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A reliable evaluation of the integral giving the hadronic vacuum polarization con-

tribution to the muon anomalous magnetic moment should be possible using a simple

trapezoid-rule integration of lattice data for the subtracted electromagnetic current

polarization function in the Euclidean momentum interval Q2 > Q2
min, coupled with

an N -parameter Padé or other representation of the polarization in the interval

0 < Q2 < Q2
min, for sufficiently high Q2

min and sufficiently large N . Using a phys-

ically motivated model for the I = 1 polarization, and the covariance matrix from

a recent lattice simulation to generate associated fake “lattice data,” we show that

systematic errors associated with the choices of Q2
min and N can be reduced to well

below the 1% level for Q2
min as low as 0.1 GeV2 and rather small N . For such

low Q2
min, both an NNLO chiral representation with one additional NNNLO term

and a low-order polynomial expansion employing a conformally transformed vari-

able also provide representations sufficiently accurate to reach this precision for the

low-Q2 contribution. Combined with standard techniques for reducing other sources

of error on the lattice determination, this hybrid strategy thus looks to provide a

promising approach to reaching the goal of a sub-percent precision determination
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of the hadronic vacuum polarization contribution to the muon anomalous magnetic

moment on the lattice.

I. INTRODUCTION

The discrepancy of about 3.5σ between the measured value [1] and Standard Model

prediction [2] for the anomalous magnetic moment of the muon, aµ = (gµ−2)/2, has attracted

considerable attention. After the purely QED contributions, which are now known to five

loops [3], the next most important term in the Standard Model prediction is the leading

order (LO) hadronic vacuum polarization (HVP) contribution, aLO,HVP
µ . The error on the

dispersive evaluation of this quantity, obtained from the errors on the input e+e− → hadrons

cross-sections, is currently the largest of the contributions to the error on the Standard Model

prediction [2]. The dispersive approach is, moreover, complicated by discrepancies between

the determinations by different experiments of the cross-sections for the most important

exclusive channel, e+e− → π−π+ [4–7].1

The existence of this discrepancy, and the role played by the error on the LO HVP

contribution, have led to an increased interest in providing an independent determination of

aLO,HVP
µ from the lattice [8–22]. Such a determination is made possible by the representation

of aLO,HVP
µ as a weighted integral of the subtracted polarization, Π̂(Q2), over Euclidean

momentum-squared Q2 [9, 23]. Explicitly,

aLO,HVP
µ = −4α2

∫ ∞

0

dQ2 f(Q2) Π̂(Q2) , (1)

where, with mµ the muon mass,

f(Q2) = m2
µQ

2Z3(Q2)
1−Q2Z(Q2)

1 +m2
µQ

2Z2(Q2)
,

Z(Q2) =
(√

(Q2)2 + 4m2
µQ

2 −Q2

)

/(2m2
µQ

2) , (2)
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1 A useful overview of the experimental situation is given in Figs. 48 and 50 of Ref. [6].
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and Π̂(Q2) ≡ Π(Q2) − Π(0), with Π(Q2) the unsubtracted polarization, defined from the

hadronic electromagnetic current-current two-point function, Πµν(Q), via

Πµν(Q) =
(

Q2δµν −QµQν

)

Π(Q2) . (3)

The vacuum polarization Πµν(Q) can be computed, and hence Π(Q2) determined for non-

zero Q, for those quantized Euclidean Q accessible on a given finite-volume lattice. Were

Π(Q2) to be determined on a sufficiently finely spaced Q2 grid, especially in the region of the

peak of the integrand, aLO,HVP
µ could be determined from lattice data by direct numerical

integration.

Two facts complicate such a determination. First, since the kinematic tensor on the RHS

of Eq. (3), and hence the entire two-point function signal, vanishes as Q2 → 0, the errors on

the direct determination of Π(Q2) become very large in the crucial low-Q2 region. Second,

for the lattice volumes employed in current simulations, only a limited number of points is

available in the low-Q2 region, at least for conventional simulations with periodic boundary

conditions. With the peak of the integrand centered around Q2 ∼ m2
µ/4 ≈ 0.0028 GeV2, one

would need lattices with a linear size of about 20 fm to obtain lattice data near the peak.

The rather coarse coverage and sizable errors at very low Q2 make it necessary to fit

the lattice data for Π(Q2) to some functional form, at least in the low-Q2 region. Existing

lattice determinations have typically attempted to fit the form of Π(Q2) over a sizable range

of Q2, a strategy partly predicated on the fact that the errors on the lattice determination

are much smaller at larger Q2, and hence more capable of constraining the parameters of

a given fit form. The necessity of effectively extrapolating high-Q2, high-acccuracy data to

the low-Q2 region most relevant to aLO,HVP
µ creates a potential systematic error difficult to

quantify using lattice data alone.

In Ref. [20], this issue was investigated using a physical model for the subtracted I = 1

polarization, Π̂I=1(Q2). The model was constructed using the dispersive representation of

Π̂I=1(Q2), with experimental hadronic τ decay data used to fix the relevant input spectral

function. The study showed that (1) Π̂I=1(Q2) has a significantly stronger curvature at low

Q2 than at high Q2 and (2), as a result, the extrapolation to low Q2 produced by typical

lattice fits, being more strongly controlled by the numerous small-error large-Q2 data points,

is systematically biased towards producing insufficient curvature in the low-Q2 region either

not covered by the data, or covered only by data with much larger errors. Resolving this
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problem requires an improved focus on contributions from the low-Q2 region and a reduction

in the impact of the large-Q2 region on the low-Q2 behavior of the fit functions and/or

procedures employed.

In this paper we propose a hybrid strategy to accomplish these goals. The features of this

strategy are predicated on a study of the I = 1 contribution to aLO,HVP
µ corresponding to the

model for the I = 1 polarization function, Π̂I=1(Q2), introduced in Ref. [20]. The results of

this study lead us to advocate a combination of direct numerical integration of the lattice

data in the region above Q2
min ∼ 0.1 GeV2, and the use of Padé or other representations in the

low-Q2 (0 < Q2 ≤ Q2
min) region. We will consider two non-Padé alternatives for representing

Π̂ at low Q2, that provided by chiral perturbation theory (ChPT) and that provided by

a polynomial expansion in a conformal transformation of the variable Q2 improving the

convergence properties of the expansion.

The organization of the paper is as follows. In Sec. II we briefly review the construction of

the model, and use the resulting Π̂I=1(Q2) to quantify expectations about both the behavior

of the integrand for âLO,HVP
µ ≡

[

aLO,HVP
µ

]I=1
and the accumulation of contributions to this

quantity as a function of the upper limit of integration in the analogue of Eq. (1). We

also show, with fake data generated from the model using the covariances and Q2 values

of a typical lattice simulation with periodic boundary conditions, that the contribution to

âLO,HVP
µ from Q2 above Q2

min can be evaluated with an error well below 1% of the full

contribution by direct trapezoid-rule numerical integration for Q2
min down to at least as

low as Q2
min = 0.1 GeV2. The values of Q2 covered by state-of-the-art lattice data are

too few, and the statistical errors too large, to allow Q2
min to be lowered much beyond

this at present. Such a low Q2
min, however, implies that the use of fit forms to represent

the polarization function below Q2
min can be restricted to the region Q2∼< 0.1 − 0.2 GeV2,

where the behavior of Π̂I=1(Q2) is expected to be much easier to parametrize in a simple

and reliable manner. We then show, in Sec. III, that this expectation is borne out in

practice. Explicitly, we demonstrate that, in the region up to about 0.1 − 0.2 GeV2, good

enough data will allow Π̂I=1(Q2) to be represented with an accuracy sufficient to reduce the

systematic error on the low-Q2 contribution to âLO,HV P
µ to well below the 1% level. The

three functional forms we investigate are low-order Padé’s, a polynomial representation in

a conformally mapped variable, and a next-to-next-to-leading-order (NNLO) ChPT form

supplemented by an analytic NNNLO term. The Padé’s we will consider are of two types:
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those constrained explicitly to reproduce the first few derivatives at Q2 = 0 [22], and those

obtained by fitting to data in the low-Q2 region [14]. We will be limited to investigating the

systematics of these low-Q2 representations. The lattice Q2 values and covariance matrix

employed for fake-data studies in Ref. [20] do not allow for a meaningful extension of this

exploration to include also the statistical component of the uncertainty. We expect, however,

that new lattice data, employing twisted boundary conditions to provide a denser set of Q2

values on the lattice [13, 18, 21], as well as improved statistics [24, 25], will make a more

complete investigation possible in the near future. In this section we also discuss briefly the

expected low-Q2 behavior of the subtracted isoscalar polarization, Π̂I=0(Q2), which can be

obtained using values for the relevant chiral LECs obtained from a chiral fit to the isovector

model data. Finally, in Sec. IV, we discuss the relation between the errors on the low-Q2

contribution to âLO,HVP
µ and those on the slope and curvature at Q2 = 0, and argue that a

sub-percent determination of the former and few percent determination of the latter should

be sufficient to obtain a sub-percent determination of the full contribution to aLO,HVP
µ . This

section also contains our conclusions.

II. THE MODEL FOR Π̂I=1(Q2) AND ITS IMPLICATIONS FOR THE

COMPUTATION OF aLO,HVP

µ

A. A review of the model for Π̂I=1(Q2)

The I = 1 vector polarization function, ΠI=1(Q2), satisfies a once-subtracted dispersion

relation,

Π̂I=1(Q2) ≡ ΠI=1(Q2)−ΠI=1(0) = −Q2

∫ ∞

4m2
π

ds
ρ(s)

s(s+Q2)
, (4)

where mπ is the pion mass, and ρ(s) the corresponding spectral function. A sensible choice

for ΠI=1(0) and the function ρ(s) thus determines a model for ΠI=1(Q2).2 The subtracted

polarization represents one such version, in which ΠI=1(0) happens to be equal to 0.

The spectral function ρ(s) has been measured with high precision, for s < m2
τ , in

non-strange hadronic τ decays [26, 27]. In Ref. [20], Π̂I=1(Q2) was determined from Eq. (4)

using as input a version of the OPAL data updated for modern values of the exclusive

2 ΠI=1(0), of course, has no physical significance, and is sensitive to the precise details of the short-distance

regularization of the two-point function.
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mode branching fractions.3 For those s not accessible in τ decay, ρ(s) was represented by

the 5-loop-truncated dimension D = 0 perturbative form [29], supplemented by a model

representation of the residual, duality violating (DV) contribution. An exponentially

damped oscillatory form motivated by large-Nc and Regge ideas, was used for the latter,

based on a model for duality violations developed in Refs. [30], inspired by earlier work

in Refs. [31]. Where the perturbative+DV form is used for ρ(s) above s = m2
τ , the DV

contribution is much smaller than the perturbative one, making the model dependence of

the resulting version of Π̂I=1(Q2) extremely mild, especially in the low-Q2 region where the

factor weighting ρ(s), 1/[s(s+Q2)], behaves as 1/s2 over most of the spectrum. Our model

for Π̂I=1(Q2) is thus a very physical one, especially so in the low-Q2 region most relevant to

the âLO,HVP
µ integral. As such, it allows the systematics associated with various strategies

for the fitting of Π̂(Q2) and evaluation of the integral for aLO,HVP
µ to be investigated in a

quantitative manner. In taking the lessons from such model studies over to the lattice, one

must, of course, bear in mind that the value of ΠI=1(0) is not known on the lattice, and

will have to be determined either through a fit to the data or by using time moments of the

two-point function, as will be discussed further below.

B. Behavior of the integrand of, and partial contributions to, âLO,HVP

µ

The physical model for Π̂I=1(Q2) described in the previous section allows us to investigate

in detail expectations, first, for the behavior of the integrand in the I = 1 analogue of

Eq. (1) and, second, for how rapidly (as a function of the upper limit of integration) the

contributions to âLO,HVP
µ accumulate. To facilitate the discussion below, we will denote by

âLO,HVP
µ [Q2

min, Q
2
max] the partial contribution to the âLO,HVP

µ integral from the interval Q2
min ≤

Q2 ≤ Q2
max. With this notation, âLO,HVP

µ [Q2
max] = âLO,HVP

µ [0, Q2
max] is the accumulated

contribution between 0 and Q2
max, and âLO,HVP

µ = âLO,HVP
µ [0,∞].

Figure 1 shows the product of the weight f(Q2) appearing in the aLO,HVP
µ integral and

the model version of the subtracted I = 1 polarization. As is well known, this product

is strongly peaked at low Q2; it is thus shown only in the region Q2 < 0.2 GeV2, beyond

which it continues to decrease rapidly and monotonically. The model shows the location of

3 Full details may be found in the appendix of Ref. [28].
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FIG. 1: f(Q2) Π̂I=1(Q2) versus Q2 in the low-Q2 region
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the peak to be around Q2 ∼ m2
µ/4. Lattice data typically does not reach such low Q2, and

some form of fitting is thus necessary to extrapolate into the peak region, at least in the

conventional lattice approach.

It is also useful to look at the accumulation of the contributions to âLO,HVP
µ as a function

of the upper limit of integration, Q2
max. We display this accumulation, normalized to the

integral over all Q2, âLO,HVP
µ , in the model, in Fig. 2. We note that over 80% of the contri-

bution is accumulated below 0.1 GeV2 and over 90% below 0.2 GeV2. It follows that the

accuracy required for contributions above 0.1 or 0.2 GeV2 is much less than that required for

the low-Q2 region. It thus becomes of interest to investigate the accuracy one might achieve

for the higher-Q2 contributions were one to avoid altogether fitting and/or modelling, and

the associated systematic uncertainty that accompanies it, and instead perform a direct nu-

merical integration over the lattice data. We investigate this question in the next subsection.
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FIG. 2: The accumulation of the contributions to âLO,HVP
µ as a function of the upper limit, Q2

max,

of integration.
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C. Direct numerical integration: how low can you go?

In this section, we argue that existing lattice data, even those without twisted boundary

conditions, are already sufficiently accurate that direct numerical integration of the lattice

data can be relied on to produce a value âLO,HVP
µ [Q2

min, 2 GeV2] accurate to well below 1%

of âLO,HVP
µ for Q2

min down to about 0.1 GeV2. The situation will be even better once the

results of new data with reduced errors on Π(Q2) due to all-mode averaging (AMA) [24, 25]

and/or denser sets of Q2 produced by using twisted boundary conditions [13, 18, 21] become

available.

One practical issue, concerning the constant ΠI=1(0) needed to convert the unsubtracted

polarization ΠI=1(Q2) obtained from the lattice to the corresponding subtracted version

Π̂I=1(Q2) needed for the I = 1 analogue of the integral in Eq. (1), should be dealt with
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before continuing with the main investigation of this section. The issue arises because the

model we are working with is one for the subtracted polarization. It thus appears to differ

from the lattice case, where a determination of ΠI=1(0) and subsequent subtraction would

be required. This issue is, however, easily resolved. One simply interprets the model, not

as one for the subtracted polarization, Π̂I=1(Q2), but rather as one for the unsubtracted

polarization, ΠI=1(Q2), happening to have ΠI=1(0) = 0 and allows ΠI=1(0) to become a

free parameter in fits of data sets based on our model.4 The extent to which the fitted

ΠI=1(0) deviates from the known value 0 then quantifies the systematic uncertainty in the

determination of ΠI=1(0) for the given fit function form.

Fits of [1, 1] and higher-order Padé’s on the interval between 0 and 1 GeV2 to the fake data

set of Ref. [20] show that it is possible to obtain ΠI=1(0) from such fits with an uncertainty

smaller than 0.001.

An uncertainty δΠI=1(0) produces a corresponding uncertainty

δâLO,HVP
µ [Q2

min,∞] = 4α2 δΠI=1(0)

∫ ∞

Q2

min

dQ2 f(Q2) (5)

on the contribution to âLO,HVP
µ from Q2 ≥ Q2

min. The rapid decrease of f(Q2) with Q2

means this uncertainty falls rapidly with increasing Q2
min. Figure 3 illustrates the impact of

this uncertainty on âLO,HVP. The figure shows the Q2
min dependence of δâLO,HVP[Q2

min,∞],

as a fraction of âLO,HVP, for δΠI=1(0) = 0.001. Even with this (what we expect to be

rather conservative) choice for δΠI=1(0), the error remains safely below 1% for Q2
min down

to 0.1 GeV2, where

δâLO,HVP
µ [0.1 GeV2,∞]

âLO,HVP
µ

= 0.0074

(

δΠI=1(0)

0.001

)

. (6)

The relatively rapid growth at lower Q2
min, however, means that careful monitoring of this

error for the δΠI=1(0) actually achieved in a given analysis would be required if one wished

to push the lower limit of direct numerical integration of the lattice data to below 0.1 GeV2.

4 Another way of understanding what is going on here is as follows. The model for the subtracted polariza-

tion can be converted to a related model more closely resembling the lattice situation by simply adding a

fixed constant offset C to all the subtracted polarization values Π̂I=1(Q2). In fitting fake data generated

from this modified version of the model, ΠI=1(0) will of course need to be included as a fit parameter.

The result obtained for ΠI=1(0) in such a fit will then be exactly equal to the sum of C and the result

Π̂I=1(0) that would be obtained by performing the same fit to the unmodified data with Π̂I=1(0) left free.
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FIG. 3: The impact of an uncertainty δΠI=1(0) = 0.001 in ΠI=1(0) on âLO,HVP
µ [Q2

min,∞] as a

fraction of âLO,HVP
µ .
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We now turn to the model study of the accuracy of the direct numerical integration of

the subtracted polarization data, assuming that δΠI=1(0) is small enough to allow for a

sufficiently precise subtraction. For this purpose, we employ the fake I = 1 data set used

previously in Ref. [20]. The set was constructed from the τ -data-based model discussed

above using the covariance matrix for a 643 × 144 MILC ensemble with periodic boundary

conditions, a ≈ 0.06 fm and mπ ≈ 220 MeV [32].

The lattice covariance matrix is, by construction, also the covariance matrix of the fake

data set. With the fake data and its covariances in hand, we evaluate âLO,HVP
µ [Q2

min, 2 GeV2]

and its error by direct trapezoid rule integration of the data, and compare the result to the

corresponding exact result in the model. The difference between the two gives the systematic

error associated with estimating âLO,HVP
µ [Q2

min, 2 GeV2] by direct numerical integration.5

5 The choice Q2
max = 2 GeV2 is somewhat arbitrary, but in our model âLO,HVP

µ [2 GeV2] is 99.74% of
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In addition to this systematic uncertainty, there is, of course, also the statistical compo-

nent of the overall uncertainty obtained by propagating the data covariances through the

trapezoid-rule evaluation. In the present model study, these covariances are those of the

fake data set.

The results for both the systematic and statistical components of the uncertainty on the

trapezoid rule evaluation are displayed, as a function of Q2
min, in Fig. 4. For each Q2

min,

the displayed central value represents the corresponding systematic uncertainty, while the

error bar gives the size of the corresponding statistical uncertainty. The results have been

scaled by âLO,HVP
µ in order to display the impact of the numerical integration uncertainty on

the final error for âLO,HVP
µ . We see that both components are completely negligible above

Q2
min ≈ 0.2 GeV2. The systematic component remains below 0.25% for all points shown.

The statistical component is seen to be dominant for low Q2
min, reaching about 0.5% for the

lowest value shown (Q2
min = 0.086 GeV2). The growth of the statistical component with

decreasing Q2
min is a consequence of the rapid growth in the data errors for the very low-Q2

points, something that would be significantly reduced with improved data [24, 25].

The results of this study show that data from existing lattice simulations, even without

twisted boundary conditions and/or AMA improvement, allow an evaluation of the contri-

butions to âLO,HVP from Q2 > Q2
min with an accuracy safely below 1% of âLO,HVP for Q2

min

down to at least 0.1 GeV2. While not yet available, analogous fake data sets constructed

from covariance matrices corresponding to lattice data with twisted boundary conditions

and AMA improvement, will, once available, allow us to quantify the level of improvement

made possibly by better statistics and a finer distribution of Q2 points. Of course, as ex-

plained at the beginning of this subsection, ΠI=1(0), needed to compute Π̂I=1(Q2) for the

numerical integration, will have to be determined with sufficient precision as well.

The fact that âLO,HVP
µ [Q2

min, 2 GeV2] can be reliably evaluated by direct numerical inte-

gration down to Q2
min ∼ 0.1 GeV2 greatly simplifies the task of computing the rest of the

contribution to âLO,HVP
µ . The reason is that, for 0 ≤ Q2 ∼< 0.1 GeV2, one expects fits using

low-order Padé’s of the types proposed in Refs. [14, 22], or using the conformal polynomial

or chiral representations discussed below (Secs. III B and IIIC), to provide efficient and

reliable representations of the subtracted polarization function. We show that this is indeed

âLO,HVP
µ .
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FIG. 4: The systematic and statistical components of the error on the evaluation of

âLO,HVP
µ [Q2

min, 2 GeV2] by direct trapezoid-rule numerical integration, as a fraction of âLO,HVP
µ .
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the case in the next section, and investigate the systematic uncertainties on the low-Q2

contributions produced by the use of such fit forms.

III. BEHAVIOR OF THE SUBTRACTED POLARIZATION IN THE LOW-Q2

REGION AND A HYBRID STRATEGY FOR EVALUATING aLO,HVP

µ

In the previous section we showed that contributions to âLO,HVP
µ from Q2 above ∼

0.1 GeV2 can be obtained with an accuracy better than 1% of âLO,HVP
µ by direct numer-

ical integration of existing lattice data. In this section, we discuss the region between 0 and

∼ 0.1 GeV2 and investigate the reliability of low-order Padé, conformally mapped polyno-

mial, and ChPT representations of the subtracted polarization in this region. We focus on

the systematic accuracy achievable using these representations for the evaluation of the low-

Q2 contributions to âLO,HVP
µ . As in the previous sections, these investigations are performed
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using the τ -data-based model for Π̂I=1(Q2).

At low Q2, fits of lattice data to a functional form are needed to achieve a precise de-

termination of the integral in Eq. (1). To avoid difficulty-to-quantify systematic errors,

the forms employed should be free, if possible, of any potential model dependence. Here

we investigate three such functional forms, one based on a sequence of Padé approximants

[14, 22], one based on a conformally mapped polynomial, and one based on ChPT.6 An

important question is to what order Padé, what degree conformally mapped polynomial,

and what order in the chiral counting one must go in order to obtain representations of

Π̂I=1(Q2) of sufficient accuracy. In addition, there is the question of with what statistical

precision these functional forms can then be fit to lattice data. Even if in principle a certain

functional form provides an accurate representation of Π̂I=1(Q2), the parameters still have

to be determined with sufficient precision. In this article, we address only the first question,

leaving an investigation of the second question to the future, when much more precise lattice

data at low Q2 are expected to become available.

In order to probe the accuracy of an approximate functional form in representing the

exact function Π̂I=1(Q2), we need to fix the parameters of that form. We will do so by

constructing the Padé, conformal and chiral representations such that they reproduce the

values of the the relevant low-order derivatives of Π̂I=1(Q2) with respect to Q2 at Q2 = 0.

In the model case, these derivatives are known from the dispersive representation of the

subtracted polarization, while on the lattice they can be obtained from time moments of

the vector current two-point function, as explained in more detail below. Since we are

concerned with the systematic uncertainty associated with the use of a given functional

form in the low-Q2 region, we will assume these derivatives to be exactly known and given

by the central values resulting from the dispersive representation. It will still be necessary

to reduce the errors on the low-Q2 lattice data in order to bring the corresponding statistical

uncertainties under control. Our goal is thus only to identify those functional forms which

6 It turns out that the fully known NNLO ChPT representation of the subtracted polarization, while

providing an accurate representation up to Q2 ∼ 0.05 GeV2, must be supplemented by an additional

analytic NNNLO term to achieve sufficient accuracy over the whole of the low-Q2 region of interest, i.e.,

out to 0.2 GeV2. While the reason for such an NNNLO contribution is understood, the resulting form

does not represent a complete NNNLO result and, as such, introduces a level of model dependence into

the ChPT-based approach. This strategy, discussed in more detail in Sec. III C, is, from this point of

view, less favorable than the other two approaches.
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produce systematic uncertainties at the sub-percent level when used with future improved

low-Q2 data.

A. Low-order Padé representations of the subtracted polarization

As already pointed out in Ref. [14], the function Φ(Q2) ≡ −Π̂I=1(Q2)/Q2 is a so-called

Stieltjes function and, as such, satisfies a number of theorems on convergent representations

over compact regions of the complex Q2 plane via Padé approximants [33, 34]. For example,

the sequence of [M+J,M ] Padé’s constructed to match the first N = 2M+J+1 coefficients

of the Taylor expansion of Φ(Q2) about Q2 = 0 is known to converge to Φ(Q2) as M → ∞,

and for any J ≥ −1, in any compact set in the complex Q2-plane not overlapping the cut

of Π̂I=1 [34]. Moreover, for Q2 > 0, the set of such Padé’s satisfies the inequalities [34]

[0, 1] ≤ [1, 2] ≤ · · · ≤ [N,N + 1] ≤ Φ(Q2) ≤ [N,N ] ≤ · · · ≤ [1, 1] ≤ [0, 0] . (7)

To make contact with the notation employed in Ref. [22], let us denote −Q2 times the

[M,N ] Padé in (7) by [M + 1, N ]H . The inequalities (7) then correspond to the following

inequalities for the Padé representations of Π̂I=1(Q2)

[1, 0]H ≤ [2, 1]H ≤ · · · ≤ [N + 1, N ]H ≤ Π̂I=1(Q2)

≤ [N,N ]H ≤ · · · ≤ [2, 2]H ≤ [1, 1]H . (8)

In Ref. [22] it has been pointed out that the derivatives of the polarization function

at Q2 = 0, needed to construct the sequences of Padé’s in Eq. (8), can be determined by

evaluating even-order Euclidean time moments of the zero-spatial-momentum representation

of the relevant vector current two-point function on the lattice.7 This idea was implemented

for the s̄s and c̄c vector current polarization functions and the resulting representations

used to determine the strange and charm contributions to aLO,HVP
µ . Evidence was presented

that convergence has been achieved by the time the [2, 2]H order is reached. However, in

the light-quark sector the errors on these moments are expected to be much larger, and to

grow rapidly with increasing order, because light-quark correlators are very noisy at large

Euclidean t. It is, first of all, not clear what order Padé would be required for suitable

7 For an alternative approach to obtaining Π(0), see Ref. [15].
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convergence in the light-quark sector and, second, not obvious that the moments needed

to construct, e.g., the [2, 2]H Padé can be determined with sufficient accuracy to make the

computation of the full light-quark contribution to aLO,HVP
µ feasible in this approach.

The τ -data-based model for Π̂I=1(Q2) provides a convenient tool for investigating the

first of these questions. First, since the exact values of the derivatives of Π̂I=1(Q2) with

respect to Q2 at Q2 = 0 in the model are easily obtained from the dispersive representation,

Eq. (4), it is straightforward to construct the exact-model versions of the Padé’s of Ref. [22]

and see how well they do in representing Π̂I=1(Q2). Second, knowing that contributions

to âLO,HVP from Q2 above ∼ 0.1 GeV2 can be accurately determined by direct numerical

integration of existing lattice data, we can use the model to explore the obvious question

raised by this observation, namely how low an order of Padé will suffice if one’s goal is to

evaluate the contribution to âLO,HVP
µ , not for all Q2, but rather only for the restricted region

0 ≤ Q2∼< 0.1 GeV2.

Figure 5 shows the comparison of the dispersive results for Π̂I=1(Q2) and the [1, 0]H,

[1, 1]H , [2, 1]H , and [2, 2]H Padé’s constructed using the exact dispersive results for the

derivatives of Π̂I=1(Q2) with respect to Q2 at Q2 = 0. The top panel shows the comparison

in the inteval 0 ≤ Q2 ≤ 2 GeV2, the bottom panel the same comparison in the more

restricted region 0 ≤ Q2 ≤ 0.4 GeV2. Note that the curves shown in this figure follow the

pattern of the inequalities in Eq. (8). We see that the [2, 2]H Padé provides a good, though

not perfect, representation of Π̂I=1(Q2) over the whole of the range 0 ≤ Q2 ≤ 2 GeV2. This

is not true of the lower-order Padé’s. When one focuses on the low-Q2 region, however, it is

evident that even the [1, 1]H Padé provides a very accurate representation in the region of

current interest, 0 ≤ Q2 ≤ 0.2 GeV2.

For the problem at hand, of course, it is deviations of the Padé representations from

Π̂I=1(Q2) in the low-Q2 region that are of importance in determining the accuracy of the

Padé-based estimates for âLO,HVP
µ . The impact of the deviations seen in Fig. 5 on the

contribution âLO,HVP
µ [Q2

max] from the region 0 ≤ Q2 ≤ Q2
max is shown in Fig. 6 as a function

of Q2
max. The upper panel shows the difference between the various order Padé estimates

and the exact model result, scaled as usual by âLO,HVP
µ , for Q2

max in the interval 0 ≤ Q2
max ≤

2 GeV2, while the lower panel zooms in on the region below 0.2 GeV2 of interest here.

We see that, if one insists on using the time moments to evaluate the contributions

to âLO,HVP
µ from Q2 out to Q2

max = 2 GeV2 or above, reducing the systematic error on
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from the derivatives of the model with respect to Q2 at Q2 = 0 in the intervals 0 ≤ Q2 ≤ 2 GeV2

(upper panel) and 0 ≤ Q2 ≤ 0.4 GeV2 (lower panel).
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the evaluation to below 1% will require going to the [2, 2]H Padé. This would necessitate

evaluating time moments with good accuracy out to tenth order, which is likely to be a

challenging task for light-quark two-point functions.

We have seen, however, that there is no need to push the moment-based evaluation of

âLO,HVP
µ [Q2

max] out to Q2
max ∼ 2 GeV2. In the region below Q2 ∼ 0.1 − 0.2 GeV2 which

cannot be handled by direct numerical integration of the lattice data, one does not need the

[2, 2]H Padé to achieve an accurate representation of Π̂I=1(Q2). The lower panel of Fig. 6

shows that even the [1, 1]H representation is sufficient in this region, producing an estimate

for âLO,HVP
µ [Q2

max] accurate to about 0.3% for Q2
max = 0.1 GeV2 and to about 0.5% even for

Q2
max = 0.2 GeV2. This is a potentially significant advantage since constructing the [1, 1]H

Padé requires moments only up to sixth order. The [2, 1]H Padé lowers the previous errors

to 0.06% and 0.2%, respectively, but it requires the eighth order moment in its construction.

It is worth emphasizing that another sequence of Padé approximants to ΠI=1(Q2) exists;

these are the multi-point Padé’s of Ref. [14], for which convergence theorems also exist [33].

These multi-point Padé’s actually have the same form as the single-point, Q2 = 0 Padé’s

discussed in Ref. [22].8 Fitting the coefficients of such Padé’s over a relatively low-Q2 interval

in which the Padé in question is known to provide an accurate representation of Π̂I=1(Q2)

is thus an alternative to obtaining these coefficients by evaluating the time moments of the

two-point function. Which of the two approaches will yield the smallest statistical error is

a topic for future investigation.

One should, however, bear in mind in this regard that the time moments, in producing

the derivatives of the subtracted polarization with respect to Q2 at Q2 = 0, will yield Padé’s

which, by construction, will be most accurate in the low-Q2 region of primary interest

for evaluating âLO,HVP
µ . The deviations of the Padé constructed in this manner from the

underlying subtracted polarization will thus lie at higher Q2 and have a reduced impact on

the error on âLO,HVP
µ , if the Padé is only used to get the low-Q2 contribution. In contrast, in

fitting the coefficients of the Padé’s using low-Q2 data, the fits will inevitably be more heavily

constrained by the somewhat larger Q2 points in the fit interval, as these will have smaller

8 Refs. [14] and [22], unfortunately, use different notations to specify what end up being the same Padé

representation of Π̂(Q2). The Padé denoted [M,N ] in Ref. [14] corresponds to what is called [M + 1, N ]

in Ref. [22]. We employ the alternate notation [M + 1, N ]H , introduced already above, for the latter in

order to distinguish between it and the earlier notation employed in Ref. [14].
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errors than the points at very low Q2. The resulting Padé may thus be less accurate at very

low Q2, and one may need to go to a higher-order Padé in comparison to the moment-based

approach.

We have attempted to investigate this question using fake data constructed from the un-

derlying dispersive model as above. However, for current simulations using periodic bound-

ary conditions, the errors on the low-Q2 lattice data are too large, and the number of Q2

points available below ∼ 0.2 GeV2 too small to allow successful Padé fits to be carried out

on the interval 0.1− 0.2 GeV2.9

We can, however, as an interim measure, investigate this issue using the I = 1 model

data and associated covariance matrix, the latter being generated by the covariances of

the experimental τ -decay data used in constructing the model. The errors on the result-

ing polarization function are 2 − 3% across the low-Q2 region. Since this differs from the

situation currently seen on the lattice, the dispersive-model-based investigation serves only

to address the feasibility and basic systematic issues of Padé fits on the interval 0.1 − 0.2

GeV2. We expect that in the near future lattice data covering a larger subset of low-Q2

values with smaller errors (but stronger correlations) will become available because of the

use of error-reduction techniques [24, 25] and new theoretical ideas [13, 15–18, 36], at which

point analogous investigations of the lattice situation will also become possible.

Performing Padé fits to the τ -based data on the interval between 0.1 and 0.2 GeV2, we

indeed find that it is necessary to go to the [2, 1]H Padé if one wishes to reduce the systematic

uncertainty on the low-Q2 Padé determination of âLO,HVP
µ [0.1 GeV2] to the sub-percent level.

As an example, a fit to model data at the points Q2 = 0.10, 0.11, · · · , 0.20 GeV2 using the

[2, 1]H Padé form, with Π̂I=1(0) a free parameter, yields an estimate for âLO,HVP
µ [0.1 GeV2]

accurate to better than 0.45% of âLO,HVP
µ . Even more useful, though not unexpected in view

9 For example, the fake data set employed in Ref. [20], based on the MILC covariance matrix outlined

above, has only six Q2 points below 0.2 GeV2, at 0.021, 0.086, 0.109, 0.130, 0.193 and 0.194 GeV2, the

first with extremely large errors and the final two lying too close together to provide non-trivial individual

constraints. This situation is rather typical. As another example, the 1/a = 1.37, 1.75 and 2.31 GeV

nf = 2 + 1 domain wall fermion ensembles of the RBC/UKQCD collaboration [35], have, respectively,

six, two and one point below Q2 = 0.2 GeV2, the first point in each case again having a very large error.

Even for the 1/a = 1.37 GeV ensembles, with six points below 0.2 GeV2, only three of these points lie

between 0.1 and 0.2 GeV2, at 0.144, 0.162 and 0.163 GeV2, the latter two again lying too close together

to produce meaningfully independent fit constraints.
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of the fact that the [2, 1]H representation is essentially indistinguishable from the underlying

model polarization out to Q2 ≈ 0.2 GeV2, âLO,HVP
µ [Q2

max] remains accurate to better than

0.45% out to Q2
max = 0.2 GeV2. This means that, with sufficiently good data in the interval

between Q2 ≈ 0.1 and 0.2 GeV2, one would be able to vary the choice of boundary Q2
min

between the low-Q2 and high-Q2 regions and obtain combined hybrid determinations of the

full contribution to aLO,HVP
µ for several choices of Q2

min, providing further checks on the

systematics of the hybrid approach.

Fig. 7, which shows the fractional errors (relative to the underlying dispersive model

values) for the [1, 1]H and [2, 1]H Padés obtained from the 0.10 GeV2 ≤ Q2 ≤ 0.20 GeV2

interval fit described above, provides a more detailed understanding of why it is that a higher

order (in this case [2, 1]H) Padé is required to achieve the same sub-percent accuracy as was

achieved with the lower-order [1, 1]H Padé in the alternate approach employing Q2 = 0

expansion coefficients. The fractional Padé errors are those for the Padés representing the

subtracted polarization, obtained after the fit by subtracting the resulting fitted Π̂I=1(0)
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term. The error bars shown in the figure display the fractional errors on the dispersive

results for the points Q2 = 0.10, 0.11, · · · , 0.20 GeV2 used as input to the fits. Since the

[1, 1]H Padé constructed from the Q2 = 0 expansion coefficients begins to deviate from the

underlying dispersive model in the upper part of the fit interval (see the bottom panel of

Fig. 5) one expects the version obtained by fitting to match the data better in the fit window

only at the cost of deviating from the underlying model at lower Q2. This will lead to an

unphysical non-zero fit value for Π̂I=1(0). Since the [2, 1]H Padé constructed from the Q2 = 0

expansion coefficients does a better job in representing Π̂I=1(Q2) in the upper part of the

fit window employed, we expect the fitted value of Π̂I=1(0) to lie closer to the true value

0 in this case. This expectations is, indeed, borne out. In the [1, 1]H case, the fitted value

of Π̂I=1(0) deviates sufficiently from 0 that, after performing the subtraction, the resulting

subtracted [1, 1]H Padé only barely touches the error bars of the input data to which the

unsubtracted version was fit. We thus find that the [1, 1]H Padé is insufficiently flexible to

simultaneously fit the data in the region of the fit window and extrapolate accurately to

the lower Q2 near 0. The extra freedom in the [2, 1]H form provides sufficient additional

flexibility to overcome this low-Q2 region problem. The small residual bias in the subtracted

version of the fitted [2, 1]H form will, of course, be reduced even further if it is possible to

either move or extend the fit window to lower Q2.

B. Conformal expansion of the subtracted polarization

The Taylor expansion of ΠI=1(Q2) in the variable Q2 converges for |Q2| < 4m2
π. However,

with 4m2
π = 0.078 GeV2, the radius of convergence is most likely too small to be useful in

practice. We can improve the convergence properties by rewriting ΠI=1(Q2) first in terms

of the variable

w(Q2) =
1−

√
1 + z

1 +
√
1 + z

, z =
Q2

4m2
π

, (9)

and then expanding in w. The series

ΠI=1(Q2) =

∞
∑

n=0

pnw
n (10)

should have better convergence properties than the Taylor expansion in z, because the

whole complex z plane is mapped onto the unit disc in the complex w plane, with the cut
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z ∈ (−∞,−1] mapped onto the disc boundary. The expansion (10) thus has radius of

convergence |w| = 1. In terms of the variable Q2, this includes the positive real axis.

For the coefficients p1, p2, · · · , p4 needed to construct p(w) up to degree 4, we find,

from the derivatives of ΠI=1(Q2) with respect to Q2 at Q2 = 0 in the model, the values

p1 = 0.05565 and p2 = −0.06936, p3 = 0.04781 and p4 = −0.01561. The resulting

representations of Π̂I=1(Q2) linear, quadratic, cubic and quartic in w are compared to the

exact model values in Fig. 8. We observe, from Figs. 5 and 8, that the Padé and conformal

polynomial representations with the same number of parameters lie close to one another.

Let us look more closely at the values of âLO,HVP
µ [Q2

max] obtained from the confor-

mal polynomial representations. The quadratic version, for example, yields estimates for

âLO,HVP
µ [Q2

max] 0.6% and 1% below the exact model values for Q2
max = 0.1 and 0.2 GeV2, re-

spectively, while the corresponding errors for the cubic representation are 0.02% and 0.04%.

These numbers are to be compared to 0.3% and 0.5% for the [1, 1]H Padé (which has the

same number of parameters as the quadratic polynomial), and 0.06% and 0.2% for the [2, 1]H

Padé (which has same number of parameters as the cubic polynomial).

While the higher-order conformal representations discussed above provide very accurate

results for âLO,HVP
µ [Q2

max], one should bear in mind that their construction requires as input

the values of the derivatives of Π̂(Q2) with respect to Q2 at Q2 = 0. As mentioned before,

these can, in principle, be obtained from the time moments of the two-point function. Ac-

curate determinations of the relevant moments will thus be required to make the conformal

approach useful in this form. It is, of course, also possible to implement the conformal

representation by fitting the coefficients of a truncated version of the expansion in Eq. (10)

to data on an interval of Q2. For the reasons discussed already in the previous sub-section,

an exploration of this possibility can, at present, not be meaningfully carried out in the

low-Q2 region using fake data generated from the dispersive model via current lattice

covariance matrices. We must thus, again, turn to the a study employing the τ -data-based

model and its covariances. As in the analogous Padé study in Sec. IIIA, we find that a

representation one order higher is required to reach the same accuracy for the fitted version

as was reached using the corresponding moment approach. Fitting the coefficients of the

cubic form to the model data at the points Q2 = 0.10, 0.11, · · · , 0.20 GeV2, for example,

yields estimates for âLO,HVP
µ [Q2

max] accurate to between 0.6 and 0.9% for Q2
max in the

interval from 0.1 to 0.2 GeV2. The accuracy of the fitted version in this case, though good,
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FIG. 8: Comparison of the results of the conformal polynomial representations up to quadratic

order with the exact τ -data-based model for Π̂I=1(Q2).
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is less so than what was achieved for the analogous [2, 1]H Padé fit. The Padé approach

may thus be favored if one is forced to fit coefficients using data over a limited range of

Q2, while the conformal approach will be most useful if high-accuracy determinations of

the time moments, and hence the derivatives of the polarization at Q2 = 0, turn out to be

achievable.

C. Chiral representations of the subtracted polarization

In the region of interest, Q2∼< 0.2 GeV2, Q2 is sufficiently small that ChPT should be

capable of providing an accurate representation of the subtracted polarization. It has been

known for some time that the next-to-leading-order (NLO) representation [37–40] is not

adequate for this purpose, its slope with respect to Q2 being much less than what is seen in
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either lattice data [10] or the continuum version of the I = 1 subtracted polarization dis-

cussed above. The source of the problem is the absence, in the NLO representation, of NLO

low-energy-constant (LEC) contributions encoding the large contributions associated with

the prominent vector meson peaks in the relevant spectral functions. These contributions

first appear at NNLO.

The NNLO representation of the subtracted I = 1 polarization function has the form [39,

40]10
[

Π̂I=1(Q2)
]

NNLO

= R(Q2;µ) + c9(Q
2;µ)Lr

9(µ) + 8Cr
93(µ)Q

2 , (11)

where µ is the chiral renormalization scale, Cr
93 is one of the renormalized dimensionful

NNLO LECs defined in Refs. [41], and R and c9, which also depend on mπ, mK and fπ, are

completely known once Q2, µ, mπ, mK and fπ are specified. The NLO LEC Lr
9(µ) is well

known from an NNLO analysis of π and K electromagnetic form factors [42] and we take

advantage of this determination in the exploratory fits to the τ -based model data below.

In the resonance ChPT (RChPT) approach [43], which one expects to represent a rea-

sonable approximation for vector channels, Cr
93 is generated by vector meson contributions.

The RChPT result, Cr
93 ∼ − f2

V

4m2

V

≃ −0.017GeV−2 [40], where fV and mV are the vector

meson decay constant and mass, is expected to be valid at some typical hadronic scale (usu-

ally assumed to be µ ∼ mρ). This rough estimate is well supported by the data, and the

term proportional to Cr
93 is, in fact, the dominant contribution to the RHS of Eq. (11) for

Q2 ∼ 0.1 GeV2.

In the I = 1 channel, assuming Cr
93 to be dominated by the ρ contribution, and ex-

panding the ρ propagator to one higher order in Q2, one obtains an NNNLO contribu-

tion of the form C Q4 which is −Q2/m2
ρ times the NNLO contribution 8Cr

93Q
2, yielding

C = −8Cr
93/m

2
ρ ∼ 0.23 GeV−4. This estimate leads to a significantly larger curvature of

Π̂I=1(Q2) than predicted by the known lower-order terms and such a larger curvature is

indeed clearly indicated by the low-Q2 behavior of the τ -data-based model for Π̂I=1(Q2).

Contributions to Π̂I=1(Q2) from a C Q4 term with such a value for C already become nu-

merically non-negligible at Q2 ∼ 0.1 GeV2. In order to allow accurate chiral fits over the

range of interest, we thus need to supplement the NNLO representation of Eq. (11) with an

10 Note that Eq. (19) of Ref. [40] contains a misprint: there should be no factor q2 in the term proportional

to (Lr
9 + Lr

10).
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additional CrQ4 term. Cr represents an effective NNNLO LEC, which is mass-independent

at that order.11 We will refer to the NNLO representation augmented with the CrQ4 term

as the NN′LO representation below.

The NN′LO representation is governed by three LECs, Lr
9, C

r
93 and Cr, the first of which is

already known to better than 10%. The relevant question here is whether, with sufficiently

good Euclidean time moments of the vector correlation function, or low-Q2 data for its

Fourier transform, this form is capable of producing a representation of Π̂I=1(Q2) accurate

enough to allow a sub-percent evaluation of the contribution to âLO,HV P
µ from the region

Q2∼< 0.1 − 0.2 GeV2. As noted above, at present, the low-Q2 errors on data from lattice

simulations are still too large, and the Q2 coverage too sparse, to allow this question to be

reliably explored using fake data of the type employed in Ref. [20]. We thus investigate

the systematics of the NN′LO ChPT fit form using the τ -based I = 1 model following the

same approach as employed in Secs. IIIA and IIIB for the Padé approximant and conformal

polynomial forms. In other words, we determine the relevant LECs, and hence the chiral

representation, from the values of the derivatives of Π̂I=1(Q2) with respect to Q2 at Q2 = 0

in the model. As mentioned before, in the lattice context these derivatives can, in principle,

be determined from the time moments of the Euclidean correlation function.

Using mπ = 139.57 MeV, mK = 495.65 MeV, fπ = 92.21 MeV, and µ = 770 MeV, as

well as Lr
9(µ) = 0.00593 from Ref. [42], and the exact values for ΠI=1′(0) and ΠI=1′′(0) from

our model, we find that Cr
93(µ) = −0.01567 GeV−2 and Cr(µ) = 0.2761 GeV−4.12 Using

these values, Fig. 9 shows the comparison between the exact model dispersive results for

Π̂I=1(Q2) and those obtained from the chiral representation (11). Also shown is the chiral

representation with the CrQ4 contribution removed. The necessity of the NNNLO curvature

contribution is evident.

Using our chiral representation, we can compare the value for âLO,HVP
µ [Q2

max] obtained

from NN′LO ChPT with the exact-model value. For Q2
max = 0.1 GeV2, we find that the

ChPT value is 0.6% below the exact value, while for Q2
max = 0.2 GeV2, it is 1.4% below.

11 The mass-independence of Cr would be relevant if one wished to use the results of chiral fits to physical-

mass continuum data to make predictions about the low-Q2 behavior of the subtracted polarization for

lattice simulations corresponding to sufficiently small, but still unphysically heavy, light-quark masses.
12 These are in rough agreement with the RChPT estimates discussed above. We plan to present a more

detailed discussion of the chiral fits to τ -decay-based model results for Π̂I=1(Q2) elsewhere.
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FIG. 9: Comparison of the results of the NN′LO representation (11) and the τ -data-based model

for Π̂I=1(Q2) (solid curve). The dashed line shows the result including the phenomenological term

CrQ4, the dotted line the result with the NNNLO contribution CrQ4 removed.
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While the value at Q2
max = 0.1 GeV2 is acceptable, this is clearly worse than the approxima-

tion obtained using a [1, 1]H Padé determined from the same derivatives at Q2 = 0. NNLO

ChPT, which corresponds to setting Cr = 0, yields values of 4% and 18% above the exact

value, at Q2
max = 0.1 and 0.2 GeV2, respectively. Clearly, the NN′LO form provides a good

representation for values of Q2 extending up to about 0.1 GeV2, but there is evidence for

contributions to the curvature in the data at higher Q2 beyond that described by the known

NLO, NNLO and CrQ4 terms. This shows up in the deviations from the data of the chiral

curve in the region Q2∼> 0.1 GeV2 in Fig. 9.

As in the case of Padé’s, an alternative method for constructing a chiral representation

for ΠI=1(Q2) is by fits to lattice data at non-zero values of Q2, instead of from derivatives

at Q2 = 0. Such fits will be most reliable when employed in a fit window involving as low

Q2 as possible. From Fig. 9 and the discussion above, it follows that data at values of Q2
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below 0.1 GeV2 would be needed. In the case of fits to Padé’s, we saw in Sec. IIIA that

a sufficiently accurate representation can in principle be obtained from data in an interval

farther away from zero, 0.1∼<Q2∼< 0.2 GeV2 if one increases the order of the Padé from

[1, 1]H to [2, 1]H by adding one parameter. In ChPT, such an approach would imply going

beyond NNNLO order. (As it is, even the NN′LO representation is only a phenomenological

version of the NNNLO representation.) With such high orders not being available, the

application of ChPT is limited to the moment-based approach, or possibly to fits at Q2

values below 0.1 GeV2. This means the ChPT approach to the low-Q2 region, though

potentially providing a consistency check, is likely to be less useful than the Padé approach.

The former requires small-error data at as low as possible Q2 (something more difficult to

accomplish in practice) while, as shown in Sec. IIIA, a [2, 1]H Padé representation obtained

by fitting to good quality data restricted to the somewhat higher region of Q2 between

approximately 0.1 and 0.2 GeV2 can be employed to obtain a sufficiently accurate value for

âLO,HVP
µ [Q2

max] out to Q2
max = 0.2 GeV2. The Padé approach, whether implemented through

moments or through fitting, is thus likely to be a more favorable one from a practical point

of view.

To summarize the conclusions of this subsection, we have shown that, in the region 0 <

Q2∼< 0.1 GeV2, use of NN′LO ChPT provides a representation of the subtracted polarization

accurate enough to allow the evaluation of aLO,HVP
µ [0.1 GeV2] with a systematic error at the

sub-percent level. Because lattice data at Q2 values below 0.1 GeV2 will be required to

reach this level, however, use of this ChPT-inspired fit form is likely to produce results for

aLO,HVP
µ [0.1 GeV2] with larger errors than those obtained from Padé-based approaches.

We conclude this subsection with a brief discussion of the low-Q2 I = 0 contributions

to aLO,HVP
µ . As discussed above, the NN′LO fits to the model Π̂I=1(Q2) data fix the LECs

Cr
93 and Cr. It turns out that at NNLO the related subtracted vector isoscalar polarization

function, Π̂I=0(Q2), is determined by the same set of LECs as is Π̂I=1(Q2) [40]. This state-

ment remains true of the NN′LO form as well.13 The chiral fit thus also provides us with

what should be an accurate expectation for the behavior of Π̂I=0(Q2) in the low-Q2 region.

13 This follows because contributions of the form CrQ4 arise at NNNLO from terms in the effective La-

grangian involving six derivatives and no quark-mass factors. Such terms will produce SU(3)-flavor-

symmetric contributions to the vector current two-point functions.
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FIG. 10: The NN′LO ChPT expectation for the low-Q2 behavior of the integrand for the I = 0

contribution to aLO,HV P
µ . Also shown, for comparison, is the integrand for the corresponding I = 1

contribution.
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In the isospin limit, Π̂I=0(Q2) determines the I = 0 contribution to aLO,HVP
µ via14

[

aLO,HVP
µ

]I=0
= −2α2

∫ ∞

0

dQ2 f(Q2)
1

3
Π̂I=0(Q2) . (12)

Fig. 10 shows the NN′LO expectation for the product f(Q2)Π̂I=0(Q2) appearing in the

integrand of Eq. (12). The corresponding I = 1 product f(Q2)Π̂I=1(Q2) is included for

comparison. It is clear that, though the Q2 dependence of the two is not identical, the

behavior of the I = 0 integrand is sufficiently similar to that of the I = 1 integrand that our

conclusions regarding the low-Q2 I = 1 contribution to aLO,HVP
µ will also hold for the I = 0

contribution.

14 Our normalization is such that Π̂I=0(Q2) = Π̂I=1(Q2) in the SU(3)-flavor limit, with Π̂I=1(Q2) the

subtracted polarization for the flavor ud I = 1 vector current.
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IV. ERRORS FOR THE HYBRID STRATEGY AND CONCLUSIONS

We have shown that the problem of determining the LO HVP contribution to aµ on

the lattice can be profitably approached through a hybrid strategy in which contributions

from Q2 ≥ Q2
min are evaluated by direct trapezoid rule numerical integration of lattice

data for the subtracted polarization and those from the low-Q2 region, 0 ≤ Q2 ≤ Q2
min,

by other methods. Existing lattice data produced in simulations using periodic boundary

conditions, even without further improvements such as AMA and/or the use of twisted

boundary conditions, are already sufficiently precise to allow the Q2 ≥ Q2
min contributions

to be obtained with systematic and statistical errors well below 1% of aLO,HVP
µ for Q2

min as

low as 0.1 GeV2.

In evaluating contributions from the region of Q2 below Q2
min ∼ 0.1 GeV2, we have

shown, by studying a physical model of the I = 1 vector polarization function, that low-

order Padé’s, conformally mapped polynomials, as well as NN′LO ChPT (NNLO ChPT

supplemented by an additional curvature contribution whose physical origin is understood)

provide forms capable of representing the subtracted polarization with sufficient accuracy to

reduce the systematic uncertainty arising from computing âLO,HVP
µ [Q2

min] using these forms

to a level well below 1% of âLO,HVP
µ . In the case of the low-order Padé’s, this conclusion

remains in force for Q2
min out to beyond 0.2 GeV2. In contrast, systematic errors associated

with the use of the NN′LO ChPT form grow to about 1.4% of âLO,HVP
µ for Q2

min ∼ 0.2 GeV2.

A promising approach to the low-Q2 region, from a systematic point of view, appears to be

that involving the Padé’s constructed from the derivatives of the polarization function with

respect to Q2 at Q2 = 0. These derivatives can be obtained from time moments of the zero-

spatial-momentum two-point function [22]. The hybrid approach allows use of a lower order

than would otherwise be possible, with the [1, 1]H Padé already being sufficient to produce

a systematic error on the determination of âLO,HV P
µ [Q2

min] safely below 1% for Q2
min out to

beyond 0.2 GeV2. Reducing the order of the Padé employed has the advantage of reducing

the order to which the time moments must be evaluated with good accuracy, and thus

represents a practical advantage in view of the expectation that light-quark moment errors

will grow rapidly with increasing order. Constructing the [1, 1]H Padé requires moments

only out to sixth order. In contrast, evaluating the contribution to âLO,HVP
µ out to 2 GeV2

with sub-percent accuracy, would require at least the [2, 2]H Padé, and hence time moments
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out to at least tenth order.

We have also shown that a multi-point implementation of the Padé approach [14], in which

the parameters of the Padé’s are fit rather than obtained from moments, is also feasible.

This version has the advantage that, with sufficiently good data, it can be successfully

implemented using only data from the region of Q2 between approximately 0.1 and 0.2 GeV2,

where lattice data errors are typically significantly smaller than at lower Q2. To reach sub-

percent accuracy in this implementation, however, requires going to the [2, 1]H Padé.15

The approach using polynomials in the conformally transformed variable w also looks

promising, provided again that moment evaluations of the derivatives of Π(Q2) with respect

toQ2 atQ2 = 0 reach a sufficient level of accuracy. If one is forced to estimate the polynomial

coefficients by fitting, however, this approach looks less favorable than the corresponding

Padé approach.

While in principal also usable, the ChPT-based approach appears to us to require better

lattice data to reach the same level of precision than do the two Padé approaches. This

is a consequence of (i) the necessity of performing the NN′LO fits on intervals restricted

to Q2∼< 0.1 GeV2 if one wishes to keep the associated systematic errors at the sub-percent

level, and (ii) the fact that errors on lattice data are typically significantly larger below

Q2 ∼ 0.1 GeV2 than they are in the interval between 0.1 and 0.2 GeV2.

Current low-Q2 lattice data are not yet sufficiently precise to produce sub-percent level

statistical errors on the low-Q2 contributions aLO,HVP
µ [Q2

min]. To understand what might be

required to reach the desired precision, it is convenient to consider the case of the moment

approach, specifically the [1, 1]H Padé representation of the subtracted polarization,

Π̂(Q2) = Π(Q2)−Π(0) =
a1Q

2

1 + b1Q2
, (13)

which we know is sufficient to produce systematic uncertainties well below 1%. Errors δa1

and δb1 on the parameters a1 and b1 produce associated errors

δa1a
LO,HV P
µ [Q2

min] = −4α2

∫ Q2

min

0

dQ2 f(Q2)

(

Q2

1 + b1Q2

)

δa1 ,

δb1a
LO,HV P
µ [Q2

min] = −4α2

∫ Q2

min

0

dQ2 f(Q2)

(

− a1Q
4

(1 + b1Q2)2

)

δb1 . (14)

15 The [1, 1] Padé in the notation of Ref. [14].
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on aLO,HVP
µ [Q2

min]. Let us now consider the I = 1 analogue, for which we can quantify these

uncertainties using our τ -data-based model. Taking the central values for a1 and b1 from

the [1, 1]H Padé version obtained from the derivatives of the model polarization with respect

to Q2 at Q2 = 0, scaling the errors, as usual, by âLO,HVP
µ , and defining ca1 [a1, b1, Q

2
min] and

cb1 [a1, b1, Q
2
min] by

δa1 â
LO,HVP
µ [Q2

min]

âLO,HVP
µ

= ca1 [a1, b1, Q
2
min]

δa1
a1

δb1 â
LO,HVP
µ [Q2

min]

âLO,HVP
µ

= cb1 [a1, b1, Q
2
min]

δb1
b1

, (15)

we find, for example, that

ca1 [a1, b1, 0.1 GeV2] = 0.818 ,

cb1 [a1, b1, 0.1 GeV2] = −0.0488 , (16)

and

ca1 [a1, b1, 0.2 GeV2] = 0.913 ,

cb1 [a1, b1, 0.2 GeV2] = −0.0724 . (17)

It follows that a sub-percent error on a1 will be sufficient to obtain a sub-percent error on

âLO,HVP
µ [Q2

min] for Q2
min ≤ 0.2 GeV2, provided the errors on b1 remain at the few percent

level, regardless of how correlated the fit parameters a1 and b1 might be. The parameter a1

is determined by the slope of the subtracted polarization with respect to Q2 at Q2 = 0, and

b1 by the ratio of the curvature to the slope. A useful rule-of-thumb goal emerging from this

exercise is thus that, to reach the sub-percent error level, one should aim at reducing the

error on the slope parameter a1, whether obtained from the fourth-order time moment, or

from fitting, to the sub-percent level. Further quantitative studies using our τ -based model

will become possible once covariance matrices associated with AMA-improved data with

twisted boundary conditions become available. This will allow us to construct fake data sets

based on the model but with realistic errors and correlations from the point of view of the

lattice.
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