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Recently, Weinberg proposed a scenario where Goldstone bosons may be masquerading as frac-
tional cosmic neutrinos. We calculate the energy loss rates through the emission of these Goldstone
bosons in a post-collapse supernova core. Invoking the well established emissivity bound from the
Supernova 1987A observations and simulations, we find that nuclear bremsstrahlung processes can
notably impose a bound on the Goldstone boson coupling to the Standard Model Higgs, g, depen-
dent on the mass of the associated radial field, mr. We apply the supernova emissivity bound at
typical core conditions: a density of ρ = 3 ·1014 g/cm3 and a temperature T = 30 MeV. Even in the
conservative limit where mr is large enough compared with the Goldstone boson energies attainable
at this temperature, our bound |g| . 0.011 (mr/500 MeV)2 is very competitive to those derived
from current and projected sensitivities of collider experiments.

PACS numbers: 12.60.Fr, 14.80.Va, 97.60.Bw

I. INTRODUCTION

The cosmic microwave background (CMB) radiation,
if combined with other observational data, can be used to
constrain the effective number of light neutrino species.
The WMAP9 data combined with eCMB, BAO, and H0

measurements has inferredNν = 3.55+0.49
−0.48 at 68% CL [1].

Latest Planck data combined with WP, highL, BAO, and
H0 measurements gives Nν = 3.52+0.48

−0.45 at 95% CL [2].
Most recently, with the inclusion of the B-mode polar-
ization data by the BICEP2 experiment [3], evidence for
an extra weakly-interacting light species becomes favor-
able, with Nν ≃ 4 (see e.g. Ref. [4]). These bounds are
consistent with that from the big bang nucleosynthesis
(BBN) Nν = 3.71+0.47

−0.45 (see e.g. Ref. [5]). On the other
hand, the standard scenario with three active, massless
neutrinos predicts Nν = 3.046 at the CMB epoch [6].

Recently, Weinberg [7] has investigated whether Gold-
stone bosons can be masquerading as fractional cosmic
neutrinos. The motivation is that they would be mass-
less or nearly massless, and their characteristic deriva-
tive coupling would make them very weakly-interacting
at sufficiently low temperatures. The most crucial cri-
terion is that those Goldstone bosons have to decouple
from the thermal bath early enough so that their tem-
perature is lower than that of the neutrinos. A simple
extended Higgs sector in the Standard Model (SM) has
been proposed to realize this idea such that the Goldstone
bosons contribute significantly to the effective number of
light species. The thermal history of these Goldstone
bosons depends crucially on their coupling to the Stan-
dard Model Higgs field and the mass of the radial field.
An upper bound on the coupling constant can be quickly
derived using the limit on the invisible decay width of the
SM Higgs. In this work we will examine the viability of
this scenario by considering the cooling of a post-collapse
supernova core, such as the Supernova 1987A.

II. WEINBERG’S MODEL

Let us first briefly summarize Weinberg’s model [7] fol-
lowing the convention of Ref. [8]. Consider the simplest
possible broken continuous symmetry, a global U(1) sym-
metry associated with the conservation of some quantum
number W . A single complex scalar field S(x) is intro-
duced for breaking this symmetry spontaneously. With
this field added to the SM, the Lagrangian is

L = (∂µS
†)(∂µS) + µ2 S†S − λ (S†S)2

− g (S†S)(Φ†Φ) + LSM , (1)

where Φ is the SM Higgs doublet, µ2, g, and λ are real
constants, and LSM is the usual SM Lagrangian. One
separates a massless Goldstone boson field α(x) and a
massive radial field r(x) in S(x) by defining

S(x) =
1√
2
(〈r〉 + r(x)) e2ıα(x) , (2)

where the fields r(x) and α(x) are real. In the unitary

gauge, one sets ΦT = (0 , 〈ϕ〉+ ϕ(x))/
√
2, where ϕ(x) is

the physical Higgs field. The Lagrangian in Eq. (1) thus
becomes

L =
1

2
(∂µr)(∂

µr) +
1

2

(〈r〉 + r)2

〈r〉2 (∂µα)(∂
µα)

+
µ2

2
(〈r〉 + r)2 − λ

4
(〈r〉 + r)4

− g

4
(〈r〉 + r)2(〈ϕ〉 + ϕ)2 + LSM . (3)

In Eq. (3), we have replaced α(x) → α(x)/(2〈r〉) in order
to achieve a canonical kinetic term for the α(x) field.
In this model, the interaction of the Goldstone bosons
with the SM particles arises entirely from a mixing of
the radial boson with the Higgs boson via the mixing
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angle

tan 2θ =
2g 〈ϕ〉 〈r〉
m2

ϕ −m2
r

. (4)

The ϕ-r mixing allows the SM Higgs boson to decay into
a pair of the Goldstone bosons with the decay width

Γϕ→2α =
g2 〈ϕ〉2m3

ϕ

32π (m2
ϕ −m2

r)
2
. (5)

For 〈ϕ〉 = 247 GeV, mϕ = 125 GeV, and assumingmr ≪
mϕ, one obtains a constraint of |g| . 0.018. In Ref. [8]
it is pointed out that by including the ϕ → rr channel,
the constraint can be improved to |g| . 0.011. Further
collider signatures of this model have been investigated
therein and in Ref. [9]. In the future, the International
Linear Collider (ILC) may constrain the branching ratio
of Higgs invisible decays to < 0.4− 0.9% [10], improving
the collider bound on |g| by a factor of 5− 7.
From the mixing term−g 〈ϕ〉 〈r〉ϕr and the interaction

term (1/ 〈r〉) r ∂µα∂µα in the Lagrangian (Eq. (3)) as
well as the SM Higgs-fermion coupling −mfϕf̄f/〈ϕ〉, an
effective interaction between the Goldstone bosons and
any SM fermion f ,

+gmf f̄ f ϕr ∂µα∂
µα , (6)

is produced. In the early universe, the Goldstone bosons
remain in thermal equilibrium via the processes αα ↔
f̄ f , where f are SM fermions in the thermal bath. If the
Goldstone bosons freeze out before the muon annihilation
occurs, they contribute about 0.39 to the effective num-
ber of neutrino types in the era before recombination.
Weinberg has made an order-of-magnitude estimate

g2m7
µMPl

m4
ϕm

4
r

≈ 3 , (7)

which shows that for g = 0.005 the Goldstone bosons
decouples at muon annihilation for mr ≈ 500 MeV (see
also Ref. [11]). While a more accurate calculation is un-
derway [12], in this work we will use mr = 500 MeV as
a benchmark.

III. SUPERNOVA COOLING DUE TO

GOLDSTONE BOSON EMISSION FROM PAIR

ANNIHILATION PROCESSES

Now we turn to supernova cooling. The observed du-
ration of neutrino burst events from Supernova 1987A in
several detectors confirmed the standard picture of neu-
trino cooling of post-collapse supernova. In the second
phase of neutrino emission, a light particle which inter-
act even more weakly than neutrinos could lead to more
efficient energy loss and shorten the neutrino burst dura-
tion. Demanding that the novel cooling agent X should

not have affected the total cooling time significantly, an
upper bound on their emissivity can be derived [13, 14]

ǫX ≡ QX

ρ
. 1019 erg ·g−1 · s−1 = 7.324 ·10−27GeV , (8)

where QX is the energy loss rate. This bound, dubbed
the “Raffelt criterion”, is to be applied at typical core
conditions, i.e. a density ρ = 3·1014 g/cm3 and a temper-
ature T = 30 MeV. It has been used exhaustively in the
literature to constrain the properties of exotic particles,
notably the axions [15–17], right-handed neutrinos [15],
Kaluza-Klein gravitons [18, 19], and unparticles [20, 21]
etc. Among all, the authors of Ref. [19] have performed
self-consistent simulations of the early, neutrino-emitting
phase of a proto-neutron star including energy losses due
to the Kaluza-Klein gravitons in large extra dimension
scenarios. From their subsequent probabilistic analyses
they inferred bounds on the radii of the extra dimensions
for the cases of 2 and 3 extra dimensions. They found
excellent agreement between their simulation results and
those obtained by using the Raffelt criterion.
Stellar energy loss due to Goldstone boson pair emis-

sion had been considered for the Compton-like process
[22]. Here, from their effective interaction with the SM
fermions (Eq. (6)), the Goldstone bosons can be pro-
duced in electron-positron pair annihilation e+e− →
αα, in photon scattering γγ → αα and in nuclear
bremsstrahlung processes NN → NNαα. The number
densities of neutron, proton, electron, and electron neu-
trino in the supernova core are determined by the baryon
density nB, charge neutrality and β-equilibrium condi-
tions. The chemical potential of each particle at T = 30
MeV are µn = 971 MeV, µp = 923 MeV, µe = 200 MeV,
and µνe = 152 MeV, respectively, for a fixed lepton frac-
tion YL = 0.3. The degeneracy parameter for the neutron
is ηn ≡ (µn −mn)/T ≈ 1.05 in this case, corresponding
to neither strongly non-degenerate nor degenerate case.
On the other hand, the electrons are highly degenerate.
i) For the e+(p1) e

−(p2) → α(q1)α(q2) process, the
amplitude squared, summed over the initial spins, is

∑

spins

|Me+e−→αα|2 =
16 g2m2

e (q1 · q2)2
[

(p1 · p2)−m2
e

]

(s−m2
ϕ)

2 (s−m2
r)

2
,

(9)
where s = (p1 + p2)

2 = (q1 + q2)
2 is the center-of-mass

(cm) energy squared. Denote the energies of the e± and
the Goldstone boson pairs by E1, E2, ω1, and ω2, respec-
tively. The energy loss rate due to this process is

Qe+e−→αα =
1

2!

∫ 2
∏

j=1

d3 ~qj
(2π)32ωj

∫ 2
∏

i=1

2 d3~pi
(2π)3 2Ei

× 1

4

∑

spins

|Me+e−→αα|2(2π)4δ4(p1 + p2 − q1 − q2)

× f1f2 (ω1 + ω2) , (10)

where f1(~p1) = (e(E1+µe)/T + 1)−1 and f2(~p2) =
(e(E2−µe)/T + 1)−1 are the distribution functions for the
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positron and the electron, respectively. A symmetry fac-
tor of 1/2! is included for the identical particles in the
final state. In the large mr limit, the r field propagator
can be expanded in powers of (s/m2

r). In this work we use
only the leading term in the expansion, as in Ref. [7]. The
results we will present should thus be regarded as conser-
vative estimates, since all higher terms contribute posi-
tively to the energy loss rate. Performing the d3~q1d

3~q2
integral analytically, we obtain

∫

d3~q1
ω1

d3~q2
ω2

(q1 · q2)2
m4

r

δ4(p1+p2−q1−q2) =
π

2

(p1 + p2)
4

m4
r

,

(11)
analogous to the Lenard’s Identity for the e+e− → νν̄
process [23]. Then following Ref. [24], we define these
two dimensionless functions

Uk ≡ 1

π2

∫ ∞

0

|~p1|2d|~p1|
T 3

(

E1

T

)k

f1(~p1) ,

Φk ≡ 1

π2

∫ ∞

0

|~p2|2d|~p2|
T 3

(

E2

T

)k

f2(~p2) . (12)

The energy loss rate can then be expressed as

Qe+e−→αα =
T 11

16π

(

g2m2
e

m4
rm

4
ϕ

)

∑

Cij(Ui Φj +Φi Uj) ,(13)

where the sum runs over {i, j} pairs, with C23 = 2,
C12 = 1/3, C03 = −1, C01 = C−12 = −1/3, and C−10 =
−2/3. Evaluating the Uk, Φk functions numerically for
the typical supernova core condition ρ = 3 · 1014 g/cm3,
T = 30 MeV and µe = 200 MeV, we find the emissivity
due to the process e+e− → αα is

ǫe+e−→αα = 1.73 · 10−28 GeV g2
( mr

500 MeV

)−4

. (14)

One sees that for mr around 500 MeV, even with g ≈
0.018 saturating the collider bound, contribution from
Goldstone boson emission to supernova cooling is far
from competing with that from neutrino emission.
ii) The energy loss rate for the photon scattering pro-

cess can be calculated similarly. The amplitude squared
for the process γ(p1) γ(p2) → α(q1)α(q2) is

|Mγγ→αα|2 =
( α

4π

)2 16GF√
2

|F |2 (q1 · q2)2

× g2 〈ϕ〉2
(s−m2

ϕ)
2

(p1 · p2)2
(s−m2

r)
2
, (15)

and the resulting energy loss rate in the largemr limiting
case is

Qγγ→αα =

(

1

2!

)2
1819.8

5
√
2π

( α

2π

)2

GF |F |2 g
2 〈ϕ〉2
m4

ϕm
4
r

T 13 .

(16)
Here, α and GF are the fine-structure constant and the
Fermi constant, respectively, and the symmetry factor
(1/2!)2 is included for identical particles in the initial and

in the final state. The form factor F enters through the
amplitude for the SM Higgs decay to two photons (see
e.g. Ref. [25, 26]), in this case a function of the cm energy√
s in the photon collision. The cm energies attainable

at the typical temperature in the post-collapse supernova
core correspond to the mass of the light (sub-GeV) Higgs
boson studied in Ref. [27, 28]. For simplicity, we use a
constant value of |F |2 = 4 to approximate the result of
Ref. [28], and find that the emissivity is

ǫγγ→αα ∼ 6.32 · 10−29 GeV

(ρ/3 · 1014 g/cm3)

g2
(

mr

500 MeV

)4

(

T

30 MeV

)13

,

(17)
even smaller than that from the electron-positron anni-
hilation process.

IV. SUPERNOVA COOLING DUE TO

GOLDSTONE BOSON EMISSION FROM

NUCLEAR BREMSSTRAHLUNG PROCESSES

Now we turn to evaluate the energy loss rate due to
the nuclear bremsstrahlung process

QNN→NNαα =
S
2!

∫ 2
∏

j=1

d3 ~qj
(2π)3 2ωj

∫ 4
∏

i=1

d3~pi
(2π)3 2Ei

×
∑

spins

|MNN→NNαα|2 f1f2(1 − f3)(1− f4) (ω1 + ω2)

× (2π)4δ4(p1 + p2 − p3 − p4 − q1 − q2) , (18)

where p1,2 are the four-momenta of the initial-state nu-
cleons, and p3,4 those of the final-state nucleonsN = p, n.
For nn or pp interactions, the symmetry factor for iden-
tical particles is S = 1

4 , whereas for np interactions it is

1. The amplitude squared |Mnn→nnαα|2 is summed over
initial and final nucleon spins but without being aver-
aged. In the non-relativistic limit, the occupation num-
bers are given by the normalized Maxwell-Boltzmann dis-

tribution f(~p) = (nB/2) (2π/mNT )
3/2 e−~p2/2mNT .

To calculate the scattering amplitude, first we need to
obtain the effective coupling of the Goldstone bosons to
the nucleons through the Higgs. We follow the Shifman-
Vainshtein-Zakharov (SVZ) approach [29, 30] to evalu-

ate the matrix element
〈

N |∑qmq q̄q +
∑

QmQ Q̄Q|N
〉

,

with q,Q denoting the light and the heavy quarks, respec-
tively. Using the SVZ heavy quark expansion

∑

Q

mQ Q̄Q→ −2

3

αs

8π
nhG

a
µνG

aµν , (19)

in the mq → 0 limit we obtain the effective Lagrangian
for the interaction of Weinberg’s Goldstone bosons with
the nucleons

Leff =
2

27
nh g

mN

m2
rm

2
ϕ

∂µα∂
µα ψ̄NψN , (20)
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with nh the number of heavy quarks. From this we define
an effective coupling gN ≡ (2/27)nh g, to be used in the
following calculation.

Armed with this knowledge, we follow the prescrip-
tion given in Ref. [31] to calculate the amplitude for
the nuclear bremsstrahlung process. In the one-pion ex-
change (OPE) approximation, there are four direct and
four exchange diagrams, corresponding to the Goldstone
boson pairs being emitted by any one of the nucleons. In
total there are 64 diagrams to calculate, which can be

grouped into 8 categories. Denote the 4-momenta of the
exchanged pions by ka ≡ p2−p4 (in the direct diagrams)
and la ≡ p2 − p3 (in the exchange diagrams), respec-

tively. In young supernova cores, k2a ≃ −|~k|2, l2a ≃ −|~l|2,
and |~k|2, |~l|2 ∼ 3mNT . Again we work in the conserva-
tive large mr limit, using only the leading term in the
(s/m2

r) expansion of the r field propagator. Summing all
diagrams from the 8 categories and expanding in powers
of (T/mN), we find the amplitude squared for the nuclear
bremsstrahlung process nn→ nnαα to be

∑

spins

|Mnn→nnαα|2 ≈ (2!)2
(

gN mN

m2
rm

2
ϕ

)2 (

2mNf

mπ

)4

(q1 · q2)2
(2q2)2m2

N

(2p · q)4

× 256

{

|~k|4

(|~k|2 +m2
π)

2
+

|~l|4

(|~l|2 +m2
π)

2
+

|~k|2|~l|2 − 2|~k ·~l|2

(|~k|2 +m2
π)(|~l|2 +m2

π)
+ ...

}

, (21)

with q = q1 + q2. Here, απ ≡ (2mNf/mπ)
2/(4π) ≈ 15

with f ≈ 1 being the pion-nucleon “fine-structure” con-
stant. The (2!)2 factor arises from the Wick contraction
of the two Goldstone bosons in the final state. Consider-
ing only the leading terms in the (T/mN ) expansion of
the amplitude squared and neglecting the pion mass mπ

in the curly brackets, the phase space integral in Eq. (18)
can be performed analytically as for the axion or neutrino
emission cases [32]. We estimate the energy loss rate due
to nn→ nnαα in the non-degenerate (ND) case to be

QND
nn→nnαα ≃ 1056

√
π

(2π)6

(

3− 2β

3

)

n2
B

×
(

gN mN

m2
rm

2
ϕ

)2 (

2mNf

mπ

)4
T 9.5

m4.5
N

. (22)

The β term arises from the averaging of the (~k · ~l)
term over the nucleon scattering angle and we find that
β = 2.0938. In the largemr limiting case, the very strong
temperature dependence arises from the presence of the
(q1 · q2)2/m4

r term in the amplitude squared because of
the ∂µα∂

µαf̄f type coupling [33] in Eq. (6). In com-
parison, in the ND limit the temperature dependence of
the energy loss rate is T 3.5 and T 5.5 for the axion and the
neutrino emission cases, respectively [31, 32]. In large ex-
tra dimension scenarios with 2 and 3 extra dimensions,
the temperatuer dependence of the Kaluza-Klein gravi-
ton emissivity is T 5.42 and T 6.5, respectively [19]. We
compare the emissivity due to the Goldstone bosons

ǫND
nn→nnαα =

QND
nn→nnαα

ρ

≃ 6.65 · 10−22 GeV

(ρ/3 · 1014 g/cm3)
g2N

( mr

500 MeV

)−4
(

T

30 MeV

)9.5

,

(23)

with the emissivity bound in Eq. (8), which should be

applied at ρ = 3 · 1014 g/cm3 and T = 30 MeV [14]. We
obtain a constraint of

g2N

( mr

500 MeV

)−4

. 1.1 · 10−5 , (24)

on the coupling of Weinberg’s Goldstone bosons to nu-
cleons through the Higgs. This implies for the coupling
constant (cf. Eq. (1)) to the Higgs that

|g| . 0.011
( mr

500 MeV

)2

, (25)

from the relation gN = (2/27)nh g, with the number of
heavy quark flavours nh = 4. One sees that the super-
nova bound is competitive and complementary to the col-
lider bound g . 0.018 (0.011), which is insensitive to the
mr value. We have checked the pion mass effects on
the energy loss rate by keeping the m2

π in the denomi-
nators in Eq. (21) and performing the phase space inte-
grals using the Monte Carlo routine VEGAS [34]. We
find that the reduction is 12% at T = 30 MeV and
only 5% at T = 80 MeV, milder than that in the ax-
ion emission case. It remains to estimate the emissivity
for more general cases, i.e. for smaller mr values, and in-
cluding the higher-order terms in the (T/mN) expansion
of the amplitude squared (Eq. (21)), to find the modifi-
cations of this bound. Besides using the OPE approxi-
mation, one may also estimate the emissivity due to nu-
clear bremsstrahlung processes in a model-independent
way following Refs. [18, 35]. In this approach, the emis-
sivity is related to the measured nucleon-nucleon total
cross section by taking the soft radiation (ω1 + ω2 → 0)
limit.
Eq. (23) imparts the impression that our supernova

bound on the Goldstone boson coupling is very sensi-
tive to the supernova core temperature. For example,
if we assume that the temperature at supernova core is
T = 20 MeV, our bound in Eq. (25) would be 6.86 times
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weaker. The authors of Ref. [19] did not present the re-
sults for more than 3 large extra dimensions, otherwise
we would know whether one can still apply the Raffelt
criterion at T = 30 MeV in the case of emissivities with
stronger T -dependence. It is appropriate to perform a
simulation of the early phase of a proto-neutron star in-
cluding energy losses due to Goldstone boson emission,
this is however beyond the scope of this work.

V. SUMMARY AND OUTLOOK

In conclusion, we have determined the allowed range
for the coupling constant g in dependence of mr, the
mass of the radial field r(x) in Weinberg’s extended
Higgs model, in which new Goldstone bosons may be
masquerading as fractional cosmic neutrinos. In the
conservative large mr limit, we have estimated the en-
ergy loss rates in post-collapse supernova cores due to
Goldstone boson emission in different channels includ-
ing the e+e− annihilation, photon scattering and nuclear
bremsstrahlung processes. We present our main result
in Eq. (25), obtained by confronting our estimate for
the nuclear bremsstrahlung processes with the well es-
tablished emissivity bound from the Supernova 1987A

observations and simulations, known as the “Raffelt cri-
terion”. We applied the Raffelt criterion at typical core
conditions: a density of ρ = 3 ·1014 g/cm3 and a temper-
ature T = 30 MeV, and discussed the validity in our case.
We found that even in the conservative limit where mr is
large enough compared with the Goldstone boson ener-
gies attainable at this temperature, our bound is highly
competitive to that derived from collider experiments.
In the future, if the ILC can indeed improve the collider
bound to |g| < 0.0015, Weinberg’s estimate (Eq. (7))
would requiremr < 274 MeV in order that the Goldstone
bosons contribute 0.39 to Nν . In this case our bound is
at least as good as |g| < 0.0033, still competitive. Tech-
nical details, investigation of more general cases, as well
as other astrophysical constraints will be presented in a
following work [12].
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