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Abstract

The W+W− production cross section measured at the LHC has been consistently exhibiting

a mild excess beyond the SM prediction, in both ATLAS and CMS at both 7-TeV and 8-TeV

runs. We provide an explanation of the excess in terms of resummation of large logarithms that

arise from a jet-veto condition, i.e., the rejection of high-pT jets with pT > pvetoT that is imposed

in the experimental analyses to reduce backgrounds. Jet veto introduces a second mass scale

pvetoT to the problem in addition to the invariant mass of the W+W− pair. This gives rise to

large logarithms of the ratio of the two scales that need to be resummed. Such resummation

may not be properly accounted for by the Monte Carlo simulations used in the ATLAS and

CMS studies. Those logarithms are also accompanied by large O(π2) terms when the standard,

positive sign is chosen for the squared renormalization scale, µ2. We analytically resum the large

logarithms including the π2 terms in the framework of soft collinear effective theory (SCET),

and demonstrate that the SCET calculation not only reduces the scale uncertainties of the

SM prediction significantly but also renders the theory prediction well compatible with the

experiment. We find that resummation of the large logarithms and that of the π2 terms are

both comparably important.
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ATLAS CMS Theory (MCFM)

√
s σ [pb] σ [pb] σ [pb]

7 TeV 51.9+2.0+3.9+2.0
−2.0−3.9−2.0 [1] 52.4+2.0+4.5+1.2

−2.0−4.5−1.2 [2] 47.04+2.02+0.90
−1.51−0.66

8 TeV 71.4+1.2+5.0+2.2
−1.2−4.4−2.1 [3] 69.9+2.8+5.6+3.1

−2.8−5.6−3.1 [4] 57.25+2.35+1.09
−1.60−0.80

Table 1: Comparison of cross-section measurements of ATLAS and CMS experiments and the

NLO theory predictions as obtained from MCFM for pp→ W+W− at
√
s = 7 and 8 TeV. The first,

second and third errors in the experimental results are the statistical, systematic and luminosity

errors, respectively, while the first and second errors in theory calculations are the scale and PDF

uncertainties, respectively.

1 Introduction

After the discovery of a Higgs boson, two primary objectives of the Large Hadron Collider (LHC)

are to test the electroweak sector more precisely and to look for new physics. The former requires

improving measurements on the Higgs couplings with other Standard Model (SM) particles as well

as anomalous couplings of the electroweak gauge bosons. The latter must carefully exclude the

possibilities of SM processes mimicking the signals in question. In both cases, it is in particular

of utmost importance that the pp → W+W− SM background is theoretically well understood.

For example, pp → WW → `ν`ν is the dominant background in the measurement of the Higgs

decay channel, h → WW ∗ → `ν`ν [5, 6]. Although the backgrounds are normalized to data in

the control region, their extrapolation to the signal region requires theoretical inputs of differential

cross-sections. The SM pp→ W+W− production can also be a significant background for certain

new physics processes, where the problem of separating signals from backgrounds is exacerbated

by the loss of information due to invisible neutrinos. Without a proper theoretical understanding

of the total and differential cross-sections, the WW background samples could be contaminated

beyond expectation.

Recently, ATLAS and CMS experiments have presented their results for the W+W− total

inclusive cross-sections using the leptonic decay channels of the W bosons, which are summarized

in Table 1. In the same table, we have also shown the next-to-leading-order (NLO) theoretical

predictions for the total inclusive cross-sections obtained from a Monte-Carlo (MC) program MCFM

[7,8]. The numerical results from MCFM include contributions from the gg channel,1 which is formally

higher order, O(α2
s ), as compared to the qq̄ channel, which is O(α0

s ). The theoretical results use

MSTW2008nlo PDFs [9]2 with both renormalization and factorization scales set to W boson mass

(µr = µf = mW ) and the scale uncertainties were obtained by varying the scales in the range

mW /2 < µr = µf < 2mW .

It is interesting to note that, while compatible within 2σ, the experimental results are nonethe-

1not including the higgs contributions, which would be at most ∼ 3 pb for the 8-TeV run even without considering

lower lepton efficiencies due to softer leptons from an off-shell W±. See discussions in Section 4.4.
2The PDF uncertainties are considerably higher (∼ 3 – 3.5%) when CT10 PDFs [10] are used instead of our default

choice of MSTW2008nlo PDFs (∼ 1.5 – 2%).
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less consistently higher than the NLO predictions for both ATLAS and CMS and for both 7- and

8-TeV runs, by as much as 10–20%. The two experiments seem more consistent with each other

than with the NLO prediction. This mild discrepancy between the measured and predicted W+W−

cross-sections have led to speculations that new physics with 2`+ /ET signatures could be hiding in

the W+W− measurement [11–16]. It is therefore imperative to assess higher-order corrections to

the SM predictions.

Let us briefly review the status of higher order corrections to the process pp → W+W−. The

QCD NLO corrections to qq̄ → W+W− have been known for a long time [17, 18], including the

full leptonic decays of the W bosons [19, 20]. The K-factor for the total inclusive cross-section is

approximately 1.6 and stays roughly the same for
√
s between 7 and 14 TeV. The gg-initiated

contribution gg → W+W− (without the higgs) to the total inclusive cross-section is ∼ 3 – 4%

in the same energy range, and higher-order QCD corrections for the gg channel are discussed

in [21–23]. The NLO electroweak corrections are investigated in [24] and found to be . 2%,

while it is shown in [25] that the inclusion of initial-state photons to the electroweak corrections

cancels the virtual contributions so that the net electroweak corrections are in fact negligible. The

NNLL threshold-resummed cross section and approximate NNLO cross section have been recently

calculated in [26], and found to increase the total cross-section by at most ∼ 3% for
√
s between

7 and 14 TeV. Less-inclusive NLO (and partial NNLO) cross-sections using realistic phase-space

cuts can be found in [7,8], while fixed-order calculations matched/merged to MC + parton shower

are extensively studied in [27, 28] as well as in a more recent study [29] that includes the gg and

q(q̄)g initial states. The pT distribution of W pair is analytically derived in [30] using the b-space

resummation technique3 and the results are found to be in good agreement with MC predictions.

Transverse-momentum resummation has also been performed in the SCET formalism [31], and the

results are found to be in reasonable agreement with the previous approach. Nevertheless, the

slight discrepancy between the theoretical and experimental summarized in Table 1 calls for more

theoretical investigations on the effects of cuts employed by the experimental analyses.

In particular, while both ATLAS and CMS experiments present the inclusive cross-sections for

W+W− production, they actually reject jets with pT greater than a prescribed value pveto
T (“jet

veto”). The primary purpose of jet veto in their event selection is to reduce QCD backgrounds

from single top and top pair production. The inclusive cross-sections are extrapolated by folding

in the jet-veto efficiencies, ε(pveto
T ) ≡ σ(pveto

T )/σinclusive, where σ(pveto
T ) is the cross section without

jets with pT > pveto
T . However, their estimates of ε(pveto

T ) are obtained using MC simulations for the

signal and some of the background processes. In Fig. 1a, taken from the ATLAS WW cross-section

measurement results for
√
s = 8 TeV run [3], the MC predictions are compared with the data for

different jet-multiplicities in the eµνν channel. As noted in [3] itself, there is a clear discrepancy in

the zero-jet bin, while the data agrees well with MC predictions at higher jet-multiplicities. This

naturally casts doubt upon the validity of MC (+ parton shower) predictions in the zero-jet bin,

that is, in the presence of a jet veto.

While the K-factor for inclusive W -pair production at NLO is ∼ 1.6, fixed-order calculations

with a jet veto [8,33] show significant reductions of theK-factor by as much as 40%. This calculation

suggests large cancellations between the higher-order virtual corrections and the real corrections

from jets that are emitted collinear to the beam axis as required by the jet-veto constraint. Such

3b is a variable conjugate to pT through Fourier transformation.
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Figure 1: (a) Comparison of data and MC as a function of jet multiplicity by the ATLAS experiment

at
√
s = 8 TeV run [3], for events passing the selection criteria (except jet-veto) as required by the

W+W− cross-section measurement.

(b) NLO cross-sections for qq̄ → W+W− at
√
s = 8 TeV LHC run, as a function of pveto

T obtained

using MCFM. The blue (or green) hatched region corresponds to scale variation by a factor of 1/2

and 2 around the central value of µr = µf = mW (or pveto
T ).

(c) Same as (b) but the scale variation in the red hatched region is calculated using the procedure

described in [32].

cancellations, if not properly taken into account, could lead to a deceivingly underestimated scale

uncertainty of the theoretical prediction. Jet veto also introduces a new mass scale pveto
T to the

problem, in addition to the invariant mass M of the W+W− pair. The presence of more than one

scale is always problematic for a fixed-order calculation, since it is not obvious where to set the

scale µ that appears in renormalization. In the process at hand, the two possible scale choices are

M and pveto
T . In Fig. 1b, cross-sections from MCFM (ignoring gg initiated contribution) are presented

by varying the scale µ = µr = µf by factors of 1/2 and 2 around µ = MW (as a proxy for M)

and µ = pveto
T . Clearly, for smaller values of pveto

T , the perturbation theory fails miserably, and

the two choices of scales not only have large uncertainties but also yield results incompatible with

each other. One might be tempted to say the error bands are much smaller and the results for

the two scale choices seem to converge in the range pveto
T ∼ 20 – 30 GeV that is actually used by

the aforementioned ATLAS and CMS studies. However, as we have already warned above, this

seemingly small uncertainty is just an artifact of cancellations between the virtual corrections and

real emissions.

Large cancellations of this kind are well known in the literature, and we briefly summarize the

arguments presented in [32]. Defining σ≥N to be the cross-section with the number of jets ≥ N ,

one may parametrize the total inclusive cross-section σ≥0 and the 1-jet inclusive cross-sections
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σ≥1(pveto
T ) with at least one jet with pT > pveto

T as

σ≥0 = σB

(
1 +

∞∑

n=1

cnα
n
s

)
,

σ≥1(pveto
T ) = σB

∞∑

n=1

2n∑

m=0

dn,m α
n
s L

m ,

(1.1)

where σB is the tree-level cross-section and L ≡ log
[
M2/(pveto

T )2
]
� 1. The 0-jet inclusive cross-

section σ≥0 does not have any large logarithms, as there is only one mass scale M in the problem

so we can simply set µ ∼ M . Since the inclusive NLO K-factor to WW production is ∼ 1.6,

the coefficient c1 is large. On the other hand, the 1-jet inclusive cross-section σ≥1 is given at

NLO by σ≥1 ' σB αs (d1,2L
2 + d1,1L + d1,0), which can again be large due to the presence of

large logarithms Ln. However, the jet-veto cross-section is given by the difference σ≥0 − σ≥1,

where the large logarithm term d1,2L
2 is subtracted from the large virtual correction term c1. The

significant reduction of the K-factor for the jet-veto cross section mentioned above implies that

there is a substantial cancellation in this subtraction. Such cancellation then suggests that the

scale uncertainties in the jet-veto cross-sections as shown in Fig. 1b are gross underestimations.

To more properly assess the scale uncertainties, Ref. [32] suggests the use of
√

∆2
≥0 + ∆2

≥1 for the

estimate of scale uncertainty in the 0-jet bin, where ∆≥N is the scale uncertainty in σ≥N . The basic

idea behind this formula is to assume that the scale uncertainties in σ≥0 and σ≥1 are uncorrelated

as they begin at different orders in αs. In Fig. 1c, we compare the naive method of estimating

scale uncertainty with the refined method just described, and we clearly see that the refined scale-

uncertainty bands not only properly includes both error bands of Fig. 1b at low pveto
T but also does

not exhibit a fake convergence at higher pveto
T . We will make extensive use of this refined measure

of scale uncertainties later to properly estimate scale uncertainties in the MC jet-veto efficiencies.

However, in order to actually reduce the scale uncertainty itself, it is clear that we must go

beyond fixed-order calculations and resum the large logarithms Ln or, equivalently, resolve the

ambiguity in the choice of µ by arranging the calculation in such a way that only one mass scale

appears at each and every step of the calculation. The impact of large logarithms is larger than one

might expect from the fact that M is a few hundred GeV and pveto
T is a few tens of GeV, because

the logarithm actually appears in the form log
[
(−M2 − i0+)/(pveto

T )2
]

= log
[
M2/(pveto

T )2
]
− iπ. In

particular, the d1,2 term in σ≥1 contains not only log2
[
M2/(pveto

T )2
]
∼ O(10) but also π2 ∼ 10.

In this paper, we will perform resummations of the large logarithms including the π2 terms, and

obtain refined predictions of the jet-veto pp→WW cross-sections for the
√
s = 7 and 8 TeV LHC

runs with significantly reduced scale uncertainties. We will then compare our predictions with MC

results as well as the ATLAS and CMS measurements.

While π2 resummation has a long history [34–36], resummation of jet-veto logarithms is a fairly

new subject. Since parton distribution functions (PDFs) are fundamentally defined for fully in-

clusive processes in which all hadronic final states are summed over, the description of jet-vetoed

processes requires new objects analogous to PDFs corresponding to summing over only the hadronic

final states that satisfy the jet-veto condition. Such objects, called beam functions, were first intro-

duced and developed in [37, 38] (and will be reviewed in Section 2.3). The framework for jet-veto

resummation using effective field theory was first laid out in [39], and the jet-veto higgs production

cross section in the gg channel at the next-to-next-to-leading-logarithmic (NNLL) accuracy was
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calculated in [40–43], and the effective field theory calculations [41, 42] are in agreement with the

results from direct perturbative QCD calculations [40,43]. Partial N3LL jet-veto cross sections for

the higgs production were computed in [44,45], and the latest result [45] in particular exhibits a clear

improvement of perturbative convergence owing to jet-veto resummation. At NNLL and beyond,

jet-veto cross sections depend on the jet-clustering algorithm, which was first studied in [40, 42]

and more extensively analyzed in [46]. The effects of logarithms of a finite quark mass (e.g., mb,t)

and pveto
T were studied in [47]. Jet-veto resummation has been also successfully applied to the higgs

production in association with a vector boson [48, 49], to the processes with tagged jets [50–52],

and to the higgs production at future colliders [53].

This paper is organized as follows. In Section 2, we carefully set up an effective field theory that

is suitable for performing the resummation of the large logarithms including the π2 terms and is free

of scale-choice ambiguities. Analytical calculations and results in the effective field theory will then

be presented in Section 3. In Section 4, we numerically evaluate our analytical results and compare

them with MC simulations and experimental results. We will see that the resummation not only

improves the scale uncertainties significantly but also renders the theory prediction consistent with

the ATLAS and CMS measurements at . 1σ.

2 Setting up a SCET

The process of our interest is p + p→W+ +W− +
∑ ′

X, where the ′ on
∑′ indicates that we

are only summing over jets satisfying the jet-veto condition, pT(X) < pveto
T . After summing over

X and integrating over the rapidity and angular orientation of the W+W− system, we are left

with two scales in the problem: the invariant mass M of the W pair, and the jet-veto scale, pveto
T .

Experimentally, we are interested in the situation in which pveto
T � M . Since this hierarchy of

scales introduces a new dimensionless parameter M/pveto
T � 1 to perturbative calculations of the

cross section for this process, integrations over loop momenta will yield large logarithms of the form(
log
[
(−M2 − i0+)/(pveto

T )2
])n

=
(
log
[
M2/(pveto

T )2
]
− iπ

)n
. Thus, a fixed-order calculation of this

process with a jet veto should be assigned a larger uncertainty than that of the same process without

a jet veto. To resum those large logarithms as well as the π2 terms to improve the accuracy of the

theoretical prediction, we employ the formalism of soft collinear effective theory (SCET), which was

originally formulated in [54–57] in what is now referred to as the “label SCET” formalism, which

was then quickly reformulated as the “multipole expansion” formalism in [58, 59]. More recently,

further alternative formulations of SCET have been developed in [60] and [61, 62]. In this section,

we present a brief review of SCET, adopting the multipole-expansion formulation, to highlight main

conceptual ingredients relevant for our calculations as well as to establish our notation. The details

of our analytical and numerical results will be presented in Section 3 and Section 4.

2.1 The Degrees of Freedom, Power Counting, and Symmetries

2.1.1 A Practical View on (Effective) Field Theories

In diagrammatic calculations in quantum field theories, vertices are simple and propagators are

complicated. Vertices are polynomials of momenta and hence analytic in momenta, while prop-

agators have poles and give rise to complicated singularities in scattering amplitudes upon loop
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integration, including singularities that cannot actually occur for the values of external momenta

under consideration. This considerably complicates calculations and obscures the physics in ques-

tion.

The fundamental principle of effective field theory (EFT) is to capture as much physics as

possible at the lagrangian level by writing down an effective lagrangian whose vertices are designed

to reproduce the non-singular part of amplitudes as much as possible, including those singularities

that do not actually occur and should actually be regarded as analytic, while striving to keep only

the propagators that are necessary to reproduce the singularities that can actually occur. Clearly,

the construction of such effective theory is possible only if we kinematically restrict the set of

processes we consider (e.g., only initial states with energy less than 1 TeV, and/or only final states

with pT < pveto
T ). The key step in the construction of an EFT is to anticipate in the full theory

the class of diagrams relevant to the restricted class of processes in question (without actually

doing any loop integrals), and identify momentum modes that cannot go on-shell for any values

of external momenta under consideration. Those modes will never lead to singularities that can

actually occur, so we integrate them out, i.e., write effective vertices to reproduce their effects as

analytic functions of momenta. We are then only left with modes that may go on-shell for some

values of external momenta under consideration.

The above procedure is reminiscent of the construction of so-called reduced diagrams for ana-

lyzing the IR divergence structure of a given amplitude. (For a nice review, see e.g. Ref. [63].) The

essential difference is that the construction of reduced diagrams strives to identify the propagators

that will produce singularities, which is a laborious task that must be carried out diagram-by-

diagram. In EFTs, in contrast, we strive to identify the modes that will not go on-shell and

then write an effective lagrangian without those “guaranteed-off-shell” modes. There may still be

some singularities that cannot actually occur in EFT amplitudes, but significantly fewer of them

than in the corresponding full-theory amplitudes, and we just try our best by converting as many

guaranteed-off-shell modes as possible into effective vertices. The ease and benefit of working at the

lagrangian level greatly outweighs not completely identifying the necessary and sufficient conditions

for singularities.

A second principle of EFT follows naturally from this “vertices-heavy” nature of effective la-

grangians. By construction, EFT lagrangians have many more vertices than the corresponding

full lagrangians, usually an infinite number of them. This necessitates a well-defined organization

principle that permits us to truncate the infinite series of vertices to achieve a desired accuracy.

Thus, in addition to the small coupling constants it inherits from the full theory, a useful EFT

must be equipped with a set of new small parameters with well-defined power-counting rules that

govern how each propagator and each vertex should scale with those small parameters. This lets us

not only truncate the lagrangian but also discard quantitatively irrelevant diagrams at the outset.

In addition to the absence of guaranteed-off-shell modes discussed earlier, the presence of more

small expansion parameters with well-defined power-counting rules is another feature of EFTs that

enables us to see the physics more clearly and easily.

There is a third aspect of EFT that greatly facilitates calculations in EFTs. To separate modes

into guaranteed-off-shell modes to integrate out and “can-be-on-shell” modes to keep, we must

introduce cutoffs, i.e., artificial parameters that define the boundaries between the guaranteed-

off-shell modes and the can-be-on-shell modes. In addition, the principle of well-defined power
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counting often requires a further division of can-be-on-shell modes into multiple subgroups such

that each subgroup can be assigned definite power-counting rules. This division also requires cutoff

parameters to define the boundaries between the subgroups. Since both types of cutoffs are just

artificial separators introduced by us solely for our own convenience, all physical observables such as

cross sections must be independent of the cutoffs. Cutoff independence can be expressed as a set of

differential equations (i.e., renormalization group (RG) equations) for the parameters of the theory.

The RG equations permit us to work with only one scale at each and every step of calculations so

that no large logarithms like log(M/pveto
T ) ever appear in the calculations, effectively resumming

the large logarithms.

Finally, while the cutoffs are necessary for the separation of modes, it is technically cumbersome

at the loop level to literally implement the cutoffs by bounding the limits of loop integrations,

because the integration limits other than 0 and ±∞ tend to make the integrals considerably harder

to evaluate or even just to estimate. The standard trick is to deliberately make “mistakes” by

keeping integration limits unbounded and letting integrals formally diverge, and (re-)regulate the

divergences without bounding the integration limits, e.g., by dimensional regularization (DR), and

correct for the “mistakes” at the very end by renormalization. Therefore, corresponding to every

artificial boundary of modes we introduce to an EFT, there is a divergence and a regulator. (For

example, our SCET will have two types of divergences and two regulators, as we will discuss

in Section 2.1.3.) The regulators reintroduce auxiliary parameters (like µ in DR), and the RG

equations can be (re)derived by demanding that physical observables should be independent of those

auxiliary parameters. Like cutoffs, the divergences are artificial features of the theory introduced by

us for our convenience, and they must cancel out in physical observables. As cutoff independence

leads to convenient RG equations, the cancellation of divergences can also be exploited to facilitate

EFT calculations.

2.1.2 Collinear and Anticollinear Modes

To identify the degrees of freedom to include in our SCET lagrangian, we must first ask what

modes can go on-shell in the process q1 + q2 →W+ +W− +
∑ ′

X, where q1 and q2 are a quark

and an antiquark or vice versa.4 To characterize the kinematics of the initial state, we introduce

two lightlike 4-vectors nµ+ and nµ− such that the 4-momenta of q1 and energetic gluons emitted by q1

are all nearly parallel to n+ (which is ensured by the jet veto condition). Likewise, n− is associated

with q2 and its energetic radiations. Being lightlike, they satisfy n± ·n± = 0, and we choose their

relative normalization as

n± ·n∓ = 2 . (2.1)

(There is no Lorentz invariant way to fix their individual normalizations.) The kinematics of our

process is most conveniently described by lightcone coordinates spanned by n± in which

∂± ≡ n± ·∂ , x± ≡ 1

2
n∓ ·x , (2.2)

4 We ignore the gg and qg channels in our SCET calculations as they are small and would thus receive little benefit

from the resummation of large logarithms. For gg, this is because they are absent at the tree level in the SM. The

qg →WWq channel exists at tree level in the SM, but their jet-veto cross sections are highly suppressed as it is very

difficult for the final-state q to satisfy a jet veto. Therefore, the channels other than qq̄ are only relevant for power

corrections, which we will discuss later in Section 4.2.
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so that ∂±x
± = 1 and ∂±x

∓ = 0. The lower- and upper-indexed lightcone components of a general

4-vector a must be defined in the same way as those of ∂ and x, respectively, so we have

a± ≡ n± ·a ≡ 2a∓ . (2.3)

We then define a 4-vector aµ⊥ to be the projection of aµ onto the plane orthogonal to both n+ and

n−, i.e.,

a⊥ ·n+ = a⊥ ·n− = 0 . (2.4)

This together with (2.1) and (2.3) then implies that any 4-vector aµ can be decomposed as

aµ = aµ‖ + aµ⊥ (2.5)

with

aµ‖ ≡ a
+nµ+ + a−nµ− . (2.6)

From (2.3), we see that the metric and inverse metric5 in the x+-x− subspace are given by

(gµν) =

(
0 2

2 0

)
, (gµν) =

(
0 1/2

1/2 0

)
, (2.7)

so, for arbitrary 4-vectors aµ and bµ, we have

a·b ≡ a+b
+ + a−b

− + a⊥ ·b⊥ = 2(a−b+ + a+b−) + a⊥ ·b⊥
=

1

2
(a+b− + a−b+) + a⊥ ·b⊥ .

(2.8)

Now, by definition and without loss of generality, we let the 4-momentum of the initial quark

q1 be dominantly in the p+ component.6 So, we parametrically have p+ ∼ O(M), where M is the

invariant mass of the W+W− pair. The p⊥ component, on the other hand, is parametrically never

larger than O(pveto
T ), because the jet veto condition prevents the ⊥ component of momentum of a

gluon radiated off of q1 from being larger than pveto
T . We express this parametrics as |p⊥| ∼ O(λM),

where λ ≡ pveto
T /M . The parametric size of the p− component then follows from requiring that

the quark can be on-shell, that is, p2 = p+p− + p⊥ ·p⊥ can be zero. (If it cannot, this quark

mode should not be in the effective theory.) This determines that p− ∼ O(λ2M). Therefore, the

components of p of the initial quark must have the following parametric scaling behavior in terms

of M and λ:

(p+, p−, p⊥) ∼ (1, λ2, λ)M . (2.9)

We refer to this scaling behavior as the collinear scaling. Similarly, the p of the initial quark q2

should scale as

(p+, p−, p⊥) ∼ (λ2, 1, λ)M , (2.10)

which we refer to as the anticollinear scaling. Note that generic collinear and anticollinear modes

have virtuality of order O(λM) ∼ pveto
T , that is,

p2 ∼ O(λ2M2) , (2.11)

5We adopt the +−−− sign convention for the spacetime metric.
6Unless otherwise noted, we always index 4-momenta by a lower index, as they are associated with a spacetime

derivative ∂, whose index is naturally lowered.
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which is the square of the size of the ⊥ component. It will be useful to remember the virtualities

of collinear and anticollinear modes are given by their pT.

Next, let us look at a gluon radiated off of a collinear quark with 4-momentum p, where the

collinear quark splits into a quark with 4-momemtum q and a gluon with k. We would like to find the

condition on k such that q can remain (nearly) on-shell, because otherwise the q mode should not be

in the effective theory. To find that condition, let k scale as (k+, k−, k⊥) ∼ (λa, λb, λc)M . In order

for the k mode to be in the theory, we must ensure that k can be on-shell, i.e., k2 = k+k−− |~k⊥|2 = 0.

This can happen to nonzero k only if a + b = 2c. If c < 1, then k⊥ is parametrically larger than

pveto
T so the gluon would be rejected by jet veto. Hence we do not have to consider gluons with

c < 1. If c > 1, then k⊥ is parametrically smaller than pveto
T so the gluon would pass the jet veto

condition. This implies that contributions from real gluons with c > 1 would completely cancel out

with those from virtual gluons with c > 1. Therefore, we do not have to consider the c > 1 case

either.7 Only the c = 1 case needs careful analysis, as some of those gluons may pass jet veto and

some others may not.

Having fixed c by looking at k, we can determine a and b from the condition that q can be

on-shell, q2 = (p− k)2 = (p+− k+)(p−− k−)− |~p⊥− ~k⊥|2 = 0. Since c = 1, the |~p⊥− ~k⊥|2 term

scales as λ2, so q can be on-shell only if the (p+− k+)(p−− k−) term also scales as λ2. In this term,

p+p− scales as λ2, so both k+p− and p+k− must scale as λ2 or higher. Thus, we must have a+2 ≥ 2

and b ≥ 2 in order that q2 can be on-shell. Recalling the relation a + b = 2c = 2, we determine

that a = 0 and b = 2. Therefore, in order for a nearly on-shell collinear quark to remain nearly

on-shell after emitting a nearly on-shell gluon, both the gluon and post-radiation quark must have

a collinear momentum ∼ (1, λ2, λ)M . A similar statement clearly holds for the anticollinear sector

with relabelling +↔ −.

2.1.3 Rapidity Divergences and Collinear Anomalies

As discussed in Section 2.1.1, the separation of modes in an EFT requires the introduction of cutoffs

to define the boundaries between different groups of modes. In our SCET, there are two cutoffs.

One is the scale Λ that separates the guaranteed-off-shell modes and the can-be-on-shell modes.

That is, if a mode has 4-momentum p with |p2 −m2| > Λ2, then integrate it out, or else include

it in the effective theory. In particular, our SCET must be first defined (or matched to the SM)

with Λ ∼M , as we begin by removing guaranteed-off-shell modes with virtuality of O(M), such as

the s-channel photon propagator leading up to the W+W− production vertex. Then, Λ must be

run down to Λ ∼ pveto
T via RG equations, because the actual scale of virtuality of can-be-on-shell

modes in our process is O(pveto
T ) due to the jet veto condition. This RG running is what resums

the large logarithms log
[
M2/(pveto

T )2
]

as we will see explicitly later.

The second cutoff in our effective theory is for separating collinear modes and anticollinear

modes. The only difference between collinear and anticollinear modes is their rapidities. Collinear

modes have a large negative rapidity η = (1/2) log(p+/p−) = (1/2) log(p−/p+) ∼ log λ, while

anticollinear modes have a large positive rapidity η ∼ log(1/λ). So, we actually need two rapidity

cutoffs ηc and ηc̄ with ηc � −1 and ηc̄ � 1, such that negative-rapidity modes with η < ηc

are classified as collinear while positive-rapidity modes with η > ηc̄ as anticollinear. While the

7In particular, we do not have to consider the so-called ultra-soft modes ∼ (λ2, λ2, λ2)M for our purpose.

9



symmetry of our problem obviously suggests the choice ηc = −ηc̄, it can be useful to remember

that they are independent in principle, as we will see in Section 3.2.1.

As discussed in Section 2.1.1, the standard trick in EFT is to ignore cutoffs and let loop integrals

formally diverge, and (re-)regulate them by convenient regulators like dimensional regularization

(DR). We will employ DR to regulate the “UV” divergences due to ignoring Λ, and the so-called

analytic regularization [64] to regulate rapidity divergences [65] due to ignoring ηc and ηc̄. Analytic

regularization will be defined in terms of a regulator parameter α and an auxiliary scale ν, where the

α→ 0 limit will correspond to removing the regulator. This is conceptually completely analogous to

DR, which is defined in terms of a regulator parameter ε and an auxiliary scale µ in the ε→ 0 limit.

The apparent dependence of an amplitude on the artificial scale ν is called a collinear anomaly [66],

and the requirement that physical observables should be free of collinear anomalies leads to RG

equations with respect to ν,8 in addition to standard RG equations with respect to µ associated

with DR. We will see how this works explicitly in Section 3.2.1.

Finally, since all rapidity integrals go from −∞ to∞ whether we are dealing with collinear or an-

ticollinear modes, how do we actually distinguish the two modes inside loop integrals? Equivalently,

how do we avoid double-counting the modes at the loop level (the so-called zero-bin subtraction

problem [67])? Those two modes can be distinguished because they are assigned different scaling

laws. Even if we have two integrals, one for collinear and the other for anticollinear, with apparently

the same integrands and the same integration limits, the two integrands should be expanded differ-

ently in powers of λ. (Note that everything must be expanded in EFTs for consistent and manifest

power counting.) Thus, order-by-order in λ, their integrands differ, lead to different divergences,

and yield different results. The principle of well-defined power counting is precisely what resolves

the ambiguity/double-counting problem. (This point was particularly well elucidated in Ref. [44].)

2.1.4 Nonlocality on the Lightcone

Let φc(x) be a field that interpolates a collinear particle, that is, let φc(x) consist only of Fourier

modes scaling as ∼ (1, λ2, λ)M . The components of a spacetime derivative acting on φc then scale

as

∂+φc ∼Mφc , ∂−φc ∼ λ2Mφc , ∂⊥φc ∼ λMφc . (2.12)

Since the effective theory is an expansion in terms of two small dimensionless parameters λ and

αs, with only one dimensionful scale M ,9 the scaling behavior ∂+φc ∼ Mφc implies that a Taylor

expansion of φc in powers of ∂+/M cannot be truncated at any finite order. Therefore, there are

no small parameters in the collinear sector that imply locality in the x+ coordinate [54–56]. On the

other hand, ∂⊥/M and ∂−/M acting on collinear fields are suppressed by λ and λ2, respectively, so

the lagrangian can be truncated at some finite orders in ∂⊥/M and ∂−/M , giving rise to locality

in the x⊥ and x− coordinates. (In contrast, in familiar Lorentz-invariant Wilsonian EFTs, the fact

that we have ∂/Λ � 1 in all directions at low energy implies an isotropically local lagrangian.)

8 By letting all ν dependence be carried by collinear and anticollinear fields without including the so-called soft

gluons (the gluons with momenta scaling as ∼ (λ, λ, λ)M , i.e., those with a small rapidity), we have implicitly chosen

a renormalization scheme for rapidity divergences in which the only role of the soft modes is to provide renormalization

constants to absorb the 1/α poles of rapidity divergences. The same scheme was adopted in, e.g., a similar calculation

for the higgs production with a jet veto [41]. We therefore will not discuss soft modes in this paper.
9Strictly speaking, we also have mW and mZ . For parametrics/scaling discussions, we treat them as ∼ O(M).
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Similarly, in the anticollinear sector, the effective lagrangian is nonlocal in the x− coordinate while

local in x+ and x⊥. Intuitively, these nonlocalities make a perfect sense. Since the p+ component

of a collinear momentum is O(M), we can form a wave packet of length ∼M−1 in the x+ direction,

so we can actually resolve the intrinsic nonlocality of the effective theory arising from integrating

out off-shell propagators at distances of O(M−1). A nonlocal EFT can be just as useful as local

EFTs as long as it possesses well-defined power-counting rules and symmetries to ensure that there

are only a finite number of operators we can write down at any given order in the power-counting

parameters. This is indeed the case for our SCET lagrangian, as we will see later.

2.1.5 Collinear and Anticollinear Gauge Invariances

The requirement that a collinear field should only contain collinear Fourier modes imposes a sig-

nificant restriction on the space of SU(3)C gauge transformations [56, 57], because gauge trans-

formations should map a collinear modes to a collinear mode in order for gauge invariance to be

compatible with power counting. We thus define collinear gauge transformations to be the SU(3)C

gauge transformations that map collinear modes to collinear modes:

φc(x)
Uc7−→ φ′c(x) = Uc(x)φc(x) . (2.13)

This implies that Uc(x) itself should only consist of collinear modes. Hence, Uc(x) must be asso-

ciated with the collinear gluon field Gcµ(x), which itself should be a collinear field and transform

under collinear gauge transformations as

Gcµ
Uc7−→ G′cµ = UcGcµU

†
c +

i

gc
(∂µUc)U

†
c . (2.14)

We must check that such restricted gauge transformations do not defeat the very purpose of gauge

invariance as a redundancy of the theory to remove the gauge boson’s unphysical polarization whose

polarization 4-vector is parallel to the gauge boson’s 4-momentum. Since Uc(x) contains precisely

the same set of Fourier modes as Gcµ(x), the removal of the unphysical polarization from Gcµ(x)

works if and only if we require that the polarization components of Gcµ should scale in the same

way as its momentum components [55–57], i.e.,

(Gc+, Gc−, Gc⊥) ∼ (1, λ2, λ)M . (2.15)

Having introduced the associated gauge field and gauge transformation laws, collinear gauge

invariance can be accounted for in the usual manner. We define the collinear covariant derivative

as

Dcµ ≡ ∂µ + igcGcµ (2.16)

so that Dcµφc(x) 7−→ D′cµφ
′
c(x) = Uc(x) Dcµφc(x). We also define the collinear field strength tensor

as

Gcµν ≡
1

igc
[Dcµ,Dcν ] . (2.17)

Thanks to the nonlocality of SCET discussed in Section 2.1.4, there is a third gauge covariant

object that can be used to construct the effective lagrangian. We define a Wilson line Wc(x, y) as

Wc(x, y) ≡ Pz exp

[
−igc

∫ x

y
dzµGcµ(z)

]
, (2.18)
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where Pz denotes a path-ordered product along a path zµ in which the factors associated with

points x and y appear at the left-most and right-most positions, respectively. Being a Wilson line,

it transforms covariantly as

Wc(x, y) 7−→ W ′c (x, y) = Uc(x)Wc(x, y)U †c (y) (2.19)

under collinear gauge transformations (2.14). As discussed in Section 2.1.4, the collinear sector

is permitted to have nonlocality in the x+ coordinate but not in other directions. So, a collinear

Wilson line must be a straight line in the x+ direction. Such collinear Wilson lines only pick up

the + component of the collinear gauge field Gcµ, because dz ·Gc = dz+Gc+ along a straight path

in the x+ direction. The Gc+ component is also the largest of Gcµ as one can see from (2.15). A

convenient choice of the initial point y is somewhere at y0 → −∞, because there are no collinear

gluons in the initial state of our problem so the boundary condition of our path integral is that Gcµ

should vanish in the infinite past. Therefore, we define a collinear Wilson line [55–57] as

Wc(x) ≡ Ps exp

[
−igc

∫ 0

−∞
dsGc+(z(s))

]
(2.20)

with Ps denoting path ordering in the increasing order in s from right to left, where the path zµ(s)

starts out from a point in the past infinity at s = −∞, moves straight up in the x+ direction as s

increases, and arrives at point x when s = 0:

z+(s) = x++ s , z−(s) = x− , ~z⊥(s) = ~x⊥ . (2.21)

Because of the boundary condition at the past infinity, this Wilson line transforms as

Wc(x)
Uc7−→ W ′c (x) = Uc(x)Wc(x) . (2.22)

In particular, this implies that the combination W †c (x)φc(x) is gauge invariant. The collinear

Wilson line Wc(x) also allows us to construct a gauge covariant 4-vector operator Acµ(x) as [68]

Acµ(x) ≡ i

2gc

([
∂µWc(x)

]
W †c (x)−Wc(x)

[
∂µW

†
c (x)

])
, (2.23)

which transforms as an object in the adjoint representation:

Acµ(x)
Uc7−→ Uc(x)Acµ(x)U †c (x) . (2.24)

The fact that Uc(x) consists of collinear modes implies that it would not map anticollinear

modes to anticollinear modes. Therefore, we must define anticollinear fields to be invariant under

collinear transformations:

φc̄(x)
Uc7−→ φc̄(x) . (2.25)

Of course, this does not imply that anticollinear fields are completely gauge invariant. Clearly,

in the anticollinear sector, we must introduce the anticollinear gluon field Gc̄µ(x) with associated

anticollinear gauge transformations:

Gc̄µ
Uc̄7−→ G′c̄µ = Uc̄Gc̄µU

†
c̄ +

i

gc̄
(∂µUc̄)U

†
c̄ , (2.26)
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where Uc̄(x) only contains anticollinear Fourier modes ∼ (λ2, 1, λ)M . The anticollinear gauge

coupling gc̄ is an independent parameter from the collinear gauge coupling gc, because Gcµ and Gc̄µ

are separate fields with separate gauge transformations in the effective theory. The scaling law for

the polarization components of Gc̄µ should clearly be given by

(Gc̄+, Gc̄−, Gc̄⊥) ∼ (λ2, 1, λ)M . (2.27)

An anticollinear Wilson line Wc̄(x) is defined as

Wc̄(x) ≡ Ps exp

[
−igc̄

∫ 0

−∞
dsGc̄−(z̄(s))

]
(2.28)

with

z̄+(s) = x+ , z̄−(s) = x−+ s , ~̄z⊥(s) = ~x⊥ . (2.29)

2.2 The Effective Lagrangian

2.2.1 The Collinear and Anticollinear Quark Fields

In Section 2.1.2, we have analyzed how different components of collinear and anticollinear 4-

momenta scale with λ. Here, we ask how collinear and anticollinear fields should scale. Let

ψc(x) be a left-handed Weyl-spinor field10 interpolating a collinear quark, that is, let ψc(x) consist

only of Fourier modes that scale as ∼ (1, λ2, λ)M . Hence, we have

∂+ψc ∼Mψc , ∂−ψc ∼ λ2Mψc , ∂⊥ψc ∼ λMψc . (2.30)

This does not imply that the kinetic term ψ†c σ̄ ·∂ ψc = ψ†c(σ̄+∂+ + σ̄−∂− + ~σ⊥ ·~∂⊥)ψc can be

approximated by ψ†c σ
+∂+ψc at the leading order in λ, because the underlying Lorentz invariance

requires that all the three terms in ψ†c σ̄ ·∂ ψc should be present.11 Rather, the scaling (2.30) only

implies that upon projecting the spinor space onto the subspaces annihilated by σ̄+ or σ̄−, the

different projected components of ψc should scale differently such that all the terms in ψ†c σ̄ ·∂ ψc

scale in λ homogeneously.

To construct projection operators P and P̄ onto the subspaces annihilated by σ̄+ and σ̄−,

respectively, notice that the Dirac algebra in the lightcone metric (2.7) takes the form

σ+σ̄− + σ−σ̄+ = 2g+−
1 = 1 , σ̄+σ+ = g++

1 = 0 , σ̄−σ− = g−−1 = 0 . (2.31)

The projection operators are hence given by

P ≡ σ+σ̄− , P̄ ≡ σ−σ̄+ . (2.32)

10 Since we are ignoring quark masses and dealing only with gauge interactions, chirality is completely conserved.

(For ignoring the top quark mass, see a discussion at the end of Section 3.1.1. For ignoring the higgs contribution,

see footnote 4.) The chirality conservation suggests that we should use Weyl spinors rather than Dirac spinors. We

therefore describe all spin-1/2 fermions in terms of left-handed Weyl spinors until the very end of Section 2.3. We

adopt a widely used notation of indexing the left-handed and right-handed spinors as α and α̇, respectively, with

their contractions going as α
α and α̇

α̇, where α ≡ εαβ β and α̇ ≡ ε̄α̇β̇
β̇ with ε ≡ iσ2 and ε̄ ≡ −iσ2. The matrices σµ

and σ̄µ are defined as σ0 ≡ σ̄0 ≡ 1 and σ1,2,3 ≡ −σ̄1,2,3 ≡ σx,y,z.
11The underlying Lorentz invariance manifests itself in SCET as reparameterization invariance (RPI) [69], i.e., the

invariance of action under different choices of lightcone axes n± satisfying n± ·n± = 0 and n± ·n∓ = 2. RPI holds

only if all the three terms in ψ†c σ̄ ·∂ ψc have the same coefficient.
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Just like chirality is an eigenvalue of γ5, we can define the collinearness operator C as

C ≡ P − P̄ (2.33)

so that the subspaces projected by P and P̄ have C-eigenvalues +1 and −1, respectively. With P
and P̄, we can now obtain the desired decomposition of ψc as

ψc = ξc + Ξc with ξc ≡ P ψc , Ξc ≡ P̄ ψc (2.34)

so that
σ̄+ξc = 0 , P ξc = ξc , C ξc = +ξc ,

σ̄−Ξc = 0 , P̄ Ξc = Ξc , C Ξc = −Ξc .
(2.35)

To see that only ξc is a dynamical degree of freedom, consider a situation in which the initial quark

is on-shell and exactly collinear, i.e., its 4-momentum only has the p+ component. In this case,

the Dirac equation gives 0 = σ̄ ·∂ψc ∝ σ̄+ψc = σ̄+Ξc. So, the Ξc component is forced to identically

vanish by the equation of motion and thus never goes on-shell. On the other hand, ξc can be

nontrivial even on-shell and thus describes a dynamical, physical degree of freedom.12

We are now ready to derive the scaling laws for ξc and Ξc. In terms of these fields, the kinetic

term of ψc becomes

ψ†c σ̄ ·∂ ψc = ξ†c σ̄
−∂−ξc + Ξ†c σ̄

+∂+Ξc + ξ†c ~σ⊥ ·~∂⊥Ξc + Ξ†c ~σ⊥ ·~∂⊥ξc . (2.36)

Since the scaling (2.30) implies that (dx+, dx−,dx⊥) ∼ (1, λ−2, λ−1)M−1, the d4x integration

measure in the action
∫

d4xψ†c σ̄ ·∂ ψc scales as λ−4M−4. Since kinetic terms are treated as the

leading terms in our perturbation theory, the scaling dimensions of fields should be governed by

the kinetic terms. In particular, demanding that the action
∫

d4xψ†c σ̄ ·∂ ψc should not scale with λ

nor M , we see that the kinetic term as a whole must scale as λ4M4. Then, the underlying Lorentz

invariance requires that each of the four terms in (2.36) should scale as λ4M4. We therefore conclude

that [54,55]

ξc ∼ λM3/2 , Ξc ∼ λ2M3/2 . (2.37)

Thus, while ξc and Ξc both have the canonical mass dimension of fermion fields, their λ dimensions

differ and Ξc is subdominant in λ expansion. Nevertheless, we have already noted above that

the underlying Lorentz invariance (or RPI of SCET) forbids us from simply dismissing Ξc as

subdominant. Fortunately, precisely because Ξc is always an off-shell, non-dynamical degree of

freedom, we can resolve this dilemma by treating Ξc as an auxiliary field and integrating it out by

using its equation of motion as needed. This is again very reminiscent of the “small” component

of a heavy field in HQET.

12Being always off-shell, Ξc should ultimately be integrated out from the effective theory. Nevertheless, it can be

convenient to keep it in the theory as an auxiliary field for the purpose of analyzing the constraints of RPI or the

underlying Lorentz invariance. This is exactly reminiscent of heavy quark effective theory (HQET) in which keeping

the “small” component of a heavy quark field (the one annihilated by (1 + /v)/2, typically denoted by Hv(x)) makes

the bookkeeping of RPI far more transparent [70]. Yet other examples of non-dynamical fields that are convenient

for symmetry purposes are the D and F fields in supersymmetric field theories. The benefit of keeping Ξ in SCET

is particularly emphasized in Ref. [60].
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The initial anticollinear quark clearly works in a similar way. Let ψc̄(x) be a left-handed Weyl

spinor field that interpolates an anticollinear quark. Then, the expressions (2.34) and (2.35) should

be translated for ψc̄ as

ψc̄ = ξc̄ + Ξc̄ with ξc̄ ≡ P̄ ψc̄ , Ξc̄ ≡ P ψc̄ (2.38)

and
σ̄−ξc̄ = 0 , P̄ ξc̄ = ξc̄ , C ξc̄ = −ξc̄ ,

σ̄+Ξc̄ = 0 , P Ξc̄ = Ξc̄ , C Ξc̄ = +Ξc̄ .
(2.39)

Finally, let us discuss the interactions of the collinear and anticollinear quarks. Besides through

the collinear covariant derivative (2.16) and collinear field strength (2.17), collinear gluons can

interact with collinear quark modes via the collinear Wilson line Wc(x) defined in (2.20). A similar

statement clearly applies to the anticollinear quark. For later use, we define the following gauge-

invariant versions of ξc and ξc̄ [57] using the Wilson lines (2.20) and (2.28):

χc(x) ≡W †c (x) ξc(x) , χc̄(x) ≡W †c̄ (x) ξc̄(x) . (2.40)

Since Wilson lines carry no spinor indices, the constraints (2.35) and (2.39) for ξc and ξc̄ apply to

χc and χc̄ in the same manner. In particular, we have

σ̄+χc = 0 , Pχc = χc , Cχc = +χc ,

σ̄−χc̄ = 0 , P̄χc̄ = χc̄ , Cχc̄ = −χc̄ .
(2.41)

Finally, let us briefly comment on the so-called Glauber or Coulomb modes [71, 72], which

were shown to be necessary in SCET for consistency [73]. However, since the Glauber/Coulomb

modes are always off-shell, they should be integrated out from the effective theory in accord with

our principle that guaranteed-off-shell modes should be integrated out, which is expected to give

rise to some (nonstandard) nonlocal interactions between SCET modes [73]. Calculating the ef-

fects of those operators is beyond the scope of this paper, and we simply assume that the effects

of Glauber/Coulomb modes cancel out in the final results as they do in the inclusive Drell-Yan

process (see [74] for the pioneering work and also [75–77]).

2.2.2 The Effective Lagrangian

The splitting of modes into collinear and anticollinear modes means that the lagrangian should also

be split. So, the entire effective lagrangian is given at the leading order in λ (i.e., O(λ0)) by

Leff = Lc + Lc̄ + Lhard , (2.42)

where Lc is a SCET lagrangian for the collinear sector:

Lc = − 1

2g2
c

Tr [GcµνG
µν
c ] + i

(
ξ†c σ̄

−Dc−ξc + Ξ†c σ̄
+Dc+Ξc + ξ†c ~σ⊥ ·~Dc⊥Ξc + Ξ†c ~σ⊥ ·~Dc⊥ξc

)
. (2.43)

There are no other terms we can write at the leading order in λ except that in principle the terms

in Lc,c̄ could display the nonlocalities discussed in Section 2.1.4. For example, at O(λ0), the most

general operator bilinear in ξ†c and ξc is a nonlocal operator
∫

dt f(t) ξ†c(x++ t, x−, x⊥) σ̄−Dc−ξc(x)
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with a Wilson coefficient f(t). However, a matching calculation onto QCD tells us that f(t) = δ(t),

thus giving us (2.43). In fact, Lc is exact to all orders in λ, because the collinear sector taken in

isolation must be identical to a QCD by Lorentz invariance. In other words, Lc can be just viewed

as a QCD lagrangian written in the lightcone coordinates to make power counting manifest so that

it can be readily used in EFT calculations.

The second term Lc̄ in (2.42) is the obvious anticollinear counterpart of Lc, which again is

identical to QCD in isolation and exact to all orders in λ. The third term Lhard is the only place

where the collinear and anticollinear fields come together (to produce W+W−) and consequently

where λ expansion is nontrivial. We will now describe Lhard at the leading order in λ.

2.2.3 The Hard Interaction

In our calculation, we treat electroweak gauge interactions only at the tree level. In particular, the

W± bosons appear only as external final states in both the full and effective theories. The Z and

γ appear in the full theory only as an s-channel propagator leading up to the W+W− production

vertex. Since those Z and γ propagators are always highly off-shell, they cannot appear in the

effective theory and their effects must be incorporated in an effective vertex. The W+W− pair

can also be produced via a t-channel quark exchange in the full theory. This t-channel propagator

is also always far off-shell so must be integrated out into the effective vertex. Therefore, in our

SCET, the W+W− production must be described by an operator of collinear and anticollinear

fields coupled to external W+ and W− states:

Lhard =
1

M
ε∗µ(p3, s3) ε∗ν(p4, s4) ei(p3+p4)·x J µν(x) , (2.44)

where J µν(x) is a SCET operator that destroys the initial collinear and anticollinear quarks, while

(p3, s3) and (p4, s4) are the 4-momenta and polarizations of the W+ and W−, respectively. We

have already substituted the final-state wavefunctions ε∗µ(p3, s3) eip3·x and ε∗µ(p4, s4) eip4·x, because

the W± bosons appear only as external states, simply acting as a source for the SCET operator

J µν(x).

As discussed in Section 2.1.4, collinear and anticollinear fields constituting the SCET operator

J µν(x) are allowed to be nonlocal in the x+ and x− coordinates, respectively, while they must be

local in the remaining coordinates. Hence, at the leading order in λ (that is, O(λ0)), the operator

J µν(x) can be written in terms of χc and χc̄ defined in (2.40) as

J µν(x) =

∫
dt1 dt2 χ

iα
c̄ (x−+ t2, ~x⊥)

[
Γµν(t1, t2, p3+4‖, p3−4, µ)

] β
α
χciβ(x++ t1, ~x⊥) , (2.45)

where p3±4 ≡ p3 ± p4, while α and β are spinor indices (see footnote 10 for our convention), and i

an SU(3)C index. As we are working at the leading order in λ, no Ξc or Ξc̄ should appear in (2.45),

as they scale with a higher power of λ than ξc and ξc̄, as shown in (2.37). Similarly, we have not

considered any ∂− or ∂⊥ acting on χc, nor any ∂+ or ∂⊥ on χc̄, as they are subdominant in λ.

The absence of derivatives then excludes the possibility of collinear and anticollinear gluon fields

entering J µν through covariant derivatives. We cannot insert a gluon field strength (Gcµν or Gc̄µν)

or a gauge covariant 4-vector field (2.23) between χc̄ and χc, as that would no longer correspond to

a hard qq̄ →WW process. Therefore, gluon couplings can only be through the Wilson lines (2.20)

and (2.28), and the separate collinear and anticollinear gauge invariances tell us that they can
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only appear through the gauge-invariant combinations χc and χc̄ defined in (2.40). While gauge

invariant, χc and χc̄ both transform under the common, global SU(3)C that they inherit from the

global part of the original SU(3)C. Since the W+W− state is a color singlet, the operator J µν
must be a singlet under the global SU(3)C, which is why the index i is contracted in (2.45).

To ensure a well-defined power counting in every single step of the calculation, we have only kept

the leading, O(λ0) arguments of the fields χc and χc̄ and of the function Γµν in (2.45). Observe

that while the momenta p3 and p4 individually scale as ∼ (1, 1, 1)M , their sum p3 + p4 scales

as ∼ (1, 1, λ)M ∼ (1, 1, pveto
T ) because of the jet veto. Hence, the (p3+4)⊥ arguments of Γµν are

dismissed as subleading, O(λ) effects, while (p3+4)‖ and all components of p3−4 should be fully kept.

The scaling of p3+4 also tells us that, upon integrating the interaction term (2.44) over the whole

spacetime, the exponential ei(p3+p4)·x in J oscillates rapidly in both x+ and x− directions with short

wavelengths of O(M−1), while slowly with long wavelengths of O(λ−1M−1) in the x⊥ directions.

On the other hand, consisting only of Fourier modes scaling as ∼ (1, λ2, λ)M , the collinear field

χc(x) varies slowly in the x− direction with a long wavelength of O(λ−2M−1) � M−1, while it

varies as fast as ei(p3+p4)·x in the x+ and x⊥ directions. Thus, the variation of χc(x) in the x−

direction is a subleading, O(λ2) effect and must be discarded at the leading order in λ. Similarly,

the variation of χc̄(x) in the x+ direction must be neglected.

The function [Γµν(t1, t2, p3+4‖, p3−4, µ)] βα is a Wilson coefficient that encodes the effects of

guaranteed-off-shell modes with virtuality & µ that have been integrated out. So, Γµν should be

first determined at µ ∼M by matching SCET amplitudes to the full-theory counterparts, where the

latter involves the s- and t-channel propagators with virtuality of O(M) as discussed above. This

matching calculation will be presented in Section 3.1.1. Once Γµν is matched, we must integrate

out guaranteed-off-shell modes with virtuality between O(M) and O(pveto
T ) before we calculate the

cross section using the interaction (2.44), because the actual scale of virtuality of our process, that

is, the scale of virtuality of can-be-on-shell modes, is O(λM) ∼ pveto
T due to the jet veto. This is

the step that resums the large logarithms ∼ log(M/pveto
T ), which will be discussed in Section 3.1.2.

Γµν as a matrix in the spinor space can actually have only one nonzero component. This can be

made obvious by spanning the spinor space in terms of the eigenstates of the collinearness operator

C. Since the constraints (2.41) tell us that χc and χc̄ are eigenstates of C with eigenvalues +1 and

−1, respectively, only one entry of Γµν that corresponds to those eigenvalues can be nonzero. To

locate this non-vanishing component in a basis independent way, we define two left-handed Weyl

spinors uc and uc̄ solving the constraints

Cuc = +uc , ucu
†
c = σ+ ,

Cuc̄ = −uc̄ , uc̄u
†
c̄ = σ− .

(2.46)

These conditions completely determine uc and uc̄ up to overall phases. Then, since uc and uc̄ satisfy

the same constraints as χc and χc̄ of the form (2.41), the product ucαu
β
c̄ is nonzero precisely for

the α and β for which [Γµν ] βα can be nonzero. We therefore write Γµν as

[
Γµν(t1, t2, p3+4‖, p3−4, µ)

] β
α

= Cµν(t1, t2, p3+4‖, p3−4, µ) Γ β
α , (2.47)

where

Γ β
α ≡ ucαu

β
c̄ . (2.48)
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Therefore, we just need to match one number, Cµν(t1, t2, p3+4‖, p3−4, µ). Needless to say, this non-

vanishing component of Γ is picking up the on-shell, physical polarizations of the initial collinear

and anticollinear quarks. The remaining polarizations are always off-shell and hence do not appear

in the SCET.

2.3 Factorization and the Emergence of the Parton Picture

2.3.1 Factorization of Matrix Elements

To calculate the cross section for the process p(P1) + p(P2) → W+(p3, s3) + W−(p4, s4) + X, we

need to evaluate the matrix element

JµνX (x, P1, P2, p3, p4) ≡
〈
X
∣∣J µν(x)

∣∣p(P1) p(P2)
〉
, (2.49)

where dependences on the proton spins are implicit. It is also understood that the fields inside

J µν(x) are time-ordered and that JµνX is only the connected part of the matrix element. Substi-

tuting (2.45) for J µν(x) together with (2.47), we get

JµνX (x, P1, P2, p3, p4)

=

∫
dt1 dt2C

µν(t1, t2, p3+4‖, p3−4, µf)
〈
X
∣∣χiαc̄ (x−+ t2, ~x⊥) Γ β

α χciβ(x++ t1, ~x⊥)
∣∣p(P1) p(P2)

〉
,

(2.50)

where the Wilson coefficient Cµν is now evaluated at the scale µ = µf ∼ pveto
T , because the actual

scale of virtuality in the process in question is O(λM) ∼ pveto
T , as we already noted above.

Now, since χc can only create collinear states and χc̄ only anticollinear states, and also since

the remnants of the colliding protons are collinear or anticollinear, the hadronic state
∣∣X
〉

must be

composed of only collinear and anticollinear states, i.e.,

∣∣X
〉

=
∣∣Xc̄Xc

〉
, (2.51)

where
∣∣Xc

〉
consists only of collinear particles, and

∣∣Xc̄

〉
only of anticollinear particles. For the

initial state, we let P1 be collinear and P2 anticollinear by definition and without loss of generality,

so χc and χc̄ must act on
∣∣p(P1)

〉
and

∣∣p(P2)
〉
, respectively. Moreover, we cannot form a gluon loop

connecting χc and χc̄, because χc can only emit collinear gluons and χc̄ only anticollinear gluons,

as they are charged under separate gauge groups as discussed in Section 2.1.5. Therefore, we have
〈
X
∣∣χiαc̄ (x−+ t2, ~x⊥) Γ β

α χciβ(x++ t1, ~x⊥)
∣∣p(P1) p(P2)

〉

=
〈
Xc̄

∣∣χiαc̄ (x−+ t2, ~x⊥)
∣∣p(P2)

〉
Γ β
α

〈
Xc

∣∣χciβ(x++ t1, ~x⊥)
∣∣p(P1)

〉
.

(2.52)

Using the momentum operator to relocate the fields χc̄ and χc to the same point x, this becomes

= e−ip2−t2 e−ip1+t1
〈
Xc̄

∣∣χiαc̄ (x−, ~x⊥)
∣∣p(P2)

〉
Γ β
α

〈
Xc

∣∣χciβ(x+, ~x⊥)
∣∣p(P1)

〉
, (2.53)

where

p1+ ≡ (P1 − PXc
)+ , p2− ≡ (P2 − PXc̄

)− (2.54)

with PXc and PXc̄ being the 4-momenta of the states
∣∣Xc

〉
and

∣∣Xc̄

〉
, respectively. By unpacking

Γ β
α using (2.48), the matrix element (2.53) becomes

= e−ip2−t2 e−ip1+t1
〈
Xc̄

∣∣χic̄(x−, ~x⊥)uc

∣∣p(P2)
〉 〈
Xc

∣∣uc̄ χci(x
+, ~x⊥)

∣∣p(P1)
〉
, (2.55)
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where the spinor indices are now implicit and just contracted within each bra-ket. Therefore, we

obtain

JµνX (x, P1, P2, p3, p4)

=
〈
Xc̄

∣∣χic̄(x−, ~x⊥)uc

∣∣p(P2)
〉 〈
Xc

∣∣uc̄ χci(x
+, ~x⊥)

∣∣p(P1)
〉
C̃µν(p1+, p2−, p3+4‖, p3−4, µf) ,

(2.56)

where

C̃µν(p1+, p2−, p3+4‖, p3−4, µf) ≡
∫

dt1 dt2 e−ip1+t1 e−ip2−t2 Cµν(t1, t2, p3+4‖, p3−4, µf) . (2.57)

The matrix element (2.56) is now manifestly factorized, i.e., we can separately compute the hard

matrix element (i.e., the C̃ function), the purely collinear matrix element (the one with
∣∣Xc

〉
), and

the purely anticollinear matrix element (the one with
∣∣Xc̄

〉
). The only subtlety here is that the

individual matrix elements have rapidity divergences and display collinear anomalies, all of which

must cancel out. We will analyze this subtlety in Section 3.2.1

2.3.2 The Factorized Cross Section

Using the effective interaction (2.44), the spin-averaged cross-section for the process p(P1)+p(P2)→
W+(p3, s3) +W−(p4, s4) +

∑ ′
X is given by

σ =
1

2s

1

M2

∫
d3~p3

(2π)3 2E3

d3~p4

(2π)3 2E4
Σ(P1, P2, p3, p4) , (2.58)

where the proton mass has been neglected and hence s = 2P1 ·P2, while the integrand Σ(P1, P2, p3, p4)

is given by

Σ(P1, P2, p3, p4) ≡ 1

4

∑

p spins

∑

X

′∑

s3,s4

∫
d4x e−i(p3+p4)·x ερ(p3, s3) εσ(p4, s4) ε∗µ(p3, s3) ε∗ν(p4, s4)

× J∗ρσX (x, P1, P2, p3, p4) JµνX (0, P1, P2, p3, p4) ,

(2.59)

where the ′ on
∑′ indicates two things: (i) because of the jet veto, the sum over X goes only

over the states satisfying the jet-veto condition, and (ii) PX must be consistent with 4-momentum

conservation, P1 + P2 = p3 + p4 + PX . The average over the proton spins is being implied by
1
4

∑
p spins, although proton spin dependences are not explicit.

Since it is our interest to express the cross section in terms of the WW invariant mass M , we

define a new 4-vector q ≡ p3 +p4 and eliminate either p3 or p4 in favor of q. We choose to eliminate

p4. We thus have

∫
d3~p4

2E4
=

∫
d4p4 δ

(
p2

4 −m2
W

)
θ(p0

4 −mW )

=

∫
d4q δ

(
(q − p3)2 −m2

W

)
θ
(
q0 − E3 −mW

)
.

(2.60)

We then change integration variables from q0 and q3 to M and η defined as

q0 ≡
√
M2 + |~q⊥|2 cosh η , q3 ≡

√
M2 + |~q⊥|2 sinh η . (2.61)
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These definitions imply q2 = (q0)2 − (q3)2 − |~q⊥|2 = M2 and η = 1
2 log q0+q3

q0−q3 , so M and η are the

invariant mass and rapidity of the WW system, respectively. Upon the change of variables (2.61),

we have dq0 dq3 = MdM dη, and the requirement q0 ≥ E3 +mW translates to M ≥ 2mW , so (2.60)

becomes

= M

∫
d2~q⊥ dM dη δ(M2 − 2q ·p3) θ(M − 2mW ) . (2.62)

Therefore, the cross section (2.58) can be rewritten as

dσ

dM
=

1

4πsM

∫
d3~p3

(2π)3 2E3

d2~q⊥
(2π)2

dη δ(M2 − 2q ·p3) Σ(P1, P2, p3, p4)
∣∣
p4=q−p3

(2.63)

where it is understood that the components q0,3 are dependent variables and related to the inde-

pendent variables M , y, and ~q⊥ through (2.61). The constraint M ≥ 2mW is also understood.

Returning to the calculation of Σ(P1, P2, p3, p4), we perform the summation over the W± po-

larizations in (2.59) and substitute (2.56) there, and we get

Σ(P1, P2, p3, p4) =
1

4

∑

p spins

∑

X

′
∫

d4x e−i(p3+p4)·xC(p1+, p2−, p3+4‖, p3−4, µf)

×
[〈
Xc̄

∣∣χjc̄(x−, ~x⊥)uc

∣∣p(P2)
〉 〈
Xc

∣∣uc̄ χcj(x
+, ~x⊥)

∣∣p(P1)
〉]∗

×
〈
Xc̄

∣∣χic̄(0, 0)uc

∣∣p(P2)
〉 〈
Xc

∣∣uc̄ χci(0, 0)
∣∣p(P1)

〉
(2.64)

where

C(p1+, p2−, p3+4‖, p3−4, µf) ≡
[
C̃ρσ(p1+, p2−, p3+4‖, p3−4, µf)

]∗
C̃µν(p1+, p2−, p3+4‖, p3−4, µf)

×
(
−gρµ +

p3ρp3µ

m2
W

)(
−gσν +

p4σp4ν

m2
W

)
.

(2.65)

Regrouping the objects into the collinear and anticollinear groups, we get

Σ(P1, P2, p3, p4) =

∫
d4x e−i(p3+p4)·xC(p1+, p2−, p3+4‖, p3−4, µf)

× 1

2

∑

p spins

∑

Xc

′〈
p(P1)

∣∣χ†c
j
(x+, ~x⊥)u†c̄

∣∣Xc

〉 〈
Xc

∣∣uc̄ χci(0, 0)
∣∣p(P1)

〉

× 1

2

∑

p spins

∑

Xc̄

′〈
p(P2)

∣∣χ†c̄j(x−, ~x⊥)u†c
∣∣Xc̄

〉 〈
Xc̄

∣∣uc χ
i
c̄(0, 0)

∣∣p(P2)
〉
.

(2.66)

Notice that the line with
∑′

Xc
contains only collinear fields and collinear states without any de-

pendence on anticollinear fields or states. Therefore, due to the SU(3)C invariance, it must be

proportional to δji , so the whole line can be replaced by δji /3 times the original expression with

j = i = k with summation over k. This δji then contracts the j and i indices in the line with∑′
Xc̄

. Finally, from the defining relations (2.46) of uc and uc̄, we have u†cα̇ u
β
c = (σ̄+)α̇β and

u†c̄
α̇ uβc̄ = (σ̄−)α̇β. Putting all together, we get

Σ(P1, P2, p3, p4) =

∫
d4x e−i(p3+p4)·x C(p1+, p2−, p3+4‖, p3−4, µf) ·

1

Nc
·

× 1

2

∑

p spins

∑

Xc

′〈
p(P1)

∣∣χ†c
k
(x+, ~x⊥)

∣∣Xc

〉
σ̄−
〈
Xc

∣∣χck(0, 0)
∣∣p(P1)

〉

× 1

2

∑

p spins

∑

Xc̄

′〈
p(P2)

∣∣χ†c̄`(x−, ~x⊥)
∣∣Xc̄

〉
σ̄+
〈
Xc̄

∣∣χ`c̄(0, 0)
∣∣p(P2)

〉
(2.67)
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with Nc = 3. Upon substituting this Σ(P1, P2, p3, p4) back into the cross section (2.63), the d2~q⊥
integral is trivial:

∫
d2~q⊥ e−i(p3+p4)⊥·x⊥ =

∫
d2~q⊥ e−iq⊥·x⊥ = (2π)2 δ2(~x⊥). This then gets rid of the

d2~x⊥ integral and sets ~x⊥ to zero, and we are left with only the dx+ and dx− integrals. Therefore,

the cross section (2.63) becomes

dσ

dM
= 2 · 1

4πMs

∫
d3~p3

(2π)3 2E3
dη δ(M2 − 2q‖ ·p3‖)C(p1+, p2−, p3+4‖, p3−4, µf)

∣∣∣
p4=q−p3

· 1

Nc
·

× 1

2

∑

p spins

∫
dx+ e−iq+x

+
∑

Xc

′〈
p(P1)

∣∣χ†c
i
(x+, 0)

∣∣Xc

〉
σ̄−
〈
Xc

∣∣χci(0, 0)
∣∣p(P1)

〉

× 1

2

∑

p spins

∫
dx− e−iq−x

−∑

Xc̄

′〈
p(P2)

∣∣χ†c̄j(x−, 0)
∣∣Xc̄

〉
σ̄+
〈
Xc̄

∣∣χjc̄(0, 0)
∣∣p(P2)

〉
,

(2.68)

where the factor of 2 in front is due to the fact that det(gµν) = 2 in the lightcone coordinates (2.7).

We have replaced δ(M2 − 2q ·p3) by its leading-order expression δ(M2 − 2q‖ ·p3‖) to have a consis-

tent O(λ0) expression. We have thus obtained a factorized form of the differential cross section at

the leading order in λ (and to all orders in αs) for our process.

2.3.3 The Parton Picture and the Beam Functions

Among the arguments of C(p1+, p2−, p3+4‖, p3−4, µ) in the factorized cross section (2.68), the mean-

ings of p3 and p4 are clear, while the definitions (2.54) of p1+ and p2− are rather unintuitive. To

understand the physical interpretation of p1+ and p2−, notice that P2+ = 0 and PXc̄+ ∼ O(λ2M),

so we can rewrite p1+ as

p1+ ≡ (P1 − PXc)+ = (P1 − PXc + P2 − PXc̄)+ (2.69)

at the leading order in λ. The right-hand side is actually just equal to (p3 + p4)+ by 4-momentum

conservation. With a similar exercise for p2+, we thus arrive at the relations

p1+ = (p3 + p4)+ = q+ , p2− = (p3 + p4)− = q− (2.70)

at the leading order in λ. Therefore, p1+ and p2− are the momenta of the collinear and anticollinear

quarks right before they annihilate into W+W−, i.e., the momenta after they have emitted all

collinear and anticollinear gluons. The parton picture has thus emerged naturally from the SCET

formalism, where the function C(p1+, p2−, . . .) is describing the hard interaction of the partons

with momenta p1+ and p2−. Then, the expressions under the dx+ and dx− integrals in (2.68)

must be interpreted as the distributions of the collinear and anticollinear quark partons inside

the corresponding protons right before the collision, with the jet veto condition imposed. As first

introduced in [37, 38], we are thus led to define the beam function of a quark parton ψ inside the

proton (“ψ/p”):

B(h)
ψ/p(ξ, pveto

T , µ, ν) ≡ 1

2

∑

p spins

1

2π

∫
dt e−itξ(n·P )

∑

X

′〈
p(P )

∣∣χ†iψ(tn)
∣∣X
〉 /n

2
Ph
〈
X
∣∣χψi(0)

∣∣p(P )
〉
,

(2.71)

where n is an arbitrary lightlike 4-vector, and

χψ(x) ≡W †n(x)ψ(x) , Wn(x) ≡Wc(x)
∣∣∣
n+=n

, (2.72)
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and the ultra-relativistic limit, n·P/mp →∞, is understood. We have switched to the 4-component

Dirac spinor notation for ψ to make connections with the literature. In particular, h = ±1 denotes

the chirality of ψ, and Ph ≡ (1+ hγ5)/2. The 2× 2 matrix σ̄− appearing in (2.68), which is equal

to n+ ·σ̄/2 due to (2.2), has been translated to (/n/2)P−1 here. Since the collinear and anticollinear

sectors are factorized from each other, there is no longer any need for the labels c and c̄,
13 which

is the reason we have opted for using a generic n instead of n+ or n−. In fact, B is independent

of n and P in the ultra-relativistic limit, justifying the absence of n and P in the arguments of B.

Finally, as we will see in Section 3.2, beam functions suffer from rapidity divergences and hence

depend on the scale ν from analytic regularization of rapidity divergences, in addition to the scale

µ from DR.

As noted above, the beam function B is a parton distribution function (PDF) in the presence of

a jet veto. Indeed, the factor of 1/2π in the definition of B is introduced so that B would be exactly

equal to the PDF in the pveto
T →∞ (i.e., no jet veto) limit. In particular, if

∣∣p(P )
〉

were just
∣∣ψ(P )

〉

and there were no jet veto nor any interactions, then B would be exactly equal to δ(1− ξ)/2, i.e.,

the PDF for finding a ψ with momentum ξP and chirality h inside a ψ with momentum P and its

spins averaged over.

In terms of the beam functions, and summing over all fermion species and chiralities, the cross

section (2.68) can be written as

dσ

dM
=

2(2π)2

4πMs

∫
d3~p3

(2π)3 2E3
dη δ(M2 − 2q‖ ·p3‖)

∑

f

∑

h=±1

C
(h)
f (ξ1P1, ξ2P2, p3+4‖, p3−4, µf)

∣∣∣
p4=q−p3

× 1

Nc

[
B(h)
f/p(ξ1, p

veto
T , µf, ν) B(h)

f̄/p
(ξ2, p

veto
T , µf, ν) + (f ↔ f̄)

]
,

(2.73)

where f̄ is the antiparticle of f , and f = u, d, s, c, b,14 and C
(h)
f is the C function for flavor f

with chirality h. The beam functions are evaluated at the scale µ = µf ∼ pveto
T as the scales of

virtuality of all states involved in B are O(pveto
T ) due to the jet veto. Because we are ignoring quark

masses and Yukawa interactions with the higgs boson (see footnotes 4 and 10 on how good those

approximations are), the different chiralities of an f never mix, justifying treating the h = ±1

contributions separately. The neglect of quark masses also justifies our not taking into account any

quark mixings. Finally, the amplitudes with different choices of f and/or h do not interfere with

each other, because they inevitably have different
∣∣X
〉
.

The parton momentum fractions ξ1,2 in (2.73) can be determined by using (2.70) and then (2.61)

with q± = q0 ± q3 (that is, by choosing (nµ±) = (1, 0, 0,∓1)):

ξ1 ≡
p1+

P1+
=

q+

P1+
=
Meη

P1+
, ξ2 ≡

p2−
P2−

=
q−
P2−

=
Me−η

P2−
(2.74)

at the leading order in λ. At the LHC, we are in the center-of-momentum frame of the colliding

protons, so P1+ = P2− =
√
s. Thus,

ξ1 =
√
τ eη , ξ2 =

√
τ e−η with τ ≡ M2

s
. (2.75)

13Except for the collinear anomalies, which take different forms in the collinear and anticollinear sectors. We will

see this in detail in Section 3.2.1.
14The top quark contributions will be included through the gg channel, which we will add separately at the end.

See also footnote 4.

22



As we will elaborate in Section 3.2, the beam functions can be related to PDFs. However, cur-

rently available PDF sets such as those used by ATLAS and CMS experiments do not differentiate

h = ±1. Although quantifying the errors associated to this approximation is beyond the scope of

this paper, we nonetheless expect that the relation B(−1)
f/p = B(+1)

f/p should hold well to the extent that

weak interactions can be neglected inside the proton and in parton evolution. Therefore, instead

of the helicity-dependent beam function (2.71), we use

Bψ/p(ξ, pveto
T , µ, ν) ≡

∑

h=±1

B(h)
ψ/p(ξ, pveto

T , µ, ν)

=
1

2

∑

p spins

1

2π

∫
dt e−itξ(n·P )

∑

X

′〈
p(P )

∣∣χ†iψ(tn)
∣∣X
〉 /n

2

〈
X
∣∣χψi(0)

∣∣p(P )
〉
.

(2.76)

Then, assuming B(−1)
f/p = B(+1)

f/p (which thus equals Bf/p/2), the cross section (2.73) becomes

dσ

dM
=

2(2π)2

4πMs

∫
d3~p3

(2π)3 2E3
dη δ(M2 − 2q‖ ·p3‖)

∑

f

∑

h=±1

C
(h)
f (ξ1P1, ξ2P2, p3+4‖, p3−4, µf)

∣∣∣
p4=q−p3

× 1

Nc

1

2 · 2
[
Bf/p(ξ1, p

veto
T , µf, ν) Bf̄/p(ξ2, p

veto
T , µf, ν) + (f ↔ f̄)

]
,

(2.77)

where f = u, d, s, c, b as before.

2.4 The Dependence on the Jet-Clustering Algorithm

Since our SCET calculation depends crucially on separating modes into collinear and anticollinear

modes, it is necessary that the definition of jets used in the actual experimental studies is consistent

with such separation of modes. We define a distance measure dij in the η-φ space between particles

i and j as

dij ≡ Min
[
(pTi )

2n, (pTj)
2n
]√(∆ηij)2 + (∆φij)2

R
(2.78)

with parameters n and R. We also define a distance measure between particle i and the beam

diB ≡ (pTi )
2n (2.79)

with the same n. The choices n = 1 and n = 0 respectively give the kT algorithm [78] and the

Cambridge/Aachen algorithm [79,80], while n = −1 corresponds to the anti-kT algorithm [81] used

by the relevant ATLAS and CMS studies of WW prediction mentioned in Section 1, with the jet-

radius parameter R taken to be 0.4 by ATLAS and 0.5 by CMS. Starting from the list of all dij ’s

and diB’s, we search for the smallest distance and if it is dij , we replace the particles i and j with

a single, new particle (with a 4-momentum pi + pj), while if it is diB, we declare the particle i a jet

and remove it from the list. We recalculate the distances in the new list and repeat the procedure,

until no particle is left in the list.

Since our factorization formula (2.73) is based on the separation of collinear and anticollinear

modes in SCET, we must make sure that the jet algorithm does not cluster particles of different

modes into a single jet. This is indeed the case as long as | log λ| � R, because the rapidity difference

between a collinear particle and an anticollinear particle is parametrically ∼ log(1/λ)− log λ ∼
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| log λ|. Another potential issue is that, since the jet algorithm introduces a new parameter R to

the theory, the jet-algorithm dependence of the clustering of two or more real gluon emissions can

give rise to logR. Since we are not resumming logR, we must take R ∼ O(1) such that | logR| . 1.

Resummation of logR remains an open problem [42, 46], but for a color-singlet final state with a

jet veto (such as our WW case), it has been shown [46] that the numerical impact of the log2R

terms is small for R ∼ 0.5. We therefore assume that this conclusion holds to all orders in logR,

and take | logR| . 1 and | log λ| � R parametrically.

3 Analytical Calculations

3.1 The Wilson Coefficient

3.1.1 Matching SCET onto SM at µ ∼M

Since the hard coefficient C
(h)
f in the factorized cross-section (2.77) is directly related to the Wilson

coefficient Γµν of the SCET operator (2.45) through (2.47), (2.57), and (2.65), the first step is to

determine Γµν at the hard scale µ = µh ∼ O(M) by integrating out guaranteed-off-shell SM physics

with virtuality of O(M), such as the t-channel quark propagator between the W+ and W− vertices.

Upon matching SCET and SM matrix elements to determine the Wilson coefficient Γµν at

µ = µh, we can evaluate the matrix element of the SCET operator J µν for any convenient states of

our choice as long as their invariant mass is O(M). Let us choose an obvious parton-level process

qq̄ → W+W− without a hadronic state X (i.e., without any real gluon emission), with q and

q̄ having exactly collinear and anticollinear momenta p1 and p2, respectively, with (p1 + p2)2 =

M2. So, we first re-evaluate the matrix element (2.49) with µ = µh between the states
〈
0
∣∣ and∣∣qi(p1) q̄j(p2)

〉
instead of

〈
X
∣∣ and

∣∣p(P1) p(P2)
〉
, where i and j are color indices. Let us denote this

matrix element by Jµνi0 j(x, p1, p2, p3, p4). Then, from (2.56), it is given by

Jµνi0 j(x, p1, p2, p3, p4)

=
〈
0
∣∣χkc̄ (x−, ~x⊥)uc

∣∣q̄j(p2)
〉 〈

0
∣∣uc̄ χck(x

+, ~x⊥)
∣∣qi(p1)

〉
C̃µν(p1+, p2−, p3+4‖, p3−4, µh)

= Zq
〈
0
∣∣χkc̄ (x−, ~x⊥)uc

∣∣q̄j(p2)
〉∣∣

amp

〈
0
∣∣uc̄ χck(x

+, ~x⊥)
∣∣qi(p1)

〉∣∣
amp

C̃µν(p1+, p2−, p3+4‖, p3−4, µh) ,

(3.1)

where C̃µν(p1+, p2−, p3+4‖, p3−4, µh) is given by (2.57) with p1+ and p2− being literally the +

and − components of p1 and p2, respectively, as given by (2.54) with P1,2 = p1,2 and PXc =

PXc̄ = 0. The symbol |amp indicates the amputated matrix element, and Zq is the product of

wavefunction renormalization constants of q and q̄. An example of the amputated diagrams in〈
0
∣∣uc̄ χck(x

+, ~x⊥)
∣∣qi(p1)

〉∣∣
amp

is a 1-loop diagram with a gluon propagator with one end attached

to a vertex from the collinear covariant derivative (2.16) and the other end to a vertex from the

collinear Wilson line (2.20). On the other hand, the SM amplitude for qq̄ →WW is given by

M(h)
SM

i
j(p1, . . . , µh) ≡ Zq δij JµνSM(p1, . . . , µh) ε∗µ(p3, s3) ε∗ν(p4, s4) (3.2)

with an amputated matrix element JµνSM and the product of wavefunction renormalization constants

Zq. This Zq here is the same Zq as that in (3.1), because we can always declare that the 4-momentum

of a single on-shell quark is exactly collinear.
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Now, since the SM is a renormalizable theory and there exists no renormalizable q-q̄-W+-W−

vertex, the SM matrix element ZqJ
µν
SM is actually UV finite. On the other hand, both amputated

SCET matrix elements in (3.1) are UV divergent. Let ZUV be the renormalization constant that

absorbs those UV divergences in the SCET amplitude so that C̃µν has no divergences. The matching

condition is then given by

Zq δ
i
j J

µν
SM(p1, . . . , µh)

= ZUV Zq
〈
0
∣∣χkc̄ (0, 0)uc

∣∣q̄j(p2)
〉∣∣

amp

〈
0
∣∣uc̄ χck(0, 0)

∣∣qi(p1)
〉∣∣

amp

1

M
C̃µν(p1, . . . , µh) ,

(3.3)

where the factor of 1/M is from (2.44). Both SCET and SM amplitudes also have IR divergences,

but they necessarily cancel out in the matching relation above, as the SCET amplitude has the

same analytic structure in the IR as the SM amplitude by construction.

Let us evaluate the matching condition (3.3) in dimensional regularization (DR) with the modi-

fied minimal subtraction scheme (MS). First, since loop integrals in the wavefunction renormaliza-

tion for an on-shell massless fermion do not depend on any scales, they all vanish in DR. We thus

have Zq = 1 exactly. Similarly, all loop integrals in
〈
0
∣∣χc(0, 0)

∣∣q(p1)
〉∣∣

amp
are scaleless for on-shell

p1 and thus vanish. Therefore, in DR, we have

〈
0
∣∣uc̄ χck(0, 0)

∣∣qi(p1)
〉∣∣

amp
=
〈
0
∣∣uc̄ ψck(0, 0)

∣∣qi(p1)
〉

= δik uc̄ up1 , (3.4)

where ψc is the free collinear quark field. The spinor wavefunction up satisfies the Dirac equation

p·σ̄up = 0 and is normalized in the standard way as upu
†
p = p·σ. With this convention, the product

of uc̄ up1 and a similar factor from the anticollinear counterpart is given by

(up2 uc) (uc̄ up1) = M , (3.5)

due to the properties (2.46) and the fact that p1 and p2 are exactly collinear and anticollinear,

respectively. Therefore, in DR, the matching condition (3.3) reduces to a very simple form:

JµνSM(p1, . . . , µh) = ZUV C̃
µν(p1, . . . , µh) . (3.6)

Since the SM amplitude is UV finite as noted above, the 1/ε poles in JµνSM are all associated with IR

divergences of the SM amplitude. In contrast, the 1/ε poles in the renormalization constant ZUV

are by definition all attributed to UV divergences of the SCET amplitude. C̃µν has no UV or IR

divergences as we noted above.

The DR matching relation (3.6) can be directly used to determine the SCET renormalization

constant ZUV from the 1/ε poles of the SM matrix element JµνSM. Let us parametrize M(h)
SM defined

in (3.2) as

M(h)
SM

i
j =M(h)

0 δij +
CF αs(µh)

4π

(
M(h)

1, div +M(h)
1, reg

)
δij +O(α2

s ), (3.7)

where CF ≡ (N2
c − 1)/(2Nc) = 4/3, and M(h)

0 is the tree-level contribution while M(h)
1, div and

M(h)
1, reg are the divergent and regular parts of 1-loop contributions, respectively. The divergent

piece has the form

M(h)
1, div = −

(
4πµ2

h

−M2 − i0+

)ε
Γ(1 + ε)

(
2

ε2
+

3

ε

)
M(h)

0 , (3.8)
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Then, by identifying 1/ε poles of ZUV with those of M(h)
1, div, we find

ZUV = 1− CF αs(µ)

4π
(4πe−γ)ε

(
2

ε2
+

3− 2LM (µ)

ε

)
+O(α2

s ) , (3.9)

where the MS scheme has been used, and

LM (µ) ≡ log
−M2 − i0+

µ2
. (3.10)

Note that we have actually obtained the form of ZUV valid at all µ, not just at the matching

scale µh, even though we determined it from the matching condition. This is because ZUV is a

renormalization constant for UV divergences in the effective theory, which have nothing to do with

where the EFT is superseded by the full theory. In particular, it is valid even when the logarithm

LM (µ) is large, even though the matching calculation itself should be done at a scale µ where

LM (µ) is small. Another notable property of ZUV is that it is independent of the quark’s helicity

h. This can be understood by reinterpreting the 1/ε poles of ZUV as those associated with the

IR divergence of the SM amplitude. For qq̄ → WW , the IR divergent piece only involves QCD

interactions on the initial q and q̄, so it clearly cannot depend on h.

To calculate the Wilson coefficient C̃µν , we multiply Z−1
UV on both sides of (3.7), and then

apply (3.2) and (3.6) on the left-hand side, while using (3.9) on the right-hand side and taking the

ε→ 0 limit. This gives us

C̃µν(p1, . . . , µh) ε∗µ(p3, s3) ε∗ν(p4, s4)

=

[
1− CFαs(µh)

8π

(
2L2

M (µh)− 6LM (µh) +
π2

3

)]
M(h)

0 +
CF αs(µh)

4π
M(h)

1, reg +O(α2
s ) .

(3.11)

Squaring both sides of this relation and summing over the W± polarizations s3 and s4, we find

that the hard coefficient C
(h)
f (defined in (2.65)) is given at the scale µh by

C
(h)
f (p1, . . . , µh) =

∑

s3,s4

[{
1− CF αs(µh)

4π

(
2L2

M (µh)− 6LM (µh) +
π2

3

)}∣∣M(f,h)
0

∣∣2

+
CF αs(µh)

2π
Re
(
M(f,h)∗

0 M(f,h)
1, reg

)
+O(α2

s )

]
,

(3.12)

where we have put the flavor label f back. For the cross section (2.77), we just need to know∑
hC

(h)
f (as opposed to C

(h)
f itself), which can be given in terms of

∑

h

∑

s3,s4

∣∣M(f,h)
0

∣∣2 = cttf F
(0)
f (ŝ, t̂)− ctsf J

(0)
f (ŝ, t̂) + cssf K

(0)
f (ŝ, t̂) ,

∑

h

∑

s3,s4

Re
(
M(f,h)∗

0 M(f,h)
1, reg

)
=

1

2

(
cttf F

(1)
f (ŝ, t̂)− ctsf J

(1)
f (ŝ, t̂) + cssf K

(1)
f (ŝ, t̂)

)
,

(3.13)

where ŝ ≡ (p1 + p2)2 = M2 and t̂ ≡ (p1 − p3)2 are parton-level Mandelstam variables. The

expressions for the coefficients ctt,ts,ssf and the functions F
(0,1)
f , J

(0,1)
f , and K

(0,1)
f can be found in

Ref. [18].
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Finally, let us comment on a subtlety associated with the computation of C
(h)
f for the bb̄ →

W+W− channel. In all of the above calculations for the matching, the massless quark limit is

assumed not only for the initial q and q̄ but also for the t-channel quark propagator. This is not

strictly correct for the bb̄ initial state, for which a massive top quark would be exchanged in the

t-channel. However, we expect that errors from neglecting the top quark mass in the propagator

should be small because the b-quark PDF is small. We have checked using MadGraph aMC@NLO [82]

that this is indeed the case at the LO. Even at the 14-TeV LHC, the errors do not exceed 1%

of the total pp → WW cross section with a K-factor of 1.5. On dimensional grounds, a finite

quark mass mq is expected to affect jet-veto cross sections through the powers and logarithms of

the dimensionless ratio mq/p
veto
T . This issue was investigated thoroughly in [47], which has shown

that the quark mass effects can be treated as power corrections.

3.1.2 RG-evolving the SCET down to µ ∼ pvetoT

The expression of C(h) given in (3.12) is still not ready to be used in the factorized cross sec-

tion (2.77), because it is still evaluated at the hard scale µ = µh ∼M . With the jet veto, the actual

scale of virtuality of can-be-on-shell modes in our process is at most O(pveto
T ), so we must evaluate

the cross section at the factorization scale µ = µf ∼ pveto
T . In other words, modes with virtuality

between µ = µh and µ = µf are guaranteed-off-shell modes in our process and hence must be inte-

grated out from the effective theory. Conceptually, this is done by matching the SCET with scale

µ onto the SCET with scale µ− dµ, which gives rise to RG equations that tell us how coefficients

in the effective lagrangian should change with µ such that physical amplitudes do not depend on

µ. Being a matching calculation, the derivation of RG equations are free of IR divergences. In

particular, the RG evolution of C̃µν arises solely from the associated UV divergences, i.e., ZUV.

So, from the pole structure of ZUV in (3.15), the RG equation for the Wilson coefficient C̃µν

can be directly read off as

µ
d

dµ
C̃µν(p1, . . . , µ) =

(
Γcusp

F LM (µ) + 2γF

)
C̃µν(p1, . . . , µ) . (3.14)

where the cusp anomalous dimension Γcusp
F and the anomalous dimension γF for the quark are

defined via

ZUV = 1− αs(µ)

4π
(4πe−γ)ε

[
Γcusp

F

2

(
1

ε2
− LM (µ)

ε

)
− γF

ε

]
. (3.15)

While we could read off the 1-loop expressions for Γcusp
F and γF from (3.9), we need to know the

combination
(
Γcusp

F LM (µ) + 2γF

)
to O(α2

s ), because we would like to have the solutions of the RG

equation to an O(αs) accuracy. Note that Γcusp
F in (3.14) is multiplied by LM (µ) ∼ log(M/pveto

T )�
1, which should be parametrically counted as O(α−1

s ), because by definition we are regarding

αs log(M/pveto
T ) as an O(1) quantity that must be resummed in our problem. Therefore, in order

for the solutions of (3.14) to be parametrically at an O(αs) accuracy, we must know Γcusp
F and γF

at the 3-loop and 2-loop levels, respectively. The expressions for Γcusp
F and γF at those loop orders

in our notation can be found in Ref. [66].

Starting from the matching scale, µ = µh ∼ O(M), the Wilson coefficient is run down to a final

scale µ ∼ O(pveto
T ). The RG equation (3.14) has an exact analytical solution

C̃µν(p1, . . . , µ) = U(µ, µh) C̃µν(p1, . . . , µh) (3.16)
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where the evolution function U is given by

U(µ, µh) ≡ exp
[
2S(µ, µh)− aΓ(µ, µh)LM (µh)− 2aγ(µ, µh)

]
(3.17)

where

S(µ, ν) ≡ −
αs(µ)∫

αs(ν)

dα

β(α)
Γcusp

F (α)

α∫

αs(ν)

dα′

β(α′)
, aΓ(µ, ν) ≡ −

αs(µ)∫

αs(ν)

dα

β(α)
Γcusp

F (α) (3.18)

with β(αs) being the β-function for the QCD fine structure constant αs. The expression for aγ is

given by that for aΓ with Γcusp
F replaced by γF. Then, from (2.65) and (3.16), we obtain the RG

evolution of the hard coefficient:

C(h)(p1, . . . , µ) =
∣∣U(µ, µh)

∣∣2C(h)(p1, . . . , µh) . (3.19)

Note that the evolution function U is independent of h, because the RG equation (3.14) directly

derives from an h independent function ZUV.

3.2 The Beam Functions

As we noted earlier, the beam function (2.76) would exactly coincide in the pveto
T → ∞ limit with

the PDF:

φψ/p(ξ, µ) =
1

2

∑

p spins

1

2π

∫
dt e−itξ(n·P )

∑

X

〈
p(P )

∣∣χ†iψ(tn)
∣∣X
〉 /n

2

〈
X
∣∣χψi(0)

∣∣p(P )
〉
, (3.20)

where
∑

X goes over all X, without any jet-veto constraints. Notice that the dependence on the

scale ν is absent in the PDF, because without a jet veto there is nothing in (3.20) that would

require a cutoff in the rapidity space, so there are no rapidity divergences.

To relate the beam function to PDFs, note that the PDF φψ/p(ξ, µ) can be thought of a (spin-

averaged) matrix element of the operator

φ̂ψ(ξ, µ) =
1

2π

∫
dt e−itξ(n·P )

∑

X

χ†iψ(tn)
∣∣X
〉 /n

2

〈
X
∣∣χψi(0) . (3.21)

Similarly, the beam function can be thought of a matrix element of an operator B̂ψ that is given by

the right-hand side of (3.21) with
∑

X replaced by
∑′

X . Assuming that the set of quark, antiquark,

and gluon PDF operators (φ̂q, φ̂q̄, and φ̂g) form a complete set, we can perform an operator product

expansion (OPE) on B̂q to express it in terms of a linear combination of φ̂i(ξ, µ), where the operator

φ̂ is labelled by a discrete label i = q, q̄, g as well as a continuous label ξ. Taking the matrix element

of this OPE between
〈
p(P )

∣∣ and
∣∣p(P )

〉
, we obtain an expression of the beam function in terms of

PDFs:

Bq/p(ξ, pveto
T , µ, ν) =

∑

i=q, q̄, g

∫ 1

ξ

dz

z
Iq←i(z, pveto

T , µ, ν)φi/p(ξ/z, µ) , (3.22)

where the kernel Iq←i(z, pveto
T , µ, ν) is the OPE coefficient of the operator φ̂ with labels i and ξ/z.

The z integral is bounded from below by ξ, in accord with the fact that when the parton i splits

into the parton q and another parton, each parton has positive energy.
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3.2.1 Cancellations of Rapidity Divergences and Collinear Anomalies

As discussed in Section 2.1.3, the beam functions have rapidity divergences that arise from artifi-

cially separating collinear and anticollinear modes for the purpose of well-defined power counting.

The divergences in the beam functions arise from the dp+ and dp− integrations implicit in
∑

Xc

and
∑

Xc̄
, respectively, in the factorized cross section (2.68). We employ analytical regularization

to regulate rapidity divergences, which amounts to modifying the integration measure dp+ in
∑

Xc

as ∫
dp+

p+
=⇒

∫
dp+

p+

(
ν

p+

)α
, (3.23)

and similarly the measure dp− in
∑

Xc̄
as

∫
dp−
p−

=⇒
∫

dp−
p−

(
ν

p+

)α
. (3.24)

Note that the + ↔ − exchange symmetry is now broken. We have written the measures in

dimensionless combinations dp±/p± to highlight a feature of analytic regularization that it only

gives logarithmic divergences like DR. We could now go back to the expression (2.59) where
∑

X

first appeared, and verify that all the steps from there to here are unmodified by insertions of the

analytic regulators (3.23) and (3.24).

Now, let Z be the renormalization constant to cancel the 1/α poles in the product of the beam

OPE coefficients Iq←i Iq̄←j inside the product of beam functions Bq Bq̄, so that the α→ 0 limit can

be taken in Z Iq←i Iq̄←j .15 However, each of Z, If←i, and If̄←j now depends on ν. Nevertheless,

the ν dependence must cancel out in the product Z Iq←i Iq̄←j so that physical observables such as

the cross section (2.77) must be independent of the artificial scale ν. To derive the implications of the

ν independence, notice that the ν dependences in Iq←i and Iq̄←j are only through the combinations

log(ν/M) and log(Mν/µ2), respectively, where the former directly follows from (3.23). The latter

can be understood from (3.24) as well as with the fact that p+ ∼ [λ(µ)]2p− in the anticollinear sector,

where λ(µ) ∼ µ/M parametrizes the scale of virtuality just like λ but at an arbitrary intermediate

scale µ rather than the final scale ∼ pveto
T . The ν dependence of Z then can be deduced from the

fact that at the 1-loop level we get the sum of log(ν/M) and log(Mν/µ2), hence log(ν/µ), and

this ν dependence can be cancelled only if Z is also a function of log(ν/µ). Therefore, to analyze

the consequences of ν-independence to all orders, we consider the product of three functions of the

form

P ≡ Z
(
pveto

T , p̄veto
T , µ, log(ν/µ)

)
Iq
(
pveto

T , µ, log(νM/µ2)
)
Iq̄
(
p̄veto

T , µ, log(ν/M)
)
, (3.25)

15As we alluded in footnote 8, if we had introduced soft gluon modes ∼ (λ, λ, λ)M in our theory, the renormalization

constant Z would be replaced by the soft function

S(pveto
T , µ, ν) ≡ 1

Nc

′∑
Xs

〈
0
∣∣[Wc(0)W †c̄ (0)] ij

∣∣Xs

〉 〈
Xs

∣∣[Wc̄(0)W †c (0)] ji
∣∣0〉 ,

where
∣∣Xs

〉
is a hadronic state composed of soft modes only [37,38]. Then, a renormalization constant would not be

necessary, as the soft function would cancel the 1/α poles from the beam functions. However, since this is the only

place that soft gluons would ever enter in the calculation, we could as well call S a renormalization constant Z for

the rapidity divergences in the product BqBq̄.
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where the ξ arguments and i/j labels in Iq←i and Iq̄←j have been suppressed as they are irrelevant

for the discussions here. Most importantly, their ν arguments have been replaced by the specific

forms mentioned above. We have also recalled that the scale pveto
T could be chosen differently in

the collinear and anticollinear sectors, and have let the former be pveto
T and the latter p̄veto

T .

The above functional form of P is identical to the function P that appears in the analysis of

collinear anomaly in gg → h with a jet veto [41] except for the trivial replacement of the adjoint

representation with the fundamental representation of SU(3)C. Hence, following Ref. [41], the

solution of a set of RG equations expressing the ν independence of P can be written for p̄veto
T = pveto

T

as
Iq←i(z1, p

veto
T , µ, ν) Iq←j(z2, p

veto
T , µ, ν)

=

(
M

pveto
T

)−2Fqq̄(pveto
T ,µ)

Iq←i(z1, p
veto
T , µ) Iq←j(z2, p

veto
T , µ) ,

(3.26)

where it is now explicit in the right-hand side that there is no longer dependence on ν. As we

are aiming at the O(αs) accuracy, it suffices to have the expression for Iq←i(z, p
veto
T , µ) at the 1-

loop level, which can be found in Ref. [66]. On the other hand, like Γcusp
F and γF discussed in

Section 3.1.2, we must know Fqq̄(p
veto
T , µ) at the 2-loop level to achieve a parametrically O(αs)

accuracy. The 2-loop result can be written as

Fqq̄(p
veto
T , µ) =

αs

4π
ΓF

0L⊥ +
(αs

4π

)2
[
ΓF

0β0
L2
⊥
2

+ ΓF
1L⊥ + dveto

2 (R)

]
, (3.27)

where L⊥ ≡ log[µ2/(pveto
T )2] and β0 is the 1-loop QCD β function. The expressions for the coef-

ficients ΓF
0,1 can be found in Ref. [66], which itself is a translation of the results of [83] into our

notation. The expression for dveto
2 (R) can be found in Refs. [40, 43, 44]. Note the dependence of

Fqq̄ on the jet-radius parameter R at the 2-loop level due to the fact that the clustering of two real

emissions necessarily depends on the jet algorithm discussed in Section 2.4.

3.2.2 RG Evolution of the Beam Functions

Having removed the ν dependence from Iq←i Iq̄←j inside the product of beam functions Bq Bq̄, we

are now left with the standard RG evolution of Iq←i Iq←j with respect to µ, which should run from

µ = µh ∼M down to µ = µf ∼ pveto
T . The relevant RG equations can be translated from Ref. [41],

which read

µ
d

dµ
Fqq̄(p

veto
T , µ) = 2Γcusp

F ,

µ
d

dµ
Iq←i(z, p

veto
T , µ) =

(
Γcusp

F L⊥ − 2γF

)
Iq←i(z, p

veto
T , µ)

−
∑

j

∫ 1

z

du

u
Iq←j(u, p

veto
T , µ)Pj←i(z/u, u) ,

(3.28)

where Pj←i is the DGLAP splitting function defined through the standard RG equation for the

PDFs:

µ
d

dµ
φi/p(z, µ) =

∑

j

∫ 1

z

du

u
Pi←j(z/u, u)φj/p(u, µ) . (3.29)

Again, the 2-loop expression of Γcusp
F must be used in (3.28) to achieve a parametrically O(αs)

accuracy.
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Figure 2: The NLL and NNLL jet-veto cross-sections for the process, pp→ W+W− for (a) the 7-

TeV and (b) the 8-TeV LHC runs. (c) is the same as (b) except that it is without π2 resummation,

i.e., it is evaluated with µ2
h > 0 as opposed to µ2

h < 0. The shaded regions in all the plots indicate

the scale uncertainties.

4 Results and Discussions

4.1 Analytical NLL and NNLL Resummed Jet-Veto Cross-sections

In this section, we present the jet-veto resummation results for the process pp → W+W− at the

LHC. We choose anti-kT algorithm for jet-clustering with jet parameter, R = 0.4. All cross-sections

are evaluated using MSTW2008nnlo PDFs unless otherwise specified. The choice of αs(MZ) is set

by the PDF itself. All calculations are performed in the massless quark limit, so the CKM matrix

is irrelevant and ignored in our analyses, as we have already commented on in Section 2.3.3. We

will present our resummed cross sections for both O(α0
s ) (“NLL”) and O(α1

s ) (“NNLL”), where the

large logarithm log
[
M2/(pveto

T )2
]

is counted as O(1/αs) in the αs power counting.

Let us first comment on the evaluation of the Wilson coefficient C
(h)
f in (3.12) at the hard

scale µh. As one can see in (3.12), we encounter logarithms of the form log
[
(−M2 − i0+)/µ2

h

]
. To

minimize those logarithms, an obvious choice for the matching scale may be µ2
h ∼ M2. However,

due to the presence of a branch cut, additional factors of π2 arise when the logarithms are squared.

As suggested in [34–36], a better choice for the matching scale is µ2
h ∼ −(M2 +i0+) < 0 so that the

π2 terms are also resummed via RG evolution. To relate the QCD coupling constants at positive

and negative values of µ2, we use the following relation [84]:

αs(µ
2)

αs(−µ2)
= 1− ia(µ2) +

β1

β0

αs(µ
2)

4π
log[1− ia(µ2)] +O(α2

s ) (4.1)

where a(µ2) ≡ β0αs(µ
2)/4. We then evolve C

(h)
f using (3.19) down to the factorization scale

µ2
f ∼ +(pveto

T )2 > 0, and substitute it into the cross section formula (2.77).

The resummed NLL and NNLL jet-veto cross-section for the pp→W+W− as a function of pveto
T

are shown in Fig. 2a and Fig. 2b for
√
s = 7 and 8 TeV, respectively, in the 5-flavor number scheme.

The error bands are obtained by separately varying the hard scale µh and the factorization scale

µf by factors of 1/2 and 2, and adding the uncertainties from those two variations in quadrature.
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Figure 3: Same as Fig. 2 but for differential jet-veto cross-sections with respect to the W+W−

invariant mass.

The uncertainty from the hard-scale variation is generally found to be small (∼ 1% of the total

cross section) for NNLL cross-sections. In these plots, we have not included the contribution from

gg → W+W−, which is not only in higher order in αs but also irrelevant for resummation as the

leading contribution is already at 1-loop so it always (and trivially) passes the jet veto at the 1-loop

level.

In both Fig. 2a and Fig. 2b, the cross sections are evaluated for µ2
h ∼ −M2 as discussed above.

For comparison, in Fig. 2c, the jet-veto cross-section for
√
s = 8 TeV is evaluated using µ2

h ∼ +M2

so that π2 terms are not resummed. Indeed, we observe that the consistency of the NLL and

NNLL results is poorer compared to Fig. 2b. The impact of π2 resummation is most significant for

M . 250 GeV, while for larger M , the enhancement from the π2 terms is partially cancelled by

powers of logM/pveto
T , because in the square of log[(−M2 − i0+)/(pveto

T )2] = log[M2/(pveto
T )2]− iπ,

the logarithm and π2 term come in the opposite signs.

The differential cross-section with respect to the invariant mass of the W -boson pair at NLL and

NNLL are shown in Fig. 3a and Fig. 3b for
√
s = 7-TeV and 8-TeV LHC runs using 5-flavor number

scheme, but ignoring gg-initiated contributions as discussed above. The error bands from the scale

uncertainties are obtained by exactly the same procedure as above. We have fixed pveto
T = 25 GeV

in these plots. In Fig. 3c, the differential cross-section is evaluated with µ2
h > 0 as in Fig. 2c. Again,

we see a poor convergence due to the absence of π2 resummation.

4.2 Power Corrections

Our SCET is a power expansion in λ ≡ pveto
T /M and we have only considered leading-order terms,

i.e., O(λ0), so that λ only appears as log λ. Namely, the hard coefficient matched as in (3.12) at

µ = µh has no λ dependence as we are working at O(λ0), and the log λ dependence is introduced

solely via the RG evolution (3.19) down to µ = µf. In this section, we study the effect of power

corrections, i.e., the impact of O(λ) terms. For that purpose, the standard terminology of adding

“N”s in front of “LO” or “LL” can be confusing, as the theory is a dual expansion in αs and λ. We

therefore use the notation (p, q) to refer to O(αpsλq), counting the large logarithm log λ as (−1, 0).

In particular, the resummed NLL and NNLL calculations discussed in Section 4.1 are (0, 0) and

(1, 0), respectively. The purpose of this section is to improve those results to (0, 0) + (1, 1) and

(1, 0)+(1, 1), respectively, by incorporating the power corrections from what is normally referred to
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as an fixed-order NLO, but without redoing the whole SCET calculation by including λ-suppressed

operators.

To include the power corrections, we first define the reduced (p, 0) differential cross section

dσ̃/dM |(p,0) to be our (p, 0) calculation dσ/dM |(p,0) with the RG evolution (3.19) undone, so that

it no longer contains logarithms of the form lognλ. A simple, practical way to undo the RG evolution

can be given by

dσ̃(µf)

dM

∣∣∣∣
(p,0)

=

∑
C0∑

C(p,0)(µf)

dσ(µf)

dM

∣∣∣∣
(p,0)

, (4.2)

where C0 and C(p,0) are respectively the tree-level and resummed (p, 0) hard coefficients C(h), where

the latter is matched as in (3.12) and then run down to µf using (3.19) (with Γcusp
F and γF calculated

at the p + 2-loop and p + 1-loop levels, respectively). As noted above, we consider the p = 0 and

p = 1 cases. The
∑

symbol in front of C0 and C(p,0) denotes summation over quark helicities as

well as integration over the angular orientation of W+W− in the WW center-of-momentum frame.

The ratio
∑
C0/

∑
C(p,0) removes the RG running between µh and µf as well as the dependence

on µh. However, the reduced cross section still has a residual dependence on µf through the µf

dependence of the beam functions.

We then add power corrections to the reduced differential cross section, the result of which is

called the matched reduced differential cross section:

dσ̃(µf)

dM

∣∣∣∣
(p,0)+(1,1)

≡ dσ̃(µf)

dM

∣∣∣∣
(p,0)

+
d∆σ̃p(µf)

dM

∣∣∣∣
(1,1)

, (4.3)

where the second term in the right-hand side denotes the power corrections of order (1,1) at the

level of reduced cross sections. This reduced power correction can be calculated as

d∆σ̃p(µf)

dM

∣∣∣∣
(1,1)

=
dσ̃NLO(µf)

dM
− dσ̃(µf)

dM

∣∣∣∣
(p,0) expanded to O(αs)

, (4.4)

where σ̃NLO(µf) is the reduced fixed-order NLO calculation given by

dσ̃NLO(µf)

dM
≡

∑
C0∑

C(1,0)(µf)

∣∣∣∣
expanded to O(αs)

dσNLO(µf)

dM
, (4.5)

so that there is no longer logarithms of the form lognλ. “Expanded to O(αs)” in (4.4) and (4.5)

means literally expanding it toO(αs) without counting the log λ as 1/αs. We use MadGraph5 aMC@NLO

[82] to calculate σNLO for the up-type and down-type quark channels separately. This separation is

essential because the hard coefficient C(h) is different for up and down-type quark channels. We do

not include the bb̄ channel for computing power corrections, as the MadGraph5 aMC@NLO program

does not allow inclusion of b-quarks in the initial state. However, given that the b quark contribu-

tion is already very small due to the small b PDF, the exclusion of b-quarks in the initial states

should be inconsequential for the study of power corrections.

Another subtlety is the contribution from the qg channel (and q̄g). There are two types of

diagrams in the qg channel, depending on whether or not the diagram can be reinterpreted as

the initial g splitting into a nearly on-shell q and q̄, and this q̄ subsequently annihilating with the

initial q to produce WW . The diagrams that permit this interpretation are included in our SCET
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Figure 4: Differential reduced cross-sections as a function of WW invariant mass at
√
s = 7 TeV

shown in Fig. (a) and at
√
s = 8 TeV in Figs (b) and (c). In Fig. (a), contributions from all quark

channels (except b) in the initial state are included, while Figs. (b) and (c) include contributions

from up-type and down-type channels only, respectively. In all the plots, σNLO and the reduced

O(αs)-expanded (1, 0) cross-sections are shown by solid and dashed lines, respectively.

calculation as the beam functions include the contributions from gluon splitting as can be seen

in (3.22). On the other hand, those that do not admit the gluon splitting interpretation are not

included in our SCET calculation. To include them, we would have to add new operators to Lint

that consists of three (anti)collinear sectors corresponding to, e.g., the initial collinear q, the initial

anticollinear g, and the final collinear q. In principle, we must distinguish power corrections to those

new operators from the corrections to our SCET operator (2.45). However, in qg →WWq, it is very

difficult for the final state q to pass the jet veto, as its pT is generically O(M), so the contributions

from the qg channel to the jet-veto cross section is highly suppressed. Since the purpose of this

section is to show that the power corrections are tiny, we just let the qg contribution contaminate

our calculation of power corrections to the qq̄ SCET operator and will verify that the whole power

corrections are small.

In Fig. 4, the differential reduced cross-sections are shown for pveto
T = 25 GeV for three scale

choices, µf = pveto
T , pveto

T /2, and 2pveto
T , to study the effects of residual scale dependences on µf.

In Fig. 4a, all quark channels except b and t are included for the 7-TeV LHC, while in Fig. 4b

and Fig. 4c, we have shown the contribution of up-type and down-type channels separately for the

8-TeV LHC. In all the three plots, the first and second terms of the right-hand side of (4.4) are

shown for p = 1 in solid lines and dashed lines, respectively. The differences between the solid

and dashed curves are, therefore, the reduced power corrections d∆σ̃1/dM |(1,1), and they seem to

vanish for large values of M . This behavior is expected, since the power corrections ∼ O(pveto
T /M)

must be suppressed in this regime. Even near the W -pair threshold, the power corrections to the

reduced cross-section are small.

As can be seen in Fig. 4, there are still significant residual scale dependences even though we

have removed the large logarithmic corrections of the form ∼ logn λ. They are due to the scale

dependences in the beam functions, which inherit the scale dependences of αs(µ) and the PDFs.

It is worth pointing out that the large scale dependences we observe in Fig. 4 can be viewed as

another piece of evidence that the apparent small scale dependence in the fixed-order calculation

depicted in Fig. 1b is due to accidental cancellations and significantly underestimates the true scale
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Figure 5: (a) The fully matched (0, 0) + (1, 1) (“NLL+NLO’) and (1, 0) + (1, 1) (“NNLL+NLO”)

jet-veto cross sections for the 7-TeV LHC run, using consistent power counting. (b) The same

as (a) for the 8-TeV LHC run. (c) For the purpose of seeing the effects of collinear anomalies,

the matched jet-veto cross-sections are obtained for the 8-TeV LHC using the inconsistent power

counting described in the text.

uncertainty.

The final, matched jet-veto cross-section is recovered by inverting back the relation (4.2), i.e.,

multiplying the matched reduced cross-section obtained above by a factor of
∑
C(p,0)/

∑
C0. In

Fig. 5a and Fig. 5b, the final, matched (0, 0)+(1, 1) (“NLL+NLO’) and (1, 0)+(1, 1) (“NNLL+NLO”)

cross sections are shown for the 7-TeV and 8-TeV LHC runs, respectively, with respect to pveto
T (still

not including the gg channel). The error bands reflect scale uncertainties from varying the hard

scale µh and the factorization scale µf as before, but it should be noted that the µh and µf variables

appearing in the calculations of power corrections (4.2) – (4.4) must be consistently varied.

It is interesting to note that the difference between the matched NLL+NLO and NNLL+NLO

results are largely due to the collinear anomaly. To see this, we employ an inconsistent power

counting upon inverting back the relation (4.2) in the final step, where we use the same C(1,0) for

both NLL+NLO and NNLL+NLO cases. The results are shown in Fig. 5c for the 8-TeV LHC runs.

The fact that O(α2
s) terms can lead to a ∼ 20% difference in the cross-section for pveto

T ∼ 25 GeV

may be surprising. The reason for such a dramatic increase is the presence of large logR terms in

the coefficient dveto
2 (see Ref. [44]) inside the Fqq̄ function (3.27) of the collinear anomaly. However,

as discussed in Section 2.4, it is reasonable to assume that the numerical impact of higher-order

terms in logR for R ∼ 0.5 are small and this drastic change is thus actually under control.

We conclude this section by noting that the power corrections are generally found to be small,

decreasing the unmatched NNLL (i.e., (1,0) without adding (1,1)) cross sections presented in Sec-

tion 4.1 by no more than a mere ∼ 2%.
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Figure 6: Comparison of our NNLL+NLO resummed jet-veto cross-sections with and without π2

resummation (in blue and green, respectively), with the fixed order NLO results obtained from

MCFM (in red) for the (a) 7-TeV LHC and (b) 8-TeV LHC runs, with jet-radius parameter, R = 0.4.

In figure (c), the same comparison is shown for the 8-TeV LHC run with R = 0.5.

4.3 Comparison with Fixed-order NLO and Monte Carlo + Parton Shower

Generators

First, in Fig. 6, we compare our matched NNLL+NLO prediction (in blue) with the fixed-order NLO

jet-veto cross-sections (in red) obtained from MCFM. The scale uncertainties in the NLO calculation

are calculated using the procedure outlined in Section 1. To gauge the effects of π2 resummation,

we have also presented our NNLL+NLO results for µ2
h > 0 (in green). With or without π2 resum-

mation, the reduction of scale uncertainties due to the resummation of the logarithms is evident.

As we already noted in Section 4.1, the π2 effects tend to cancel with the logarithms as the latter

get larger (i.e., towards lower pveto
T ).

Since the ATLAS and CMS collaborations have used the Monte Carlo (MC) and Parton Shower

(PS) generators to estimate the jet-veto efficiencies in their W+W− cross-section measurement

analyses, we would like to make comparisons with our analytical NNLL+NLO results by employing

three sets of MC and PS generators for the process qq̄ →W+W−:

• MG+PY : The WW+0/1/2 jet parton-level matched samples were generated using the LO mode

of MadGraph5 aMC@NLO [82] followed by showering using the Pythia6 PS generator [85]. The

matching is performed based on the default kT -jet MLM scheme used in MadGraph5 aMC@NLO.

• MC@NLO+HW : The parton level events were generated using the NLO MC generator, MC@NLO [86]

and showered by the Herwig6 PS generator [87]. Matching is automatically performed by the

MC@NLO program.

• POWHEG+PY : The parton level events were generated using the POWHEG NLO MC generator

[88–91] interfaced with Pythia6 for parton showering. Matching is automatically performed

by the POWHEG program.

The MC samples were generated using CTEQ6L (CT10nlo) PDFs for the LO (NLO) MC genera-

tors. In each case, the total number of events are normalized to the NLO cross-section obtained us-
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Figure 7: Comparison of our NNLL+NLO resummed jet-veto cross-sections with the MC samples

generated using MadGraph5 followed by showering with Pythia6 parton-shower generator, with the

total cross-section normalized to the inclusive NLO cross-section obtained from MCFM for the (a)

7-TeV and (b) 8-TeV LHC runs. In figure (c), the jet-veto efficiencies from our analytical results

are compared with that from MC samples at the 8-TeV LHC run.

ing MCFM. For a fair comparison with our resummed theory predictions and to disentangle the effects

of different choices of PDFs and αs to the overall normalization, we consistently use MSTW2008nnlo

PDFs for the MCFM calculation of the inclusive cross-section with αs set by the PDF itself. In the

next step, we performed jet-clustering on the samples using the FastJet program [92,93] employ-

ing the anti-kT algorithm with jet-radius parameter, R = 0.4. Given that the contribution from

gg → W+W− is formally NNLO, the jet-veto efficiency can be obtained to a good approximation

as follows:

εveto =
σveto
qq̄ + σgg

σqq̄ + σgg
=
εveto
qq̄ σqq̄ + σgg

σqq̄ + σgg
(4.6)

For our resummed calculations, we obtain the jet-veto efficiencies directly from the first expression

in (4.6), since the jet-veto cross-section σveto
qq̄ for the qq̄ channel has already been calculated. The

inclusive contribution σgg from the gg channel is obtained by running the MCFM program. While the

scale uncertainties in the jet-veto cross-sections may partially cancel the scale uncertainties in the

inclusive cross-section, we make conservative estimates of the uncertainties by using the full scale

uncertainty of the jet-veto cross-section while using the central value for the inclusive cross-section.

The scale uncertainties associated with the gg channel, while significant in isolation, are expected

to be sub-percent level relative to the total cross-section and therefore neglected.

For the MC+PS generators, on the other hand, we use the second expression in (4.6), where

the inclusive cross-sections in all the channels are obtained from MCFM while the jet-veto efficiency

εveto
qq̄ for the qq̄ channel are estimated using the respective MC+PS samples. As such, there is no

well defined procedure to estimate the scale uncertainties in this case. However, as discussed in

Section 1, to a good approximation, the uncertainties in σ(njet ≥ 0) and σ(njet ≥ 1) are expected

to be uncorrelated, as their perturbative expansion start at different orders in αs. Therefore, as a

reasonable estimate, we vary the renormalization and factorization scales in the inclusive W+W−
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Figure 8: Same as Fig. 7 but with MC samples generated using MC@NLO interfaced with HERWIG6

for parton-showering.
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Figure 9: Same as Fig. 7 but with MC samples generated using POWHEG interfaced with Pythia6

for parton-showering.

production and W+W−+ jet production and add the scale uncertainties from the two processes in

quadrature to obtain the total scale uncertainty.

In Fig. 7, Fig. 8 and Fig. 9, we have compared our analytical resummed cross-section and jet-

veto efficiency with those obtained from the different MC+PS samples discussed above. We have

checked that different choices of PDF sets or variation between different eigen-directions within a

given PDF set do not affect the jet-veto efficiencies significantly, except when comparing LO PDFs

to NLO PDFs, for which differences of ∼ 3% can arise. We have also found that the underlying

events in showering generators have negligible impact on the efficiencies, and have checked that

hadronization effects on the efficiency are . 1% for pveto
T & 15 GeV. Finally, in Fig. 10, we

compare the same MC+PS predictions (in red) with the analytical NNLL+NLO prediction without

π2 resummation (in green). These figures should be compared with Fig. 7b, Fig. 8b, and Fig. 9b,

for which π2 resummation is included.

To conclude, we observe that MG+PY generator tend to produce softer jets compared to POWHEG+PY
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Figure 10: Comparison of our NNLL+NLO resummed jet-veto cross-sections without π2 resumma-

tion at the 8-TeV LHC with those from (a) MG+PY, (b) MC@NLO+HW, and (c) POWHEG+PY.

generator which have a much harder jet pT spectrum. The MC+PS predictions in general under-

estimate the jet-veto cross-sections compared to our best resummed calculations with both the

logarithms and π2 terms resummed, where the difference is most significant ∼ 11% for the POWHEG

samples in the region pveto
T & 20 GeV. Moreover, our NNLL+NLO results significantly reduce the

scale uncertainties by almost a factor of 2.

4.4 Comparison with Experimental Results

Even though both ATLAS and CMS experiments present their measurements as the inclusive

pp → W+W− cross section, we have seen that the jet-veto efficiencies they use to extrapolate

from the measured jet-veto cross sections to the quoted inclusive cross sections suffer from the

large logarithms that are not properly resummed by the MC+PS generators. Since both what

they actually measured and what we calculated from SCET are the jet-veto cross section, not the

inclusive cross section, we first must undo the jet-veto efficiencies from the inclusive cross sections

quoted by the ATLAS and CMS collaborations:

σveto
WW = σWW × εveto

WW . (4.7)

To estimate the jet-veto efficiency in W+W− production, both ATLAS and CMS experiments

rely on MC+PS simulations (will simply be referred to as “MC” from now on), with a data-to-

MC correction factor measured from Drell-Yan process in the Z peak region, so that the jet-veto

efficiency is obtained as

εveto
WW =

εZ

εMC
Z

× εMC
WW . (4.8)

The reasoning behind multiplying such a scaling factor is that the experimental systematic uncer-

tainties cancel out when the ratio of two MC efficiencies are considered. Throughout this discussion,

we will assume this scaling factor to be 1, as indicated by both ATLAS [3] and CMS [4] experiments.

The total inclusive cross-section is then estimated as

σWW =
N obs −N bkg

εveto
WW ×AWW

, (4.9)
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where N obs and N bkg are the observed and estimated background number of events, respectively,

and AWW include all the acceptances and efficiencies other than the jet-veto efficiency.

The ATLAS collaboration uses MC@NLO interfaced with Herwig6 for their MC samples at
√
s =

7 TeV [1], while Powheg interfaced with Pythia6 are used to generate MC samples at
√
s = 8 TeV [3].

In both cases, the CT10nlo PDFs are used and the jets are clustered using anti-kT algorithm with jet

radius parameter R = 0.4. The CMS collaboration, on the other hand, states that “qq̄ →W+W−”

samples were generated using LO generator MadGraph5 interfaced with Pythia6 for showering for

both 7-TeV and 8-TeV runs [2, 4]. The choice of PDFs in their analysis is CTEQ6L LO PDFs, and

the anti-kT jet clustering algorithm with R = 0.5 is used. Assuming CMS uses matched samples

in their analysis, we generated pp → W+W− + 0/1/2 parton samples matched in MadGraph5 and

showered in Pythia6, using the default kT-jet MLM matching scheme. As a final step towards

undoing the jet-veto efficiency from the experimental results, we remove the jet-veto uncertainties,

which were provided by both ATLAS and CMS as part of their systematic uncertainties. The

remaining systematic uncertainties in both experiments are mostly dominated by the experimental

uncertainties.

In Table 2, we have shown a comparison of our resummed theory predictions for jet-veto cross-

section with those measured by the ATLAS and CMS experiments at
√
s = 7 and 8TeV LHC runs.

The experimental veto cross-sections were obtained by removing the jet-veto efficiency factors from

their reported inclusive cross-sections while simultaneously removing the jet-veto uncertainties from

their respective systematic uncertainties, as explained above. The errors for the theory results

represent the scale uncertainties while the PDF uncertainties are estimated to be ∼ 2%. The errors

in the experimental cross-sections are the scale, systematic (excluding the jet-veto uncertainty)

and luminosity uncertainties in that order. On the right-hand-side column of Table 2, we give a

visual presentation of the error bars, with the thick lines for theory (experiment) representing the

scale (systematic) uncertainties while the thin lines represent the total error in both the cases. The

jet-veto cross-sections from the Higgs production [41, 43, 44] are also shown in the table, but we

refrain from adding them to our theory prediction since one of the W in Higgs decays is off-shell

leading to softer leptons in general, which may not have the same acceptance as those from the

on-shell W decays. Excluding the Higgs contribution, our resummed theory predictions for jet-veto

cross-sections are in excellent agreement with experiments at
√
s = 7 TeV for both ATLAS and

CMS. At
√
s = 8 TeV, a slight discrepancy of ∼ 1σ is present for the CMS experiment, while the

ATLAS result is compatible with our prediction with a discrepancy < 1σ. We conclude this section

by making a few remarks:

• While our resummed calculations for the WW jet-veto cross-section as well as estimates of the

scale uncertainties are extremely robust, our reinterpretation of the experimental results to

obtain the jet-veto cross-sections may not be. In particular, both ATLAS and CMS collabora-

tions use specific tunes for PS generators, while we have used the default tunes that come with

the packages. Reproducing those tunes, however, is beyond the scope of this work. It would

be beneficial to both theoretical and experimental communities if the jet-veto cross-sections

were directly presented by the collaborations.
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√
s = 7 TeV

R = 0.4 R = 0.5

pveto
T = 25 GeV pveto

T = 30 GeV

ATLAS

σveto
WW [pb]

37.9+3.8%+5.0%+3.8%
−3.8%−5.0%−3.8% −

CMS

σveto
WW [pb]

− 41.5+3.8%+7.2%+2.3%
−3.8%−7.2%−2.3%

Theory

σveto
WW [pb]

37.6+4.2%
−3.4% 39.1+2.8%

−2.5%

Theory
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h→WW [pb]
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CMS
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WW [pb]
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Table 2: Comparison of our theory predictions for jet-veto cross-section with those measured by the

ATLAS and CMS experiments at
√
s = 7- and 8-TeV LHC runs. The Higgs jet-veto cross-sections

are taken from [43]. As in the rest of the paper, the scale uncertainties in the theory predictions

here correspond to the standard convention of varying µh and µf by a factor of 2 above and below

M and pveto
T , respectively. It should be noted that they may be somewhat smaller than the theory

uncertainties estimated from comparing the NLL to NNLL calculations in Fig. 5a and Fig. 5b.
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• Although the leptons from the Higgs decay h → WW ∗ → 2`2ν are expected to be softer

compared to those from on-shell W -pair production, there would be some contamination from

this channel. It is conceivable that Higgs decays could lead to a further increase by ∼ 1 – 2

pb in the theory prediction.

• The gg →WW process without involving the higgs, which are considered at the LO without

resummation in our work, is estimated to be ∼ 3% at
√
s ∼ 8 TeV. The NLO contributions

to this channel can further influence the theory prediction and needs to be studied.

• Finally and possibly most importantly, we would like to point out that some of the background

processes to W pair production may also have been incorrectly estimated from the MC+PS

simulations in the 0-jet bin. This applies to many di-boson backgrounds that are purely

estimated from fixed-order MC, but also some of the data-driven methods such as tt̄ and tW ,

which too rely on MC partially. This may be particularly important for the slight discrepancy

between our calculation and the 8-TeV CMS measurement.

A more detailed study of WW differential cross-sections with the inclusion of W leptonic decays16

in the zero-jet bin will be presented in a future publication and a public code will be made available

shortly. A similar study for 13- and 14-TeV LHC runs will be also presented in our future work.

Acknowledgement

We would like to thank David Curtin, Sally Dawson, Marat Freytsis, Ian Lewis, Seth Quackenbush,

Gavin Salam, Nobuo Sato, Ding Yu Shao, Martin Schmaltz, Frank Tackmann and Jonathan Walsh

for discussions and/or comments on the manuscript. We would also like to thank MadGraph team

for answering our queries regarding the MadGraph aMC@NLO package. This work was supported by

the US Department of Energy under grant DE-FG02-13ER41942, and also in part by the National

Science Foundation under Grant No. PHY-1066293 and the hospitality of the Aspen Center of

Physics.

References

[1] ATLAS Collaboration Collaboration, G. Aad et. al., Measurement of W+W− production

in pp collisions at
√
s=7 TeV with the ATLAS detector and limits on anomalous WWZ and

WWγ couplings, Phys.Rev. D87 (2013), no. 11 112001, [arXiv:1210.2979].

[2] CMS Collaboration Collaboration, S. Chatrchyan et. al., Measurement of the W+W−

Cross section in pp Collisions at
√
s = 7 TeV and Limits on Anomalous WWγ and WWZ

couplings, Eur.Phys.J. C73 (2013) 2610, [arXiv:1306.1126].

[3] Measurement of the W+W− production cross section in proton-proton collisions at
√
s = 8

TeV with the ATLAS detector, Tech. Rep. ATLAS-CONF-2014-033, CERN, Geneva, Jul,

2014.

[4] CMS Collaboration Collaboration, S. Chatrchyan et. al., Measurement of W+W- and ZZ

production cross sections in pp collisions at sqrt(s) = 8 TeV, Phys.Lett. B721 (2013)

190–211, [arXiv:1301.4698].

16For a study of jet-veto resummation for gg → h→ 2`2ν interfering with the gg →WW → 2`2ν process, see [94].

42



[5] ATLAS Collaboration Collaboration, G. Aad et. al., Measurements of Higgs boson

production and couplings in diboson final states with the ATLAS detector at the LHC,

Phys.Lett. B726 (2013) 88–119, [arXiv:1307.1427].

[6] CMS Collaboration Collaboration, S. Chatrchyan et. al., Search for the standard model

Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks,

Phys.Rev. D89 (2014) 012003, [arXiv:1310.3687].

[7] J. M. Campbell and R. K. Ellis, An update on vector boson pair production at hadron

colliders, Phys.Rev. D60 (1999) 113006, [hep-ph/9905386].

[8] J. M. Campbell, R. K. Ellis, and C. Williams, Vector boson pair production at the LHC,

JHEP 1107 (2011) 018, [arXiv:1105.0020].

[9] A. Martin, W. Stirling, R. Thorne, and G. Watt, Parton distributions for the LHC,

Eur.Phys.J. C63 (2009) 189–285, [arXiv:0901.0002].

[10] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, et. al., New parton distributions for

collider physics, Phys.Rev. D82 (2010) 074024, [arXiv:1007.2241].

[11] B. Feigl, H. Rzehak, and D. Zeppenfeld, New physics backgrounds to the H →WW search at

the LHC?, Phys.Lett. B717 (2012) 390–395, [arXiv:1205.3468].

[12] D. Curtin, P. Jaiswal, and P. Meade, Charginos hiding in plain sight, Phys.Rev. D87 (2013),

no. 3 031701, [arXiv:1206.6888].

[13] P. Jaiswal, K. Kopp, and T. Okui, Higgs production amidst the LHC detector, Phys.Rev.

D87 (2013), no. 11 115017, [arXiv:1303.1181].

[14] K. Rolbiecki and K. Sakurai, Light stops emerging in WW cross section measurements?,

JHEP 1309 (2013) 004, [arXiv:1303.5696].

[15] D. Curtin, P. Jaiswal, P. Meade, and P.-J. Tien, Casting light on BSM physics with SM

standard candles, JHEP 1308 (2013) 068, [arXiv:1304.7011].

[16] D. Curtin, P. Meade, and P.-J. Tien, Natural SUSY in Plain Sight, arXiv:1406.0848.

[17] J. Ohnemus, An order αs calculation of hadronic W−W+ production, Phys.Rev. D44 (1991)

1403–1414.

[18] S. Frixione, A next-to-leading order calculation of the cross-section for the production of

W+W− pairs in hadronic collisions, Nucl.Phys. B410 (1993) 280–324.

[19] L. J. Dixon, Z. Kunszt, and A. Signer, Helicity amplitudes for O(αs) production of W+W−,

W±Z, ZZ, W±γ, or Zγ pairs at hadron colliders, Nucl.Phys. B531 (1998) 3–23,

[hep-ph/9803250].

[20] J. Ohnemus, Hadronic ZZ, W−W+, and W±Z production with QCD corrections and

leptonic decays, Phys.Rev. D50 (1994) 1931–1945, [hep-ph/9403331].

[21] D. A. Dicus, C. Kao, and W. Repko, Gluon Production of Gauge Bosons, Phys.Rev. D36

(1987) 1570.

[22] E. N. Glover and J. van der Bij, Vectpr boson pair production via gluon fusion, Phys.Lett.

B219 (1989) 488.

[23] T. Binoth, M. Ciccolini, N. Kauer, and M. Kramer, Gluon-induced WW background to Higgs

boson searches at the LHC, JHEP 0503 (2005) 065, [hep-ph/0503094].

43



[24] A. Bierweiler, T. Kasprzik, J. H. Khn, and S. Uccirati, Electroweak corrections to W -boson

pair production at the LHC, JHEP 1211 (2012) 093, [arXiv:1208.3147].

[25] J. Baglio, L. D. Ninh, and M. M. Weber, Massive gauge boson pair production at the LHC: a

next-to-leading order story, Phys.Rev. D88 (2013) 113005, [arXiv:1307.4331].

[26] S. Dawson, I. M. Lewis, and M. Zeng, Threshold resummed and approximate

next-to-next-to-leading order results for W+W− pair production at the LHC, Phys.Rev. D88

(2013), no. 5 054028, [arXiv:1307.3249].

[27] T. Melia, P. Nason, R. Rontsch, and G. Zanderighi, W+W−, WZ and ZZ production in the

POWHEG BOX, JHEP 1111 (2011) 078, [arXiv:1107.5051].

[28] K. Hamilton, A positive-weight next-to-leading order simulation of weak boson pair

production, JHEP 1101 (2011) 009, [arXiv:1009.5391].
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