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IAS, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany

We present lattice QCD calculations of nucleon electromagnetic form factors using pion masses
mπ = 149, 202, and 254 MeV and an action with clover-improved Wilson quarks coupled to smeared
gauge fields, as used by the Budapest-Marseille-Wuppertal collaboration. Particular attention is
given to removal of the effects of excited state contamination by calculation at three source-sink
separations and use of the summation and generalized pencil-of-function methods. The combination
of calculation at the nearly physical mass mπ = 149 MeV in a large spatial volume (mπLs = 4.2)
and removal of excited state effects yields agreement with experiment for the electric and magnetic
form factors GE(Q2) and GM (Q2) up to Q2 = 0.5 GeV2.
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I. INTRODUCTION

Electromagnetic form factors are of great interest theoretically and experimentally because they specify fundamental
aspects of the structure of nucleons. At low momentum transfer, they reveal the spatial distribution of charge and
current. In a non-relativistic system, the electric and magnetic form factors GE(Q2) and GM (Q2) defined below
would be the Fourier transforms of the distribution of charge and magnetization in the nucleon and the rms charge
and magnetization radii would be given by their slopes at zero momentum transfer, 〈r2〉E,M = −6G′E,M (0)/GE,M (0).
Relativistically, these Sachs form factors may be regarded as three dimensional Fourier transforms of charge and
current densities suitably defined in the Breit frame. In addition, Burkardt [1, 2] has shown that the Dirac and
Pauli form factors F1(Q2) and F2(Q2) also correspond to two dimensional Fourier transforms of transverse charge
and current densities defined in the infinite momentum frame, complementing our knowledge of quark distributions in
the infinite momentum frame from deep inelastic scattering. At sufficiently high momentum transfer Q2, asymptotic
scaling sets in and elastic form factors follow simple counting rules based on the minimum number of gluon exchanges
required to divide the momentum transfer equally among all the quarks in the hadron. In the nucleon, at least two
gluon exchanges are required so that the electric form factor falls off as Q−4. The scale determining the onset of
asymptotic scaling is of great interest in non-perturbative QCD.

Because of their fundamental physical content, electromagnetic form factors have continued to be studied extensively
experimentally throughout the world as technology has improved, but even now, significant questions remain. The
most accurately measured form factor is the dominant F1(Q2) form factor for the proton. However, its slope at very
low Q2 is still uncertain. One problem, which has generated considerable theoretical and experimental interest, is that
there is a 7σ discrepancy between the 2010 CODATA value [3] for the rms charge radius measured using electron-
proton elastic scattering and spectroscopy, and the smaller value recently measured using the Lamb shift in muonic
hydrogen [4]. Another problem is that phenomenological fits to experimental electron scattering form factors [5, 6] have
been inconsistent with analyses based on dispersion theory [7–10]. Interestingly, the charge radius determined using
dispersion theory agrees with the Lamb shift result. Measurements of F2(Q2) using spin polarization [11–15] differ
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significantly from traditional measurements based on Rosenbluth separation. Athough two-photon exchange processes
contribute much more strongly to the backward cross section used in Rosenbluth separation than to polarization
transfer [6], there are not yet precise theoretical calculations of two photon exchange that resolve the discrepancy.
To measure the two photon exchange contribution directly, experiments using e+– p scattering, for which the relative
contribution of the two-photon term changes sign, have been performed by the CLAS experiment at Jeffserson Lab
Hall B [16, 17], at the VEPP-3 Storage ring in Novosibirsk [18, 19], and by the OLYMPUS experiment at the DORIS
storage ring at DESY [20, 21], although none of the three has published final results. Finally, neutron form factors are
less accurately determined than proton form factors because of uncertainty in nuclear wave functions for deuterium
or 3He. Hence, for all these reasons, definitive lattice calculations can play an important role in resolving significant
experimental uncertainties.

The Dirac and Pauli form factors, F q1 (Q2) and F q2 (Q2), parameterize matrix elements of the vector current between
proton states:

〈~p ′, λ′|V µq |~p, λ〉 = ū(~p ′, λ′)

[
γµF q1 (Q2) +

iσµν(p′ − p)ν
2mN

F q2 (Q2)

]
u(p, λ), (1)

where Q2 = −(p′ − p)2 and V µq = q̄γµq. In comparing with experiment, we also consider form factors of the

electromagnetic current V µem = 2
3 ūγ

µu− 1
3 d̄γ

µd in a proton and in a neutron, F p,n1,2 (Q2). Isovector and isoscalar form
factors are defined by

F v1,2(Q2) = F p1,2(Q2)− Fn1,2(Q2) = Fu1,2(Q2)− F d1,2(Q2) ≡ Fu−d1,2 (Q2) (2)

F s1,2(Q2) = F p1,2(Q2) + Fn1,2(Q2) =
1

3

(
Fu1,2(Q2) + F d1,2(Q2)

)
≡ 1

3
Fu+d

1,2 (Q2). (3)

The electric and magnetic Sachs form factors GE(Q2) and GM (Q2) are defined by:

GE(Q2) = F1(Q2)− Q2

(2mN )2
F2(Q2) (4)

GM (Q2) = F1(Q2) + F2(Q2) . (5)

Electromagnetic form factors have previously been calculated in lattice QCD using a variety of actions, but so
far using pion masses substantially higher than the physical pion mass. Early calculations have been described in
review articles [22, 23], including the pioneering calculations of nucleon electric [24] and magnetic [25] form factors
using quenched fermions, as well as later quenched calculations [26–32]. Calculations with Nf = 2 flavors have been
performed using Wilson [32], clover-improved Wilson [33, 34], domain wall [35], and twisted mass [36, 37] actions.
Nf = 2 + 1 calculations have used clover-improved Wilson [38, 39] and domain wall [40–42] actions, and a mixed
action with domain wall valence quarks and Asqtad sea quarks [43, 44]. Finally, calculations with Nf = 2 + 1 + 1
flavors have been performed using twisted mass action [45] and a mixed action with clover-improved Wilson valence
quarks and HISQ sea quarks [46].

This present work advances the calculation of electromagnetic form factors using lattice QCD in two crucial ways.
One essential advance is calculation at the nearly physical pion mass of 149 MeV. Previous calculations referenced
above clearly show that for large pion masses, the form factors F1(Q2) and F2(Q2) at low Q2 lie significantly above
the physical values and monotonically decrease toward them as the pion mass is decreased. This behavior is clear
physically, because the size of the pion cloud increases strongly as the pion mass decreases so that the rms radius and
consequently the slope of the form factor at Q2 = 0 increase strongly. Quantitatively, the dramatic increase in the
isovector Dirac radius as the pion mass decreases arises from the log(mπ) term in chiral perturbation theory. The
second crucial advance is the removal of contamination due to excited states. Having already seen [47] the importance
of the removal of excited state contaminants in obtaining agreement with experiment for the radii (r2

1,2)v, it is clearly

important to do the same for the full Q2 dependence and we do this using two methods described below. The removal
of excited state contaminants in form factors has also been addressed recently [48, 49] for form factors calculated with
Nf = 2 Wilson-clover fermions at mπ ≥ 195 MeV. We find that the combination of calculation at the nearly physical
mass of 149 MeV and removal of contamination due to excited states produces excellent agreement with experiment.

The outline of the paper is as follows. Section II presents the lattice methodology, beginning with the description of
the clover-improved Wilson action from the Budapest-Marseille-Wuppertal (BMW) collaboration and the ensembles
of configurations that are used. Three methods of calculating the relevant matrix elements of the electromagnetic
current are then described, the standard ratio method, the summation method, and the generalized pencil-of-function
(GPoF) method, from which form factors are extracted by an overdetermined analysis to minimize the statistical
uncertainty. In section III, we present our results for isovector observables. Dirac form factors F v1 (Q2) and Pauli



3

Table I. Gauge configuration ensembles and measurement counts for form factor calculations. The coarse ensembles have gauge
coupling β = 3.31 and bare strange quark mass ams = −0.04, while the fine ensemble has β = 3.5 and ams = −0.006.

mπ [MeV] mN [GeV] a [fm] amud L3
s × Lt mπLs mπLt Nconf Nmeas

149(1) 0.929(19) 0.116 −0.09900 483 × 48 4.21 4.21 646 7752
202(1) 1.003(22) 0.116 −0.09756 323 × 48 3.81 5.71 457 5484
253(1) 1.030(23) 0.116 −0.09530 323 × 96 4.78 14.34 202 2424
254(1) 1.051(13) 0.116 −0.09530 323 × 48 4.79 7.18 420 5040
254(1) 1.041(15) 0.116 −0.09530 323 × 24 4.79 3.59 2074 12444
254(1) 1.072(7) 0.116 −0.09530 243 × 48 3.60 7.19 1019 24456
252(2) 1.072(7) 0.116 −0.09530 243 × 24 3.56 3.56 3999 23994
303(2) 1.043(51) 0.116 −0.09300 243 × 48 4.28 8.56 128 768
317(2) 1.153(20) 0.093 −0.04630 323 × 64 4.76 9.52 103 824
356(2) 1.175(18) 0.116 −0.09000 243 × 48 5.04 10.08 127 762
351(2) 1.163(13) 0.116 −0.09000 243 × 24 4.97 4.97 420 2520

form factors F v2 (Q2) are calculated for ensembles with a range of pion masses and results using the ratio, summation,
and GPoF methods are compared. For use in calculating rms radii, dipole fits to these form factors are performed
for several ranges of Q2 and compared to establish insensitivity to the Q2 range for sufficiently low Q2. In one of
the highlights of this work, Sachs form factors, GE(Q2) and GM (Q2), are calculated at the lowest pion mass, 149
MeV, and shown to produce excellent agreement with phenomenological fits to electron scattering data. The Dirac
radius, (r2

1)v, Pauli radius, (r2
2)v and anomalous magnetic moment κv are calculated for ensembles with a range of

pion masses and chirally extrapolated to the physical pion mass. Section IV presents analogous results for isoscalar
observables. Finally, we show the proton Sachs form factors in section V and present our conclusions in section VI.

We include three appendices. Appendix A gives details on chiral extrapolation formulae and phenomenological
inputs for isovector observables. Appendix B includes additional plots comparing, for observables where this was
omitted in the main text, results computed on each ensemble using the ratio, summation, and GPoF methods; this is
intended to be useful for others performing similar lattice QCD calculations. Finally, Appendix C has tables listing
form factors for four ensembles.

II. LATTICE METHODOLOGY

A. Lattice action and gauge ensembles

We perform lattice QCD calculations using a tree-level Symanzik-improved gauge action and 2+1 flavors of tree-
level improved Wilson-clover quarks, which couple to the gauge links via two levels of HEX smearing as motivated by
Ref. [50]. For a detailed description of the action and smearing procedure we refer the reader to [51]. The s quarks
are tuned to have a mass close to physical, and the light quark mass (with mu = md) is varied, yielding pion masses
between 149 and 356 MeV. The algorithms used to generate the gauge field ensembles are described in [51].

In Tab. I we list the gauge ensembles analyzed in this paper. In Fig. 1 we show (mπ, L) values in comparison to
other lattice calculations of nucleon structure [34, 37–42, 44–46, 49]. We check the volume dependence of our results
at mπ = 254 MeV by varying the physical volume from (3.7 fm)3 to (2.8 fm)3. We perform all calculations with
a = 0.116 fm except one with mπ = 317 MeV and a = 0.093 fm to check for discretization effects. In addition, at
mπ ≈ 250 and ≈ 350 MeV we vary the time extent of the lattices between 2.8 fm and 11.1 fm to check whether
thermal states [52] have any effect on the nucleon structure observables that we calculate.

B. Computation of matrix elements

In order to measure nucleon matrix elements in lattice QCD, we compute nucleon two-point and three-point
functions,

C2pt(~p, t) =
∑
~x

e−i~p·~xTr[Γpol〈N(~x, t)N̄(~0, 0)〉] (6)

C
V µq
3pt(~p, ~p

′, τ, T ) =
∑
~x,~y

e−i~p
′·~xei(~p

′−~p)·yTr[Γpol〈N(~x, T )V µq (~y, τ)N̄(~0, 0)〉], (7)
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Figure 1. Summary of pion masses and volumes in existing lattice calculations of nucleon structure. Open symbols are used to
indicate cases where results were described by the authors as “preliminary”.

where N = εabc(ũTaCγ5
1+γ4

2 d̃b)ũc is a proton interpolating operator constructed using smeared quark fields, V µq = q̄γµq

is the site-local vector current, and Γpol = 1+γ4
2

1−iγ3γ5
2 is a spin and parity projection matrix. For smearing, we use

approximately-Gaussian Wuppertal smearing [53] with the same double-HEX-smeared links as used for the fermion

action. We compute C3pt with both ~p ′ = ~0 and ~p ′ = 2π
Ls

(−1, 0, 0), and for quark flavors q ∈ {u, d}. The three-point
correlators have contributions from both connected and disconnected quark contractions, but we compute only the
connected part. Omitting the disconnected part (where the vector current is attached to a quark loop) introduces an
uncontrolled systematic error except when taking the u − d (isovector) flavor combination, where the disconnected
contributions cancel out. The magnitude of disconnected contributions is discussed in the conclusions (Sec. VI).

On a lattice with finite time extent Lt, the transfer matrix formalism yields

C2pt(~p, t) =
∑
n,m

e−EmLte−(En−Em)t
∑
α,β

(Γpol)αβ
∑
~x

e−i~p·~x〈m|Nβ(~x)|n〉〈n|N̄α(~0)|m〉 (8)

C
V µq
3pt(~p, ~p

′, τ, T ) =
∑
n,n′,m

e−EmLte−(En−Em)τe−(En′−Em)(T−τ)
∑
αβ

(Γpol)αβ

×
∑
~x,~y

e−i~p
′·~xei(~p

′−~p)·y〈m|Nβ(~x)|n′〉〈n′|V µq (~y)|n〉〈n|N̄α(~0)|m〉.
(9)

Thermal contamination is eliminated in the large Lt (zero-temperature) limit, in which state m is the vacuum, and
states n and n′ are restricted to having the quantum numbers of a proton with momentum ~p and ~p ′, respectively.
Unwanted contributions from excited states can be eliminated by then taking τ and T − τ to be large.

In order to compute C3pt, we use sequential propagators through the sink [24]. This has the advantage of allowing
for any operator to be measured at any time using a fixed set of quark propagators, but new backward propagators
must be computed for each source-sink separation T . Increasing T suppresses excited-state contamination, but it
also increases the noise; the signal-to-noise ratio is expected to decay asymptotically as e−(mN− 3

2mπ)T [54]. Past
calculations have often used a single source-sink separation, which only allows for a limited ability to identify and
remove excited state contamination. In particular, when computing forward matrix elements, there is no way of
distinguishing contributions from excited states with n′ = n from the ground state contribution, when using C3pt

with a single T . Therefore, in this work, we perform measurements using three source-sink separations on all ensembles:
T/a ∈ {8, 10, 12} for the coarse lattices and T/a ∈ {10, 13, 16} for the fine lattice.
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1. Ratio method

We label proton states as |~p, λ〉 and use the relativistic normalization, 〈~p ′, λ′|~p, λ〉 = 2EL3
sδ~p ′,~pδλ′,λ. Parameterizing

the overlap of our interpolating operator with the ground-state proton as 〈Ω|Nα(~x)|~p, λ〉 =
√
Z(~p)uα(~p, λ)ei~p·~x, at

zero temperature we obtain

C2pt(~p, t) =
Z(~p)e−E(~p)t

2E(~p)
Tr[Γpol(i/p+mN )] +O(e−∆E10(~p)t) (10)

C
V µq
3pt(~p, ~p

′, τ, T ) =

√
Z(~p)Z(~p ′)e−E(~p)τ−E(~p ′)(T−τ)

4E(~p ′)E(~p)

∑
λ,λ′

ū(~p, λ)Γpolu(~p ′, λ′)〈p′, λ′|V µq |p, λ〉

+O(e−∆E10(~p)τ ) +O(e−∆E10(~p ′)(T−τ)),

(11)

where ∆E10(~p) is the energy gap between the ground and lowest excited state with momentum ~p. To cancel the
overlap factors and the depedence on Euclidean time, we compute the ratios,

Rµq (τ, T ) =
C
V µq
3pt(~p, ~p

′, τ, T )√
C2pt(~p, T )C2pt(~p ′, T )

√
C2pt(~p, T − τ)C2pt(~p ′, τ)

C2pt(~p ′, T − τ)C2pt(~p, τ)

=

∑
λ,λ′ ū(~p, λ)Γpolu(~p ′, λ′)〈p′, λ′|V µq |p, λ〉√

2E(~p)(E(~p) +mN ) · 2E(~p ′)(E(~p ′) +mN )
+O(e−∆E10(~p)τ ) +O(e−∆E10(~p ′)(T−τ)).

(12)

As a function of τ ∈ [0, T ] with fixed T , the ratios produce a plateau with “tails” at both ends caused by excited states.
In practice, for each fixed T , we average over the central two or three points near τ = T/2, which allows for matrix ele-
ments to be computed with errors that decay asymptotically as e−∆EminT/2, where ∆Emin = min{∆E10(~p),∆E10(~p ′)}.

2. Summation method

Improved asymptotic behavior of excited-state contributions can be achieved by using the summation method
[55, 56]. Taking the sums of ratios yields

S(T ) ≡
T−τ0∑
τ=τ0

R(τ, T ) = c+ TM +O(Te−∆EminT ), (13)

where c is independent of T , and M contains the desired ground-state matrix element. (We choose τ0 = 1 and thus
omit the first and last points of each plateau.) Thus finite differences, (δT )−1(S(T+δT )−S(T )), yield the ground-state
matrix element with excited-state contamination that asymptotically decays as Te−∆EminT . In particular, transitions
between the ground and lowest excited state, which were the dominant excited-state contribution for the ratio method
at large time separations, are highly suppressed, now decaying as e−∆EminT .

With our three source-sink separations, we can compute this finite difference at two values of T , however the result
at the larger value of T tends to have very large statistical uncertainties. Instead of using a finite difference, we fit
a line a + bT to our three S(T ) points, and take the slope b as the extracted matrix element. The result is mostly
determined from the lower two source-sink separations, as their sums have smaller errors, but choosing this fit over a
finite difference allows the larger source-sink separation to also have some influence.

3. Generalized pencil-of-function method

By using n interpolating operators, the variational method [57, 58] allows for asymptotically removing the unwanted
contributions from the first n−1 excited states. We are able to make use of the variational method via the generalized
pencil-of-function (GPoF) method [59], which is based on the recognition that if N(t) and N̄(t) are our interpolating
operators for annihilating and creating the nucleon, then the time-displaced operators

Nδ(t) ≡ eHδN(t)e−Hδ = N(t+ δ) (14)

N̄δ(t) ≡ e−HδN̄(t)eHδ = N̄(t− δ) (15)
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are linearly independent interpolating operators for the nucleon. This enables us to construct a matrix of two-point
functions,

C2pt(t) =

(
〈N(t)N̄(0)〉 〈Nδ(t)N̄(0)〉
〈N(t)N̄δ(0)〉 〈Nδ(t)N̄δ(0)〉

)
=

(
C2pt(t) C2pt(t+ δ)

C2pt(t+ δ) C2pt(t+ 2δ)

)
, (16)

using our ordinary two-point function C2pt(t). By solving the generalized eigenvalue problem,

C2pt(t)v(t0, t) = λ(t0, t)C2pt(t0)v(t0, t) (17)

we can find eigenvectors v(t0, t) that asymptotically give linear combinations of N and Nδ which have zero overlap
with the first excited state. Then using also the matrix of three-point functions,

C3pt(τ, T ) =

(
〈N(T )O(τ)N̄(0)〉 〈Nδ(T )O(τ)N̄(0)〉
〈N(T )O(τ)N̄δ(0)〉 〈Nδ(T )O(τ)N̄δ(0)〉

)
=

(
C3pt(τ, T ) C3pt(τ, T + δ)

C3pt(τ + δ, T + δ) C3pt(τ + δ, T + 2δ)

)
, (18)

we compute two-point and three-point functions using a particular linear combination:

CGPoF
2pt (t) = v†C2pt(t)v CGPoF

3pt (τ, T ) = v†C3pt(τ, T )v, (19)

and then proceed with the usual ratio-plateau analysis. Note that this requires computing three-point functions
at three equally spaced source-sink separations, which is precisely what we have, and thus we can only compute
CGPoF

3pt (τ, T ) at our shortest source-sink separation T .
Consider, for example, a 2× 2 GPoF analysis applied to a system with exactly two states, E0 and E1. It is trivial

to show that the eigenstates λ(t0, t) in Eq. (17) are equal to e−E0,1(t−t0) and the eigenvectors are vT0,1 = (−e−E1,0δ, 1).
Substituting the ground state eigenvector v0 into Eq. (19), we obtain

CGPoF
2pt (t) = C2pt(t+ 2δ)− 2e−E1δC2pt(t+ δ) + e−2E1δC2pt(t) ,

CGPoF
3pt (τ, T ) = C3pt(τ + δ, T + 2δ)− e−E1δ

(
C3pt(τ, T + δ) + C3pt(τ + δ, T + δ)

)
+ e−2E1δC3pt(τ, T ) ,

(20)

indicating that, if computed using the GPoF method, the ground state matrix elements and their uncertainties will
be mostly determined by the values of correlators with the largest separation T .

In practice, for each class of lattice momenta ~p equivalent under the group of lattice rotations and reflections,
we average the two-point correlators C2pt(t, ~p) and then use the GPoF method and solve the generalized eigenvalue
problem. This produces a different linear combination of the original and the time-displaced nucleon operator for
each class of equivalent lattice momenta. It has been shown [58] that by appropriately increasing t0 and t as τ and
T − τ are increased, the contributions from the lowest-lying excited state can be completely removed asymptotically;
however, in this work, we find the eigenvector using the fixed values t0/a = 1 and t/a = 2. As shown in Fig. 2, this
is sufficient to remove the effect of excited-state contamination in CGPoF

2pt at the present level of statistics.

4. Comparison of methods for computing matrix elements

Given our level of statistical error and that we have only three source-sink separations, there are trade-offs between
the three methods for computing matrix elements:

• Although the ratio method has the worst asymptotic behavior, we are able to compute one result for each
source-sink separation, which gives an indication of the approach to the ground-state matrix element.

• The summation method asymptotically suppresses excited-state contributions without requiring knowledge
about any particular state. In particular, this method is most effective at suppressing the contributions from
transition matrix-elements between the ground state and an excited state.

• If excited-state contributions to two-point and three-point functions come mostly from a single state, then (given
sufficient statistics) the GPoF method is effective at removing them. In particular, this removal will include
contributions to the two-point function and both ground-to-excited and excited-to-excited matrix elements in
the three-point function.

The case of contamination from transition matrix elements is, in particular, one where the GPoF method could in
practice be not very successful at removing the effect of excited states. Consider an excited state with a small amplitude
relative to the ground state. That is, r ≡

√
Z ′/Z is small, where Z is defined as above and Z ′ is defined analogously
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Figure 2. Two-point correlators C2pt(t, ~p) and CGPoF
2pt (t, ~p) for the 149 MeV ensemble, divided by their ground-state contribu-

tions, as determined from a two-state fit to the former with t/a ∈ [3, 14] and a one-state fit to the latter with t/a ∈ [2, 12].

The left plot has ~p = ~0, and the right plot is averaged over a~p equivalent to 2π
48

(2, 1, 1), which is the largest used for computing
matrix elements on this ensemble. The GPoF correlators are shifted to show that at large times their dominant contribution
is from the time-displaced nucleon interpolating operator.

for the excited state. Then the contribution from this state to the two-point function would be suppressed as r2, such
that it could disappear into statistical noise. However, its contribution to three-point functions via transitions to the
ground state would only be suppressed by the factor r. Since the GPoF method relies on the two-point function for
optimizing its effective interpolating operator, it could fail to remove such excited-state contributions.

For a concise presentation, we select a single method for our primary results, namely the summation method, as
it is effective at suppressing contributions from all excited states, is fairly simple, and has been used successfully in
computing the nucleon axial charge [49, 60]. The GPoF method has not seen widespread use, and our set of results
using it should be considered an exploratory study. We will see (in the main text and in Appendix B) that, with
the present level of statistics, results using the ratio (with the largest source-sink separation), summation, and GPoF
methods are consistent with one another and therefore this choice does not have a significant effect on the results.

The two main methods not considered here are multi-state fitting and broader application of the variational method
with different interpolating operators (beyond just the time-displacements used by GPoF). In recent years, the former
has been applied to nucleon matrix elements in Refs. [46, 61–63], typically with the assumption that only two states
contribute in the range of probed time separations. The latter has been used extensively in spectroscopy calculations
together with a large number of interpolating operators; see, e.g., Ref. [64] for an application to excited baryons. It
has also seen some use for nucleon matrix elements, such as the calculations in Refs. [65, 66]. These used sequential
propagators from a fixed current rather than a fixed sink as was used in this work; this reduces the cost of including
several interpolating operators, with the drawback of requiring additional propagators for each current insertion.

C. Extraction of form factors

The renormalized O(a)-improved vector current is given by [67]

(V µq )R = ZV (1 + b amq)(V
µ
q + c a∂νTµνq ), (21)

where Tµνq = iq̄σµνq. For tree-level improvement, as used in the lattice action, b = 1 and c = 0. We keep the latter
and use only the site-local vector current, but rather than controlling the quark-mass dependence via two parameters
(ZV , b), we instead compute a separate ZV renormalization factor on each ensemble.

We do this by measuring the time-component of the vector current at ~p ′−~p = 0, which is (up to renormalization and
lattice artifacts) the quark number, a conserved charge. Specifically, we take the u−d flavor combination and, on each
ensemble, impose that it equals 1 for the proton in order to obtain ZV . This should be unaffected by excited states
in the normal sense; any dependence on time separations should only occur as a result of lattice artifacts or thermal
effects. We observe no statistically significant dependence on source-sink separation in our data, and compute ZV on
each ensemble using the ratio-plateau method with the shortest source-sink separation. For the coarse ensembles, this
is shown in Fig. 3. A linear fit has slope b = 1.42(13), which is somewhat larger than the tree-level value. We note
that the ensembles with small values of mπLt tend to have values of ZV that lie somewhat above the fit, suggesting
the presence of some thermal contamination; this shows up for ZV in particular because other sources of uncertainty



8

0.915

0.920

0.925

0.930

0.935

−0.100 −0.098 −0.096 −0.094 −0.092 −0.090

Z
V

amud

483×48
323×96
323×48

323×24
243×48
243×24

Figure 3. Vector current renormalization factor ZV versus bare quark mass, for the coarse ensembles. The band is from a fit
assuming a linear relationship.

(including statistical) are smaller than in other observables. As the effect is at the percent level, it is negligible
compared to the statistical uncertainty that we later obtain for electromagnetic form factors.

We do notice another clear apparent thermal effect: the statistical uncertainty depends strongly on the time extent.
Despite other ensembles having many more measurements, the 323 × 96 ensemble has the smallest uncertainty for
ZV . In addition, the three Lt = 24a ensembles have the largest uncertainties for ZV , and the uncertainties grow
more rapidly with the source-sink separation on the ensembles with shorter time extent (not shown in Fig. 3). The
more-rapid onset of noise, arising from the influence of thermal states, has been previously examined for the case of
(multi-)baryon two-point correlators in Ref. [52].

To compute form factors: for each value of Q2, we parameterize the corresponding set of matrix elements of
the vector current by F1(Q2) and F2(Q2), and perform a linear fit to solve the resulting overdetermined system of
equations [68], after first combining equivalent matrix elements to improve the condition number [40]. This approach
makes use of all available matrix elements in order to minimize the statistical uncertainty in the resulting form factors.
On our ensembles, the largest source momentum that we use is ~p = 2π

Ls
(1, 1, 1), except for the mπ = 149 MeV ensemble,

where we use source momenta as large as ~p = 2π
Ls

(1, 1, 2) to compensate for the larger volume.

III. ISOVECTOR FORM FACTORS

Isovector lattice observables are particularly interesting because they have no disconnected quark contractions and
thus may be compared directly to differences between proton and neutron experimental results.

A. Form factors

We compute isovector Dirac and Pauli form factors using the different methods discussed in Sec. II B, and results
are shown for two ensembles in Fig. 4. A clear trend when going from the lowest to the middle source-sink separation
is seen for the mπ = 149 MeV ensemble, where F v1 tends to decrease and F v2 tends to increase. The mπ = 254 MeV
ensemble shows similar behavior, although not as strongly. As shown in Appendix B, this trend is even less-clear on
other ensembles. The GPoF and summation results have similar statistical uncertainties, which are slightly larger
than those of the ratio-plateau method with the largest source-sink separation. They are in reasonable agreement,
except for the mπ = 149 MeV ensemble, where the summation values for F v1 consistently lie below the corresponding
GPoF values; this suggests that excited-state effects are not fully under control on this ensemble.

In general, the GPoF values tend to stay close to the ratio-method values with the largest source-sink separation,
whereas the summation values tend to appear like an “extrapolation” from the trend set by the lowest two source-sink
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Figure 4. Comparison of different methods to extract the ground state isovector form factors F v1 (Q2) and F v2 (Q2). The upper
plots show the mπ = 149 MeV ensemble and the lower plots show the mπ = 254 MeV, 323 × 48 ensemble.

separations; this is consistent with expectations from Sec. II B. This tendency can be seen most clearly when there
is a separation between the summation and GPoF values, such as for momentum #23 for F v1 on the mπ = 149 MeV
ensemble.

1. Isovector Dirac form factor F v1 (Q2)

We perform two-parameter fits of a dipole form,

F (Q2) =
F (0)(

1 + Q2

m2
D

)2 , (22)

in the range 0 ≤ Q2 < 0.5 GeV2, to F v1 (Q2) for all of our ensembles. This produces good fits, except on some
ensembles when using the shortest source-sink separation, where the data have smaller statistical uncertainties. On
the mπ = 149 MeV ensemble, these data suffer from excited-state contamination, and the fit has χ2 = 43(13) for 23
degrees of freedom. Because the data at larger source-sink separations have larger uncertainties, it is unclear whether
this amount of deviation from a dipole form persists when excited-state effects are reduced. The 243×48 and 243×24
ensembles at mπ ≈ 250 MeV also suffer from poor fit quality; this is caused by two momenta that have higher values
of F v1 than other nearby momenta (visible in Fig. 5; specifically, these are momenta #2 and #4 in Fig. 19). This
appears to be a fluctuation, as such a large difference between nearby momenta is not seen on other ensembles.

To study the dependence on the fit form, we perform dipole fits for 0 ≤ Q2 < Q2
max with varying Q2

max, to the
summation data on three ensembles; these are shown in Fig. 5. In all three cases, the fit parameters vary with Q2

max by
less than the statistical uncertainty, with the largest variation occurring on the 149 MeV ensemble, where (r2

1)v ≡ 12
m2
D

varies between 0.463(88) fm2 and 0.507(58) fm2, and our choice of Q2
max = 0.5 GeV2 yields (r2

1)v = 0.498(55) fm2.
Therefore we conclude that errors caused by fitting are smaller than the statistical uncertainty.



10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

F
v 1

Q2 (GeV2)

483 × 48, mπ = 149 MeV Q2 < 0.5 GeV2

Q2 < 0.3 GeV2

Q2 < 0.2 GeV2

Q2 < 0.1 GeV2
0.40
0.45
0.50
0.55 483 × 48, mπ = 149 MeV

0.30

0.35

0.40

(r
2 1
)v

(f
m

2 ) 323 × 48, mπ = 254 MeV

0.30

0.35

0.40

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Q2

max (GeV2)

243 × 48, mπ = 254 MeV

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

F
v 1

Q2 (GeV2)

323 × 48, mπ = 254 MeV Q2 < 0.7 GeV2

Q2 < 0.5 GeV2

Q2 < 0.3 GeV2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

F
v 1

Q2 (GeV2)

243 × 48, mπ = 254 MeV Q2 < 1.2 GeV2

Q2 < 0.7 GeV2

Q2 < 0.5 GeV2

Figure 5. Dipole fits to F v1 (Q2) with varying Q2
max. The upper-right plot shows the dependence on Q2

max of the isovector Dirac
radius derived from the fits.

2. Isovector Pauli form factor F v2 (Q2)

For the isovector Pauli form factor, we again perform two-parameter dipole fits [Eq. (22)] in the range 0 < Q2 <
0.5 GeV2; the main difference is that, because of the kinematic factor in Eq. (1), we have no measurement of F2

at Q2 = 0. Therefore, understanding behavior near zero momentum transfer requires an extrapolation below the
smallest accessible Q2

min ∼ ( 2π
Ls

)2, and this extrapolation is more difficult on ensembles with smaller volumes. The
quality of fits is generally reasonable, particularly when not using the shortest source-sink separation, which has the
most precise data. The most-consistently bad fits are on the 323 × 48, mπ = 254 MeV ensemble, where χ2 varies
between 11 and 15, depending on how the matrix elements are computed, for fits with 6 degrees of freedom.

We again study dependence on the fit form by varying the maximum momentum transfer included in the fit, Q2
max,

on three ensembles, using form factors computed using the summation method; these are shown in Fig. 6. Because of
the need to extrapolate to Q2 = 0, the fit parameters have a greater variation with Q2

max than occurred for the Dirac
form factor; although on the two shown mπ = 254 MeV ensembles, this variation is roughly within the statistical
uncertainty of the fit done with our choice of Q2

max = 0.5 GeV2. On the 149 MeV ensemble, this also holds true for
F v2 (0), which varies between 3.74(40) and 4.08(61), and our chosen fit yields F v2 (0) = 3.89(39); however, (r2

2)v ≡ 12
m2
D

varies between 0.67(12) fm2 and 0.94(38) fm2, and our chosen fit yields (r2
2)v = 0.71(11) fm2. Since the statistical

uncertainty increases significantly at small Q2
max and the results remain consistent with our choice, we conclude that

systematic errors due to fitting are not large.

3. Isovector Sachs form factors

To avoid any model-dependence from fitting curves, we first compare the lattice form factors themselves with
experiment. In particular, we use the experimentally-preferred electric and magnetic form factors, GE and GM , and
make use of the phenomenological parameterization of experimental data in Ref. [69], for which correlations between
fit parameters have been made available, allowing for the curves to be plotted with error bands. These are compared
with our summation data from the mπ = 149 MeV ensemble in Fig. 7. Both of these form factors agree well with
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experiment; a chi-squared comparison yields p = 0.64 for GE and p = 0.81 for GM , a feat that only occurs when both
the pion mass is near-physical and excited-state contaminations are reasonably controlled. Using the ratio method
with the largest source-sink separation or the GPoF method also produces reasonable agreement, with p > 0.2 in all
cases.

B. Isovector Radii and magnetic moment

The isovector Dirac and Pauli radii, (r2
1,2)v, and the isovector anomalous magnetic moment, κv, are defined from

the behavior of F v1,2(Q2) near Q2 = 0:

F v1 (Q2) = 1− 1

6
(r2

1)vQ2 +O(Q4) (23)

F v2 (Q2) = κv
(

1− 1

6
(r2

2)vQ2 +O(Q4)

)
. (24)
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Figure 8. Isovector Dirac radius (r21)v, determined on each lattice ensemble using different analysis methods for computing
form factors.

On each ensemble, these quantities are determined from the dipole fits to the form factor data described in the
previous subsection.

In order to compare these results with experiment at the physical pion mass, which is 134.8 MeV in the isospin
limit [70], we perform extrapolations employing physically well-motivated functional forms taken from chiral pertur-
bation theory (ChPT). Rather than attempting a fully ab initio prediction of nucleon observables, we make use of
ChPT with parameters input from phenomenology; the compatibility of the lattice data with the phenomenological
fit forms corroborates the validity of the extrapolations. To observe the congruence with ChPT, we include a certain
limited range of data, namely, the first four ensembles listed in Tab. I, which are those with the smallest pion masses
and largest lattice volumes; by confining the fits to this region, we concentrate on the regime where the predictions of
ChPT are most significant. Details of the extrapolations are given in Appendix A. We note that more recent works
in chiral effective theory [71–75] have also included the infinite-volume extrapolation, however we do not attempt to
apply them here.

1. Isovector Dirac radius (r21)v

For each ensemble, the Dirac radius determined from a dipole fit to F v1 (Q2), determined using the ratio, summation,
and GPoF methods, is shown in Fig. 8. The ratio-method data show a clear trend: the computed Dirac radius
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increases with the source-sink separation. This indicates the presence of excited-state contamination that is still poorly
controlled when using the largest source-sink separation. The dependence on source-sink separation is particularly
large on the mπ = 149 MeV ensemble; on that ensemble, the summation method yields an even larger Dirac radius.

The chiral fit form for the isovector Dirac radius has one free parameter; the fit to the summation data is of
good quality and is shown in magenta in Fig. 9. Extrapolation to the physical pion mass produces good agreement
with the experimental data. Although this fit is entirely compatible with our lattice data, its slope constrained by
ChPT appears larger than the slope suggested by the data alone. Therefore we also perform a fit with an additional
higher-order term proportional to m2

π, which is shown in orange in Fig. 9. The resulting extrapolated value has a
considerably larger uncertainty, but is also consistent with both experimental points, within 1–2σ.

2. Isovector anomalous magnetic moment κv

For comparing across different ensembles, we normalize the isovector anomalous magnetic moment relative to the
physical magneton, rather than using the ensemble-dependent nucleon mass as in Eq. (1):

κvnorm =
mphys
N

mlat
N

F v,lat
2 (0). (25)

As shown in Fig. 10, the summation method on the mπ = 149 MeV ensemble produces a value of κv consistent with
experiment, as does the two-parameter chiral extrapolation to the physical pion mass. We only find a clear sign of
excited-state effects on the mπ = 149 MeV ensemble; see Appendix B.

3. Isovector Pauli radius (r22)v

For chiral extrapolation, it is more natural to use the combination κv(r2
2)v. As shown in Fig. 11, when using the

summation method, this quantity on the mπ = 149 MeV ensemble is consistent with the experimental points, as is the
value obtained using the one-parameter extrapolation to the physical pion mass. Excited-state effects for the Pauli
radius are similar to those for the anomalous magnetic moment; see Appendix B.
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for the proton magnetic radius).

IV. ISOSCALAR FORM FACTORS

We also compute isoscalar form factors. Since we do not include the contributions from disconnected quark con-
tractions, these results suffer from an uncontrolled systematic error. Despite this, these results are still useful for
illustrating qualitative features and the effects of other systematic errors. They will also give some insight into the
size of disconnected contributions.

At relatively high pion masses, light quark disconnected contributions have now been calculated directly using
lattice QCD. In Ref. [78], disconnected contributions to GpE and GpM were found to be consistent with zero and at
most 1% when using a pion mass of about 370 MeV. Preliminary results from a high-statistics calculation at pion
mass 317 MeV find nonzero values for the disconnected contributions (positive for GE and negative for GM ) that are
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also less than 1% of the connected contribution [79].
At the physical point, total disconnected contributions have been determined using form factors from experiment

together with chiral extrapolations of connected-contraction lattice data, sometimes supplemented with both exper-
imental and lattice data on octet baryons. Using chiral perturbation theory, this is divided into strange and light
quark contributions, in order to obtain the strange quark contribution alone, which is presented in Refs. [80–83]. Most
precisely determined is the disconnected contribution to GpM (0), where experimental data on octet baryon magnetic
moments were used; taking the result from Ref. [83] and undoing the division into strange and light contributions
yields a roughly −3% disconnected contribution, with a 20% relative uncertainty on the estimate. At Q2 = 0.26 GeV2,
the disconnected contributions to GpM and GpE are estimated to be −3% and −1.6%, respectively, albeit with roughly
100% relative uncertainties in both cases.

A. Form factors

Comparisons of the different methods for computing matrix elements, applied to the isoscalar Dirac and Pauli
form factor, are in Appendix B. The isoscalar Dirac form factor behaves similarly to the isovector case, whereas the
isoscalar Pauli form factor is generally consistent with zero, without any clear trends visible in the data.

1. Isoscalar Dirac form factor F s1 (Q2)

As we did for the isovector Dirac form factor, we also perform dipole fits to F s1 (Q2) in the range 0 ≤ Q2 < 0.5 GeV2.
This produces fits of generally good quality, except on some ensembles when using the shortest source-sink separation,
where the data have smaller statistical uncertainties. On the mπ = 149 MeV ensemble, these data suffer from excited-
state contamination, and the fit has χ2 = 44(13) for 23 degrees of freedom. As in the isovector case, it is unclear
whether this level of deviation from a dipole persists when excited-state effects are reduced.

To study dependence on the fit, we vary the upper bound of the range in Q2 on three ensembles; these are shown
in Fig. 12. We again find that the fit results vary by less than the statistical uncertainty and we conclude that errors
caused by fitting are smaller than the statistical uncertainty.

2. Isoscalar Pauli form factor F s2 (Q2)

As our isoscalar Pauli form factor data do not show a clear shape, we fit them with a line,

F s2 (Q2) = A+BQ2, (26)

in our standard range 0 < Q2 < 0.5 GeV2. The fits are generally of reasonable quality, except in some cases when
using the shortest source-sink separation, such as on the mπ = 149 MeV ensemble, where using the shortest source-sink
separation yields χ2 = 46(13) for 22 degrees of freedom.

Varying, on three ensembles, the upper bound of the range of Q2 included in the fit, yields the results shown in
Fig. 13. The intercept at Q2 = 0 shows a small variation with Q2

max, with a moderate increase in its statistical
uncertainty as Q2

max is decreased. The slope at Q2 = 0, which is proportional to κs(r2
2)s, shows a strong increase in its

statistical uncertainty as Q2
max is decreased. This is caused by the F s2 (Q2) data being close to zero over the sampled

range of Q2, which strongly constrains a line that fits the data to have a small slope when the fitting range is wider.
Although the resulting slopes are statistically consistent with the result from our choice of Q2

max = 0.5 GeV2, it is
clear that data that were more precise and/or at smaller Q2 could yield significantly different values for the isoscalar
Pauli radius.

3. Isoscalar Sachs form factors

For comparison with experiment without using fits to the lattice data, we again take the Sachs electric and magnetic
form factors, GE and GM , on the mπ = 149 MeV ensemble, and compare with the parameterization of experimental
data from Ref. [69]. This is shown in Fig. 14. The GE data are in fairly good agreement with the curve, whereas the
GM data tend to lie somewhat above the curve. It should be noted that, as computed at mπ = 317 MeV, disconnected
GM is negative [79], so adding it would bring the data closer to the curve, although the tendency for GM to be high
could be caused by other sources, including statistical noise. Quantitatively, we find p = 0.25 for GE and p = 0.47 for
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Figure 12. Dipole fits to F s1 (Q2) with varying Q2
max. The upper-right plot shows the dependence on Q2

max of the isoscalar Dirac
radius derived from the fits.

GM , which are smaller than we found for the isovector case. We should expect worse agreement with experiment due
to the absence of contributions from disconnected quark contractions, but the fact that the data are still fairly close
to experiment suggests that the disconnected contributions are not large.

B. Isoscalar Radii and magnetic moment

The isoscalar Dirac and Pauli radii (r2
1,2)s, and the isoscalar anomalous magnetic moment are related to the behavior

of F s1,2(Q2) near Q2 = 0 in the same way as for the isovector case:

F s1 (Q2) = 1− 1

6
(r2

1)sQ2 +O(Q4) (27)

F s2 (Q2) = κs
(

1− 1

6
(r2

2)sQ2 +O(Q4)

)
. (28)

We again determine these quantities from the fits described in the previous section: dipole for F s1 (Q2) and line for
F s2 (Q2).

The version of chiral perturbation theory that we used for isovector observables is less useful for the isoscalar case,
since, at the presently-available one-loop order, it predicts (r2

1)s and κs to be independent of mπ and (r2
2)s to be

zero. Furthermore, the isoscalar obervables are also missing contributions from disconnected diagrams, so we will
not perform a careful extrapolation to the physical pion mass; instead, we will simply plot the dependence of the
observables on the pion mass and compare the mπ = 149 MeV ensemble with the experimental results.

1. Isoscalar Dirac radius (r21)s

As in the isovector case, the isoscalar Dirac radius shows significant excited-state effects, with a clear trend of
increasing with the source-sink separation; see Appendix B. The summation-method results, along with the exper-
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Figure 14. Isoscalar electric and magnetic form factors. Each plot contains the curve with error band from the fit to experiment
in Ref. [69] and the summation data from the mπ = 149 MeV ensemble.
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Figure 16. Isoscalar anomalous magnetic moment κsnorm, determined on each lattice ensemble using the summation method.

imental data, are plotted versus the pion mass in Fig. 15. As the pion mass decreases, the isoscalar Dirac radius
increases, and the result from the mπ = 149 MeV ensemble is consistent with the lower experimental point. The
multiple ensembles at mπ ≈ 250 MeV with different volumes and temporal extents all agree well with one another,
indicating the absence of significant finite-volume effects.

2. Isoscalar anomalous magnetic moment κs

As in the isovector case [Eq. (25)], we normalize the isoscalar anomalous magnetic moment to the physical magneton.
The results are shown in Fig. 16 and in Appendix B. There is no clear, consistent sign of significant excited-state effects
or a dependence on the pion mass. The mπ = 149 MeV ensemble is consistent with the experimental measurement,
albeit with a 100% statistical uncertainty.
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ensemble using the summation method. We show two experimental values, where the radii are taken either from the 2012
PDG [76] or from the dispersion analysis in Ref. [10] (the difference mostly comes from different values for the proton magnetic
radius).

3. Isoscalar Pauli radius (r22)s

Because κs is poorly determined from our fits to F s2 (Q2), the combination κs(r2
2)s, which is simply proportional to

the slope of F s2 at Q2 = 0, is better to work with than the Pauli radius by itself. We find no clear signal of excited-
state effects, as shown in Appendix B. In Fig. 17, we show the comparison with experiment. The previously-discussed
tendency of the fits to produce small values for the slope of F s2 (Q2) leads to values of κs(r2

2)s that are close to zero,
which is consistent with the result from dispersion-analysis fits to experimental data.

V. PROTON SACHS FORM FACTORS

For a final comparison with experiment, we consider the proton electric and magnetic form factors. As in the
isoscalar case, the lattice data are missing the contributions from quark-disconnected diagrams, although their mag-
nitude here is halved. Furthermore, the magnitude of the proton magnetic form factor is more than double that of
the isoscalar magnetic form factor, so the relative size of disconnected contributions is even smaller.

We show the proton GE and GM in Fig. 18, for the summation method on the mπ = 149 MeV ensemble. Unsurpris-
ingly, given what we saw for the isovector and isoscalar cases in Figs. 7 and 14, there is again good agreement between
the lattice data and the parameterization of experimental data. Finally, the figure also shows the ratio µGE/GM ,
which is often used to probe the discrepancy between scattering experiments using Rosenbluth separation and those
using polarization transfer. Although the lattice data hint at a decline at the highest Q2 probed on this ensemble, as
seen in the polarization transfer experiments, much higher values of Q2 are needed to settle the issue.

VI. CONCLUSIONS

The essential result of this work is that we have achieved excellent agreement with experiment for the Sachs form
factors, shown in Figs. 7, 14, and 18, and the Dirac radius, Pauli radius, and magnetic moment, as summarized in
Tab. II. This was achieved by using the near-physical pion mass of 149 MeV and reducing the amount of contamination
from excited states. For the Dirac radius, we found a strong signal of significant excited-state effects across all lattice
ensembles, whereas for other observables these effects were most clearly seen in the mπ = 149 MeV ensemble.

Because of the importance of controlling the systematic error due to contamination from excited states, we have
studied the three methods, ratio, summation, and GPoF, and provided the most comprehensive comparison to date.
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Figure 18. Proton electric and magnetic form factors, and their ratio. Each plot contains the curve with error band from the
fit to experiment in Ref. [69] and the summation data from the mπ = 149 MeV ensemble. For the third plot, the lattice values
for µpGpE/G

p
M are scaled using the proton magnetic moment from experiment, and not from the fits to lattice data.

Table II. Comparison of isovector and isoscalar radii and magnetic moments with experiment. For all observables, the lattice
result from the summation method on the mπ = 149 MeV ensemble is shown, and for isovector observables the extrapolated
value and the goodness-of-fit are also shown. The first set of experimental values are derived using inputs from the PDG [76],
while for the second values for the Dirac radii, the proton charge radius was taken from muonic hydrogen spectroscopy [77], and
for the second values for the Pauli radii, the proton and neutron radii were taken from the dispersion-analysis fits in Ref. [10].

X X lat
mπ=149 MeV X lat

extrap χ2/dof Xexp

(r21)v (fm2) 0.498(55) 0.605(27)a 1.7/3 0.640(9) or 0.578(2)
κv 3.76(38) 3.68(38) 1.8/2 3.706
κv(r22)v (fm2) 2.68(62) 2.59(24) 1.2/3 2.47(8) or 2.96(21)
(r21)s (fm2) 0.581(36) 0.662(9) or 0.599(2)
κs −0.10(11) −0.120
κs(r22)s (fm2) −0.02(5) −0.40(8) or 0.00(21)

a Including an additional term proportional to m2
π yields an extrapolated (r21)

v = 0.539(57) fm2 with χ2/dof = 0.01/2.

We used the summation method, which is robust and widely used by the community, for our primary analysis and
showed that within the present statistics, the results of all three are consistent.

The multiple ensembles with the same pion mass mπ ≈ 250 MeV and varying spatial and temporal extents Ls and
Lt allow for studying finite-volume and finite-temperature effects; we find excellent agreement for the Dirac radius
between these ensembles and also good agreement for the other observables. This was reported in more detail in a
separate study [84]. We also used one ensemble with a finer lattice spacing and find no sign of large discretization
effects.

For the isoscalar form factors, we found similar results as in the isovector case, except that the current level of
precision is insufficient for the isoscalar Pauli form factor to clearly differ from zero. Their consistency with experiment,
as again summarized in Tab. II, in the absence of contributions from disconnected diagrams suggests that the latter
are small. This is consistent with the size of disconnected contributions from studies with pion masses between 300
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and 400 MeV and with indirect determinations at the physical point, although these also need to be calculated directly
using lattice QCD close to the physical pion mass.

An important goal is an ab initio calculation of the proton charge radius and form factors at very low momentum
transfer to help understand the origin of the apparently inconsistent experimental results. Although finite-volume
and discretization effects appear to be small, confirmation at the physical pion mass is required in order to have
fully-controlled systematic errors. Better control over excited-state effects is needed, ideally using several source-sink
separations and very high statistics to confirm that different analysis methods converge to the same ground-state
matrix elements. Finally, the determination of the derivative of F1 at Q2 = 0 needs to be better-controlled; this
will be helped by the use of larger volumes which give access to F1 at smaller values of Q2, or by the exploration of
alternative techniques such as the one proposed in Ref. [85] for directly computing momentum-derivatives of matrix
elements.
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Appendix A: Chiral extrapolation

We will largely use the same methods and phenomenological inputs for chiral perturbation theory as Refs. [44, 47].
In particular, we use the following values in the chiral limit: the pion decay constant,

Fπ = 86.2 MeV, (A1)

the delta-nucleon mass splitting,

∆ = 293 MeV, (A2)

and the nucleon axial charge,

gA = 1.26. (A3)

The nucleon isovector Dirac and Pauli form factors are given in heavy baryon ChPT including the delta baryon, to
order ε3 in the small-scale expansion (ε ∈ {p,mπ,∆}) in Ref. [87]. This gives an expression for the Dirac radius [40],

(rv1)2 = − 1

(4πFπ)2

[
1 + 7g2

A + (2 + 10g2
A) log

(mπ

λ

)]
− 12Br10(λ)

(4πFπ)2

+
c2A

54π2F 2
π

[
26 + 30 log

(mπ

λ

)
+ 30

∆√
∆2 −m2

π

log

(
∆

mπ
+

√
∆2

m2
π

− 1

)]
,

(A4)

where cA is the leading-order pion-nucleon-delta coupling in the chiral limit, which we set to 1.5 [40], and Br10(λ) is
a counterterm and the single free parameter.
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For the anomalous magnetic moment, we include the modification from Ref. [88]:

κv = κv0 −
g2
AmπmN

4πF 2
π

+
2c2A∆mN

9π2F 2
π

[√
1− m2

π

∆2
log

(
∆

mπ
+

√
∆2

m2
π

− 1

)
+ log

mπ

2∆

]

− 8Er1(λ)mNm
2
π +

4cAcV gAmNm
2
π

27π2F 2
π∆

(
3∆ log
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λ
+ πmπ
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− 8cAcV gA∆2mN

27π2F 2
π

[(
1−m
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π
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+
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(A5)

where cV is the leading photon-nucleon-delta coupling in the chiral limit, which we set to −2.5 GeV−1, and we use
the physical nucleon mass mN = 939 MeV. The two free parameters are κv0 and the counterterm Er1(λ).

The combination κv(r2
2)v is more natural in ChPT than the Pauli radius alone; we include the O(m0

π) “core”
contribution from Ref. [28] in the expression for it:

κv(rv2)2 =
g2
AmN

8πF 2
πmπ

+
c2AmN

9π2F 2
π

√
∆2 −m2

π

log

(
∆

mπ
+

√
∆2

m2
π

− 1

)
+ 24mNC, (A6)

where C is the single free parameter.

Appendix B: Additional comparisons of methods for computing matrix elements

In this appendix, we show comparisons of the ratio, summation, and GPoF methods discussed in Sec. II B to compute
matrix elements, for observables where these details were omitted in the main text and for additional ensembles.

1. Form factors

In Fig. 19, we show the isovector Dirac and Pauli form factors for two additional ensembles, cf. Fig. 4. Signs of
excited-state effects are much less clear and consistent here than they were for the two previously-shown ensembles.

Isoscalar Dirac and Pauli form factors on four ensembles are shown in Fig. 20. Increasing the source-sink separation
from 8a to 10a tends to cause F s1 to decrease, whereas for F s2 , the trend is unclear. In general, the ratio method
with T = 12a tends to agree with the summation and GPoF methods, except for the Dirac form factor on the
mπ = 149 MeV ensemble, where the summation method produces results that generally lie below the others. This
suggests that, as for the isovector form factors, excited-state effects are small except at the lightest pion mass.

2. Radii and magnetic moments

The isovector anomalous magnetic moment, κvnorm, is shown in Fig. 21. There is no broad trend of dependence on
source-sink separation, except at the lightest pion mass, where the extracted magnetic moment increases with the
source-sink separation, and the summation method produces a still-higher value.

For the isovector Pauli radius, we show the dependence on the method used for computing matrix elements in
Fig. 22. The result is very similar to κv: there is no broad trend of dependence on source-sink separation, but (r2

2)v

does appear to increase with source-sink separation on the mπ = 149 MeV ensemble, and the summation method
produces a still-higher value.

In Figs. 23–25, we show the isoscalar radii and anomalous magnetic moment. These behave similarly to the isovector
case: we find large excited-state effects for the Dirac radius but not for observables related to the Pauli form factor
at Q2 = 0.

Appendix C: Tables of results

We list isovector and isoscalar Dirac and Pauli form factors for four ensembles, computed using the summation
method, in Tabs. III–VI.
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Figure 19. Comparison of different methods to extract the ground state isovector form factors F v1 (Q2) and F v2 (Q2). The upper
plots show the mπ = 202 MeV ensemble and the lower plots show the mπ = 254 MeV, 243 × 48 ensemble.

Table III. Electromagnetic form factors from the mπ = 149 MeV ensemble, computed using the summation method. The first
column lists representative source and sink momenta (~p = 2π

Ls
~n and ~p ′ = 2π

Ls
~n′, respectively) for each momentum transfer Q2.

Isovector Isoscalar
〈~n′| |~n〉 Q2(GeV2) F1(Q2) F2(Q2) F1(Q2) F2(Q2)

〈0, 0, 0| | 0, 0, 0〉 0 1.023(21) 1.012(11)
〈−1, 0, 0| |−2, 0, 0〉 0.044 0.974(87) 3.63(98) 0.861(39) −0.82(59)
〈0, 0, 0| | 1, 0, 0〉 0.049 0.913(24) 3.45(34) 0.883(11) 0.06(17)
〈−1, 0, 0| |−1, 1, 0〉 0.049 0.883(31) 2.83(52) 0.897(16) 0.20(36)
〈−1, 0, 0| |−2, 1, 0〉 0.090 0.866(72) 2.11(57) 0.777(33) 0.27(33)
〈0, 0, 0| | 1, 1, 0〉 0.096 0.856(30) 2.83(28) 0.793(15) 0.15(14)
〈−1, 0, 0| |−1, 1, 1〉 0.096 0.778(45) 2.92(40) 0.789(26) 0.35(26)
〈−1, 0, 0| | 0, 1, 0〉 0.099 0.846(44) 2.73(34) 0.805(23) 0.01(17)
〈−1, 0, 0| |−2, 1, 1〉 0.134 0.747(73) 1.87(53) 0.732(35) 0.17(25)
〈0, 0, 0| | 1, 1, 1〉 0.143 0.791(38) 2.39(27) 0.719(18) 0.00(13)
〈−1, 0, 0| | 0, 1, 1〉 0.147 0.782(47) 2.45(35) 0.746(24) 0.07(16)
〈0, 0, 0| | 2, 0, 0〉 0.188 0.695(38) 2.18(27) 0.671(23) −0.19(13)
〈−1, 0, 0| |−1, 2, 0〉 0.188 0.598(51) 2.07(37) 0.599(32) −0.08(21)
〈−1, 0, 0| | 1, 0, 0〉 0.197 0.745(66) 2.19(34) 0.576(38) 0.03(23)
〈0, 0, 0| | 2, 1, 0〉 0.232 0.656(38) 1.96(21) 0.605(20) −0.06(10)
〈−1, 0, 0| |−1, 2, 1〉 0.233 0.600(48) 2.01(32) 0.563(31) −0.05(15)
〈−1, 0, 0| | 0, 2, 0〉 0.242 0.605(47) 2.12(26) 0.597(27) −0.20(16)
〈−1, 0, 0| | 1, 1, 0〉 0.246 0.661(64) 2.12(21) 0.539(30) −0.03(12)
〈0, 0, 0| | 2, 1, 1〉 0.276 0.614(40) 1.78(19) 0.560(20) −0.07(9)
〈−1, 0, 0| | 0, 2, 1〉 0.287 0.598(44) 2.00(23) 0.552(25) −0.03(12)
〈−1, 0, 0| | 1, 1, 1〉 0.294 0.564(59) 1.96(21) 0.528(33) −0.02(10)
〈−1, 0, 0| | 1, 2, 0〉 0.386 0.466(58) 1.47(18) 0.440(36) −0.01(11)
〈−1, 0, 0| | 1, 2, 1〉 0.430 0.481(53) 1.64(17) 0.432(26) 0.09(8)
〈−1, 0, 0| | 2, 0, 0〉 0.439 0.439(96) 1.62(33) 0.416(55) 0.06(19)
〈−1, 0, 0| | 2, 1, 0〉 0.485 0.431(87) 1.37(21) 0.341(39) −0.12(10)
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Figure 20. Comparison of different methods to extract the connected-quark-contraction contribution to the ground state
isoscalar form factors F s1 (Q2) and F s2 (Q2). From top to bottom, data from the mπ = 149 MeV, 202 MeV, 254 MeV (323× 48),
and 254 MeV (243 × 48) lattice ensembles are shown.
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Figure 21. Isovector anomalous magnetic moment κvnorm, determined on each lattice ensemble using different analysis methods
for computing form factors.
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Figure 22. Isovector Pauli radius (r22)v, determined on each lattice ensemble using different analysis methods for computing
form factors.
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Figure 23. Isoscalar Dirac radius (r21)s, determined on each lattice ensemble using different analysis methods for computing
form factors.
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Figure 24. Isoscalar anomalous magnetic moment κsnorm, determined on each lattice ensemble using different analysis methods
for computing form factors.
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Figure 25. Product of the isoscalar anomalous magnetic moment and Pauli radius, κsnorm(r22)s, determined on each lattice
ensemble using different analysis methods for computing form factors.

Table IV. Electromagnetic form factors from the mπ = 202 MeV ensemble, computed using the summation method. The first
column lists representative source and sink momenta (~p = 2π

Ls
~n and ~p ′ = 2π

Ls
~n′, respectively) for each momentum transfer Q2.

Isovector Isoscalar
〈~n′| |~n〉 Q2(GeV2) F1(Q2) F2(Q2) F1(Q2) F2(Q2)

〈0, 0, 0| | 0, 0, 0〉 0 1.004(16) 1.004(8)
〈0, 0, 0| | 1, 0, 0〉 0.108 0.831(37) 2.47(35) 0.812(19) −0.11(17)
〈−1, 0, 0| |−1, 1, 0〉 0.108 0.853(68) 2.29(62) 0.807(30) −0.35(28)
〈0, 0, 0| | 1, 1, 0〉 0.211 0.695(51) 2.11(27) 0.637(22) −0.07(14)
〈−1, 0, 0| |−1, 1, 1〉 0.212 0.633(80) 1.41(57) 0.661(38) −0.19(26)
〈−1, 0, 0| | 0, 1, 0〉 0.222 0.772(74) 2.03(34) 0.710(36) −0.05(14)
〈0, 0, 0| | 1, 1, 1〉 0.309 0.601(65) 1.59(24) 0.542(29) −0.28(12)
〈−1, 0, 0| | 0, 1, 1〉 0.330 0.688(81) 1.83(30) 0.564(39) −0.11(13)
〈−1, 0, 0| | 1, 0, 0〉 0.444 0.638(104) 1.52(34) 0.463(51) −0.03(14)
〈−1, 0, 0| | 1, 1, 0〉 0.552 0.594(79) 1.20(20) 0.433(36) 0.09(9)
〈−1, 0, 0| | 1, 1, 1〉 0.656 0.580(84) 0.97(20) 0.391(37) −0.09(9)

Table V. Electromagnetic form factors from the mπ = 254 MeV, 323 × 48 ensemble, computed using the summation method.
Source and sink momenta are the same as given in Tab. IV.

Isovector Isoscalar
Q2(GeV2) F1(Q2) F2(Q2) F1(Q2) F2(Q2)

0 1.007(6) 1.005(3)
0.108 0.849(18) 2.72(23) 0.821(9) 0.00(9)
0.109 0.893(30) 3.01(36) 0.801(13) 0.25(16)
0.212 0.751(24) 2.51(17) 0.678(11) 0.10(7)
0.213 0.800(44) 2.84(32) 0.662(21) 0.36(15)
0.222 0.711(38) 2.16(20) 0.665(19) 0.07(8)
0.311 0.686(33) 2.34(16) 0.575(16) 0.14(7)
0.331 0.666(39) 1.95(17) 0.567(20) 0.15(8)
0.444 0.478(57) 1.51(17) 0.474(30) 0.00(7)
0.553 0.464(43) 1.27(13) 0.416(26) 0.08(5)
0.657 0.409(44) 1.08(13) 0.359(27) 0.08(6)
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Table VI. Electromagnetic form factors from the mπ = 254 MeV, 243 × 48 ensemble, computed using the summation method.
Source and sink momenta are the same as given in Tab. IV, scaled by 4/3 due to the smaller box size.

Isovector Isoscalar
Q2(GeV2) F1(Q2) F2(Q2) F1(Q2) F2(Q2)

0 0.993(7) 1.002(3)
0.189 0.753(21) 2.50(17) 0.699(12) 0.09(8)
0.190 0.934(61) 1.99(39) 0.750(43) 0.13(20)
0.365 0.627(29) 1.83(12) 0.534(17) −0.04(6)
0.369 0.810(71) 1.69(33) 0.537(41) −0.32(19)
0.395 0.617(36) 1.66(14) 0.511(22) 0.07(6)
0.529 0.532(48) 1.63(15) 0.402(25) −0.06(7)
0.585 0.505(41) 1.29(13) 0.383(24) −0.01(6)
0.790 0.483(55) 1.15(14) 0.354(39) 0.14(7)
0.980 0.371(41) 0.95(10) 0.287(21) 0.05(4)
1.158 0.382(47) 0.73(9) 0.212(23) 0.03(4)
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