of the new neutral gauge bosons, that is
Mz, v > g2,n X 2 TeV. (130)
There is another bound coming from the BY — BY mixing that is given by [1]
%[(Vd*L)32(VdL)33]2 (ngi + ngzvN) < (100 %[‘eV)T (131)
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In this case, the CKM factor is |(V}; )32 (Var)s3| ~ 3.9 x 1072 [1]. Therefore, we have

93 912\/ o1
mQZ2 m2 7y 225 TeV’

(132)

which implies
Mz N > g2, N X 2.25 TeV. (133)

To be concrete, suppose that Zs and Zy have approximately equal masses and ¢ty = gy /g = 1 so that the B — L
interaction strength is equivalent to that of the weak interaction. From (129), we get

Mz, &= mz, > 2.037 TeV, (134)
while the relation (132) yields
mz, = mz, > 2.291 TeV. (135)

Here, we have used g2 = 47ra/s%/V with S%V = 0.231 and « = 1/128. This is in good agreement with the recent bound
[32]. Notice that we have used mz, > myz, in the dark matter subsections though which translates to mz, 2 1 TeV.

Finally, let us give some remarks on the FCNCs due to the mixing effect of the neutral gauge bosons. In this case,
the Lagrangian (124) is changed with the replacement by

9222y + N INy — 9121 + G2 Z2y + GNZNp, (136)

where

\fgv — cowu?

g1 = gg(CE — —81; S¢ — —52) 40 2
w

(137)

Correspondingly, the effective interactions for the FCNCs given by (127) is also changed with the replacement as
follows

2 2 2 2 2

92 9N 91 93 9N

m?2 + m?2 m2 + m2 + m2 (138)
Z2 ZN Z1 Z2 ZN

Let us compare the new contribution with the existing one,

_ gi/my,
R= Gms) T @/mE) (139)

It is sufficient to consider two cases, A > w and A ~ w. For the first case, the R is similar to (becomes) the 3-3-1
model with right-handed neutrinos that

AL T S Gl W P (“l)2<0.0025 (140)
g3/my, — Acyy (%) el \w ’

2

which is very small. Above, we have used m% =~ g*(u® +v?)/(4c3y), m%, ~ g*cw?/(3 — 4s3y,), vy = u® +v* =

(246 GeV)?, and w > 3.198 TeV as derived from the p parameter. For the second case, the contributions of Zy and Zy
are equivalent. So, the first remark is R ~ (g%/g%]\,)(mzz2 JImy) ~ Efg(my, /mP) ~ (utfwh)(w?/u?) = u?fw?,
which starts from the (u/w)? order and must be small too. Indeed, let us show this explicitly

gi/m%, (v? — cowu?)?

= 2lgagn|/(mzmzy) 8thN|32§|\/3T wA(u? 4 v?)

Y 0.00076, (141)

<
SCWtN|52§|\/3 45 wA

provided that ty = 1, £ = —7/4 (sg¢ is finite due to the large mixing of Z5 and Zy, thus such value could be chosen),
and A = w = 3.198 TeV. Above, we have also used mz,mz, = 2g°cwtnwA/\/3 — 43%[,, which can be derived from
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(79) and (80), the expression (78) for the ¢ mixing angle, and the mQZ1 as approximated before. In summary, the
mixing effects with the Z boson do not affect to the FCNCs.

For the sake of completeness, let us point out the dangerous FCNCs of Z boson due to the mixing of the or-
dinary quarks and exotic quarks that happens in the 3-3-1 model with right-handed neutrinos, which should be
suppressed. The mixing matrices are redefined as (u; us ug U)f’R =VurLr(uct T)f_’R and (dy ds d3 Dy Dg)gR =
Var,r(d s b D S)T g so that the 4 x 4 mass matrix of up-quarks (u,,U) and the 5 x 5 mass matrix of down-quarks
(da, Ds) are diagonalized, respectively [35]. The Lagrangian that describes the FCNCs of Z boson is given by
(j:)ﬁq&'y“qﬁ(V;I*L)H(VQL)IJ—Z#, where I = 4 for V,, and the plus sign is applied, but I = 4,5 for V4 and the minus
sign is taken (note, however, that the right chiral currents of Z,, do not flavor-change since T3 = 0 for any right-handed
fermion). All these lead to the effective interactions for the hadronic mixings due to the exchange of Z boson as

_ * ]'
(qu’Y#q;L)Q[(VqL)Ii(VqL)Ij]Q uZ + 02’

where we have used m% = g?(u®+v?)/(4c%,) and notice that v2 = u?+v? = (246 GeV)?2. In the 3-3-1 model with right-

handed neutrinos, the Lagrangian for the FCNCs of Z’ boson is easily obtained as \/%WQQLWM%L%[VJL%L]U Z;L,

where [V Virliy = (Vin)ai(Var)sy — 5 (Vi) ai(Var)ag and [V Varlsy = (Viip)ai(Var)s; + 3 (Vi) re(Var) 1. Hence, the
effective interactions for the hadronic mixings due to the Z’ contribution is given by

(142)

_ 1
(ql{LrY#Q_;L)Q[‘/qTL‘/qL]?jﬁ’ (143)
2 2
where we have adopted m%, ~ 2%-w? [22]. Since the weak scale vy, in (142) is too low in comparison to the 3-3-1
w

scale w in (143), it is clear that if the mixing of the ordinary quarks and exotic quarks is similar in size to that of the
ordinary quarks, (V.7)ri(Vor)rj ~ (V3,)3i(Vyr)3;, the FCNCs due to the Z boson (142) is too large (~ w?/v3 ~ 10
times the one coming from Z’ or the bound for the K — K° mixing) as such the theory is invalid. Hence, the
FCNCs due to the ordinary and exotic quark mixing are more dangerous than those coming from the non-universal
interactions of Z’ boson. To avoid the large FCNCs, one must assume |(V,)r:(Vyr) ;| < [(V,7)3:(Vyr)s;| (and the

FCNCs of Z' are dominated by the ordinary quark mixing, [I/:]TLVqL]ij ~ (V;1)3i(Vqr)s;)- Indeed, the K% — K° mixing
constrains (142) to be,

|(Var)rn (Var)r2] $107°. (144)

This mixing of the exotic and ordinary quarks is much smaller than the smallest mixing element (about 5 x 1072) of
the ordinary quark flavors by the CKM matrix [1]. Therefore, the 3-3-1-1 gauge symmetry as well as the resulting
W-parity provide a more natural framework that not only solves those problems (including the large FCNCs, the
unitarity of the CKM matrix, the lepton and baryon number symmetries and the CPT theorem that have strictly
been proved by the experiments [1]), but also gives the neutrino small masses and the dark matter candidates.

E. LEPII searches for 7, and Zy

LEPII searches for new neutral gauge bosons via the channel ete~ — ff, where f is any ordinary fermion [33]. In
this model, the new physics effect in such process is due to the dominant contribution of Z; and Zy gauge bosons,
which is s-channel exchanges for f # e. The effective interaction for these contributions can be derived with the help
of (99) as

2

Lips = gvfim%[év“(ai(e)& +ag(e)Pr)el[fru(a(F)Pr + ap(f)Pr)f] (I = Z2, Zn), (145)

where the chiral couplings are given by

I I I
aj ()= SDEIAI) gy~ eI —9ald), (146)

Let us study a particular process for f = p, ete™ — uTp~. The chiral couplings can be obtained from Table III
and IV as

2
Zs CeCow 2 Zs Cesty
a7?(e,) = ———— — —secwin, az’(€q) = —————= — s¢cwin,
1’ (€a) N R (€a) By, WV
afﬁ% = af?R(Cg — —Sg; 8¢ = C¢). (147)
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The effective interaction can be rewritten by

L 4AL0) M CTALC G WS
Liftra = 5 | Moz ) B Pe) (i Pon) + (LE) 4 (RL) + (RR), (148)

where the last three terms differ the first one only in chiral structures.
Notice that LEPII searches for such chiral interactions and gives several constrains on the respective couplings,
which are commonly given in the order of a few TeV [33]. Therefore, let us choose a typical value

U ([a?(e)]? . W(@P) PR (149)

h \ m3, my (6 TeV)?”
It is noted that this value, 6 TeV, is also a bound derived for the case of U(1)p—_1, gauge boson [34].
Similarly to the previous subsection, we suppose that Zs and Zy have approximately equal masses (mz, ~ mz,)

and ¢ty = 1. The above constraint leads to
myz, & myg, > 2.737 TeV. (150)

This bound is in good agreement with the limit in the previous subsection via the FCNC and the ones given in the
literature [32]. As we previously emphasized, in the dark matter subsections we have adopted mz, > myz, and
therefore in this regime a bound in mz, ~ TeV rises.

Finally, let us discuss the contribution of the mixing effects of the neutral gauge bosons to the above process. When
the mixing is turned on, the interacting Lagrangian of the neutral gauge bosons takes the form, — - fy*aZi (f) P+

&}Zz"' (f)Pr]fZ;,,, where i = 1,2, N and the (chiral) couplings of the neutral gauge bosons are correspondingly changed
as follows

af p(f) — ai'p(f) = af

a’p(f) — aip(f) = alp(f) + af p(f) % (Erce + Ease), (151)
Z
L

al%(f) — alG(f) =

We realize that all the second terms are the &; 5 corrections corresponding to the existing couplings due to the
mixing, which can be neglected because of the so small £; 2 values as given in (76). Indeed, for the concerned process
ete™ — utp, let us consider the ratios of the corrections to the respective existing couplings for f = e, (the charged
leptons). With the Z; couplings, we have

Z3 & & dewt
aL(ed(%_%?( §55—% : :‘wfsgu2‘ §W7N52<<243xl0‘? (152)
a? (eq — 4syy C2w
Zs
a)(ce = =&y 8¢ = =& £ t -
i Calle = “Erisem &) |G ewing | g 455109, (153)
aR(ea) \/m Sw

which are easily obtained with the help of (76), s, = 0.231 and A ~ w > 3.198 TeV. Similarly, for the Z> couplings,
we have

Z(eq) x (E1ce + & Eice + &

af (ea) Xéélcg-F 25¢) | _ 16+ ease <5.04x 1078, (154)
az®(€a) 3-4s2, 3caw Ense

Z

0g(Ca) X (Erce +E25¢)| | Gicetbase | ooy 08 (155)
Zo —5__ | YWiys
az’ (eq) Va5, | s NS¢

where notice that the mixing angle of the Z’, C' gauge bosons is bounded by —7w/4 < £ < 0iftxy > 0 either 0 < £ < w/4
if tny < 0. The corrections to the Zy couplings are so small too. Therefore, the mixing effects of the neutral gauge
bosons do not affect to the standard model ete™ — put ™ process as well as our results given above with the Z; v
exchanges in the absence of the mixing.
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F. Radiative  decays involving Z> v and the violation of CKM unitarity

The CKM unitarity implies Zd,:d’s’b Vo Varar = Syryr and ZU,:U’M

CKM matrix Vg = (VJL Var)wa (W =wu,e,t and d’ = d, s,b) are defined as before. The standard model calculations
have provided a very good agreement with the above relations [1]. However, if there is a possible deviation, it is the
sign for the violation of the CKM unitarity. Taking for the first row, the experimental bound yields [1]

V3 o Vwrarr = dqrq, where the elements of the

Ackm=1- Y [Vaa|* <1072 (156)
d'=d,s,b

This violation can give the constraints on the new neutral Z; x gauge bosons as a result of their loop effects that
contribute to Ackm.-

Indeed, the Ackm deviation is derived from the one-loop radiative corrections via the new Z3 y and W bosons
to quark 8 decay amplitudes from which the V4, Vs and V,; elements are extracted, including muon decay which
normalizes the quark 3 decay amplitudes. These have previously been studied in other theories [36] with the respective
diagrams to quark and muon £ decays similarly displayed therein. Generalizing the results in [36], the deviation is
obtained as

3 m? m? (gé )11+ (GL
AckMm ~ ) Z mi‘;vln <mV2V> (geIL)ll [(Qé)u - = B - ) (157)
I=Z5,Zn 1 I
where the lepton and quark couplings are given in the physical basis of the left chiral fields when coupled to Z3 y,
ie. f’Lfy“Q]IcL f1, with QJ{L = —%V}Lai(f)‘/f,;, that results

cer/3 — 4s? —gser/3 — 4s?
(6!, = (Gl )0 =~ al(ea), (G0 = TR (G0 = R

w Gew

(GZ2),, = LV B V3—dsiy g [ cecly 42, ewtn | 1(Var)s)?
e 6ew cw \\/3—4sf, 3 ¢ 7

(G711 = (G 11(ce = —seis¢ = ce). (158)

Notice that the mixing effect of the neutral gauge bosons (Z with Z; n) do not affect to the considering processes as

explicitly pointed out in the previous subsection.
Therefore, we have

Ao = —28 My (mw) 24w |2, ceB=5siy)
an?mg, \mg, ) 35 gew B dsh | |3 Baw /B dsh,
+(Zo — Znjce = —Sg; 8¢ — ce). (159)

We consider two typical cases, A > w and A ~ w. In the first case, the Zy does not contribute, i.e. the second term
above vanishes, and £ = 0. Therefore, this is the case of the 3-3-1 model with right-handed neutrinos. We have

2 2
Acin = 0003374 In (%) : (160)
Zs Zo

Using the bound (156) and my = 80.4 GeV, the Zs mass is constrained by myz, > 200 GeV. In fact, the Z5 mass
should be in TeV range due to the other constraints as given above. For example, taking mz, > 1 TeV, we get
Ackum < 1074, Consequently, this case gives a very small contribution to the violation of the CKM unitarity and
thus the model is easily to evade the experimental bound. In the second case, assuming that the new neutral gauge
bosons have approximately equal masses (mz, ~ myz, ) and ty = 1, we derive

2 2
Ackn ~ —0.0143—2W ln< 4 ) : (161)

mZz,N mZ2,N

Using the bound (156) we have m222 o~ mQZN > 600 GeV. The model in this case is easily to evade the experimental
bound too. To conclude, the new neutral gauge bosons Zy n give the negligible contribution to the violation of the
CKM unitarity.
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VII. DISCUSSION AND CONCLUSION

In the standard model, the fermions come in generations, the subsequent generation is a replication of the former.
The gauge anomaly is cancelled out over every generation. Thus, on this theoretical ground the number of the
generations can be left arbitrarily. This may be due to the fact that the SU(2); anomaly trivially vanishes for any
chiral fermion representation. If the SU(2)r, is minimally extended to SU(3)r with a corresponding enlargement of
the lepton and quark representations (the doublets enlarged to triplets/antitriplets while the singlets retain, but for
some cases the lepton singlets are put in the corresponding triplets/antitriplets as well), the new SU(3);, anomaly
generally does not vanish for each nontrivial representation. Subsequently, this constrains the generation number
to be an integer multiple of three—the fundamental color number—in order to cancel that anomaly over the total
fermion content, which provides a partial solution to the number of the generation paradigms. Besides this feature,
some very fundamental aspects of the standard model can also be understood by the presence of the SU(3), that
causes the electric charge quantization [9], the Peccei-Quinn like symmetry for the strong C'P [8] and the oddly-heavy
top-quark [7]. On the other hand, the B — L number and @ electric charge operators do not commute and also
nonclose algebraically with the SU(3), generators. Supposing that the B — L is conserved similarly to the @, such
SU(3)y, theory is only manifest if it includes two extra Abelian factors so that all the algebras are closed, and the
resulting gauge symmetry SU(3), ® U(1)x ® U(1)n yields an unification of the weak, electromagnetic and B — L
interactions (apart from the strong interaction by the SU(3)¢c gauge group). Besides the B, L symmetries, some very
fundamental matters of the 3-3-1 model can also be understood by this setup.

Firstly, the breakdown of the 3-3-1-1 gauge symmetry produces a conserved Zs subgroup (as a remnant) named the
W -parity similar to the R-parity in supersymmetry that plays an important role as well as yielding insights in the
present model. The lightest wrong-lepton particle is stabilized due to the W-parity conservation, which is responsible
for dark matter. The two dark matter particles have been recognized, a neutral complex scalar H' and a neutral
fermion N of either Dirac or Majorana nature. The GIM mechanism for the standard model currents works in this
model due to the W-parity conservation, while the new FCNCs are strictly suppressed. In fact, the experimental
bounds can be easily evaded with the expected masses for the new neutral gauge bosons Z; y in a few TeV. Because
of the W-parity conservation, the new neutral non-Hermitian gauge boson X does not mix with the neutral Z; o n
gauge bosons. Hence, there is no mass splitting within the real and imaginary components of the X that ensures the
conservation of CPT symmetry. Those problems of the 3-3-1 model with right-handed neutrinos have been solved.

We have shown that the B — L interactions can coexist with the new 3-3-1 interactions at the TeV scale. To realize
this, the scales of the 3-3-1-1 and 3-3-1 breakings are taken to lie in the same energy scale A ~ w. In this regime, the
scalar potential has been diagonalized. The number of Goldstone bosons matches the number of the massive gauge
bosons. There are eleven physical scalar fields, one of them is identified as the standard model Higgs boson. The new
physical scalar fields H?,273, A°, Héfs, and H'%%* are heavy with their masses in the w, A or \/|wf]| scales. There is
a finite mixing between the Higgs scalars—the S, for the U(1)y breaking and the S3 for the 3-3-1 breaking—that
results two physical fields the H3 3. The standard model Higgs boson is light with a mass given in the weak scale due
to the seesaw-type mechanism associated with the little hierarchy u,v < w, A, —f. The Higgs mass gets a right value
of 125 GeV provided that the effective coupling A ~ 0.5 with the assumption u = v, w = —f. All the physical scalar
fields are W-even except for the H' and Hy that are W-odd, known as the W-particles.

In the proposed regime A ~ w, the gauge sector has been diagonalized with a recognition of the standard model
gauge bosons W+, A and Z. Moreover, we have six new gauge bosons X00% Y+ Zy n. Although the Z boson
mixes with the new neutral gauge bosons, it is realized to be light due to a seesaw-type mechanism in the gauge
sector. In order to reproduce the standard model W boson mass, we have constrained u? + v? = (246 GeV)?. From
the experimental bound on the rho parameter, we get w > 3.198 TeV provided that A ~ w and u ~ v. There is a
finite mixing between the U(1)y gauge boson and the Z’ of the 3-3-1 model that produces two physical states by
the diagonalization as the 3-3-1 like gauge boson Z3 and the U(1)y like gauge boson Zx. All the gauge bosons are
W-even except for the X, Y that are the W-particles. The new neutral complex gauge boson X cannot be a dark
matter because it entirely annihilates into the standard model particles before the thermal equilibrium process ended
[2].

All the interactions of the gauge bosons with the fermions and scalars have been obtained. The result yields that
every interaction conserves the W-parity. The corresponding standard model interactions are recovered. The new
interactions as well as their implication to the new physics phenomenological processes are rich to be devoted to further
studies. In this work, some of them have particularly been used for analyzing the new FCNCs, the LEPII collider,
the violation of the CKM unitarity, and the fermionic dark matter observables. Because of the seesaw-type mixing
suppression between the light and heavy states, namely between the Z and new Z> n gauge bosons as well as between
the H and new H, o 3 Higgs bosons, the mixing effects are radically small. The new physics effects via those mixings
in the gauge sector have explicitly been pointed out to be safely neglected. For the scalar sector, the new physics
effects via those mixings are also negligible as disregarded for the most cases of the small scalar self-couplings (see
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the text in more detail). Only if the scalar self-couplings are more strong, they may give considerable contributions
but are still in the current bounds. The accuracy of the standard model Higgs mechanism if it is the case could give
some constraints on those mixing effects.

Supposing that the scalar dark matter H' dominantly annihilates into the standard model Higgs boson H via the
Higgs portal, the relic density of H’ has been calculated. It gets the right value compatibly to the experiment data
if mg: = 1.328 TeV assumed that the H*H’' — HH coupling equals to unity, A’ = 1. As for the neutral fermion
candidate as a Dirac particle we conclude that a w scale of the symmetry breaking greater than ~ 5 TeV is required
in order to obey the LUX2013 bounds. Whereas when the neutral fermion is a Majorana particle, the direct detection
bounds are quite loose and a larger region of the parameter space has been found that yields the right abundance.
The fermion dark matter observables are governed by the Z5 gauge boson provided that A > w. Only if gy < g with
A ~ w either the A is rare smaller than the w with gy ~ ¢, the Zx contribution becomes comparable to that of the
Z5 boson.

We have shown that the CKM matrix is unitary as well as the ordinary GIM mechanism of the standard model
works in this model, due to the W-parity conservation. We have also discussed that this mechanism does not work in
the 3-3-1 model with right-handed neutrinos, and in such case the tree-level FCNCs due to the ordinary and exotic
quark mixing are more dangerous than those coming from the non-universal couplings of the Z, y gauge bosons. All
the FCNCs associated with the Z boson due to the above fermion mixing are prevented because of the W-parity
conservation. Also, the new FCNCs coupled to the Z5 x are highly suppressed too. In fact, the FCNCs due to the
Zy n can present but they can be easily evaded by the new physics in the TeV range. Using the current bound on the
K% — KO system, we have shown Mz, x > 2.037 TeV under the assumption that the Z> and Zy have approximately
equal masses as well as ¢y = 1 (the B— L interaction strength equals to that of the weak interaction). For the B? — BY
system, the bound is mz, , > 2.291 under the same assumptions as the previous case. For hierarchical masses of Z3
and Zy, the smaller mass will take a smaller bound, e.g mz, > g2 x 2 TeV corresponding to the K° — K° system,
where gs is the reduced gauge coupling that has a natural value smaller than unity.

The new neutral currents in the model are now under the experimental detections. We have calculated the con-
tributions of Zs and Zy, which dominate the corrections of the new physics, to the process eTe™ — putpu~ at the
LEPII collider. From the experimental bounds, we have shown that mz, , > 2.737 TeV provided that these gauge
bosons have approximately equal masses and ¢ty = 1. Similarly, for the hierarchal Z, and Zy masses, the smaller
mass will possess a smaller bound than the above result. Moreover, we have also indicated that the violation of the
CKM unitarity due to the one-loop effects of the new neutral gauge bosons Z, y are negligible if the Z, y masses are
given in the TeV range as expected.

Finally, the 3-3-1-1 model that unifies the electroweak and B — L interactions along with the strong interaction is a
self-consistent extension of the standard model that solves the potential problems of the 3-3-1 model in the consistency
with the B, L, and CPT symmetries as well as curing the large FCNCs. The new physics of the 3-3-1-1 model is
interesting with the outcomes in the TeV region. For all the reasons aforementioned, we believe that the 3-3-1-1 model
is a compelling theory which is called for much experimental attention.
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