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Many theories beyond the Standard Model contain hidden photons. A light hidden photon will
generically couple to the Standard Model through a kinetic mixing term, giving a powerful avenue
for detection using “Light-Shining-Through-A-Wall”-type transmission experiments with resonant
cavities. We demonstrate a parametric enhancement of the signal in such experiments, resulting from
transmission of the longitudinal mode of the hidden photon. While previous literature has focused
on the production and detection of transverse modes, the longitudinal mode allows a significant
improvement in experimental sensitivity. Although optical experiments such as ALPS are unable
to take useful advantage of this enhancement, the reach of existing microwave cavity experiments
such as CROWS is significantly enhanced beyond their published results. Future microwave cavity
experiments, designed with appropriate geometry to take full advantage of the longitudinal mode,
will provide a powerful probe of hidden-photon parameter space extending many orders of magnitude
beyond current limits, including significant regions where the hidden photon can be dark matter.

I. INTRODUCTION

For much of the past century, progress in particle physics has occurred through discoveries at high energies. This
route was made possible through the development of ever more powerful colliders, culminating in the Large Hadron
Collider. This route though is limited by our ability to make such machines. However, physics at the highest scales can
sometimes reveal itself through low energy manifestations. Probes of such phenomena can offer a glimpse of nature at
scales that cannot be directly reached through traditional, high energy accelerator experiments. These manifestations
come with a price - the effects of these phenomena on the standard model are heavily suppressed, and can only be
probed through high precision. A well known example of such a phenomenon is the decay of the proton, which can
be rendered unstable, albeit over very long time scales, by physics at the unification scale. Ultraviolet physics can
also lead to the existence of light particles with masses much less than the typical standard model scales ∼ 100 GeV,
with highly suppressed couplings. One example is an axion.

A light, massive vector boson or “hidden photon” is another well motivated example of such a particle. Light hidden
photons emerge naturally in many scenarios, often associated with light hidden sectors, and have received a great
deal of theoretical interest (see e.g. [1–11]). A hidden photon is also an interesting dark matter candidate [12, 13]1.
The most generic way in which a hidden photon interacts with the standard model is through kinetic mixing with the
photon [16]. This is particularly natural since kinetic mixing is a dimension 4 operator, and therefore has unsuppressed
low energy effects even if it is generated in the far ultraviolet. The Lagrangian that describes this theory is

L = −1

4

(
fµνf

µν + f ′µνf
′µν − 2εfµνf

′µν)+
1

2
m2
γ′a′µa

′µ − e aµjµEM , (1)

where aµ (along with its field strength fµν) represents the photon, a′µ (along with its field strength f ′µν) represents

the hidden photon, and jµEM is the electromagnetic current. In this basis, aµ couples to the electromagnetic current
jµEM with coupling strength e, while a′µ is massive and couples to the Standard Model fields only through the kinetic
mixing term. The kinetic mixing ε between aµ and a′µ leads to effective interactions between a′µ and electromagnetic
currents, permitting the possibility of discovering the hidden photon.

The mechanisms available for setting the mass and coupling of a hidden photon are highly unrestrictive. For
example, the mass may be set by dimensional transmutation in an asymptotically free sector, allowing it essentially to
be arbitrarily small, while the kinetic mixing may be suppressed by loops, powers of the GUT-breaking scale, or small
coupling constants. It is therefore theoretically well motivated to consider hidden photons over an enormous range of
mass scales and couplings. While light hidden photons can be associated with other light hidden-sector states, with
interesting experimental consequences of their own, the existence and coupling strength of such states are independent
of that of the hidden photon itself. There is therefore a strong case for developing direct probes of hidden photons.

1 See also [14], which will clarify and extend the results of the previous literature. We note in passing that a light hidden photon is perfectly
consistent with a high scale of inflation, such as the value HI∼1014 GeV possibly indicated by recent results from BICEP2 [15] – see [14]
for more details.
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A significant effort is ongoing to search for hidden photons in a mass range O(MeV-GeV), using low energy collider
and fixed target experiments (see e.g. [17–23]). Efforts to search for much lighter hidden photons with smaller-scale
lab experiments [11, 24–33] have received somewhat less attention. These experiments have the potential to discover
hidden photons over a vast range of parameter space, extending from O(eV) down to, as we shall show, scales as low
as O(10−18eV).

It is well known [16] that in the limit where the mass mγ′ of the hidden photon goes to zero, the couplings of the
hidden photon to electromagnetic currents can be rotated away. Hence, the physical effects of this hidden photon on
the electromagnetic currents, with which we may detect them, have to be proportional to some power of the mass
mγ′ . This is also true for constraints on these particles that arise as a result of their interactions with electromagnetic
currents. The strongest constraints on these scenarios are imposed by astrophysical observations, where the production
of these particles from electromagnetic currents in red giants and supernovae can lead to enhanced cooling of such
objects. The strength of such bounds is always proportional to a power of mγ′ .

Recent work [34–36] has shown that the previously calculated bounds on such particles were incomplete. In earlier
work [37], the cooling rate of stars by hidden-photon emission had been calculated and found to be proportional
to ε2(mγ′/T )4. However, as was shown in [34], this work had miscalculated the contribution from the longitudinal
polarization of the hidden photon, which exists because the hidden photon has a non-zero mass. The correct con-
tribution from the longitudinal polarization was found to give a parametrically larger cooling rate, proportional to
ε2(mγ′/T )2. This observation significantly strengthened bounds on such particles, dramatically shrinking the pa-
rameter space accessible to a variety of “Light-Shining-Through-A-Wall” experiments such as ALPS [38, 39]. This
reduction in the reach occurs because the design of Light-Shining-Through-A-Wall experiments has been based on
the principle of production and subsequent detection of the transverse modes of the hidden photon. The transverse
modes are, essentially, parametrically more weakly coupled to Standard Model particles than the longitudinal mode
that is responsible for the astrophysical bounds.

However, if a longitudinal mode can be emitted in a stellar environment, leading to strong constraints, it should
also be possible to utilize it in the laboratory for detection. In this paper, we will show that the longitudinal
mode has qualitatively new behavior in Light-Shining-Through-A-Wall experiments, that can lead to a parametrically
stronger signal than that from the transverse modes (proportional to ε2m2

γ′ rather than ε2m4
γ′). This allows a great

enhancement of the experimental sensitivity (Fig. 2). To take full advantage of this sensitivity enhancement, the
currently used experimental setups may need simple modifications (Fig. 1). We begin in section II with a conceptual
overview of these qualitatively new effects. Following this overview, in section III we present the governing equations of
electromagnetism with a hidden-photon. Using these, in section IV we study a mock-up of a Light-Shining-Through-
A-Wall experiment using infinite plane-waves, showing how the signal is parametrically enhanced by using longitudinal
rather than transverse waves. In V, we then turn to the more complicated calculation of the signal in a realistic Light-
Shining-Through-A-Wall experiment, of the type proposed in [25] using resonant microwave cavities. We show that
the parametric enhancement persists, and give explicit formulae for calculating the signal in an arbitrary experimental
setup. We present the implications of our work, both on existing experimental results and for future experiments, in
section VI. Finally, we conclude in section VII.

II. CONCEPTUAL OVERVIEW

Hidden photons can be probed by producing and detecting them in the laboratory through their coupling to charge
currents. A classic way to perform such an experiment is to create a source of electromagnetic fields. The charge
current that produces this electromagnetic field will also source hidden photon fields. A detector located inside an
electromagnetic shield is then placed in the vicinity of this source. The shield will block regular electromagnetic
fields from the photon, but permit the weakly coupled hidden photon to leak through, exciting the detector. Since
electromagnetic fields can be efficiently produced, shielded and detected over a wide range of frequencies ranging from
the radio to the optical, these “Light-Shining-Through-A-Wall” experiments are an effective way to probe hidden
photons.

Let us first understand the parametric behavior of the signal in these experiments. Upon diagonalizing the kinetic
terms of (1), we obtain

L = −1

4

(
FµνF

µν + F ′µνF
′µν)+

1

2
m2
γ′A′µA

′µ − eJµEM
(
Aµ + εA′µ

)
(2)

where Aµ and A′µ are of course linear combinations of aµ and a′µ. The propagating mass eigenstates are the transverse
photon and hidden-photon modes |AT 〉 and |A′T 〉, along with the longitudinal hidden-photon mode |A′L〉 (there is no
longitudinal mode for the massless photon). In this basis, the linear combination |AT 〉+ ε|A′T 〉 directly interacts with
charges, while the linear combination |A′T 〉 − ε|AT 〉 is sterile.
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FIG. 1: Schematic setup of a microwave cavity search for hidden photons, designed to take advantage of the improved trans-
mission of longitudinal hidden-photon waves, and give the largest possible signal field ~Erec ∼ ε2m2

γ′/ω
2 ~Eem. Optimizing the

sensitivity requires only a slight modification of the setup proposed in [25, 26]: the ~E-field of the driven emitter-cavity mode
should point coherently in the direction of the receiver cavity.

Let us first focus on the transverse modes. In a “Light-Shining-Through-A-Wall” experiment, the linear combination
|AT 〉+ ε|A′T 〉 is first produced. But, this is not a mass eigenstate - the two states |AT 〉 and |A′T 〉 have different masses
leading to a differential phase developing between them. These states are relativistic and hence after traveling a

distance L (where the wall is placed), the state evolves to |AT 〉 + ε e−i
1
2 (m2

γ′/ω)L|A′T 〉 (up to an overall irrelevant
phase), where ω is the energy of the produced state. Notice that this is similar to the phenomenon of neutrino
oscillations. The linear combination |AT 〉+ ε|A′T 〉 is absorbed by the wall, while the sterile component |A′T 〉 − ε|AT 〉
passes through the wall. The amplitude of this sterile component is proportional to εm2

γ′L/ω. While this sterile
component travels through the wall, it cannot directly be detected by the instruments on the other side of the wall.
For detection, we need the sterile state |A′T 〉 − ε|AT 〉 to partially oscillate back into the state |AT 〉 + ε|A′T 〉. This
will happen because the sterile state is also not a mass eigenstate. The component of the state that overlaps with
the interaction state |AT 〉+ ε|A′T 〉 after traveling a further distance L is again proportional to εm2

γ′L/ω. Hence, the

signal in this setup is proportional to ε2m4
γ′L2/ω2. For an apparatus of fixed physical size L, this implies that the

sensitivity for low mass hidden photons (mγ′ � 1/L) drops sharply. With this scaling the unconstrained parameter
space that can be probed by these experiments is limited.

Naively, one may think that this discussion should also apply to the longitudinal mode of the hidden photon. There
is however a very important difference - the massless photon Aµ does not have a longitudinal mode. Since the hidden
photon is coupled to electromagnetic currents (see Eq. 2), these currents will source its longitudinal mode at order
ε. This longitudinal mode will not be blocked by the wall since it is very weakly coupled. As the longitudinal mode
enters the shield, it will move charges in the shield. This motion will excite photon modes that will oppose the incident
longitudinal mode. Since the detector couples to a linear combination of both these fields, one may worry that the
photon modes will exactly cancel the linear combination that couples to the detector. However, such a cancellation
of the effects of the longitudinal mode would require another longitudinal mode. Since the photon does not have such
modes in the vacuum, this cancellation cannot occur.

The mode will thus go through the wall, and since it is directly coupled to electromagnetic currents, it can be
detected on the other side. In this setup, the dependence on mγ′ appears because both the production amplitude of
longitudinal modes, and the strength of their effect on electric charges, scales as2 mγ′/ω. Hence, if the longitudinal
mode is utilized, the signal in the experiment would scale as ε2m2

γ′/ω2, more favorably than the transverse mode.

2 The Goldstone boson equivalence theorem implies that, at lowest order in m2
γ′ , the coupling to longitudinal modes through the A′

µJ
µ
EM

term is equivalent to coupling to Goldstone bosons through the derivative coupling 1/mγ′∂µφJ
µ
EM . However, this coupling vanishes

identically due to electromagnetic current conservation. The leading order effect therefore appears at the next order in m2
γ′ , and is

suppressed by mγ′/ω.
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FIG. 2: The reach of cavity searches for hidden photons, taking advantage of the improved transmission of the longitudinal
modes. The solid blue region is the published limit from the CROWS experiment [29], calculated using the results of [25]. The
solid blue line shows the bound we obtain by reanalyzing the CROWS results, taking into account longitudinal hidden-photon
modes. The dashed blue line shows the reach of a realistic future cavity experiment. See section VI for more details. The gray
shaded regions show various preexisting astrophysical and laboratory constraints, compiled from Refs. [9, 34], while the gray
dashed line shows the projected reach of the ALPS-II experiment [39].

This makes such experiments capable of covering significant new parameter space beyond current bounds (see Fig. 2).
This is the main message of this paper. In the following sections, we will show that the longitudinal modes of the

hidden photon can be produced and detected in the laboratory through the scheme described above. For concreteness,
we will focus on Light-Shining-Through-A-Wall experiments using microwave cavities, as proposed in [25]. The hidden
photon fields produced by driving a cavity can be detected through the excitations of another cavity placed inside a
shield (see Fig. 1). This scheme benefits from the fact that large electromagnetic fields can be produced and sustained
for significant durations through the use of resonant superconducting cavities. When the receiver cavity is resonantly
matched to the source cavity, the signal in the setup can also be resonantly enhanced. While early-stage experiments
of this type have already been performed [27–29], they were focussed on the detection of the transverse modes of the
hidden photon [24, 25].

We show that the sensitivity of this setup can be parametrically enhanced if the setup is optimized to detect the
longitudinal mode. Such optimization is necessary since the longitudinal modes are most strongly produced in a
direction perpendicular to that of the transverse modes. The detector cavity would therefore have to be appropriately
located (see Fig. 1) in order for it to most efficiently couple to the longitudinal mode. Using these results, we will
re-examine bounds on hidden photons that have already been placed by existing microwave cavity experiments such
as CROWS. We will show that with their existing results they have already placed parametrically stronger bounds on
hidden photons than their published limits (see Fig. 2). We also briefly discuss (in section VI C) the potential reach
of a proposed superconducting, high-Q microwave cavity search tailored to detect these longitudinal modes [40]. The
projected sensitivity of such an experiment is also plotted in Fig. 2.

Unlike microwave cavity experiments, where the utilization of the longitudinal mode parametrically enhances the
reach of the experiment into hitherto unexplored regions of parameter space, we do not find a comparable improvement
in experiments such as ALPS that utilize optical cavities. The principal reason for this is that, in the language of the
discussion above, the optical experiments are designed to gain from a large oscillation length L. Although it might
be possible to reconfigure such an experiment to use the longitudinal mode, the large length would no longer enhance
the signal, and the resulting reach would be uninteresting. These considerations are of course different for microwave
cavities, where the size and separation of the cavities are comparable to the wavelength of the light. We discuss this
further in section VI D.

While optical experiments likely will not benefit from the longitudinal mode, we find that microwave cavities can
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benefit enormously. Such an experiment designed with an optimal geometry to take advantage of the longitudinal
mode could push the reach into hidden-photon parameter space by many orders of magnitude and exploring interesting
parameter space over a mass range ∼ 10−18 eV to 10−4 eV. Thus, we find that microwave cavity experiments can be
an extremely powerful probe of new hidden sectors.

III. GOVERNING EQUATIONS

The equations of motion for the photon and hidden-photon fields, in the mass basis, follow from Eq. 2, and are
given by

(∂2
t −∇2)V = %EM (∂2

t −∇2) ~A = ~EM ~̇V +∇ · ~A = 0 , (3)

(∂2
t −∇2 +m2

γ′)V ′ = ε%EM (∂2
t −∇2 +m2

γ′) ~A′ = ε~EM ~̇V ′ +∇ · ~A′ = 0 . (4)

We will work in the mass basis (rather than the interaction basis) for the duration of this paper3. Eqs. 3 are simply
Maxwell’s equations4 (with the convenient choice of Lorenz gauge). Eqs. 4 are the Proca equations for a massive
vector. They show that the massive hidden-photon field is sourced by electric charge density %EM and current ~EM
in the same way as the massless photon field, but suppressed by a factor of ε. The final part of Eqs. 4 is a constraint
equivalent to conservation of electric charge.

Any setup that produces ordinary electric and magnetic fields will, through Eqs. 4, also source hidden-photon fields
atO(ε). In turn, the Lorentz force on charged particles receives an ε-suppressed contribution from these hidden-photon
fields,

~F = q
[(
~E + ε ~E′

)
+ ~v ×

(
~B + ε ~B′

)]
(modified Lorentz force) . (5)

This generates small modifications to the electromagnetic currents, and consequently to the electric and magnetic
fields, at O(ε2). In particular, at the surface of a perfect conductor, Eq. 5 implies that the electric field obeys the
modified boundary condition

( ~E + ε ~E′)‖ = 0 (B.C. for a conducting surface) , (6)

which ensures that conduction electrons experience no force parallel to the conductor’s surface. (See appendix 3 for
further discussion of why this boundary condition is correct.)

A. Example: electric dipole radiation

We now consider an instructive example: the transverse and longitudinal waves radiated from an oscillating electric
dipole. In complex notation, an electric dipole aligned along the ẑ axis can be described by ~EM (~x) = j0δ

3(~x)eiωt ẑ

(along with a corresponding charge density). ~A and ~A′ are easily found by solving Eqs. 3 and 4, giving

~A(~r, t) =
j0

4πr
ei(ωt−ωr) ẑ ~A′(~r, t) =

εj0
4πr

ei(ωt−kr) ẑ , (7)

where k2 = ω2 −m2
γ′ . V and V ′ are given by

V (z, t) =
i

ω
~∇ · ~A (z, t) V ′(z, t) =

i

ω
~∇ · ~A′(z, t) . (8)

Radiation of transverse and longitudinal modes can been seen from the O(1/r) terms in ~E and ~E′,

~E(~r, t) = −~∇V − iω ~A = i
j0ω

4πr
ei(ωt−ωr) sin θ θ̂ +O

( 1

r2

)
(9)

~E′(~r, t) = −~∇V ′ − iω ~A′ = iε
j0ω

4πr
ei(ωt−kr)

(
sin θ θ̂ −

m2
γ′

ω2
cos θ r̂

)
+O

( 1

r2

)
. (10)

3 The final results are, of course, independent of the basis choice. We prefer the mass basis because it avoids the physical longitudinal
hidden-photon mode being spread between the Aµ and A′

µ fields. It also preserves the usual form of electromagnetic gauge invariance,
with the gauge transformation acting only on the Aµ field.

4 In our conventions, ~E(′) and ~B(′) are given by ~E(′) = −~∇V (′) − ~̇A(′) ; ~B(′) = ~∇× ~A(′)
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Radiation of the massless photon is, of course, purely transverse ( ~E ∝ θ̂), and strongest in the directions perpen-
dicular to the dipole’s axis. Radiation of the massive hidden photon also has a longitudinal component (∝ r̂), which
is suppressed by a factor (mγ′/ω)2 relative to the transverse mode. Fig. 3(a) shows the radiation pattern of |E′θ,r|2.
In contrast to standard dipole radiation, the longitudinal mode is radiated most strongly along the dipole’s axis.

IV. TOY CALCULATION: SCREENED PLANE WAVES

To demonstrate the difference in screening between transverse and longitudinal modes, we begin with a very simple
mockup of a general Light-Shining-Through-A-Wall experiment. Plane waves of the photon and hidden photon fields
are radiated from an infinite sheet of oscillating currents. The waves are screened by a nearby sheet of perfectly
conducting metal, and the net force on a test charge is measured on the far side. Taking in turn transverse and then
longitudinal waves, we will see that the force is suppressed by a factor of ε2(mγ′/ω)4 in the transverse case, but only
ε2(mγ′/ω)2 in the longitudinal one.

A. Generating transverse and longitudinal plane waves

Imagine that at z = 0 we have an infinite plane of oscillating electric charges. The plane is charge-neutral, but
there is a non-zero net current

~ (~x, t) = ~0 δ(z)e
iωt . (11)

Depending on whether ~0 points along or out of the x-y plane, this oscillating current will radiate either transverse
or longitudinal waves of the photon and hidden photon fields.

The radiated fields are found by solving Eqs. 3 and 4:

(∂2
z + ω2) ~A (z, t) = −~0 δ(z)eiωt (∂2

z + ω2 −m2
γ′) ~A′(z, t) = −ε~0 δ(z)eiωt (12)

V (z, t) =
i

ω
~∇ · ~A (z, t) V ′(z, t) =

i

ω
~∇ · ~A′(z, t) , (13)

where k2 = ω2 −m2
γ′ . These equations are easily solved to give the radiated ~E, ~B, ~E′ and ~B′ fields. If the oscillating

current points along the plane, we have

~0 = j0 x̂ :


(
~E
~B

)
= −j0

2
ei(ωt−ω|z|)

(
x̂
±ŷ

)
(
~E′

~B′

)
= −εj0

2
ei(ωt−k|z|)

(
ω
k x̂
± ŷ

)
 (transverse radiation) . (14)

If the oscillating current points out of the plane, we have

~0 = j0 ẑ :


(
~E
~B

)
= 0(

~E′

~B′

)
= −ε

m2
γ′

ωk

j0
2
ei(ωt−k|z|)

(
ẑ
0

)
 (longitudinal radiation) . (15)

As required by gauge invariance, there is no longitudinal wave of the massless photon field. Here this is enforced
by the gauge condition ∂µA

µ = 0, combined with the fact that the photon’s wavevector is the same as its frequency.

However, k 6= ω for the hidden-photon field, allowing a longitudinal ~E′ wave to be generated at order εm2
γ′/ω2.

B. Screening transverse plane waves

We will now see how a perfectly conducting thin wall, placed at z = L, affects to the incoming plane waves. Let us
first focus on the transverse modes, which are generated when ~ ∝ x̂.

The incoming plane waves act on the conduction electrons in the wall. In response these electrons oscillate, causing
further transverse waves to be radiated from the wall. These waves have the same form as Eq. 14, but with z replaced
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by z − L. Because the wall is a perfect conductor, these radiated fields are exactly those needed to cancel the net
force on the electrons parallel to the wall. In other words, we have a boundary condition at the wall given by

(Ex + εE′x)
∣∣
z=L

= 0 , (16)

which is a slight modification of the usual boundary condition at a conducting surface.5 This fixes the full solution
to be

~E(z, t) = −j0
2
eiωt x̂

(
e−iω|z| + c e−iω|z−L|

)
(17)

~E′(z, t) = −εω
k

j0
2
eiωt x̂

(
e−ik|z| + c e−ik|z−L|

)
(18)

c = −e−iωL
(

1 + ε2ω

k
(ei(ω−k)L − 1)

)
+O(ε4) . (19)

On the far side of the wall (z > L), the force on a test charge q is then given by

~Fprobe = q( ~E + ε ~E′) =
ω

k

j0
2
ei(ωt−ωz)

generate ~E′−ε ~E at wall︷ ︸︸ ︷
ε(ei(ω−k)L − 1) ε(1− ei(ω−k)(z−L))︸ ︷︷ ︸

regenerate ~E+ε ~E′ beyond wall

x̂ . (20)

Let us understand this equation in another way. The currents at z = 0 source the field combination ~E+ ε ~E′, and this

same combination is blocked by the wall. In order for any field to penetrate the wall, ~E′ must become out of phase

with ~E, giving a non-zero ~E′− ε ~E at the wall (at order ε). The first term in parentheses is just this phase difference.

In order to exert a force on a test charge beyond the wall, a non-zero ~E + ε ~E′ must be regenerated (at one higher
order in ε) by a further relative phase shift. This second phase shift corresponds to the second term in parentheses.
Both of these relative phase shifts occur because of the finite hidden-photon mass, and vanish as m2

γ′ in the small mγ′

limit.
In the small mass limit (m2

γ′ � ω/L), we then have

~Fprobe −→ qε2
m4
γ′

ω4

ω2L(z − L)j0
8

ei(ωt−ωz) x̂ , (21)

and we see that the conducting wall is effective at screening transverse radiation up to order ε2m4
γ′/ω4.

C. Screening longitudinal plane waves

We now turn to effect of the conducting wall on the longitudinal hidden-photon mode, radiated when ~ ∝ ẑ. The
conduction electrons in the wall respond to the small force they feel from the incoming wave. This causes them to
oscillate in the ẑ direction at order ε2. However, since there is no longitudinal mode for the massless photon, they

cannot generate any further ~E field beyond the wall. They do of course radiate a further ~E′ field, but this occurs
at order ε3, and we are not interested in it. The force on a test charge q beyond the wall then follows directly from
Eq. 15,

~Fprobe = −qε2
m2
γ′

ωk

j0
2
ei(ωt−kz) ẑ (22)

mγ′�ω−−−−−→ −qε2
m2
γ′

ω2

j0
2
ei(ωt−ωz) ẑ . (23)

Altogether, we see that the conducting wall does not have any effect: it simply cannot screen the longitudinal
hidden-photon wave. As a result, the force experienced by the test charge is a factor ω2/m2

γ′ larger for longitudinal
radiation than for transverse radiation in the limit of a light hidden photon.

One might be concerned that these scalings arise partly because of the infinite extent of the plane wave, allowing
1/m2

γ′ factors to appear from a volume integral. We now turn to realistic Light-Shining-Through-A-Wall experiments
using resonant cavities, and will see that these scalings do persist: the signal from longitudinal waves is indeed
parametrically larger than that from transverse waves in the mγ′ � ω regime.

5 For completeness, we confirm this in appendix 3 with a more careful look at the propagation of waves in a conductor.
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V. SIGNAL IN A HIDDEN-PHOTON SEARCH WITH RESONANT CAVITIES

Having gained an understanding of hidden photon behavior in a simplistic setup in section IV, we turn to the
real setup of interest: a Light-Shining-Through-A-Wall experiment using resonant cavities, of the kind proposed
in [25] (see Fig. 1). We begin the section by presenting a general prescription for calculating the signal, which
can be easily employed in any given experimental setup. We follow this in section V B with an explicit, simple
example, demonstrating setups that do and do not utilize the improved transmission of the longitudinal hidden-
photon mode. A careful derivation of the signal can be found in appendix 1, and a discussion of previous attempts
in the literature [24, 25] in appendix 2.

A. General prescription for an arbitrary experimental geometry

Take ~E(~r, t) = ~Eem(~r)eiωt and ~B(~r, t) = ~Bem(~r)eiωt to be the (known) E- and B-fields of the cavity mode that is
driven inside the emitter cavity. The emitter cavity then radiates a hidden-photon field, with the hidden electric field
~E′ given by

~E′(~r, t) = −εm2
γ′

[∫
em

d3x
~Eem(~x)

4π |~r − ~x|
e−ik|~r−~x|

]
eiωt . (24)

Here the integral is over the interior of the emitter-cavity, and k2 ≡ ω2 −m2
γ′ . If mγ′>ω, the hidden-photon cannot

be radiated, but is nonetheless sourced within a distance ∼ 1/mγ′ of the emitter cavity. In this case Eq. 24 is still
valid after replacing k with −iκ, where κ2 ≡ m2

γ′ − ω2.

We see that the radiated hidden-photon fields are suppressed by a factor εm2
γ′/ω2 relative to the emitter-cavity

fields. For the longitudinal mode, this is the same suppression that we saw in Eq. 10 for the oscillating electric dipole:
the field strength of a longitudinal wave always appears at order m2

γ′ . For the transverse modes, the m2
γ′ arises because

there is perfect destructive interference outside the cavity in the massless limit.
The hidden-photon fields penetrate the receiver cavity, where they excite a resonant response of the matching

receiver-cavity mode. After allowing ∼ 2πQ cycles for the resonance to ring up, the observed signal fields within the
receiver cavity are given by 6

~Eobserved(~r, t) = −Q
ω

[∫
rec

d3x ~E∗cav(~x) · ~eff(~x)∫
rec

d3x |Ecav(~x)|2

]
~Ecav(~r)e

iωt (25)

~Bobserved(~r, t) = −Q
ω

[∫
rec

d3x ~E∗cav(~x) · ~eff(~x)∫
rec

d3x |Ecav(~x)|2

]
~Bcav(~r)e

iωt (26)

~eff(~x) ≡ − iε
ω

[
m2
γ′ ~E′(~x, 0)− ~∇

(
~∇ · ~E′(~x, 0)

)]
. (27)

Here the integrals are over the interior of the receiver cavity, and ~Ecav(~x) and ~Bcav(~x) = i~∇ × ~Ecav(~x)/ω are the
(known) spatial E- and B-field profiles of the excited cavity mode.

The function ~eff(~x) appearing above deserves further attention, since it captures the key result of this paper. If

the radiated hidden-photon field is purely transverse, then by definition ~∇· ~E′ = 0, whereas if it is purely longitudinal

then ~∇
(
~∇ · ~E′) = −k2 ~E′. In both cases ~eff simplifies, and we can write

~eff(~x) = − iε
ω
~E′(~x, 0)×

{
m2
γ′ (Pure transverse)

ω2 (Pure longitudinal) .
(28)

Comparing the two cases, we immediately see the parametric enhancement of the signal from the longitudinal mode
over the transverse mode in the small mass limit.

6 Here we have included the Q-factor only of the receiver cavity, treating the emitter cavity for simplicity as a perfect resonator with no
linewidth. The true signal would follow straightforwardly by integrating Eq. 61 over the emitter-cavity lineshape, but this is relevant
only for a detailed signal-processing analysis, which is beyond the scope of this work.
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(a) Radiation pattern from an oscillating EDM.
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(b) Good and bad cavity positioning.

FIG. 3: (a) shows the radiation pattern from an oscillating electric dipole, which is similar to that from the emitter cavity
shown on the right. Transverse modes are mainly emitted perpendicular to the dipole / emitter E-field, while the longitudinal
hidden photon mode is emitted mainly parallel to it. Figure 3: (b) examples of cavity setups that are (upper left + upper
right) and are not (upper left + lower left) well designed to efficiently receive the longitudinal mode from the emitter (see
sections VI A, V B). The distinctive dependence of the signal on the orientation of the cavities is a useful way to distinguish a
true signal from an unexpected field leakage.

Eqs. 24-27 provide a complete prescription for calculating the expected signal in the receiver cavity in any experi-
mental setup. Note that this signal is not affected by shielding or any other material placed between the cavities. The
factors in square brackets are in general to be calculated numerically for a given setup, but in the following subsection
we go through a simple example in which the signal can be calculated analytically.

B. Example: well-separated cylindrical cavities

We now calculate the signal explicitly for a particularly simple setup: well-separated identical cylindrical cavities,
in which the cavity mode used is the lowest mode with E-field pointing along the cavity’s axis (this is known as the
TM010 mode). We will consider two possible orientations of the cavities, as show in Fig. 3(b): one with the cavities
aligned along their cylindrical axes, and another with them separated perpendicular to their axes. We will see that
only the first setup gains the parametric enhancement from the longitudinal hidden-photon mode. In practice it
is better to place the cavities close together, in which case near-field terms become important and the distinction
between the two setups is blurred.

Take the cavities to have length L and radius R, and to be aligned along the z-axis (which points to the right in
Fig. 3(b)). At O(ε0) the fields of the emitter cavity mode are given by(

~Eem
~Bem

)
=

(
−iJ0(ωρ)ẑ

J1(ωρ)φ̂

)
Bem (29)

inside the emitter cavity (and vanish outside). Here we are using cylindrical coordinates (z, ρ, φ), and J0,1 are Bessel
functions. The frequency is given by ω = α01/R, where α01 ≈ 2.4 is the first zero of J0(z).

1. Hidden photon emission at O(ε)

Following Eq. 24, the radiated hidden photon fields are given by

~E′(~r, t) = iεm2
γ′Bem ẑ

∫ L/2

L/2

dz

∫ R

0

ρ dρ

∫ 2π

0

dφ
J0(ωρ)

4π |~r − ~x|
ei(ωt−k|~r−~x|) . (30)
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In the near-field region this must be solved numerically. However for well-separated cavities (r � R,L) we can just
keep the leading term in 1/r, with the result(

~E′

~B′

)
= iε

m2
γ′

ω2

L

r
C(θ)Bem e

i(ωt−kr) ×
(

ẑ

− k
ω sin θ φ̂

)
+O

( 1

r2

)
. (31)

The O(1) function C(θ), given by

C(θ) ≡ 1

2
α01J1(α01)

J0(kR sin θ)

cos2 θ +m2
γ′/ω2 sin2 θ

sin( 1
2kL cos θ)

1
2kL cos θ

, (32)

adds a rather mild angular dependence to the fields as long as L <∼ R. The radiation pattern of longitudinal and
transverse radiation is then similar to that from the oscillating electric dipole considered in section III A, and shown
in Fig. 3(a), with the longitudinal component E′r radiated most strongly along the cavity’s axis, and transverse
component E′θ most strongly perpendicular to it.

2. Response of a well-positioned receiver cavity: O(ε2m2
γ′) signal

Here we will see that if the receiver cavity is well positioned with respect to the emitter, the signal field ~Bobserved
will be of order Qε2m2

γ′/ω2Bem. Take the receiver cavity to be placed a distance d� L,R along the direction of the

emitter cavity’s ~E field (i.e. along the z-axis). Here the hidden photon field is approximately a longitudinal plane
wave, (

~E′

~B′

)
=

(
ẑ
0

)
E′0 e

i(ωt−kz) , E′0 = −1

2
iε
m2
γ′

ω2

L

d
α01J1(α01)

(
sin( 1

2kL)
1
2kL

)
Bem , (33)

and

~eff(~x) = − iε
ω

(m2
γ′ + k2) ~E′(~x, 0) = −iεωE′0 e−ikz ẑ . (34)

The hidden-photon excites the same TM010 mode as is driven in the emitter cavity, giving[∫
rec

d3x ~E∗cav(~x) · ~eff(~x)∫
rec

d3x |Ecav(~x)|2

]
=

[∫ d+L/2

d−L/2 dz
∫ R

0
ρ dρ (iJ0(ωρ))(−iεωE′0 e−ikz)

L
∫ R

0
ρ dρ J0(ωρ)2

]
(35)

=
2εω

α01J1(α01)

(
sin( 1

2kL)
1
2kL

)
E′0e

−ikd (36)

This gives the final result for the fully-rung-up signal field in the receiver cavity, with the m2
γ′ scaling as expected:

~Bobserved = iJ1(ωρ)φ̂ ei(ωt−kd)Brec (37)

Brec = Qε2
m2
γ′

ω2

L

d

(
sin( 1

2kL)
1
2kL

)2

Bem . (38)

3. Response of a badly positioned receiver cavity: O(ε2m4
γ′) signal

For a general arrangement of emitter and receiver cavities, Eq. 38 will typically give the correct parametric signal
size. However, as we now demonstrate, if the receiver cavity is badly positioned the signal can vanish at order m2

γ′ ,

resulting in a parametrically smaller signal of ~Bobserved ∼ Qε2m4
γ′/ω4Bem. As we observed earlier, this occurs when

the receiver cavity is in a purely transverse ~E′ field.
Take the receiver cavity to now be placed a distance d� L,R away from the emitter in the direction perpendicular

to the ~E field (along the x-axis). The hidden photon field here is approximately a transverse plane wave,(
~E′

~B′

)
= E′0 e

i(ωt−kx)

(
ẑ
− k
ω ŷ

)
, E′0 = −1

2
iε
L

d
α01J1(α01)J0(kR)Bem . (39)
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Now ~∇ · ~E′ = 0 , and so ~eff is suppressed by m2
γ′ :

~eff(~x) = − iε
ω
m2
γ′ ~E′(~x, 0) = −i

m2
γ′

ω2
εωE′0 e

−ikxẑ . (40)

Again evaluating Eq. 26, we now find that an m4
γ′ suppressed field is generated in the receiver cavity,

~Bobserved = iJ1(ωρ)φ̂ Brec e
i(ωt−kd) (41)

Brec = Qε2L

d

(
J0(α01k/ω)

)2

Bem
mγ′�ω−−−−−→ 0.39Qε2

m4
γ′

ω4

L

d
Bem . (42)

VI. CONSEQUENCES FOR EXISTING AND FUTURE EXPERIMENTS

A. Cavity positioning

It should be clear from the examples in section V B that the positioning of the cavities and the choice of cavity mode
can have a significant effect on the size of the signal, with the wrong setup resulting in a parametrically weaker reach.
The examples above were greatly simplified by taking the large separation limit and simple cylindrical geometry: a
real experiment with cavities placed close together will require a numerical study to determine the optimum setup.
We emphasize that the optimum setup will be different from those previously chosen, which were based on the signal
from transverse modes only presented in Ref. [25].

In addition, due to the distinctive angular dependence of the receiver-cavity response, measuring the variation of
the signal with cavity orientation should provide an important way to distinguish it from an unknown background.

B. Limit from the CROWS experiment

A search for hidden photons with high-Q resonant cavities has already been carried out by the CERN Resonant
Weakly Interacting sub-eV Particle Search (CROWS) experiment [29]. The optimal setup to employ, and the results
obtained, were determined using the calculation of Ref. [25] – that is to say, accounting only for transverse hidden-
photon modes. Consequently, the chosen cavity mode was not optimized for the emission and detection of longitudinal
modes (specifically, the chosen mode was TE011, which emits no longitudinal hidden-photon radiation in the far-field
limit).

However, CROWS also carried out a search for Axion-Like Particles, with the addition of a static B-field through
the cavities and a different choice of cavity mode. This setup was coincidently ideal for producing and detecting
longitudinal hidden-photon radiation (it used the TM010 mode described above, and the “good cavity positioning”
illustrated in Fig. 3(b)). In this section we reinterpret the results of this search to place new limits on hidden photons,
taking advantage of the improved penetration of longitudinal hidden photons.

Let us first summarize the details of the search. The power of the emitter cavity was 47.9 W, and the detector
cavity was sensitive to a signal power of 9.8 × 10−25 W. The frequency of the mode was 1.74 GHz. For the axion
search a static magnetic field was maintained in both cavities; this is not necessary for the hidden-photon search and
it does not affect the results. The cavities used in the CROWS experiment were not cylindrical, however to simplify
the calculation we approximate them as cylinders of length 6 cm (and radius chosen to give the correct frequency).
Further, the separation between the two cavities was not very large: we take it to be three times the cavity length,
but we still use the far-field approximation. The quality factors of the emitter and detector cavities were 11392 and
12151 respectively; we just take the lower value. This allows us to calculated the signal strength using Eq. 38. We
then take the limit to be set at |Brec|2/|Bem|2 = Prec/Pem = 2 × 10−26. We emphasize that these approximations
introduce only an order one error, to be compared to the orders-of-magnitude improvement of the limits at low mass.
(We also do not recalculate the limit for masses greater than ω, since this will be almost identical to the previous
result. A precise calculation could be done using the method presented in section V, but is not warranted here.)

The new limit is shown by the solid blue line in Fig. 2. Although the bound is weak compared to preexisting limits,
it illustrates the improved low-mass scaling, which will allow large new regions of parameter space to be explored with
future experiments.
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C. Sensitivity projection for future experiments

The longitudinal modes produced in the emitter cavity drive modes in a receiver cavity that is resonantly locked
to the emitter. The cavity modes excited in the receiver can be read through precision devices such as SQUID
magnetometers. The fundamental sources of noise that will limit the sensitivity of this experiment is set by thermal
noise in the receiver cavity and the intrinsic noise of the precision device used to read the signal (such as the sensitivity
of the SQUID magnetometer). For operating temperatures T ∼ 4 K, we expect thermal noise to dominate over the
intrinsic sensitivity of the magnetometers.

To estimate the sensitivity, the setup can be viewed as an LC receiver circuit that is resonantly driven by a source.
The source produces a voltage Vs that is produced at a well defined frequency and phase for an integration time tint.
Since the LC oscillator has a finite Q, it has a non-zero resistance R. Thermal (Johnson) noise creates voltage noise
across this resistor with a power spectral density equal to RT and a flat dependence on frequency [41]. Over an

integration time tint, the Fourier amplitude of this voltage noise in the frequency of interest is
√
RT (1/tint). The

signal to noise ratio is thus equal to
V 2
s tint
RT . Expressing R in terms of Q, we see that the signal to noise ratio can be

expressed as (Psignal tint/T ) where Psignal is the power stored in the receiver.

In the setup discussed in this paper, Psignal ' ωB2
recVcav
Q , where Vcav is the cavity volume. The signal to noise ratio

scales as

SNR ' Psignal tint
T

' ωB2
recVcav
Q

tint
T

. (43)

Taking Brec from Eq. 38, and requiring SNR >∼ 5 gives an estimated reach in the mγ′ � ω regime of

ε ' 10−7.5 ×
(

10−10 eV

mγ′

)√
1 T

Bem

(
1010

Q

) 1
4
(
T

4 K

) 1
4
(

f

2.3GHz

) 3
4
(

300 cm3

Vcav

) 1
4
(

1 year

tint

) 1
4

, (44)

where we have taken the ratio of cavity separation to height to be d/L = 3. The red dashed line Fig. 2 shows the
potential reach of a future cavity experiment with the experimental parameters indicated in Eq. 44 7.

The scaling with integration time in Eq. 43 is more favorable than it would be if we were searching for an unknown
signal (as from a background dark matter field for example). This is because we have control of the emitter and thus
know the precise mode driven in the emitter and in particular we know the phase and frequency. Hence we know the
predicted phase and frequency of the signal in the receiver. Equivalently, we will measure the field amplitude (not
power) in the receiver cavity. This field amplitude builds up linearly in time because of the resonance until a time
∼ Q/f . Conceptually, each of these times can be imagined as a separate measurement of the field amplitude. Then
the sensitivity to the field will increase as the square root of the number of such measurements, thus giving the scaling
of the sensitivity to be

√
tint in the field, or tint in the field squared, as shown in Eq. 43. With high Q (∼ 1010), this

scaling with integration time is not a particularly large gain because Q/f ∼ 10 s, so not very many measurements are
being made. However, for smaller Q (∼ 105), such as may occur in initial versions of this experiment, this may give
a significant improvement in the sensitivity.

D. ALPS

Of course, the cavities used do not need to be microwave cavities. It is interesting to consider the use of optical
cavities, as in the original Light-Shining-Through-A-Wall setup used in experiments such as ALPS [38, 39]. In principle
the frequency of the cavities does not affect the mathematics of our conclusions given above: the longitudinal mode
could still be used as outlined above and would give an enhanced scaling at low masses.

Unfortunately we find that in practice optical cavities do not lend themselves naturally to the type of geometries
we have proposed. A prototypical Light-Shining-Through-A-Wall experiment such as ALPS has two long, resonant,
optical cavities, positioned end-to-end but separated by a wall. One of the cavities is driven by a laser. There are
several reasons such an experiment does not benefit from the longitudinal mode of the hidden photon.

First, the driving laser itself is not like a normal cavity. It works by quantum stimulated emission which means it
dominantly produces the modes that already have the largest occupation number. These are, by far, the transverse

7 Thanks to Sami Tantawi for providing realistic cavity parameters.
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modes of the photon/hidden photon system, since the normal photon by itself has no longitudinal mode. Thus the
laser will not efficiently produce the longitudinal mode.

Of course the optical cavity it is driving can produce the longitudinal mode, even though it is driven only by
transverse modes, exactly like the microwave cavities considered above. At some level it will produce the longitudinal
mode since the mirrors on either end of the optical cavity will have current running in them parallel to the E-field of the
driving mode. This will produce longitudinal radiation with momentum in this same direction (which is perpendicular
to the long axis of the cavity), as shown in Figure 3(a). But both the receiver and emitter cavities are long and thin
with only small mirrors at each end and lie along one line. As we see, the longitudinal radiation will be dominantly
directed perpendicular to this line and so will couple poorly to the receiver cavity. This is somewhat similar to the
situation of the badly-positioned receiver cavity in Figure 3(b).

To improve the transmission of the longitudinal mode one could locate the receiver cavity next to the emitter,
parallel to it but not along a single line. This gives a good alignment to the mirrors which are the walls of the
optical cavity, allowing them to efficiently transmit the longitudinal mode. However this approach would lose peak
sensitivity because previously the sensitivity was linearly enhanced by the length of the cavities (the number, N , of
wavelengths contained), while in this new geometry that enhancement would be completely lost (those factors of N
are set to 1). This loss in peak sensitivity is so great that the enhanced sensitivity at low masses from the use of the
longitudinal mode would not be sufficient to make this experiment worth doing, especially because, as can be seen
on the sensitivity plot Figure 2, extending the reach of ALPS at low mass starting from a reduced peak sensitivity
would only extend the reach in parameter space that is already covered by other limits. This remains true even if
such optical Light-Shining-Through-A-Wall experiments are improved by a few orders of magnitude in the future.

VII. DISCUSSION AND CONCLUSIONS

A hidden photon coupled to the Standard Model through a kinetic-mixing term is a well motivated possibility for
new physics, and a potential dark matter candidate. We have argued that Light-Shining-Through-A-Wall experiments
are a powerful probe of the hidden photon, with a far greater reach than has previously been realized. In particular,
previous work in this direction only made use of the transverse modes of the hidden photon. In this paper we have
shown that the longitudinal mode allows a large, parametric improvement in the sensitivity of these experiments. As
the mass of the hidden photon is decreased below the frequency of the emitter and receiver, the sensitivity using only
the transverse modes scales as ε2m4

γ′ , but the sensitivity of an experiment that can make use of the longitudinal mode

scales as ε2m2
γ′ . This is a significant improvement over a huge range of parameter space.

We found that a microwave cavity experiment, for example as shown in Figure 1, can take advantage of the
sensitivity enhancement from the longitudinal mode. In order to transmit the longitudinal mode most efficiently
between the two cavities, the experiment must be set up with the correct geometry and the correct choice of cavity
mode. The longitudinal mode is dominantly radiated along the direction of the oscillating electric field, perpendicular
to the normal transverse modes, as shown in Figure 3(a). Thus, the two cavities must be displaced from each other
in a direction parallel to the electric field in the driven mode, as shown in Figure 3(b). With this geometry, the
parametric enhancement is attained and the sensitivity can be greatly improved as shown in Figure 2.

In fact, this enhancement improves the results of experiments that have already taken place. For example, the
CROWS experiment carried out both a hidden-photon and an axion search. The hidden-photon search was carried
out with a geometry that is sub-optimal for the use of the longitudinal mode. However, their axion search happened
to use a geometry which would efficiently transmit the longitudinal mode of the hidden photon. Thus the CROWS
axion search can in fact be used to place stronger limits on hidden photons than the hidden-photon search. We have
estimated this improved limit and the result is shown in Figure 2.

Optical cavity experiments, such as ALPS, could in principle benefit from the longitudinal mode in the same way.
However, in practice such experiments would not gain a useful enhancement because the geometry of these setups
does not lend itself to the use of the longitudinal mode (see section VI D).

We estimated the reach of a microwave cavity experiment designed with optimal geometry to take advantage of
the longitudinal mode and high-Q resonant cavities. Such an experiment could detect hidden photons over many
orders of magnitude of unexplored parameter space in both mass (from ∼ 10−18 eV to 10−4 eV) and coupling, as
shown in Fig. 2. This also covers a significant part of the parameter space where the hidden photon can be the dark
matter [13, 14]. This demonstrates that resonant microwave cavities allow highly sensitive Light-Shining-Through-
A-Wall types of experiments, taking full advantage of the enhancement from the longitudinal mode of the hidden
photon. Such an experiment is a powerful probe of the existence of hidden sectors and new forces in nature.
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Appendix

1. Careful derivation of cavity response

A chosen cavity mode, of frequency ω, is driven inside the emitter cavity. At O(ε0), the only fields that exist are
those of this driven mode,

~E(~r, t) = ~Eem(~r)eiωt , ~B(~r, t) = ~Bem(~r)eiωt (fields at O(ε0)) . (45)

At O(ε), hidden-photons fields are radiated from the cavity. To find these, it is useful to rewrite the field equations
for the photon and hidden-photon fields in a new form. Combining Eqs. 3 and 4 to eliminating %EM and ~EM , and
applying appropriate derivatives, gives

(∇2 − ∂2
t −m2

γ′)( ~E′ − ε ~E) = εm2
γ′ ~E . (46)

This is a massive wave equation for the combination ~E′ − ε ~E sourced by the E-field inside the emitter cavity. It is
easily solved using the Green’s function, giving the hidden-photon fields outside the emitter cavity as

~E′(~r, t) = −εm2
γ′

∫
Vem

d3x
~Eem(~x)

4π |~r − ~x|
ei(ωt−k|~r−~x|) ( ~E′ sourced by ~E at O(ε)) . (47)

Here Vem is the emitter-cavity volume, and k2 ≡ ω2 −m2
γ′ . For mγ′ > ω, we make the replacement k → −iκ, where

κ2 ≡ m2
γ′ − ω2. (Note that ~B′(~r, t) can be found from ~B′ = (i/ω)~∇ × ~E′, which is an identity following from the

definitions of ~E′ and ~B′.)
The hidden-photon fields penetrate the receiver cavity, where they generate a resonant response of the matching

receiver cavity mode at O(ε2). This response is determined by Maxwell’s equations for the E- and B-fields inside the

receiver cavity, along with the boundary condition Eq. 6. To solve for the response, we first write ~∇×(~∇× ~E′)+∂2
t
~E′ =

~∇(~∇ · ~E′) + (∂2
t − ∇2) ~E = ~∇(~∇ · ~E′) −m2

γ′ ~E′, where the second equality follows from Eqs. 4 (in vacuum). For the

electric field, we have the usual vacuum equation ~∇ × (~∇ × ~E) + ∂2
t
~E = 0. Combining these gives a sourced wave

equation for ~E + ε ~E′ inside the vacuum of the receiver cavity, along with the boundary condition on its interior
surface:

~∇× (~∇×
[
~E + ε ~E′

]
) + ∂2

t

[
~E + ε ~E′

]
= −ε

(
m2
γ′ ~E′ − ~∇(~∇ · ~E′)

)
( ~E + ε ~E′ sourced by ~E′) (48)[

~E + ε ~E′
]
‖ = 0 (B.C. at conducting surface) . (49)

Compare this to the equations governing the electric field sourced by an oscillating current distribution ~ (~r)eiωt

inside a cavity, in standard electromagnetism without a hidden photon:

~∇× (~∇× ~E) + ∂2
t
~E = −iω~ (~r)eiωt ( ~E sourced by oscillating current density) (50)

~E‖ = 0 (B.C. at conducting surface) . (51)

We see that ~E + ε ~E′ obeys identical governing equations to ~E in Eqs. 50, 51, with an effective current density given
by

~eff(~r)eiωt = − iε
ω

(
m2
γ′ ~E′ − ~∇(~∇ · ~E′)

)
. (52)
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(Note that Eq. 50 does not assume ~∇ · ~E = 0, being used to describe cavities filled with dielectric materials. It is

therefore appropriate to our situation, where ~∇ · [ ~E + ε ~E′] 6= 0.) Eqs. 50, 51 have a standard solution found by

decomposing ~E into a complete orthonormal set of basis functions (see, for example, chapter 1 of [42]). The basis can

be chosen as the combination of the (divergence-free) vacuum cavity-mode E-fields ~En(~r) and a set of irrotational

(and divergence-full) basis functions ~Fp(~r),

~E(~r, t) =
∑
n

cn(t) ~En(~r) +
∑
p

dp(t)~Fp(~r) . (53)

Here ~En and ~Fp satisfy

~∇ · ~En = 0 ∇2En = −ω2
n
~En (54)

~∇× ~Fp = 0 ∇2Fn = −ω̃2
p
~Fp (55)∫

d3x ~E∗n · ~Em ∝ δnm
∫
d3x ~F ∗p · ~Fq ∝ δpq

∫
d3x ~E∗n · ~Fp = 0 (56)

~En
∣∣
‖ = ~Fp

∣∣
‖ = 0 on boundary , (57)

where the integrals in the third line are over the cavity volume, and ωn are the frequencies of the cavity modes.
Applying Eqs. 53-57 to Eq. 50 gives the equations governing the coefficients in Eq. 53,

c̈n(t) +
ωn
Qn

ċn(t) + ω2
ncn(t) = −iω

[∫
d3x ~E∗n(~x) · ~ (~x)∫
d3x |En(~x)|2

]
eiωt (58)

d̈p(t) = −iω

[∫
d3x ~F ∗p (~x) · ~ (~x)∫
d3x |Fp(~x)|2

]
eiωt . (59)

Here we have added a damping term by hand in Eq. 58 to account for the finite Q-factors of the cavity modes. We

see that a typical mode is driven at order cn ~En ∼ dp ~Fp ∼ ~ /ω2. However, Eq. 58 has resonantly enhanced solutions
when the driving frequency ω is close to the frequency of a particular cavity mode. Writing ω = ωn + δω, this mode’s
coefficient is given by

cn(t)
ω→ωn−−−−→ − Q

ω + 2i δω Q

(
1− e−iδωt−

ωt
2Q

)[∫ d3x ~E∗n(~x) · ~ (~x)∫
d3x |En(~x)|2

]
eiωt . (60)

We will assume that in a cavity-to-cavity hidden-photon search, a single mode in the receiver cavity is tuned to be

on resonance with the driven emitter cavity. We denote this mode by ~Ecav. Dropping the non-resonant components,
we therefore find the signal field inside the receiver cavity to be

[ ~E + ε ~E′](~r, t) = − Q

ω + 2i δω Q

(
1− e−iδωt−

ωt
2Q

)[∫ d3x ~E∗cav(~x) · ~eff(~x)∫
d3x |Ecav(~x)|2

]
~E∗(~r)e

iωt . (61)

The signal builds up fully after 2πQ cycles, i.e. when t ∼ Q/ω. In the on-resonance, long time limit (δω � ω/Q
and t� Q/ω), the observable signal fields inside the receiver cavity become

~Eobserved(~r, t) ≡ [ ~E + ε ~E′](~r, t) = −Q
ω

[∫
d3x ~E∗cav(~x) · ~eff(~x)∫
d3x |Ecav(~x)|2

]
~Ecav(~r)e

iωt (62)

~Bobserved(~r, t) ≡ [ ~B + ε ~B′](~r, t) = −Q
ω

[∫
d3x ~E∗cav(~x) · ~eff(~x)∫
d3x |Ecav(~x)|2

]
~Bcav(~r)e

iωt , (63)

where the 2nd line uses ~̇B(′) = −~∇× ~E(′), and ~Bcav = i~∇× ~Ecav/ω is the B-field profile of the excited cavity mode.

2. Comparison with previous literature

The observation that Light-Shining-Through-A-Wall experiments, originally developed for axion searches, are also
sensitive to hidden-photons was first made out in Ref. [24]. This idea was then developed further in Ref. [25] with
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the proposal to perform such an experiment with resonant microwave cavities, opening up a larger, lower mass region
of hidden-photon parameter space. While the fundamental concept of these papers is absolutely correct, both missed
the presence of the longitudinal hidden-photon mode and its importance to the power of the experiments. Therefore,
for completeness, in this subsection we briefly compare our calculation to the ones laid out in these papers, pointing
out the errors that lead to their incorrect formulae for the signal size.

Ref. [24] treats the signal in Light-Shining-Through-A-Wall hidden-photon searches as arising purely due to oscilla-
tion between the photon and hidden-photon modes (in analogy with the photon-to-axion, axion-to-photon conversion
originally searched for by the same experiments). This approach implicitly includes only the transverse modes of the
hidden photon (which is in fact reasonable given the experimental geometry of the laser-based experiments existing
then, see section VI D).

Ref. [25] begins with an estimation of the signal size based on the results of Ref. [24], which therefore does not
include the contribution from the longitudinal mode. However, it then follows with a more detailed calculation of
the signal based on the field equations, which should in principle have captured the effect of the longitudinal mode.
To describe the subtle error made which prevented this, we here switch to the notation of Ref. [25], which uses the
interaction basis for the fields, and uses χ for the kinetic mixing parameter, Aµ for the interacting 4-vector potential,
and Bµ for the non-interacting 4-vector potential.

Eq. 19 of Ref. [25] uses the Green’s function method to give Bµ, sourced by the Aµ inside the emitter cavity only.

However, unlike the physical fields ~E and ~B, the Aµ field of a driven cavity is also non-zero outside the cavity (at
least in any standard gauge). Bµ should therefore be given by Eq. 19, but with the integral now over all space. This
unbounded integration region must introduce a factor 1/m2

γ′ , increasing the scaling of the signal from m4
γ′ to m2

γ′ .

(This is practically difficult to work with, and is avoided by working directly with the physical fields.) In fact, without
this change Eq. 19 of Ref. [25] is not gauge invariant (note that gauge invariance in the interaction basis involve a
transformation of both fields: Aµ → Aµ + ∂µΛ, Bµ → Bµ + χ∂µΛ).

Ref. [25] continues by calculating the response of the receiver cavity to hidden-photon field in a manner essential

identical to the one we have used here, but working with the 4-vector fields Bµ, Aµ, rather than the physical fields ~E(′),
~B(′). The two approaches should be mathematically identical, but the latter has the advantage of making manifest
the difference in scaling between transverse and longitudinal modes, as shown here in Eq. 28.

3. Skin depth

In this section, we present a calculation of plane wave propagation in a metal. We will see that for transverse modes
the metal will dissipate the interaction component of the wave rapidly. The sterile component is barely affected since
its interaction with metal, compared to the interaction component, is suppressed by ε as well as the small hidden
photon mass. Further, the effect on a longitudinal mode of the hidden photon is negligible.

Let us first consider the transverse wave. We assume the wave propagates along the z axis, and we take the
polarization of the electric field to be along the x axis. Thus by taking Lorentz gauge, we have

Aµ
(′) =

(
0, Ax

(′)(t, z), 0, 0
)

Ex
(′) =− iωAx(′)

(transverse mode) (64)

With the modified Lorentz force law Eq. 5, Ohm’s law inside a metal of conductivity σ becomes

~ = σ( ~E + ε ~E′) . (65)

Combining this with Eqs. 3, 4, the equations of motion for Ax
(′) inside the metal can be written as

(∂2
z + ω2)Ax =iωσ(Ax + εA′x)

(∂2
z + ω2 −m2)A′x =iεωσ(Ax + εA′x) .

(66)

There are two eigenmodes of this coupled system,

A1 = Ax +
σω

σω + im2
εA′x ' Ax + εA′x

A2 = A′x −
σω

σω + im2
εAx ' A′x − εAx ,

(67)

with eigenvalues (ω2 − iσω) and (ω2 −m2 − iσω ε2m4

σ2ω2+m4 ) respectively. Here we only keep the leading term in the ε
expansion. One can clearly see that the propagation of A1 shares the same form as normal EM wave in the metal.
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Thus when σ � ω � m, this mode has a skin depth δ = 2/
√
σω. If the metal is much thicker than the skin depth of

this mode, the boundary condition for A1 at its surface is A1 = 0, implying Ex + εE′x = 0. On the other hand, the
imaginary part of the second eigenvalue is suppressed by a factor of ε2 as well as small hidden photon mass. Thus A2

is barely affected by the metal.
This result is consistent with intuition. If the incoming planewave is dominated by A′x, then Ax in the metal is

O(ε). According to the second line in Eq. (66), one expects that any perturbations on A′ should only show up at
O(ε2).

Now let us focus on the propagation of the longitudinal plane wave. Similar to the transverse case, applying Lorentz
gauge, one gets

Aµ
(′) =

(
At

(′)(t, z), 0, 0, Az
(′)(t, z)

)
E(′)
z =

1

iω
(∂2
z + ω2)Az

(′)
(longitudinal mode) (68)

The equations of motion for A
(′)
z inside the metal can be written as

(∂2
z + ω2)Az = i

σ

ω
(∂2
z + ω2)(Az + εA′z)

(∂2
z + ω2 −m2)A′z = iε

σ

ω
(∂2
z + ω2)(Az + εA′z)

(69)

The first line of Eq. (69) can be rewritten as

(∂2
z + ω2)(Az + εA′z) =

iω

σ + iω
ε(∂2

z + ω2)A′z (70)

Substitute into the second line of Eq. (69), one gets

(∂2
z + ω2 − m2

1 + ε2σ/(σ + iω)
)A′z = 0 (71)

In the limit of σ � ω � m, the eigenvalue can be written as (ω2 −m2 − iε2m2

σ2 σω). Similar to the transverse mode,

the skin depth for the hidden photon field is much larger than normal EM skin depth because of small ε2 and small
hidden photon mass.

[1] B. Holdom, Phys.Lett. B178, 65 (1986).
[2] M. Pospelov, A. Ritz, and M. B. Voloshin, Phys.Lett. B662, 53 (2008), 0711.4866.
[3] S. Abel, M. Goodsell, J. Jaeckel, V. Khoze, and A. Ringwald, JHEP 0807, 124 (2008), 0803.1449.
[4] N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, Phys.Rev. D79, 015014 (2009), 0810.0713.
[5] N. Arkani-Hamed and N. Weiner, JHEP 0812, 104 (2008), 0810.0714.
[6] M. Pospelov, Phys.Rev. D80, 095002 (2009), 0811.1030.
[7] M. Goodsell, J. Jaeckel, J. Redondo, and A. Ringwald, JHEP 0911, 027 (2009), 0909.0515.
[8] A. Arvanitaki, N. Craig, S. Dimopoulos, S. Dubovsky, and J. March-Russell, Phys.Rev. D81, 075018 (2010), 0909.5440.
[9] J. Jaeckel and A. Ringwald, Ann.Rev.Nucl.Part.Sci. 60, 405 (2010), 1002.0329.

[10] R. Essig, J. Kaplan, P. Schuster, and N. Toro, Submitted to Physical Review D (2010), 1004.0691.
[11] A. Ringwald, Phys.Dark Univ. 1, 116 (2012), 1210.5081.
[12] A. E. Nelson and J. Scholtz, Phys.Rev. D84, 103501 (2011), 1105.2812.
[13] P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo, et al., JCAP 1206, 013 (2012), 1201.5902.
[14] P. W. Graham, J. Mardon, S. Rajendran, and Y. Zhao, to appear (????).
[15] P. Ade et al. (BICEP2 Collaboration) (2014), 1403.3985.
[16] B. Holdom, Phys.Lett. B166, 196 (1986).
[17] M. Reece and L.-T. Wang, JHEP 0907, 051 (2009), 0904.1743.
[18] B. Batell, M. Pospelov, and A. Ritz, Phys.Rev. D80, 095024 (2009), 0906.5614.
[19] J. D. Bjorken, R. Essig, P. Schuster, and N. Toro, Phys.Rev. D80, 075018 (2009), 0906.0580.
[20] B. Aubert et al. (BaBar Collaboration) (2009), 0908.2821.
[21] P. deNiverville, M. Pospelov, and A. Ritz, Phys.Rev. D84, 075020 (2011), 1107.4580.
[22] J. Hewett, H. Weerts, R. Brock, J. Butler, B. Casey, et al. (2012), 1205.2671.
[23] R. Dharmapalan et al. (MiniBooNE Collaboration) (2012), 1211.2258.
[24] M. Ahlers, H. Gies, J. Jaeckel, J. Redondo, and A. Ringwald, Phys.Rev. D76, 115005 (2007), 0706.2836.



18

[25] J. Jaeckel and A. Ringwald, Phys.Lett. B659, 509 (2008), 0707.2063.
[26] F. Caspers, J. Jaeckel, and A. Ringwald, JINST 4, P11013 (2009), 0908.0759.
[27] R. Povey, J. Hartnett, and M. Tobar, Phys.Rev. D82, 052003 (2010), 1003.0964.
[28] A. Wagner, G. Rybka, M. Hotz, L. Rosenberg, S. Asztalos, et al., Phys.Rev.Lett. 105, 171801 (2010), 1007.3766.
[29] M. Betz, F. Caspers, M. Gasior, M. Thumm, and S. Rieger, Phys.Rev. D88, 075014 (2013), 1310.8098.
[30] K. Ehret, M. Frede, S. Ghazaryan, M. Hildebrandt, E.-A. Knabbe, et al., Phys.Lett. B689, 149 (2010), 1004.1313.
[31] P. Arias, J. Jaeckel, J. Redondo, and A. Ringwald, Phys.Rev. D82, 115018 (2010), 1009.4875.
[32] D. Horns, J. Jaeckel, A. Lindner, A. Lobanov, J. Redondo, et al., JCAP 1304, 016 (2013), 1212.2970.
[33] R. Seviour, I. Bailey, N. Woollett, and P. Williams, J.Phys. G41, 035005 (2014).
[34] H. An, M. Pospelov, and J. Pradler (2013), 1302.3884.
[35] H. An, M. Pospelov, and J. Pradler (2013), 1304.3461.
[36] J. Redondo and G. Raffelt, JCAP 1308, 034 (2013), 1305.2920.
[37] J. Redondo, JCAP 0807, 008 (2008), 0801.1527.
[38] K. Ehret et al. (ALPS collaboration), Nucl.Instrum.Meth. A612, 83 (2009), 0905.4159.
[39] R. Bhre, B. Dbrich, J. Dreyling-Eschweiler, S. Ghazaryan, R. Hodajerdi, et al., JINST 8, T09001 (2013), 1302.5647.
[40] S. Tantawi, private communication (????).
[41] R. Bradley, J. Clarke, D. Kinion, L. Rosenberg, K. van Bibber, et al., Rev.Mod.Phys. 75, 777 (2003).
[42] D. A. Hill, Electromagnetic Fields in Cavities (Wiley, 2009).


