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The Anti-de Sitter Space/Conformal Field Theory (AdS/CFT) correspondence

may offer new and useful insights into the non-perturbative regime of strongly

coupled gauge theories such as Quantum Chromodynamics (QCD). We present an

AdS/CFT-inspired model that describes the spectra of light mesons. The conformal

symmetry is broken by a background dilaton field, and chiral symmetry breaking

and linear confinement are described by a chiral condensate field. These background

fields, along with a background glueball condensate field, are derived from a poten-

tial. We describe the construction of the potential, and the calculation of the meson

spectra, which match experimental data well. We argue that the presence of the

third background field is necessary to properly describe the meson spectra.
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I. INTRODUCTION

The Anti-de Sitter Space/Conformal Field Theory (AdS/CFT) correspondence is a use-

ful mathematical tool for the analysis of strongly-coupled gauge theories. This correspon-

dence establishes a connection between an d-dimensional Super-Yang Mills Theory and a

weakly-coupled gravitational theory in d + 1 dimensions [1–3]. Calculations that are an-

alytically intractable in the field theory can be related to results from the gravity theory

using an effective dictionary developed over the past decade. Quantum chromodynamics

(QCD) is a strongly-coupled gauge theory at hadronic scales, making it a candidate for the

application of the gauge/gravity correspondence. It is not known whether a gravitational

dual to QCD exists, but there has been much work on models that capture its key features.

The bottom-up approach assumes the existence of such a dual, modeling features of QCD

by an effective five-dimensional gravity theory. Linear confinement in QCD sets a scale that

is encoded in a cut-off of the fifth dimension in the AdS/QCD model [4, 5]. So-called soft-

wall models use a dilaton field as an effective cut-off to limit the penetration of the meson

fields into the bulk [6]. The simplest soft-wall models use a quadratic dilaton to recover the

linear Regge trajectories, while models that modify the UV behavior of the dilaton more

accurately model the ground state masses [7, 9–11].

The soft-wall models typically include at least two background fields: the aforementioned

dilaton, and a chiral condensate field that corresponds to the chiral symmetry breaking in

the gauge theory. These models use parametrizations for the background dilaton and chiral

fields that are not derived as the solution to any equations of motion. A well-defined action

would provide a set of background equations from which these fields can be derived, and

may suggest how the model can be derived from a top-down approach. In addition, this

action provides access to the thermal properties of the model through perturbation of the

geometry [12–14].

In this paper, we expand upon previous work to find a suitable potential for the back-

ground fields of a soft-wall AdS/QCD model [14–21]. After demonstrating the limitations of

models including a dilaton and chiral field alone, we suggest the inclusion of a background

glueball field. We then construct a potential that satisfies the necessary UV and IR lim-

its, and use this potential to generate numerically the background fields and calculate the

resulting meson spectra.



3

II. REVIEW AND MOTIVATION

We assume that four-dimensional QCD can be modeled by the following five-dimensional

action, written in the string frame:

S =
1

16πG5

∫

d5x
√−ge−2Φ

(

R + 4∂MΦ∂MΦ

− Tr

[

|DX|2 + ∂MG∂MG +
1

2g25
(F 2

A + F 2
V ) + Vm(Φ, X

2,G)
]

)

. (1)

Here Φ is the dilaton and the metric is pure AdS, gMN = z−2ηMN , with the AdS curvature

defined to be unity. The constant g25 = 12π2/Nc, where Nc is the number of colors. The

covariant derivative is defined as DM = ∂M + i[VM , X ] − i{AM , X}. The scalar field X ,

which is dual to the q̄q operator, obtains a z-dependent vacuum expectation value (VEV)

〈X〉 = χ(z)

2
I , (2)

where I is the 2 × 2 identity matrix. The glueball field G similarly obtains a z-dependent

VEV, G(z). We examine the background dynamics of the fields

S =
1

16πG5

∫

d5x
√
−ge−2Φ

(

R + 4∂MΦ∂MΦ− 1
2
∂Mχ∂

Mχ− 1
2
∂MG∂

MG− V (Φ, χ, G)
)

,

(3)

where V = Tr[Vm]. The scalar fields Φ, χ, G are dimensionless.

It is easier to search for the background fields in the Einstein frame, where the vacuum

action takes the canonical form

SE =
1

16πG5

∫

d5x
√

−g̃
(

R̃ − 1
2
∂Mφ∂

Mφ− 1
2
∂Mχ∂

Mχ− 1
2
∂MG∂

MG− Ṽ (φ, χ,G)
)

. (4)

The tilde distinguishes the two frames, with Ṽ = e4Φ/3V, and the dilaton is rescaled for a

canonical action φ =
√

8/3Φ. The string and Einstein frame metrics are related by the

conformal transformation

gMN = e2φ/
√
6g̃MN . (5)

Previous work showed how to construct a potential for a gravity-dilaton-chiral system

without the glueball condensate. We examine the behavior assuming that the fields have

power-law behavior, which is accurate in both the UV and IR limits [16]. One of the

equations of motion is independent of the choice of potential,

χ̇2 =

√
6

z2
d

dz
(z2φ̇) . (6)



4

Here, the dot represents differentiation with respect to the z coordinate. To obtain linear

confinement, the dilaton should have quadratic behavior in the IR limit, Φ(z) = λz2. The

chiral field should have linear behavior in the IR, χ(z) = Az, where A sets the mass splitting

between the axial-vector and vector mesons for large radial quantum numbers n. This

constant mass-splitting at large n occurs because of the non-restoration of chiral symmetry

[22]. Inserting this IR behavior for the dilaton and chiral field into (6), we find that the

chiral field behaves as

χ(z → ∞) = 2
√
6λz , (7)

linking the IR behavior of the chiral condensate with the parameter that determines the ra-

dial Regge trajectories. However, the IR behavior of the chiral field determines the constant

mass splitting between the axial vector and vector mesons for large radial quantum numbers

n [7],

∆m2 ≡
(

m2
An

−m2
Vn

)

n→∞ =
g25
z2
χ2(z → ∞) = 24g25λ . (8)

Thus, there is no independent parameter in the model that controls this mass splitting.

Using the value of λ = 0.1831/2 GeV2 found in the analysis [7] (our definition of λ differs

from theirs by a factor of 2), we find a value for ∆m2 = 87 GeV2, which is much larger

than the experimental value of 1.42 GeV2. Because this problem arises in the equation that

is independent of the potential, it cannot be resolved by the choice of potential in models

that do not consider the glueball condensate. Models that derive the field behavior using

the superpotential method suffer from the same problem.

To resolve this problem, we consider the effects of the glueball condensate G on the

background equations. This field must be linear in the IR for linear confinement, and

behave as G ∼ z4 in the UV to match the operator dimension in the AdS/CFT dictionary.

It is noted that the model proposed by Huang and Li [19, 20] accurately represents the

non-restoration of chiral symmetry using a model with only two background fields, but their

model differs from the work presented here in several respects. They place the meson fields

and chiral dynamics in the open-string sector of the model. For linear confinement, this

requires that the chiral field approach a constant in the IR, which necessitates a modified

metric to obtain the correct chiral dynamics. Our model allows the metric to remain purely

AdS in the string frame. Finally, they do not determine an explicit form of the potential,

which is the central goal of this work.
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III. CONSTRUCTION OF POTENTIAL

Consider the action in the Einstein frame (4). To simplify the equations of motion, we

use a transformed potential,

V = e−2φ/
√
6Ṽ . (9)

This is simply the potential in the string frame. We re-write it as

V = −12 + 4
√
6φ+ a0φ

2 +
m2
X

2
χ2 + U . (10)

Here U is more than quadratic in the fields. The AdS/CFT dictionary sets the mass for the

fields according to the dimension of the dual operator,

m2L2 = ∆(∆− 4) , (11)

where L is the AdS curvature which we set to unity. The dimension of the qq̄ operator is 3,

so m2
X = −3/L2. The dilaton mass is undetermined and is not connected to the dimension

of the corresponding operator, as discussed in [16]. It is related to the parameter a0 by

a0 =
1
2
[(mφL)

2 − 8]. The potential should be an even function of χ.

The equations of motion can be written as

χ̇2 + Ġ2 =

√
6

z2
d

dz
(z2φ̇) , (12)

U = 1
2

√
6z2φ̈− 3

2
(zφ̇)2 − 3

√
6zφ̇ − 4

√
6φ− a0φ

2 + 3
2
χ2 , (13)

∂U

∂φ
= 3zφ̇− 2a0φ , (14)

∂U

∂χ
= z2χ̈− 3zχ̇

(

1 +
zφ̇√
6

)

+ 3χ , (15)

∂U

∂G
= z2G̈− 3zĠ

(

1 +
zφ̇√
6

)

. (16)

We assume that the potential has no explicit dependence on the coordinate z, so the equa-

tions 14-16 are not independent, and we can eliminate one.
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A. Infrared Limit

The requirement of linear confinement requires a solution in the large z limit of the form

φ =

√

8

3
λz2 , (17)

χ = Az , (18)

G = Bz . (19)

Substitution into (12) gives

A2 +B2 = 24λ . (20)

The parameter λ is fixed by the slope of the linear trajectory and A is fixed by the axial-

vector – vector mass difference. It is useful to write these as

A = 2
√
6λ cos θ ,

B = 2
√
6λ sin θ , (21)

where θ now becomes the parameter controlling the axial-vector – vector mass splitting.

Inserting (19) into (13-16) suggests the following terms in our ansatz for the potential

U = a1φχ
2 + a2φG

2 + a3χ
4 + a4G

4 + a5χ
2G2 + a6G

2 tanh(gφ) . (22)

We see that there must be a G2 term in the IR limit, but this is forbidden in the weak-field

limit because the glueball condensate field is massless. To circumvent this, we propose the

term G2 tanh(gφ) with g > 0. In the weak field limit this goes to gφG2, which is acceptable.

The tanh is suggested by (9), and it provides a rapid exponential transition from the weak

field to the strong field limits that is supported by phenomenology. By substitution one

finds the following constraints on the parameters:

U → 6 + a0 + 6
√
6
(

cos2 θ a1 + sin2 θ a2
)

+63
(

cos4 θ a3 + sin4 θ a4 + cos2 θ sin2 θ a5
)

= 0 , (23)

∂U

∂χ
→ 2a1 + 24

√
6 cos2 θ a3 + 12

√
6 sin2 θ a5 +

√
6 = 0 , (24)

∂U

∂G
→ 2a2 + 24

√
6 sin2 θ a4 + 12

√
6 cos2 θ a5 +

√
6 = 0 , (25)

∂U

∂G
→ a6 = −3

2
. (26)

We have chosen to exclude (14) because it is not independent. The parameter a6 is deter-

mined, and the others will be determined by an examination of the UV limit.
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B. Ultraviolet Limit

Next we look for a solution in the small z limit. The AdS/CFT dictionary dictates that

the leading-order UV behavior of the chiral and glueball condensate fields is determined by

their dimension. Note also that we are working in the chiral limit where the quark mass is

zero. We start by examining only the leading-order terms

χ = Σ0z
3 , (27)

G = G0z
4 . (28)

Substitution into (12) and imposing the boundary condition φ(0) = 0 gives

φ =

√
6

28
Σ2

0z
6 +

√
6

27
G2

0z
8 . (29)

Using only this leading-order behavior in (13-16), the system of equations is inconsistent, as

there are more equations from matching powers of z than unknown parameters.

To solve this problem, consider adding a term Σnz
n to χ. Substituting into (12) and

keeping only the lowest-order cross-term we find the additional term in φ

∆φ =

√
6nΣ0Σn

(n+ 4)(n+ 3)
zn+3 . (30)

From (13) we find that

U = −3
2
(zφ̇)2 − a0φ

2 + 3
n3 − 13n+ 12

(n+ 4)(n+ 3)
Σ0Σnz

n+3 . (31)

Since the φ2 terms start out as z12, z14, z16, and so do the terms in the potential, the n can

only take the values 9, 11, etc. This term contributes only to the equation for ∂U/∂χ.

∂U

∂χ
= −9Σ0

(

3

14
Σ2

0 +
8

27
G2

0z
2

)

z9 + (n− 3)(n− 1)Σnz
n . (32)

By power counting both n = 9 and n = 11 can contribute.

There could also be higher order terms in G such as Gmz
m. This leads to the additional

term in φ

∆φ =
8mG0Gm√

6(m+ 5)(m+ 4)
zm+4 . (33)

It contributes to the equation for ∂U/∂G as

∂U

∂G
= −12G0

(

3

14
Σ2

0 +
8

27
G2

0z
2

)

z10 +m(m− 4)Gnz
m . (34)
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The choice m = 8 is not possible as there is no term of the same order to balance it. Terms

with m = 10 and m = 12 are possible. These new terms cannot affect the equation for

∂U/∂φ nor can they contribute to the equation for ∂U/∂χ. Considering higher order terms

in both χ and G leads to

U = −3
2
(zφ̇)2 − a0φ

2 + 3
n3 − 13n+ 12

(n+ 4)(n+ 3)
Σ0Σnz

n+3 +
4m(m− 4)

m+ 4
G0Gmz

m+4 . (35)

The appearance of these terms can be understood by writing the following schematic ex-

pansions.

χ ∼ Σ0z
3 + Σ3

0z
9 +G2

0Σ0z
11 + · · ·

G ∼ G0z
4 + Σ2

0G0z
10 +G3

0z
12 + · · ·

That is, χ is an odd function of Σ0 and G is an odd function of G0. These are the symmetries

in the equations of motion. They also follow the spirit of the AdS/CFT correspondence in

terms of the dimensionality of the operators and the powers of z.

Including now m = 10 and 12, and n = 9 and 11, we have the following set of equations

in the small z limit, where LHS and RHS refer to the left and right sides of the respective

equations:

ULHS = 3Σ4
0z

12

[

4
Σ9

Σ3
0

− (54 + a0)

23 · 72
]

+
1

7
Σ2

0G
2
0z

14

[

120
G10

Σ2
0G0

+ 120
Σ11

Σ0G2
0

− (72 + a0)

9

]

+ 2G4
0z

16

[

12
G12

G3
0

− (96 + a0)

35

]

, (36)

URHS = Σ4
0z

12

[√
6

28
a1 + a3

]

+ Σ2
0G

2
0z

14

[√
6

27
a1 +

√
6

28
(a2 + ga6) + a5

]

+ G4
0z

16

[√
6

27
(a2 + ga6) + a4

]

. (37)

(

∂U

∂χ

)

LHS

= 3Σ3
0z

9

[

− 9

14
+ 16

Σ9

Σ3
0

]

+ 8Σ0G
2
0z

11

[

−1

3
+ 10

Σ11

Σ0G
2
0

]

, (38)

(

∂U

∂χ

)

RHS

= Σ3
0z

9

[√
6

14
a1 + 4a3

]

+ Σ0G
2
0z

11

[

2
√
6

27
a1 + 2a5

]

. (39)
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(

∂U

∂G

)

LHS

= 6Σ2
0G0z

10

[

−3

7
+ 10

G10

Σ2
0G0

]

+ 32G3
0z

12

[

−1

9
+ 3

G12

G3
0

]

, (40)

(

∂U

∂G

)

RHS

= Σ2
0G0z

10

[√
6

14
(a2 + ga6) + 2a5

]

(41)

+ G3
0z

12

[

2
√
6

27
(a2 + ga6) + 4a4

]

. (42)

Altogether, from both the UV and IR limits, there are ten independent equations for

the twelve parameters a0 − a6, Σ9, Σ11, G10, G12, and g. We take g as the free parameter

to use as the rate of transition from small z to large z. The parameters in the potential are

found to be

a0 =
3

2

1

6 + sin2 θ

[

120 + 62 sin2 θ + 63
√
6g sin2 θ

]

, (43)

a1 = −3
√
6

4

1

6 + sin2 θ

[

12 + 8 sin2 θ + 9
√
6g sin2 θ

]

, (44)

a2 = −
√
6

4

1

6 + sin2 θ

[

32 + 24 sin2 θ + 3
√
6g(9 sin2 θ − 2)

]

, (45)

2a3 cos
2 θ + a5 sin

2 θ =
1

24

1

6 + sin2 θ

[

24 + 22 sin2 θ + 27
√
6g sin2 θ

]

, (46)

2a4 sin
2 θ + a5 cos

2 θ =
1

24

1

6 + sin2 θ

[

20 + 22 sin2 θ + 3
√
6g(9 sin2 θ − 2)

]

, (47)

a6 = −3

2
. (48)

The coefficients a0, a1, a2 and a6 are determined, while there are two equations for the three

coefficients a3, a4 and a5. That leaves a5 as a free parameter, to be fit numerically, along

with g, θ, G0, Σ, and λ.

IV. NUMERICAL SOLUTION

Using the potential discussed, we seek a numerical solution that simultaneously satisfies

the UV and IR limits. We use equations (12, 15, 16), which allows for an additional term

in the potential, ∆U , such that

∂

∂χ
∆U =

∂

∂G
∆U = 0 , (49)

which will be determined from the numerical solution.
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The differential equations represent a stiff system, and treatment of the problem as an

initial value problem leads to numerical instabilities. We treat it instead as a boundary value

problem, using Dirichlet boundary conditions at both boundaries. A relaxation method is

used in combination with input approximations for the background fields, which are then

iterated to find a stable solution to the system with the given boundary conditions. Because

the system is nonlinear, the solution found is not guaranteed to be unique.

The IR boundary is chosen to be sufficiently large to capture the infrared behavior and

to give accurate Regge behavior for the large-n radial excitations of the mesons. The UV

boundary should approach zero, but it cannot reach zero because of the singularity in the

equations of motion. This becomes a problem because equation (12) allows constant and

divergent terms

∆φ(z) = c1 + c2z
−1 . (50)

Symbolically, these terms can be set to zero by enforcing the Dirichlet boundary condition

φ(0) = 0, but this is impossible to enforce numerically. Creative choice of UV boundary

conditions can eliminate one, but not both, of these unwanted terms without affecting the

chiral and glueball fields. The behavior of the numerical solutions suggests that the desired

UV behavior is an unstable solution to the equations, and therefore difficult or impossible

to find with this iterative method.

As an alternative to direct solution, we parameterize the fields as follows:

Ψ(z) = ψ(z)UV f(z) + ψ(z)IR (1− f(z)) . (51)

Here f(z) is some function that transitions smoothly from 1 at small values of z to 0 at

large z, while ψ(z)xy represents the known UV and IR limits of the fields φ, χ, and G. The

switching functions need not be the same for each field. We choose

fφ(z) = e−(β1z)10 , (52)

fχ(z) = e−(β2z)4 , (53)

fG(z) = e−(β3z)5 . (54)

The powers of the exponential are chosen to be greater than the known power-law behavior of

the fields in the UV limit so as to not interfere with this behavior. The βi will be determined

by numerical fitting. The switching functions are not unique, but do allow for an accurate

solution to the differential equations, as explained below.
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The potential U , because it is a function of the background fields, will change depend-

ing upon the behavior of the fields. In particular, the additional ∆U term is numerically

determined such that (13-14) are solved by the background fields. A numerical nonlinear

optimization routine, namely the interior point algorithm [8], is used to select the parame-

ters that minimize the error in the finite-difference approximations to equations (12), (15),

and (16), thus ensuring that the parameterized fields are solutions to the background fields,

within numerical tolerances. In this analysis, the fields φ, χ, and G solve the equations

(12-16) to an accuracy of one part in 104.

The chiral condensate Σ is set using the Gell-Mann–Oakes–Renner relation:

(mu +md)Σ = f 2
πm

2
π . (55)

Using mπ = 139.6 MeV, fπ = 92 MeV, and mu + md = 7.0 MeV yields a value of Σ =

(286MeV)3.

In all, we have eight parameters to be determined numerically. In addition to obtaining

solutions that solve the background equations, we also wish to achieve the best possible

global visual fit to the vector and axial-vector meson spectra. We do not simply do a chi-

squared fitting to the experimental data because the measurement error for the ground state

ρ meson is so much smaller than for the others that this would effectively act as the only

constraint.

Three of the parameters are most phenomenologically relevant: λ, which controls the

slope of the meson spectra in the large-n limit; θ, which controls the mass splitting between

the a1 and ρ mesons at large n, and β2, which controls the location of the “bend” in the

a1 spectrum. For each set of these parameters, the other parameters are determined by

a routine that minimizes the error in the equations of motion. The parameters found are

shown in Table I.

The background fields that are obtained from this analysis are shown in Figures 1-3. The

asymptotic power-law behavior of the fields is evident in the linear portions of the log-log

scale plots shown. The “transition” behavior is most evident in the dilaton because of the

large value of β1, which controls the value of z at which the field transitions from the UV

limit to the IR limit.

We now analyze the “extra” term in the potential, ∆U . We obtain this term numeri-

cally by subtracting the right-hand side of (13) from its left-hand side. This term can be
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λ1/2 304 MeV β1 3.04 GeV

G
1/4
0 552 MeV β2 274 MeV

θ 1.44 β3 558 MeV

g 3.20 a5 1.63

TABLE I: Best fit parameters for the phenomenological model. The parameters λ, θ, and β2 are

chosen for the best visual fit to the ρ and a1 data, with the rest set by minimizing the error in the

equations of motion (12), (15-16).

approximated numerically as a function of the dilaton field,

∆U (φ) = α1φ
2e−(φ−γ1)2/δ1 + α2φ

2e−(φ−γ2)2/δ2 . (56)

The best-fit values for these parameters are shown in Table II. The ∆U as a function of φ

is shown in Figure 4.

α1 −3.043 × 101 α2 2.671 ×10−4

γ1 7.086 ×10−5 γ2 2.213 ×10−2

δ1 9.699 ×10−5 δ2 1.471 ×10−2

TABLE II: The dimensionless parameters for the fitting to ∆U .
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FIG. 1: A plot of the dilaton field Φ generated by the parameterization (52). The UV and IR

asymptotic behavior is apparent. The coordinate x is a dimensionless re-scaling of the conformal

coordinate, x =
√
λz.
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FIG. 2: A plot of the chiral field χ generated by the parameterization (53). The UV and IR

asymptotic behavior is apparent, with a rapid transition between them. The coordinate x is a

dimensionless re-scaling of the conformal coordinate, x =
√
λz.
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FIG. 3: A plot of the glueball field G generated by the parameterization (54). The UV and IR

asymptotic behavior is apparent, with a rapid transition between them. The coordinate x is a

dimensionless re-scaling of the conformal coordinate, x =
√
λz.
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FIG. 4: Plot of the “extra” term in the potential, ∆U(φ). The solid line represents the numerical

result, while the dashed line is the fitting of (56) using the parameters of Table II.
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V. VECTOR AND AXIAL-VECTOR SPECTRA

To calculate the spectra of the radial excitations of the mesons, we examine the relevant

terms from the string frame action (1),

Smeson = − 1

16πG5

∫

d5x
√
−ge−2ΦTr

[

|DX|2 + Vm(Φ, X
2,G) + 1

2g25

(

F 2
A + F 2

V

)

]

. (57)

The 2× 2 field X contains the scalar and pseudoscalar fields (S, π), as well as the VEV. We

will use the exponential representation for the scalar field discussed in [9],

Xe =

(

S(x, z) +
χ(z)

2

)

I e2iπ
a

e
(x,z)ta , (58)

where I is the 2× 2 identity matrix.

We find the equations of motion for the various meson fields by varying the meson action.

For the vector and axial-vector fields, we assume that the Kaluza-Klein modes are separable

from the 4D parts of the fields. The equation of motion in the axial gauge Ψ5 = 0 is given

by

−Ψ̈n + ω̇Ψ̇n +M2
Ψ(z)Ψn = m2

Ψn

Ψn , (59)

where ω = 2Φ(z)+ ln z. The z-dependent mass term coefficient M2
V = 0 for the vector field,

and

M2
A =

g25χ
2

z2
(60)

for the axial-vector field. The equation can be put in the Schrödinger form with the substi-

tution Ψn = eω/2ψn, resulting in

−ψ̈n +
(

1
4
ω̇2 − 1

2
ω̈ +M2

ψ

)

ψn = m2
Ψn

ψn . (61)

These equations are analytically solvable in the IR limit1, but full analysis requires the use

of a numerical shooting method to find the mass eigenvalues. This model finds a better

phenomenological fit than the results presented in [7], particularly for the ground state ρ

meson, as shown in Figure 6. The scalar mesons are expected to mix with the scalar glueball

field of this model; that analysis is deferred to a future publication.

1 The analytical solution gives a large-n spectrum with a slope of 8λ, differing from the slope of 4λ found

in other AdS/QCD models. This difference arises because of the exp(−2Φ) pre-factor in the action (1)

compared to the pre-factor of exp(−Φ) used in other models [6, 7]. This factor of two is compensated

by the numerical value of λ shown in Table I, which is half the value used in other models. Thus, the

notational choice does not affect the resulting meson spectra.
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FIG. 5: Comparison of the predicted mass eigenvalues for the axial-vector sector with the experi-

mental a1 meson spectrum [25].

n a1 experimental (MeV) a1 model

1 1230± 40 1280

2 1647 ± 22 1723

3 1930 +30
−70 1904

4 2096 ± 122 2078

5 2270 +55
−40 2254

TABLE III: The experimental [25] and predicted values for the masses of the axial-vector mesons.

VI. PSEUDOSCALAR SECTOR

When using the exponential representation for the scalar field, the terms from the po-

tential do not contribute to the equations of motion for the pion field. This can be easily

seen by noting that |Xe|n does not contain any terms involving the pion field πe field when

n is even. We have required the potential to be an even function of X , so there are no such

terms. This would seem to suggest that we use the exponential representation to calculate

the pion mass spectrum. However, as noted in [9], πe is extremely sensitive to boundary

conditions, and the numerical results are not reliable. For this reason, we seek to work with
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FIG. 6: Comparison of the predicted mass eigenvalues for the vector sector with the experimental ρ

meson spectrum. The included resonances are based upon the review [23] with the n = 2 resonance

as suggested by [24]

n ρ experimental (MeV) ρ model

1 775.5 ± 1 860

2 1282 ± 37 1216

3 1465 ± 25 1489

4 1720 ± 20 1720

5 1909 ± 30 1923

6 2149 ± 17 2107

7 2265 ± 40 2276

TABLE IV: The experimental and predicted values for the masses of the vector mesons. The

included resonances are based upon the review [23] with the n = 2 resonance as suggested by [24]

an equation of motion written in the linear representation.

For convenience, we begin by deriving the equations of motion in the exponential rep-

resentation. Working in the axial gauge Az = 0, we rewrite the axial meson field in terms

of its perpendicular and longitudinal components: Aµ = Aµ⊥ + ∂µϕ. Only the longitudinal
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component of the axial field, ϕ, contributes to the pion equations of motion. We use (57),

keeping only the relevant terms

L = e−2Φ√−g
[

χ2(∂µπe∂
µπe + ∂µϕ∂

µϕ− 2∂µπ∂
µϕ+ ∂zπe∂

zπe) +
1

g25
∂z∂µϕ∂

z∂µϕ

]

. (62)

Varying with respect to ϕ yields

e2Φ
d

dz

(

e−2Φ

z
ϕ̇

)

+
g25χ

2

z3
(πe − ϕ) = 0 , (63)

while varying πe gives

e2Φz3

χ2

d

dz

(

e−2Φχ2

z3
π̇e

)

+m2
n(πe − ϕ) = 0 . (64)

It was shown in [9] that the equations of motion are equivalent under the substitution

πe → πl/χ(z), so we make the appropriate substitution and expand the equations:

−ϕ̈ +

(

2Φ̇ +
1

z

)

ϕ̇ =
g25χ

z2
(χϕ− πl) , (65)

−π̈l +
(

2Φ̇ +
3

z

)

π̇l +

(

χ̈− 2χ̇Φ̇− 3χ̇

z

)

πl
χ

= m2
n(πl − χϕ) . (66)

We can put these equations into Schödinger-like form with the following substitutions:

ϕ = eω/2ϕn , (67)

πl = eωs/2πn , (68)

with ω = 2Φ + ln z and ωs = 2Φ + 3 ln(z). This yields

−ϕ̈n +
(

1
4
ω̇2 − 1

2
ω̈ +

g25χ
2

z2

)

ϕn =
g25χ

z
πn , (69)

−π̈n +
(

1
4
ω̇2
s − 1

2
ω̈s +

χ̈

χ
− 2χ̇Φ̇

χ
− 3χ̇

zχ
−m2

n

)

πn = −m2
n

χ

z
ϕn . (70)

The dependence of these equations of motion on the scalar potential can be made explicit

by using the background equation for the chiral field, written here in the string frame

z2χ̈− 3zχ̇

(

1 +
zΦ̇√
6

)

= m2
Xχ+

∂U

∂χ
. (71)

Substituting, we can re-write (70) as

−π̈n +
(

1
4
ω̇2
s − 1

2
ω̈s +

m2
X

z2
+

1

z2
∂U

∂χ
−m2

n

)

πn = −m2
n

χ

z
ϕn . (72)
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The results are shown in Figure 7 and in Table V. It should be emphasized that all

parameters were previously determined, so these are truly predictions of the model. The

states with mass 2070 and 2360 MeV are listed in the PDG as further states, with less

certainty assigned to them. We assume that these should be identified as the n = 4 and

n = 6 states, leaving a vacancy at n = 5 for a state still to be observed in future experiments.

On the other hand, the PDG has two further states listed as X(2210) with unknown quantum

numbers, either of which could be the n = 5 state. We include this state in the figure and

in the table, but it should be recognized that nothing in our work depends on this very

speculative identification.
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FIG. 7: Comparison of the predicted mass eigenvalues for the pseudoscalar sector with the ex-

perimental π meson spectrum [25]. The states plotted here with n = 4 and n = 6 are identified

as radial excitations of the pion only in the further states of the PDG. The unconfirmed state

X(2210), with unknown quantum numbers, is plotted here as the n = 5 state of the pion.

VII. CONCLUSION

In this paper we discussed the construction of a potential for the background fields of

a soft-wall AdS/QCD model. We showed the limitation of a model that contains only the

dilaton and chiral condensate fields, and suggested a solution by adding a glueball condensate

to the model. We analytically constructed a general potential U(φ, χ,G) that recovers the

necessary asymptotic behavior of the background fields. Using this as a basis, we numerically

constructed a potential that solves the selected background equations to within an accuracy

of 10−4. There is an additional allowed term in the potential, ∆U(φ), that does not affect

the equations that were used in the numerical procedure. This term was found numerically,

and fit as a function of the dilaton field. These background fields were then be used to find

the spectra of the radial Regge mass spectra of the vector and axial-vector mesons. The

model shows good phenomenological agreement with the experimental data for these spectra.

With the parameters thusly determined, we computed the radial Regge mass spectrum for
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n π experimental (MeV) π model

1 140 0

2 1300 ± 100 1580

3 1816 ± 14 1868

4 2070 ± 35* 2078

5 2210 +79
−21 † 2230

6 2360 ± 25* 2389

7 – 2544

8 – 2686

TABLE V: The experimental [25] and predicted values for the masses of the pseudoscalar mesons.

The states marked with an * appear only in the further states of the PDG. The state marked

with a † is an unconfirmed resonance X(2210) with unknown quantum numbers. Whether it really

represents the n = 5 state is pure speculation.

the pseudoscalar mesons (pions). Again there was good agreement, except for the most

massive state, which perhaps should be identified with the radial quantum number n = 6

instead of n = 5.

The potential as constructed here is not guaranteed to be unique. If a different set of the

background equations were chosen, the extra term would be expressed as a function of fields

other than the dilaton. The parameterization in (52-54) could also be chosen differently,

resulting in a different potential but making little difference to the resulting meson spectra.

Finally, terms can be added that do not affect the equations of motion at all, namely, terms

which satisfy

∆U = ∆
∂U

∂φ
= ∆

∂U

∂χ
= ∆

∂U

∂G
= 0 . (73)

This work demonstrates the construction of a potential for the background fields of

a soft-wall AdS/QCD model that captures several key features of QCD observed through

meson spectra. The radially excited states of the light mesons have linear Regge trajectories.

Chiral symmetry is not restored for highly-excited mesons, as seen in the constant mass-

splitting of the vector and axial-vector mesons. Working as we are in the limit of zero up

and down quark masses, the pion is massless.

Future improvements to this model could include incorporating the light quark masses
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by adding a linear term to the UV limit of the chiral condensate field. The scalar mesons

and glueballs will mix, and this analysis is left for future work. This potential also opens

the possibility of exploring the thermal properties of a model that has the correct chiral

symmetry breaking behavior.
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