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Abstract

The presence of long-range interactions violates a condition necessary to relate the energy of two

particles in a finite volume to their S-matrix elements in the manner of Lüscher. While in infinite

volume, QED contributions to low-energy charged particle scattering must be resummed to all

orders in perturbation theory (the Coulomb ladder diagrams), in a finite volume the momentum

operator is gapped, allowing for a perturbative treatment. The leading QED corrections to the

two-particle finite-volume energy quantization condition below the inelastic threshold, as well as

approximate formulas for energy eigenvalues, are obtained. In particular, we focus on two spinless

hadrons in the A+
1 irreducible representation of the cubic group, and truncate the strong interac-

tions to the s-wave. These results are necessary for the analysis of Lattice QCD+QED calculations

of charged-hadron interactions, and can be straightforwardly generalized to other representations

of the cubic group, to hadrons with spin, and to include higher partial waves.

PACS numbers: 12.38.Gc,11.15.Ha,13.40.-f
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I. INTRODUCTION

Lattice QCD (LQCD) calculations of the properties of the lowest-lying mesons are reaching

the level of accuracy where it is necessary to consider the strong interactions in the context of

the full Standard Model. In particular, hadronic spectra and other hadronic observables are

now being calculated in the presence of both isospin violation from the light-quark masses

and Quantum Electrodynamics (QED) [1–11]. QED plays a critical role in the stability and

structure of nuclei, and therefore first principles calculations of nuclear structure require the

inclusion of the electromagnetic (EM) interactions among quarks. Due to computational

resource limitations, LQCD calculations of nuclei remain at an early stage, with calculations

of the binding energies of systems with up to five nucleons and hyperons currently being

performed at unphysical light-quark masses [12–21]. While the time is not yet ripe for

the inclusion of QED in nuclear calculations, there are two-body scattering processes that

can now be calculated with high accuracy in LQCD and where Coulomb corrections are

relevant, for instance π+π+. Therefore, formalism that allows for the systematic calculation

of electromagnetic corrections to two-body interactions in a finite volume (FV) is required.

The extraction of hadronic interactions from Lattice QCD calculations is more compli-

cated than determining the spectrum of stable hadrons. The Maiani-Testa theorem [22]

demonstrates that S-matrix elements cannot be directly extracted from infinite-volume

Euclidean-space Green’s functions except at kinematic thresholds. While discouraging from

the viewpoint of nuclear physics, where a central objective is determining the forces be-

tween nucleons, hyperons and other hadrons, it is clear from its statement that the theorem

can be evaded with FV calculations. The essential formalism that enables extraction of

continuum S-matrix elements describing two-body elastic scattering from measurements of

two-body energies in a finite spatial volume has been known for decades in the context

of non-relativistic quantum mechanics [23] and, for two spinless particles, was extended to

quantum field theory by Lüscher [24, 25]. The energy of two particles in a FV depends

in a calculable way upon their elastic scattering amplitudes, and their masses, for energies

below the inelastic threshold. A fundamental assumption in this formalism is that the two

particles experience only finite-range interactions, such that the typical interaction length

scale is well-contained within the spatial volume. Recently, Lüscher’s formalism has been

extended to coupled-channels systems (i.e. channels that are coupled in infinite-volume),
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and to systems comprised of particles with non-zero spin [26–38]. Further, the FV formal-

ism describing nucleon-nucleon (NN) systems with arbitrary CM momenta, spin, angular

momentum, isospin and twisted boundary conditions has been developed, providing the

quantization conditions (QCs) for the energy eigenvalues in irreducible representations (ir-

reps) of the FV symmetry groups [39]. Efforts to account for the exponentially-suppressed

effects of the finite range of the interactions have also been made [40, 41].

At a fundamental level, the inclusion of QED into LQCD calculations poses a theoretical

challenge, as the long-range nature of the interaction is truncated and modified by the

boundary of the volume. In particular, Ampere’s law and Gauss’s law cannot be satisfied

with a QED gauge field subject to periodic boundary conditions (PBCs) [42–45]. A uniform

background charge density can be introduced to circumvent this problem, a procedure which

is equivalent to removing the zero modes of the photon. That is, the Coulomb potential

energy between charges, e, in a cubic spatial volume with the zero modes removed, is

U(r, L) =
α

πL

∑

n6=0

1

|n|2
e
i2πn·r
L (1)

where α = e2/4π, n are triplets of integers and L is the spatial extent of the cubic volume.

The FV Coulomb potential can be seen in comparison with the infinite-volume potential

in Fig. 1 (left panel). A cross section of the FV electric field due to a point charge in the

center of the volume is show in Fig. 1 (right panel). Given the large density of momentum

states in typical lattice volumes, the removal of the zero modes will not change the desired

infinite-volume values of calculated observables 1.

In the absence of QED, there is a clear separation of the FV artifacts into those that

behave as power laws in L, and those that are exponentially suppressed in L. The latter

are governed by the longest correlation length in the volume, which, in chiral perturbation

theory (χPT) and nucleon-nucleon effective field theory (NNEFT), is the pion Compton

wavelength. In contrast, the QED FV effects behave as a power law, which means that the

energy eigenvalues of two charged hadrons will be modified in the same way by their self

interactions and by their interactions with each other. Therefore, unlike the case with only

short-range forces, in the presence of photons, the kinematics of “scattering processes” in

lattice calculations also receive power-law modifications in the FV.

1 The FV modifications to the values of counterterms in a low-energy effective field theory of QCD will

scale as ∼ e−L/r, where r is the typical scale of the strong interactions.
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FIG. 1: The left panel shows the FV Coulomb potential energy between unit charges along an

axis of a cubic volume (solid red curve) obtained from Eq. (1), and the infinite-volume Coulomb

potential (dashed blue curve) [45]. The right panel shows the FV electric field in the z = 0 plane

due to a point charge located at the center of the cube.

The separation of QED effects from strong interaction effects in scattering processes has a

long history. However, it is convenient to use effective field theory (EFT) technology, and its

associated power-counting, in deriving the QED corrections to the FV QCs, the solution of

which provides the energy eigenvalues. Generally, for low-energy charged-particle scattering

processes, the Coulomb interaction is included nonperturbatively through a resummation of

ladder diagrams. In an infinite volume this is necessary because the scale of the Coulomb

bound state is set by the “Bohr” radius, (αM)−1, and interactions with momenta that probe

the binding energy of the system are nonperturbative in α. In FV, the non-perturbative

treatment would appear to be quite involved due to the proliferation of increasingly complex

integer sums. However, in the spatial lattice volume, L3, the momentum operator is gapped,

with a scale that is set by 1/L, and not by the inverse Bohr radius. Therefore, there is a

range of volumes in which the QED interactions can be treated in perturbation theory

in a loop expansion, leading to a significant simplification in the corrections to Lüscher’s

QCs. Another energy scale that must be considered is the inelastic threshold, set by the

lowest photon energy in the FV, E = 2π/L. Given that there are no zero-modes in the

FV, by construction, some of the infrared (IR) issues that are usually encountered in QED

are absent. As expected, this threshold dictates the kinematical region of validity of the

truncation of the QC to two-body states.
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This paper is organized as follows. In Section II, we review the basic EFT results that

allow for a separation of the QCD and QED interactions in the elastic scattering of two

charged hadrons in the continuum. These results form the basis of the FV generalization.

QED modifications to the FV QCs that provide the energy eigenvalues of the A+
1 cubic irrep,

truncated to s-wave interactions, are the subject of Section III. First, the modifications to the

scattering process kinematics due to FV self-energy shifts is considered, then the truncated

QC is determined. In the limit of small scattering lengths compared to L, perturbative

expressions for the energy eigenvalues are derived. Furthermore, the QED corrections to

the energy of a bound state (when one exists) are determined. Requisite integer sums are

provided in the Appendix.

II. COULOMB SCATTERING

QED contributions to two-particle interactions in a FV will be considered in the context

of the pionless EFT [46–53]. The effective range expansion (ERE), which describes the

low-energy strong interactions between two hadrons, emerges naturally from the pionless

EFT, and it was shown by Bethe [54] how the ERE is modified in the presence of Coulomb

interactions. Bethe’s analysis was reformulated in EFT by Kong and Ravndal [55], and as

this formalism plays a central role in the calculations that follow, it is helpful to review its

salient features.

The T-matrix describing the QED interactions of two spinless charged particles of mass

M , charge e, carrying equal but opposite momentum p, and in the absence of strong inter-

actions, has a partial-wave expansion of the form

TC = −4π

M

∑

l

(2l + 1)
ei2σl − 1

2ip
Pl(cos θ) , (2)

where p = |p| and σl = arg Γ(1 + l + iη). l is the angular momentum of the scattering

channel, η = αM/(2p), and θ is the center-of-mass (CoM) scattering angle. The strong

interactions between two hadrons below the t-channel cut in an s-wave can be described

by an EFT of four-hadron operators. The effects of these operators can be encapsulated,

for the purposes of this work, by a single interaction (a pseudo-potential) with a coefficient

C(E∗), which is an analytic function of the CoM energy E∗ 2.

2 At the level of the non-relativistic Lagrange density, expressed as a gradient expansion of local operators
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Treating C(E∗) nonperturbatively by summing all bubble diagrams with a C(E∗) in-

sertion at each vertex, and using dimensional regularization (DR) to regulate ultraviolet

divergences, the T-matrix including the strong and the leading QED interactions is

TSC = C2
η(p)

C(E∗)ei2σ0

1− C(E∗)J∞0 (E∗)
= −4π

M

e2iσ0

p cot δ − ip
, (4)

where δ is the s-wave phase shift. J∞0 (E∗) is the r = 0 to r = 0 Green’s function including

QED interactions, and can be written as

J∞0 (E∗) = M

∫
d3q

(2π)3

C2
η(q)

p2 − q2 + iε
, (5)

and Cη(p) is the Coulomb corrected vertex resulting from the resummation of Coulomb ladder

diagrams, with a square given by

C2
η(p) =

2πη(p)

e2πη(p) − 1
. (6)

The parameter η ∼ α/v, where v is the relative velocity of the two hadrons, governs the

viability of QED perturbation theory and therefore, as pointed out above, for momenta of

order αM , η ∼ 1 and Coulomb ladders must be treated to all orders in α and resummed.

Decomposing J∞0 into finite and divergent parts, Jfin
0 + Jdiv

0 , leads to [55]

Jfin
0 = M

∫
d3q

(2π)3

C2
η(q)

q2

p2

p2 − q2 + iε
= −αM

2

4π
H(η) , (7)

where

H(η) = ψ(iη) +
1

2iη
− ln(iη) , (8)

with ψ the logarithmic derivative of the Gamma function. Using DR with modified minimal

subtraction (MS) in n = 4− 2ε dimensions, 3 the divergent part becomes

Jdiv0 = −M
∫

d3q

(2π)3

Cη(q)

q2
=

αM2

4π

[
1

ε
+ ln

(
µ
√
π

αM

)
+ 1− 3

2
γE

]
, (9)

built out of a field ψ, it is straightforward to show, using equations of motion and integrating by parts,

that [52, 56]

−θ̂ ψT (
←−∇ −−→∇)2ψ = 4M θ̂

[
i∂0 +

∇2

4M

]
ψTψ ≡ 4M θ̂ OE∗ψTψ , (3)

where θ̂ is an arbitrary operator, and terms that are total derivatives are not shown. The operator OE∗

when acting on the two-particle operator simply yields the non-relativistic center-of-mass energy, E∗.
3 The power counting in the EFT is manifest in the PDS scheme [46, 47]. Here for simplicity we use MS,

which obscures the strong power counting, but does not change it.
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FIG. 2: The analytic structure of the scattering amplitude in the complex p plane (a) without

QED and (b) with QED. The imaginary axis exhibits the QCD t-channel cut with its threshold

at mπ/2, while the real axis gives the inelastic pion-production cut with its threshold at
√
mπM .

In the presence of QED, both the t-channel cut (dark blue) and the inelastic cut (yellow) begin at

the origin.

where µ is the renormalization scale introduced in n dimensions, and γE is Euler’s constant.

The expression for TSC in Eq. (4) then leads to

C2
η(p) p cot δ + αMh(η) = − 4π

MC(E∗)
+ αM

[
1

ε
+ ln

(
µ
√
π

αM

)
+ 1− 3

2
γE

]
(10)

where

ImH(η) =
C2
η(p)

2η
and ReH(η) ≡ h(η) , (11)

have been used. As Bethe showed, the left-hand side of Eq. (10) admits an ERE of the form

C2
η(p) p cot δ + αMh(η) = − 1

aC
+

1

2
r0p

2 + . . . (12)

where aC is the Coulomb-corrected scattering length and r0 is the effective range. The

presence of the extra term on the left-hand side can be understood based on the analytic

structure of the scattering amplitude (see Fig. 2). As the t-channel cut begins at the origin

when photons are present, this term removes this cut from the scattering amplitude, thus

leaving an expression that is analytic in p2 (neglecting radiation) and which consequently

admits an ERE 4. While the inelastic threshold is at p = 0, this cut is suppressed by powers

of α compared to the t-channel cut.

4 At higher orders in α, other functions will have to be subtracted to allow an ERE.

7



Matching the right-hand sides of Eq. (10) and Eq. (12) is achieved through renormaliza-

tion [46, 47, 55]. Rather than use MS to subtract the 1/ε pole, a slightly modified scheme,

denoted MSFV , is used, which corresponds to subtracting

αM2

4π

[
1

ε
− γE

2
+ 1 + ln

√
π

2

]
. (13)

In this scheme, which is convenient for the FV calculations to follow, the ERE can be

described by renormalized coefficients,

− 4π

MC(p;µ)
+ αM

[
ln

(
2µ

αM

)
− γE

]
=

1

aC
+

1

2
r0p

2 + . . . , (14)

where C(p;µ) = C0(µ)+C2(µ)p2+. . . is the renormalized strong-interaction pseudo-potential

coefficient.

The analysis of this section is appropriate for the interactions of like-charged hadrons,

such as proton-proton scattering. In the case of hadrons with opposite charges, the kinematic

factor η changes sign, η = −αM/(2p), and H(η) becomes

H(η) = ψ(iη) +
1

2iη
− ln(−iη) , (15)

III. FINITE VOLUME COULOMB SCATTERING

A. Power Counting and Kinematics

In a cubic spatial volume with PBCs, a free particle can carry momentum p = 2πn/L, where

n is a triplet of integers. In the absence of zero modes, the momentum carried by a photon

is restricted to k ≥ 2π/L and the relevant size of η in the FV is η ∼ αML, which implies

that for ML � 1/α, QED interactions can be treated perturbatively in α. Of course, η

grows with the spatial volume and, for a given M , there is a critical value of L at which

perturbation theory breaks down and the Coulomb ladders must be resummed to all orders,

as in the continuum. In addition, LQCD calculations have volumes large enough so that

M � 1/L, and this limit will also be assumed throughout this analysis. Note that due to

the absence of the zero mode, the inelastic threshold of the two-hadron state, which is set

by the two hadrons recoiling against a photon, is at
√

2πM/L+O(1/M).

The power-law nature of the expansion parameter leads to various subtleties. In the

absence of QED, hadron self energies contain FV corrections that are exponentially sup-

pressed by the dimensionless parameter mπL, and therefore, neglecting these corrections,
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the kinematics in the FV are the same as in the continuum. This is no longer the case in

the presence of QED as the hadron masses have power-law volume dependencies [42–45].

The total CoM energy of the two-hadron system can be written as E∗ = 2ML + T ∗L,

where T ∗L is the CoM kinetic energy, and ML is the mass of the single hadron, in the FV.

The ERE, while usually written in terms of an expansion in square of the hadron three

momentum, is an analytic function of E∗ below the inelastic threshold, and with the FV

shift in the hadron mass(es), is evaluated at a shifted value of the kinetic energy in the FV,

p cot δ = − 1

aC
+

1

2
r0p

2 + r1p
4 + ... = − 1

aC
+

1

2
r0MT ∗ + r1M

2T ∗2 + ...

= − 1

aC
+

1

2
r0M(E∗ − 2M) + r1M

2(E∗ − 2M)2 + ...

→ − 1

a′C
+

1

2
r′0MT ∗L + r′1M

2(T ∗L)2 + ... , (16)

where r1 is the shape parameter. The primed scattering parameters, that are required to

describe the FV two-point function, are defined by

1

a′C
=

1

aC
− α r0M I

2πL
+ O(α2;α/L2) , r′0 = r0 +

4 α r1M I
πL

+ O(α2;α/L2) ,(17)

with similar modifications to the terms that are higher order in the ERE. In these shifted

ERE parameters, the single-particle FV corrections of Refs. [44, 45] have been used, and

I ∼ −8.913632 is an integer sum detailed in the Appendix.

Up to this point, the discussion has been focused on the dynamics of point-like parti-

cles, but as this work is relevant to LQCD calculations, the effect of compositeness must

be considered. In Ref. [45], the EFT describing the low-energy dynamics of hadrons was

used to determine the FV corrections to hadron masses in LQCD calculations, in which

the effect of compositeness, manifesting itself through a hierarchy of electromagnetic mul-

tipole interactions and other multi-photon gauge-invariant interactions, was made explicit.

These one-body QED interactions, beyond the electric charge, will also contribute to energy

eigenvalues of two hadrons, electrically charged or neutral. For spinless hadrons, the leading

interaction beyond the charge is from its charge radius. Given that the charge radius is

proportional to the square of the momentum carried by the photon, the leading effect of

the charge radius is to provide an constant additive renormalization of C(E∗), which is the

same in finite and infinite volume. Further, this contribution cannot be isolated from the

experimental scattering data without a model dependent subtraction, or with an explicit
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(a) (b)

FIG. 3: Feynman diagrams contributing to the FV two-point function. Diagram (a) is one of the

bubble diagrams resulting from the strong interactions, while diagram (b) is one of the diagrams at

O(α) from the exchange of a Coulomb photon (that becomes one of the Coulomb ladder diagrams

in infinite-volume).

(a) (b)

(c)

FIG. 4: Feynman diagrams contributing to the FV two-point function but which are suppressed

in the IR compared to the Coulomb ladder diagrams.

calculation of the low-momentum transfer contribution using EFT. Therefore, in what fol-

lows, the leading contribution from the structure of spinless hadrons is already included

in the definition of the scattering parameters, and the comparison with experiment should

not remove this contribution from the experimental data prior to comparing. The analysis

that follows does not make explicit the contribution from the hadron charge radius, but one

should keep in mind that it is implicit.

B. Quantization Condition including QED

The truncated QC that determines the A+
1 FV energy eigenvalues can be determined by the

singularities of the FV two-point function. In general, the O(α) corrections to the two-point

function result from the sum of all diagrams with a single insertion of a photon and the

related counterterms, examples of which are shown in Fig. 3 and Fig. 4. Consider the

correlation function between a source, S† and a sink, S, where S†, S couple to two hadrons
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in an s-wave. Denoting the contribution to this two-point function from the sums of bubbles

shown in Fig. 3 as JL0 (E∗), and the (generally) energy-dependent FV strong interaction as

CL(E∗), this correlation function is

S†
[
JL0 (E∗) + CL(E∗)

(
JL0 (E∗)

)2
+ CL(E∗)2

(
JL0 (E∗)

)3
+ ...

]
S

= S†
JL0 (E∗)

1− CL(E∗)JL0 (E∗)
S = S†

1

1/JL0 (E∗)− CL(E∗)
S . (18)

Therefore, the FV QC that determines the A+
1 energy eigenvalues is simply

1

CL(E∗)
= JL0 (E∗) . (19)

In the infinite volume limit, the Feynman diagrams represented in Fig. 3 (given to all orders

in Eq. (5)), after performing the energy integrations, give

J∞0 (E∗) = −M
∫

d3q

(2π)3

1

q2 − p2

+ 4παM2

∫
d3q

(2π)3

∫
d3k

(2π)3

1

q2 − p2

1

k2 − p2

1

|q− k|2
+ . . . , (20)

which in a FV, and using a momentum cut off, takes the form

JL0 (E∗) = − M

4π2L

Λn∑

n

1

|n|2 − p̃2

+
αM2

16π5

Λn∑

n

∞∑

m 6=n

1

|n|2 − p̃2

1

|m|2 − p̃2

1

|n−m|2
+ . . . , (21)

where p̃ = Lp/2π and Λn = LΛ/2π with Λ a momentum cutoff, and the ellipses signify

omitted O(α2) effects. Note that the zero mode has been removed from the photon prop-

agator by the condition m 6= n. As the FV does not alter the ultraviolet (UV) behavior

of the sums from that of the infinite-volume integrals, the renormalization of divergences

in FV is the same as in infinite volume. In Eq. (21), the infinite volume hadron mass, M ,

has been used, rather than ML. As the present analysis assumes ML � 1, and the mass

does not explicitly appear in the leading QC, this difference represents a higher order ef-

fect. In order to regulate the divergent sums for numerical evaluation, while maintaining

the mass-independent renormalization scheme, Eq. (19) becomes [57]

1

CL(E∗)
− Re(J

∞{DR}
0 (E∗)) = JL0 (E∗) − Re(J

∞{Λ}
0 (E∗)) , (22)
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where the {} superscript indicates regularization scheme, and it is straightforward to show

that

Re(J
∞{Λ}
0 (E∗)) = −MΛ

2π2
− αM2

4π
ln

(
2p

Λ

)
+ . . . , (23)

and

Re(J
∞{DR}
0 (E∗)) = −αM

2

4π

[
1

2
γE −

1

ε
− 1 + ln

(
2p

µ

)
− ln
√
π

]
+ . . . , (24)

which matches the perturbative expansion of the all-orders propagator given in Sec. II. The

remaining task is to relate the FV interactions, CL(E∗), to their infinite volume counterparts,

C(E∗), which define the scattering matrix in Eq. (4), and hence to the scattering parameters.

In general, the FV interactions, CL(E∗), result from a summation of all bubble diagrams

of the type shown in Fig. 4, in which the photon is exchanged between bubbles, or between

an interaction and a bubble, or between interactions, or produces a loop from the same

interaction. Consider a generic diagram with a photon across bubbles, as in Fig. 4. As

a single bubble with CoM kinetic energy T ∗ scales as ∼ M
√
MT ∗, the contribution from

the photon pole is ∼
√
|p| ∼

√
M/L. Therefore, diagrams with photons across n-bubbles

are suppressed by ∼ (
√
M/L)n 5. To determine the parametric contributions from these

diagrams, it is sufficient to evaluate the diagram without bubbles between the insertions of

the photon vertices, i.e. the photon across a single C(E∗) vertex. Analogous arguments apply

to the diagrams with photons emerging from the strong interaction (by gauge invariance)

and connecting to bubbles, as in Fig. 4(c), or other interactions. It follows that CL(E∗)

differs from C(E∗) by δC(FV )(E∗) = CL(E∗)− C(E∗),

δC(FV )(E∗) = −α
(

2aC
πM

α3/2 +
4a2

Cr0

L
I + ....

)
, (25)

where α3/2 is a numerical constant given in the Appendix. As these contributions depend

explicitly on the scattering parameters and do not constitute a simple multiplicative renor-

malization of p cot δ, they explicitly preclude a direct extraction of T-matrix elements. This

should come as no surprise, as the QED interactions of systems containing two or more

hadrons (or interactions of such systems with other types of probes) are not described by

5 The diagrams in Fig. 4 are analogous to those involving radiation pions in NNEFT [46, 47], which were

analyzed in detail in Ref. [58].

12



the two-body scattering parameters alone. For instance, in the case of two nucleons, there

will be contributions from the gauge-invariant two-body operators that contribute to the

deuteron quadrupole moment, and from the operators contributing to the electric and mag-

netic polarizabilities.

It follows from Eq. (12) that, at O(α), the truncated A+
1 FV QC for fields subject to

spatial PBCs is

− 1

a′C
+

1

2
r′0p

2 + ... =
1

πL
SC (p̃) + αM

[
ln

(
4π

αML

)
− γE

]
+ ... , (26)

where the single sum over integer triplets, which determines the effects of the strong inter-

actions in the absence of QED interactions, is modified to

SC (x ) ≡ S (x ) − αML

4π3
S2 (x ) +

α Ma2
Cr0

π2L2
I [S (x )]2 + ... , (27)

with

S (x ) ≡
Λn∑

n

1

|n|2 − x2
− 4πΛn ;

S2 (x ) ≡
Λn∑

n

∞∑

m 6=n

1

|n|2 − x2

1

|m|2 − x2

1

|n−m|2
− 4π4 ln Λn . (28)

The scattering parameters in Eq. (27) are unprimed and the ellipses denote terms that are

higher order in the α, 1/L and 1/M expansions and in the ERE. Eq. (26) is the main result

of this paper.

The numerical evaluation of the function S(x) through exponential acceleration tech-

niques is well known [24, 25], and it is convenient to express the O(α) regulated double sum

as

S2 (x) = R− 2

x2

∑

n6=0

1

|n|2
1

|n|2 − x2

+
∑

n6=0

∑

m 6=0,n

[
1

|n|2 − x2

1

|m|2 − x2
− 1

|n|2
1

|m|2

]
1

|n−m|2
, (29)

where

R ≡
Λn∑

n6=0

∞∑

m 6=0,n

1

|n|2|m|2
1

|n−m|2
− 4π4 ln Λn = −178.42(01) . (30)

The evaluation of this geometric constant, R, is presented in the Appendix.

The QC given in Eq. (26) determines the FV energy eigenvalues of two like-charged

hadrons. The analogous QC for oppositely-charged hadrons can be determined from Eq. (26)

by the substitution α→ −α except in the argument of the logarithm where α→ +α.
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C. Renormalization Group Evolution

It is tempting to combine the terms in brackets on the left and right hand sides of Eq. (26),

however, it is only this particular decomposition that allows an ERE of the left hand side [54].

Indeed, the appearance of the logarithm on the right-hand side is essential to the physical

interpretation of the QC, and can be understood with the aid of the renormalization group

(RG). In the MSFV scheme, a running scattering length can be defined,

1

a(µ)
≡ 4π

MC(0;µ)
=

1

aC
+ αM

[
ln

(
2µ

αM

)
− γE

]
, (31)

which, by construction, satisfies

1

a(µ)
=

1

a(ν)
+ αM ln

(µ
ν

)
. (32)

This (scheme-dependent) running scattering length can be interpreted as the scattering

length with the leading QED effects from distance scales > 1/µ removed [55].

With this running scattering length in mind, it is convenient to give alternate forms of the

QC, Eq. (26). For instance, the QC can be expressed in terms of the MSFV scattering length

with the leading QED effects from length scales outside of the spatial volume removed. To

this end, a renormalization-scale dependent function, δ̄(p, µ), can be defined such that

p cot δ̄(p, µ) ≡ − 1

a(µ)
+

1

2
r0p

2 + . . . , (33)

leading to

p cot δ̄′(p, 2π/L) ≡ − 1

a′(2π/L)
+

1

2
r′0p

2 + . . . =
1

πL
SC (p̃) , (34)

where the primes denote the modified kinematics. Despite the presence of the scheme-

dependent scattering length, this form of the QC is the most physical, as it is written only

in terms of quantities which have support within the boundaries of the FV. The price that is

paid for expressing the QC directly in terms of the physical scattering length is the presence

of the extra term (in brackets) on the right side of Eq. (26), which removes contributions

to the scattering length from length scales outside of the FV 6. Working with the running

scattering length, this logarithm can be absorbed, and the QC can be expressed in terms of

6 Similar considerations apply to the analogous QC (without EM) in two spatial dimensions [59].
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quantities that have support only within the FV, i.e. a(2π/L). When working directly with

physical quantities, the infrared scale µ̄ = αMeγE/2 can be chosen, which implies a(µ̄) = aC

and the function p cot δ̄(p) ≡ p cot δ̄(p, µ̄) can be used in the QC,

p cot δ̄′(p) = − 1

a′C
+

1

2
r′0p

2 + . . . =
1

πL
SC (p̃) + αM

[
ln

(
4π

αML

)
− γE

]
. (35)

D. Approximate Energy Eigenvalues

Ideally, the QC in Eq. (26) is solved numerically to determine the FV energy eigenvalues.

However, the smallness of αML in present day calculations, and those of the foreseeable

future, implies that the QED FV shifts in the two-hadron energy eigenvalues are small, and

the numerics will not be particularly enlightening. However, considering the O(α) pertur-

bative corrections to the eigenvalues is informative. It is worth emphasizing the somewhat

peculiar nature of the expansions in the approximate formulas that follow, which suggest

a somewhat narrow range of validity. While the expansions are formally perturbative in

1/L times the length scale which characterizes the strength of the interaction, and are also

nonrelativistic, it is further assumed that ML� 1/α so that the QED interactions can be

treated perturbatively.

1. The Ground State

In a perturbative expansion around the non-interacting ground state, with energy E = 2ML,

there is no contribution from the QED interactions at O(α) in the absence of strong inter-

actions. This is due to the absence of the photon zero mode, with the uniform background

charge density in the unperturbed state exactly canceling the particle charge density 7. Using

standard methods, it is straightforward to find the ground-state energy shift for scattering

parameters that are small compared to L,

∆EC
0 = ∆E0 + ∆E

(α)
0

=
4π a′

M L3

{
1−

(
a′

π L

)
I +

(
a′

π L

)2 [
I2 − J

]
+ . . .

}

7 Note that the ground-state energy of boosted systems will have pure Coulomb corrections as the charge

density is no longer uniformly zero.
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− 2α a′

L2π2

{
J +

(
a′

π L

)
[K − IJ −R/2]

+

(
a′

π L

)2 [
RI + I2J − 2J 2 − 2IK + L −R24

]

+
2a′r′0π

2

L2
I + . . .

}
, (36)

where a′ ≡ a′(2π/L) is the MSFV scattering length and the geometric constants, I, J , K,

L, R and R24 are defined and evaluated in the Appendix. The first term in braces is the

well-known energy shift due to QCD interactions, while the second term is the shift due

to the combined QCD and QED interactions. This can also be expressed in terms of the

kinematically-shifted scattering parameters,

∆EC
0 =

4π a′C
M L3

{
1−

(
a′C
π L

)
I +

(
a′C
π L

)2 [
I2 − J

]
+ . . .

}

− 2α a′C
L2π2

{
J +

(
a′C
π L

)[
K − IJ − R̃/2

]

+

(
a′C
π L

)2 [
R̃I + I2J − 2J 2 − 2IK + L −R24

]

+
2a′Cr

′
0π

2

L2
I + . . .

}
, (37)

where

R̃ ≡ R − 4π4

[
ln

(
4π

αML

)
− γE

]
. (38)

The ellipsis denote terms that are higher order in 1/M , 1/L and α. In terms of the physical

scattering parameters, the energy shift of the ground state is

∆EC
0 =

4π aC
M L3

{
1−

( aC
π L

)
I +

( aC
π L

)2 [
I2 − J

]
+ . . .

}

− 2α aC
L2π2

{
J +

( aC
π L

) [
K − IJ − R̃/2

]

+
( aC
π L

)2 [
R̃I + I2J − 2J 2 − 2IK + L −R24

]

+
aCr0π

2

L2
I + . . .

}
, (39)

The only difference between Eq. (37) and Eq. (39) is the coefficient of the last term, as other

differences are higher order in the expansion.
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2. The First Excited State

In contrast to the ground state, the energy shift of the first excited state in the FV receives

a contribution from the exchange of a single Coulomb photon as the uniform background

charge density does not cancel against the |n| = 1 unperturbed two-hadron charge density.

Following Lüscher [24, 25] and expanding 8 the energy shift in terms of tan δ
′

evaluated at

the unperturbed energy, the energy shift of the first excited state is

∆EC
1 = ∆E1 + ∆E

(α)
1

=
4π2

ML2
− 12 tan δ

′

ML2

(
1 + c′1 tan δ

′
+ c′2 tan2 δ

′
+ ...

)

+
9α

4πL

(
1 + c′1α tan δ

′
+

(
c′2α +

8

3
log (αML)

)
tan2 δ

′
+ ...

)
, (40)

where c′1 = −0.061365, c′2 = −0.35415 and c′1α = 3.83582, c′2α = −7.12197, The strong

coefficients, c′1,2 were first computed by Lüscher [24, 25], and we do not repeat their deter-

mination here. The leading QED contribution arises from the exchange of a single Coulomb

photon between |n| = 1 two-hadron states, and is simply given by

α

6πL

∑

|m|,|n|=1
n 6=m

1

|n−m|2
=

9α

4πL
, (41)

while the remaining QED contributions are of the form

c′1α = − 4

9π2
(6−X2) ;

c′2α = − 2

3π4

[1

3
(6−X2) I(1) +

1

6
X1J (1) −R+ 12

+2 (X3 + X4 + X5) + X1 −X6 − 4π4 (γE − log 4π)
]

, (42)

where the geometric constants, I(1), J (1), and X1-X6 are defined and evaluated in the Ap-

pendix. Terms higher order in 1/L, such as the leading contribution from r0 at 1/L2 , e.g.

+ 9α
4πL

3r0
πL

tan2 δ, are not shown. Further, at this order, tan δ
′
can be replaced with tan δ with-

out modifying the form of Eq. (40). To give some perspective, in a L = 10 fm volume, the

leading O(α) energy shift from the exchange of a single Coulomb photon is ∼ 100 keV.

8 Note that this expansion requires special care due to the singular, purely Coulombic, contribution.
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3. The (Possible) Bound State

In nature, there are no bound doubly-charged two hadron systems, however such systems do

exist at unphysical pion masses, as determined with Lattice QCD calculations [17, 19, 21, 60].

The bound-state energy in the FV is determined from the large-x limit of SC(x) in Eq. (26)

and Eq. (27), and, in particular, the sums contributing to SC(x) are

Λn∑

n

1

|n|2 + κ̃2
→ 4πΛn − 2π2κ̃ ; (43)

Λn∑

n

∑

m 6=n

1

|m|2 + κ̃2

1

|n|2 + κ̃2

1

|n−m|2
→ 4π4 (log Λn − log (2κ̃) ) +

π2

κ̃
I , (44)

in the large volume limit, κ̃→∞, where only the leading power-law corrections are shown 9.

At the order to which we are working, these limits lead to a FV QC for the bound state of

− 1

aC
− 1

2
r0κ

2 = −κ− αM
(
γE + log

(
αM

4κ

) )
− αM

2πκL
(1− κr0)I , (45)

which determines the leading Coulomb corrections to the bound-state binding energy. Per-

forming a perturbative expansion of κ = κ0 + κ1 + ... leads to a binding energy of

BC =
κ2

0

M
− 2ακ0

1− κ0r0

[
γE + log

(
αM

4κ0

) ]
− α

πL
I + ... , (46)

where κ0 is the binding momentum resulting from the strong interactions alone. The leading

QED contribution to the infinite-volume binding energy is consistent with a direct pertur-

bative calculation in the ER theory. Further, the leading FV correction to the binding is

given 10, which vanishes as 1/L, as expected.

In the limit in which the bound state is compact compared to the lattice volume, the

leading corrections to its total mass should be that of a charge-2 system, as calculated in

Ref. [45]. There are two contributions to the mass shift of the bound state, one from the

shifts of the individual constituent hadrons, and one from the shift in the binding energy.

9 Eq. (44) is obtained by first shifting m→ n+p, performing the sum over n using the Poisson summation

formula, and then dividing the sum over p into two regions. The first region generates the power law

correction, and the second region is again evaluated using Poisson summation to give the logarithmic

contributions.
10 The relation between the scattering parameters and the binding momentum has been used, with terms

higher order in the scattering parameters neglected.
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We find that in the deep-binding limit, the total mass of the bound state is shifted by

δM
(FV )
BS = 2δM (FV ) − δBC = 2

( α

2πL
I
)

+
α

πL
I + ... =

2α

πL
I + ... , (47)

consistent with expectations [44, 45].

Above we have considered the case of a system bound by the strong interaction, and

shown how the quantization condition, Eq. (26), gives the correct compact limit. If the

system is bound in the continuum by the electromagnetic interaction, then the compact

limit cannot be explicitly taken, as this would require moving through a region of parameter

space where the Coulomb interaction becomes non-perturbative in the finite volume. Of

course, the compact result will necessarily coincide with the results of Ref. [44, 45].

IV. SUMMARY AND DISCUSSION

Lattice QCD has reached the point where QED is being included in calculations of some of

the simplest hadronic properties, such as the masses of the lowest lying hadrons. Naively,

the inclusion of QED should be problematic for calculations in a finite volume due to its long

range nature. However, by simply omitting the zero-modes of the photon field, which lead

to the violation of both Gauss’s and Ampere’s laws, Lattice QCD+QED calculations can be

performed in meaningful ways to reliably extract important quantities without corrupting

the infinite-volume limit. Recently, the relation between the single hadron masses calculated

in a finite volume and their infinite-volume values has been established [44, 45]. Given

the nonperturbative nature of the Coulomb interaction in low-energy scattering, extending

this work to relate two-hadron energy eigenvalues to their corresponding S-matrix elements

had the potential to be quite involved. In this work, we have shown that there is a large

range of volumes, satisfying ML � 1/α, for which the non-relativistic relation between

the finite-volume energy of two hadrons in the A+
1 representation of the cubic group and

their s-wave phase shift receives calculable perturbative QED corrections. Our results will

straightforwardly generalize to the relations between the energies of two hadrons in other

representations of the cubic group and the phase shifts and mixing parameters in all relevant

scattering channels.

The confining nature of QCD simplifies the evaluation of hadronic correlation functions

using Lattice QCD, as it dictates that the interactions among hadrons are contained within
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a volume set by the longest correlation length, which is the pion Compton wavelength. As

long as the size of the spatial lattice is significantly larger than the inverse pion mass, there

is a hierarchy of length scales and finite-volume artifacts can be removed, as in the case

of single-particle properties, or exploited, as in the calculation of two-particle interactions.

The presence of an infinite-range force destroys this hierarchy. With no zero modes and

a gap in the spectrum of the momentum operator, there is a region of parameter space

for the calculation of the energy of two non-relativistic hadrons of mass M . In particular,

if the lattice volume satisfies ML � 1/α, Coulomb ladders are perturbative, and their

contribution to the two-particle energy, along with other contributions that are absent in

infinite volume, can be computed perturbatively in α. Furthermore, in the absence of zero

modes, the gap in the spectrum sets the scale of the contribution due to inelastic processes.

It is essential that such a gap exist in order to derive the quantization conditions that relate

the energies computed in LQCD and relevant S-matrix elements - those dictating the two-

hadron scattering amplitude, and those which determine electromagnetic processes 11. In the

absence of QED, the low-energy EFT, which is valid up to the start of the QCD t-channel

cut, gives a QC in a form that is valid up to the QCD inelastic threshold when expressed in

terms of p cot δ (see Fig. 2). However, it is important to stress that in the presence of QED,

the expressions we have derived are valid up to the QED inelastic threshold when this lies

below the QCD t-channel cut, or otherwise up to the QCD t-channel cut.
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APPENDIX: Integer Sums

Single Sums

The single sums over integer triplets that are required for the modified kinematics in a finite

volume and for the approximate two-hadron energy eigenvalues are:

I =
Λn∑

n6=0

1

|n|2
− 4πΛn = −8.9136 , J =

∑

n 6=0

1

|n|4
= 16.5323 ;

K =
∑

n6=0

1

|n|6
= 8.4019 , L =

∑

n6=0

1

|n|8
= 6.9458 ;

I(1) =
∑

|n|6=1

1

|n|2 − 1
= −1.2113 , J (1) =

∑

|n|6=1

1

(|n|2 − 1)2
= 23.2430 ;

X1 =
∑

|m|,|n|=1
n 6=m

1

|n−m|2
=

27

2
, X2 =

∑

|n|=1
|m|>1

1

|m|2 − 1

1

|n−m|2
= 91.1806 ;

X3 =
∑

|n|>1

1

|n|2(|n|2 − 1)
= 14.7022 , X4 =

∑

|m|=1
|n|>1

1

|n|2
1

|n−m|2
= 65.3498 ;

X5 =
∑

|n|=1
|m|>1

1

(|m|2 − 1)2

1

|n−m|2
= 46.5687 . (A-1)

Double Sums

Unlike the situation in large volumes when only strong interactions contribute, and explicit

two-loop sums are not required, the leading QED contributions resulting from the exchange

of Coulomb photons require non-trivial two-loop sums over triplets of integers. Consider the

finite double sum:

R ≡
Λn∑

n6=0

∞∑

m 6=0,n

1

|n|2|m|2
1

|n−m|2
− 4π4 ln Λn

=
Λn∑

n6=0

1

|n|2
Rsub(n) − 4π4 ln Λn . (A-2)

It is regulated asymmetrically, by first evaluating the inner sum without a cut off,

Rsub(n) ≡
∞∑

m 6=0,n

1

|m|2
1

|n−m|2
, (A-3)
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and then straightforwardly evaluated using the methods described in Ref. [61]. It is found

to be

Rsub(n) = −2η
(

1− e−η|n|2
) 1

|n|2
+

∞∑

m 6=0,n

(
e−ηDnm + e−η|m|

2 − e−η(Dnm+|m|2)
) 1

|m|2Dnm

+

∫
d3m

(
1− e−ηDnm

) (
1− e−ηm2

) 1

|m|2Dnm

, (A-4)

where Dnm ≡ |n−m|2, and η is a small number introduced to provide a clean way to separate

sums into UV and IR contributions where the UV sums can be replaced by integrals. The η

used here should not be confused with the kinematic variable used in the main body of the

paper. The η-independent piece (in the integral) is readily evaluated, giving

Rsub(n) =
π3

|n|
− 2η

(
1− e−η|n|2

) 1

|n|2

+
∞∑

m 6=0,n

(
e−ηDnm + e−η|m|

2 − e−η(Dnm+|m|2)
) 1

|m|2Dnm

−2π

∫ ∞

0

dm

∫ 1

−1

dc
(
e−ηDnmc + e−ηm

2 − e−η(Dnmc+m2)
) 1

Dnmc

. (A-5)

where Dnmc ≡ |n|2 − 2|n||m|c+ |m|2, from which Eq. (A-2) becomes

R = π3 α3/2 − 2η J + 2η J η + T1 − 2π T2 = −178.42(01) . (A-6)

where [61]

α3/2 ≡
Λn∑

n6=0

1

|n|3
− 4π ln Λn = 3.8219 , (A-7)

The η-dependent sums are

J η ≡
∞∑

n 6=0

e−η|n|
2

|n|4
;

T1 ≡
∞∑

n6=0

∞∑

m 6=0,n

(
e−ηDnm + e−η|m|

2 − e−η(Dnm+|m|2)
) 1

|n|2|m|2Dnm

;

T2 ≡
∞∑

n6=0

1

|n|2

∫ ∞

0

dm

∫ 1

−1

dc
(
e−ηDnmc + e−ηm

2 − e−η(Dnmc+m2)
) 1

Dnmc

, (A-8)

where are all evaluated numerically for a range of values of η that provide stable results for

each.
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Evaluation of the perturbative expansion of the ground-state energy requires sums of the

form

Rst ≡
∞∑

n6=0

∞∑

m 6=0,n

1

|n|s|m|t
1

|n−m|2
, (A-9)

but at the order to which we have worked, only R24 = 170.97(01) is required. Further, in

the perturbative expansion of the energy of the first excited states, the two-loop sum

X6 =
∑

|m|,|n|>1
n 6=m

(
1

|n|2 − 1

1

|m|2 − 1
− 1

|n|2
1

|m|2

)
1

|n−m|2
= 264.508 , (A-10)

is required, and it is evaluated with techniques similar to those used previously.
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