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Abstract

We study a deformation of N = 2 supersymmetric QCD with U(N) gauge group and Nf

number of quark flavors induced by the mass term µ for the adjoint matter which breaks
supersymmetry down to N = 1 QCD. Recently this deformation was shown to lead to a
weakly coupled dual theory only in two particular sets of vacua: the r = N vacuum and the
so-called zero vacua which can be found at r < Nf −N , where r is the number of condensed
quarks. For small quark masses and intermediate values of µ the gauge group of the dual
theory is U(Nf −N)× U(1)2N−Nf where the Abelian sector is heavy and can be integrated
out. However, at larger values of µ the Abelian sector enters the strong coupling regime. We
show that the ’t Hooft matching conditions in the chiral limit require the Seiberg neutral
meson field M from this sector to become light. In the r = N vacuum M is constructed of
a monopole and antimonopole connected by a confining magnetic strings while in the zero
vacua it is built of a quark and antiquark connected by a confining electric strings.



1 Introduction

Some time ago we started [1] a program of detailing Seiberg’s duality [2, 3] in N = 1
theories introducing masses for the matter fields and exploring diverse discrete vacua using
additional information (see also [4, 5] and additional references below) following from the
Seiberg-Witten solution [6, 7] of the N = 2 theory. Despite a spectacular overall progress,
one particular corner of the parameter space, namely its chiral limit, has not yet been
studied, as was noted in [8]. This paper is devoted to thorough studies of the chiral limit,
and, thus, completes the program. The picture of the Seiberg duality emerging on the
basis of deformations of the N = 2 theory is fully self-consistent. It provides a clear-cut
understanding of the processes on both side of duality.

Seiberg’s dual of N = 1 supersymmetric QCD (SQCD) with the SU(N) gauge group and
Nf quark flavors is a theory with the SU(Ñ) gauge group, the same number of dual quarks,
plus a neutral meson field M B

A . Here

Ñ ≡ Nf −N . (1.1)

Seiberg’s duality was generalized to N = 2 supersymmetric QCD deformed by the mass
term µ for the adjoint matter in the large-µ limit [9]. At large µ the adjoint matter can be
integrated out leading to a N = 1 QCD-like theory with a quartic superpotential suppressed
at large µ [9, 10, 11, 12]. This theory has the same number of vacua as that in the original
N = 2 QCD in the small-µ limit. These vacua – the so-called called r vacua – are character-
ized by a parameter r, the number of condensed (s)quarks in the classical domain of large
and generic quark mass parameters mA (A = 1, ..., Nf). Clearly, r cannot exceed N , the rank
of the gauge group. In the original formulation [2, 3] Seiberg’s duality was suggested for the
monopole vacua with r = 0 (all other vacua become runaway vacua in the limit µ → ∞).

Chronologically, the first attempt to obtain Seiberg’s duality from µ-deformed N =
2 QCD can be traced back to [10]. The dual gauge group SU(Ñ) was identified at the root
of the baryonic branch.1 However, Seiberg’s neutral mesonic fields M were not detected.

Much later we studied a version of the theory with the U(N) gauge group and (N +1) <
Nf < 3/2N . We demonstrated that the µ deformation leads to a weakly coupled dual theory
only for two particular sets of the vacuum states, namely, in the r = N vacuum and in the
so-called zero vacua [5, 13]. The latter can be found at r < Ñ .

Both sets of vacua have vanishing gaugino condensate in the limit, in which the values
of the quark masses become small. In other vacua (the so-called Λ vacua) the gaugino
condensate is of the order of µΛ2

N=2 where ΛN=2 is the scale of N = 2 QCD. The gaugino
condensate becomes large in the large-µ limit. Correspondingly, these vacua do not have
weakly coupled dual description [13].

The gauge group of the dual theory in the r = N and zero vacua is

U(Ñ )× U(1)N−Ñ .

1It corresponds to the r = N quark vacuum in the U(N) version of the theory we consider in this paper.
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For small quark masses and intermediate values of µ, namely,

mA ≪ µ ≪ ΛN=2

the vacuum expectation values (VEVs) of the charged scalar fields in the U(Ñ) sector are
determined by parameters

ξsmall ∼ µm (1.2)

while the VEVs in the Abelian U(1)N−Ñ sector are determined by

ξlarge ∼ µΛN=2 . (1.3)

Given that m ≪ ΛN=2 the notation in (1.2) and (1.3) is self-evident.
The dual theory is infrared free; at intermediate values of µ the both scales ξsmall and ξlarge

are small enough to ensure weak coupling. However, the Abelian sector is much heavier and
thus can be integrated out. Moreover, since

√

ξsmall ≪ µ in this domain the adjoint matter
is also heavy and can be integrated out too. This leads to a weakly coupled low-energy dual
theory with the U(Ñ) Seiberg dual gauge group and charged light matter [5, 13]. Although
the correct Seiberg dual gauge group emerges in this setup, Seiberg’s neutral meson M fields
are still missing. As we will see below, they will show up in the chiral limit.

To this end we make the next step and consider larger values of µ,

µ ≫ ΛN=2 .

In this domain we pass to the chiral limit, or small quark masses, keeping the parameter
ξsmall fixed and small enough to ensure the weak coupling in the U(Ñ) sector. At the same

time, the Abelian U(1)N−Ñ sector enters a strong coupling regime. Then we use the ’t
Hooft anomaly matching conditions [14] to show that neutral M mesons coming from this
sector must become light. We find a physical interpretation of the Seiberg M mesons: in
the r = N vacuum M is constructed of monopole and antimonopole connected by confining
magnetic strings, while in the zero vacua M is constructed of quark and antiquark connected
by confining electric strings. The match of our dual description in these sets of vacua with
Seiberg’s dual theory becomes complete.

In the first part of the paper (Secs. 2 and 3) we briefly summarize our previous re-
sults on r duality outside the chiral limit, emphasizing its peculiarities, such as “instead-
of-confinement” mechanism. In Sec. 4 we pass to the exploration of the chiral limit, and
discover that the neutral Seiberg M B

A mesons show up in the light sector. Thus, r duality
proves to be completely woven in the fabric of Seiberg’s duality.

The paper is organized as follows. In Sec. 2 we review duality and “instead-of-confinement”
mechanism in r = N vacuum in N = 2 limit of small µ. In Sec. 3 we review the dual theory
at intermediate µ. Next in Sec. 4 we consider large µ and use anomaly matching conditions
to show that monopole-antimonopole stringy mesons originating from the Abelian U(1)N−Ñ

sector of the theory should become light. We also present the dual low energy theory in
this region and discuss it mass spectrum. In Sec. 5 we review the low energy description in
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r-vacua with r < Nf/2 at small µ. In Sec. 6 we consider subset of these vacua, namely zero
vacua at intermediate and large µ and show that stringy quark-antiquark mesonic states
should become light as we increase µ. Sec. 7 contains our summary and conclusions.

2 Duality in the r = N vacuum at small µ

In this section we briefly review non-Abelian duality in the r = N vacua at small µ established
in [4, 15]. The gauge symmetry of our basic model is

U(N) = SU(N)× U(1) .

In the absence of deformation the model under consideration is N = 2 SQCD with Nf

massive quark hypermultiplets. We assume that Nf > N + 1 but Nf < 3
2
N . The latter

inequality ensures that the dual theory can be infrared free.
Our basic theory is described in detail in our previous papers (e.g. [16, 17]; see also the

reviews in [18]). The field content is as follows. The N = 2 vector multiplet consists of the
U(1) gauge field Aµ and the SU(N) gauge field Aa

µ, where a = 1, ..., N2 − 1, and their Weyl
fermion superpartners plus complex scalar fields a, and aa and their Weyl superpartners,
respectively.

As for the matter sector, the Nf quark multiplets of the U(N) theory consist of the
complex scalar fields qkA and q̃Ak (squarks) and their fermion superpartners — all in the
fundamental representation of the SU(N) gauge group. Here k = 1, ..., N is the color index
while A is the flavor index, A = 1, ..., Nf . We will treat qkA and q̃Ak as rectangular matrices
with N rows and Nf columns.

In addition, we introduce the mass term µ for the adjoint matter breakingN = 2 supersymmetry
down to N = 1 . This deformation term

Wdef = µTrΦ2, Φ ≡ 1

2
A+ T aAa (2.1)

does not break N = 2 supersymmetry in the small-µ limit, see [19, 20, 16]. At large µ this
theory obviously flows to N = 1 . The fields A and Aa in Eq. (2.1) are chiral superfields,
the N = 2 superpartners of the U(1) and SU(N) gauge bosons.

2.1 The r = N vacuum at large ξ

This theory has a set of r vacua, where r is the number of condensed (s)quarks in the classical
domain of large generic quark masses mA (A = 1, ..., Nf , and r ≤ N). In the first part of this
paper we consider the r = N vacua (for a review see [18]). These vacua have the maximal
possible number of condensed quarks, r = N . Moreover, the gauge group U(N) is completely
Higgsed in these vacua, and, as a result, they support non-Abelian strings [21, 22, 16, 23].
The occurrence of these strings ensures confinement of monopoles in these vacua.
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First, we will assume that µ is small, much smaller than the quark masses

|µ| ≪ |mA|, A = 1, ..., Nf . (2.2)

In the quasiclassical region of large quark masses scalar quarks develop VEVs triggered
by the deformation parameter µ. They are given by

〈qkA〉 = 〈 ¯̃qkA〉 = 1√
2





√
ξ1 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . .
0 . . .

√
ξN 0 . . . 0



 ,

k = 1, ..., N , A = 1, ..., Nf , (2.3)

where we present the quark fields as matrices in the color (k) and flavor (A) indices, while
parameters ξ are given in the quasiclassical approximation by

ξP ≈ 2 µmP , P = 1, ..., N. (2.4)

The quark condensate (2.3) result in the spontaneous breaking of both gauge and flavor
symmetries. A diagonal global SU(N) combining the gauge SU(N) and an SU(N) subgroup
of the flavor SU(Nf ) group survives in the limit of (almost) equal quark masses. This is
color-flavor locking.

Thus, the unbroken global symmetry is as follows:

SU(N)C+F × SU(Ñ)× U(1) . (2.5)

Here SU(N)C+F is a global unbroken color-flavor rotation, which involves the first N flavors,
while the SU(Ñ) factor stands for the flavor rotation of the Ñ quarks.

The presence of the global SU(N)C+F group is the reason for formation of the non-
Abelian strings [21, 22, 16, 23, 17]. At small µ these strings are BPS-saturated [19, 20] and
their tensions are determined by the parameters ξP [17], see (2.4),

TP = 2π|ξP | , P = 1, ..., N. (2.6)

These string confine monopoles. In fact, in the U(N) theories confined elementary monopoles
are junctions of two “neighboring” P -th and (P + 1)-th strings, see [18] for a review.

Now, let us briefly discuss the perturbative excitation spectrum. Since both U(1) and
SU(N) gauge groups are broken by the squark condensation, all gauge bosons become mas-
sive.

To the leading order in µ, N = 2 supersymmetry is not broken. In fact, with nonvanishing
ξP ’s (see Eq. (2.4)), both the quarks and adjoint scalars combine with the gauge bosons to
form long N = 2 supermultiplets [20]. In the equal mass limit ξP ≡ ξ , and all states come
in representations of the unbroken global group (2.5), namely, in the singlet and adjoint
representations of SU(N)C+F ,

(1, 1), (N2 − 1, 1), (2.7)
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and in the bifundamental representations

(N̄, Ñ), (N, ¯̃N) . (2.8)

The representations in (2.7) and (2.8) are marked with respect to two non-Abelian factors in
(2.5). The singlet and adjoint fields are (i) the gauge bosons, and (ii) the first N flavors of
squarks qkP (P = 1, ..., N), together with their fermion superpartners. The bifundamental
fields are the quarks qkK with K = N + 1, ..., Nf . Quarks transform in the two-index
representations of the global group (2.5) due to the color-flavor locking.

The above quasiclassical analysis is valid if the theory is at weak coupling. From (2.3)
we see that the weak coupling condition is

√

ξ ∼ √
µm ≫ ΛN=2 , (2.9)

where we assume all quark masses to be of the same order mA ∼ m. This condition means
that the quark masses are large enough to compensate the smallness of µ.

2.2 r Dual theory

Now we will relax the condition (2.9) and pass to the strong coupling domain at

|
√

ξP | ≪ ΛN=2 , |mA| ≪ ΛN=2 , (2.10)

still keeping µ small.
As was shown in [4, 5] in the r = N vacuum N = 2 QCD undergoes a crossover transition

as the value of ξ decreases. The domain (2.10) can be described in terms of weakly coupled
(infrared free) r-dual theory with the gauge group

U(Ñ)×U(1)N−Ñ , (2.11)

and Nf flavors of light quark-like dyons.2 Note, that we call our dual theory the “r dual”
because N = 2 duality described here can be generalized to other r vacua with r > Nf/2.
This leads to a theory with the dual gauge group U(Nf − r)×U(1)N−Nf+r [24]. However,
deformation of these r dual theories to N = 1 theory at larger µ can be performed within
the weak coupling regime only in the r = N vacuum [13], which we discuss here.

The light dyons DlA (l = 1, ..., Ñ and A = 1, ..., Nf) are in the fundamental representation
of the gauge group SU(Ñ) and are charged under the Abelian factors indicated in Eq. (2.11).
In addition, there are (N − Ñ) light dyons DJ (J = Ñ +1, ..., N), neutral under the SU(Ñ)
group, but charged under the U(1) factors.

2Previously the SU(Ñ ) gauge group was identified [10] at the root of the baryonic Higgs branch in the
N = 2 supersymmetric SU(N) Yang–Mills theory with massless quarks and vanishing ξ parameters.
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The color charges of all these dyons are identical to those of quarks.3 This is the reason
why we call them quark-like dyons. However, these dyons are not quarks [4]. As we will
review below they belong to a different representation of the global color-flavor locked group.
Most importantly, condensation of these dyons still leads to confinement of monopoles.

The dyon condensates have the form [17, 5]:

〈DlA〉= 〈 ¯̃DlA〉= 1√
2





0 . . . 0
√
ξ1 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 0 0 . . .
√

ξÑ



, (2.12)

〈DJ〉 = 〈 ¯̃DJ〉 =
√

ξJ
2
, J = (Ñ + 1), ..., N . (2.13)

The important feature apparent in (2.12), as compared to the squark VEVs in the original
theory (2.3), is a “vacuum leap” [4]. Namely, if we pick up the vacuum with nonvanishing
VEVs of the first N quark flavors in the original theory at large ξ, and then reduce ξ below
ΛN=2, the system goes through a crossover transition and ends up in the vacuum of the
r-dual theory with the dual gauge group (2.11) and nonvanishing VEVs of Ñ last dyons
(plus VEVs of (N − Ñ) dyons that are the SU(Ñ) singlets).

The parameters ξP in (2.12) and (2.13) are determined by the quantum version of the
classical expressions (2.4) [17]. They can be expressed in terms of the roots of the Seiberg–
Witten curve [6, 7]. The Seiberg–Witten curve in our theory has the form [10]

y2 =
N
∏

P=1

(x− φP )
2 − 4

(

ΛN=2√
2

)N−Ñ Nf
∏

A=1

(

x+
mA√
2

)

, (2.14)

where φP are gauge invariant parameters on the Coulomb branch.
In the r = N vacuum the curve (2.14) has N double roots and reduces to

y2 =
N
∏

P=1

(x− eP )
2. (2.15)

This reflects the condensation of N quarks. Quasiclassically, at large masses, eP ’s are given
by the mass parameters,

√
2eP ≈ −mP (P = 1, ..., N).

The dyon condensates (2.12) at small masses in the r = N vacuum are determined by
[17, 5]

ξP = −2
√
2µ eP . (2.16)

As long as we keep ξP and masses small enough (i.e. in the domain (2.10)) the coupling
constants of the infrared-free r-dual theory (frozen at the scale of the dyon VEVs) are small:
the r-dual theory is at weak coupling.

3Because of monodromies [6, 7, 25] the quarks pick up root-like color-magnetic charges in addition to
their weight-like color-electric charges at strong coupling [4].
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At small masses, in the region (2.10), the double roots of the Seiberg–Witten curve are

√
2eI = −mI+N ,

√
2eJ = ΛN=2 exp

(

2πi

N − Ñ
J

)

,

I = 1, ..., Ñ and J = (Ñ + 1), ..., N . (2.17)

In particular, the Ñ first roots are determined by the masses of the last Ñ quarks — a
reflection of the fact that the non-Abelian sector of the dual theory is infrared free and is at
weak coupling in the domain (2.10).

2.3 “Instead-of-confinement” mechanism

Now, we will consider the limit of almost equal quark masses. Both, the gauge group and
the global flavor SU(Nf) group, are broken in the vacuum. However, the form of the dyon
VEVs in (2.12) shows that the r-dual theory is also in the color-flavor locked phase. Namely,
the unbroken global group of the dual theory is

SU(N)× SU(Ñ)C+F × U(1) , (2.18)

where this time the SU(Ñ) global group arises from color-flavor locking.
In much the same way as in the original theory, the presence of the global SU(Ñ)C+F

symmetry is the reason behind formation of the non-Abelian strings. Their tensions are still
given by Eq. (2.6), where the parameters ξP are determined by (2.16) [17, 5]. These strings
still confine monopoles [4].4

In the equal-mass limit the global unbroken symmetry (2.18) of the dual theory at small
ξ coincides with the global group (2.5) of the original theory in the r = N vacuum at large
ξ. However, this global symmetry is realized in two very distinct ways in the dual pair at
hand. As was already mentioned, the quarks and U(N) gauge bosons of the original theory
at large ξ come in the following representations of the global group (2.5):

(1, 1), (N2 − 1, 1), (N̄ , Ñ), and (N, ¯̃N) .

At the same time, the dyons and U(Ñ) gauge bosons of the r-dual theory form

(1, 1), (1, Ñ2 − 1), (N, ¯̃N), and (N̄, Ñ) (2.19)

representations of (2.18). We see that the adjoint representations of the (C + F ) subgroup
are different in two theories.

4An explanatory remark regarding our terminology is in order. Strictly speaking, the dyons carrying
root-like electric charges are confined as well. We refer to all such states collectively as to “monopoles.” This
is to avoid confusion with the quark-like dyons which appear in Eqs. (2.12) and (2.13). The latter dyons
carry weight-like electric charges. As was already mentioned, their color charges are identical to those of
quarks, see [4] for further details.

7



Figure 1: Meson formed by a monopole-antimonopole pair connected by two strings. Open and
closed circles denote the monopole and antimonopole, respectively.

The quarks and gauge bosons which form the adjoint (N2 − 1) representation of SU(N)
at large ξ and the quark-like dyons and dual gauge bosons which form the adjoint (Ñ2 − 1)
representation of SU(Ñ) at small ξ are, in fact, distinct states [4].

Thus, the quark-like dyons are not quarks. At large ξ they are heavy solitonic states.
However below the crossover at small ξ they become light and form the fundamental “ele-
mentary” states DlA of the r-dual theory. And vice versa, quarks are light at large ξ but
become heavy below the crossover.

This raises the question: what exactly happens with quarks when we reduce ξ?
They are in the “instead-of-confinement” phase. The Higgs-screened quarks and gauge

bosons at small ξ decay into the monopole-antimonopole pairs on the curves of marginal
stability (the so-called wall crossing) [4, 15]. The general rule is that the only states that
exist at strong coupling inside the curves of marginal stability are those which can become
massless on the Coulomb branch [6, 7, 25]. For the r-dual theory these are light dyons shown
in Eq. (2.12), gauge bosons of the dual gauge group and monopoles.

At small nonvanishing values of ξ the monopoles and antimonopoles produced in the
decay process of the adjoint (N2 − 1, 1) states cannot escape from each other and fly to
opposite infinities because they are confined. Therefore, the (screened) quarks and gauge
bosons evolve into stringy mesons (in the strong coupling domain of small ξ) shown in Fig. 1,
namely monopole-antimonopole pairs connected by two strings [4, 5].

The flavor quantum numbers of stringy monopole-antimonopole mesons were studied in
[15] in the framework of an appropriate two dimensional CP (N − 1) model which describes
world sheet dynamics of the non-Abelian strings [21, 22, 16, 23]. In particular, confined
monopoles are seen as kinks in this world sheet theory. If two strings in Fig. 1 are “neigh-
boring” strings P and P+1 (P = 1, ..., (N−1)), each meson is in the two-index representation
MB

A (P, P +1) of the flavor group, where the flavor indices are A,B = 1, ..., Nf . It splits into
singlet, adjoint and bifundamental representations of the global unbroken group (2.18). In
particular, at small ξ the adjoint representation of SU(N) contains former (screened) quarks
and gauge bosons of the original theory.

Masses of these stringy mesons are determined by string tensions given by the parameters
ξP , ξP+1, see (2.16) and (2.17). In particular, in the r-dual theory the tensions of Ñ non-
Abelian strings from the U(Ñ) sector are light, of the order of ξsmall ∼ µm, while the

tensions of (N − Ñ) “Abelian” strings from U(1)N−Ñ sector are much heavier, of the order
of ξlarge ∼ µΛN=2. The majority of stringy mesons are unstable and decay into each other
or into the “elementary” states (2.19) of the r-dual theory, the dyons and gauge bosons.
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For example, the mesons MB
A (P, P + 1) which form representations (2.19) can decay into

elementary states with the same quantum numbers [4, 15].

3 Intermediate µ

In this section we will discuss what happens to the r-dual theory in the r = N vacuum
described above once we increase µ to intermediate values, which are large enough to decouple
the adjoint matter [5, 24]. We also discuss the relation of our dual theory to the Seiberg’s
dual.

3.1 Emergence of the U(Ñ) gauge group

Combining Eqs. (2.12), (2.13), (2.16) and (2.17) we see that the VEVs of the non-Abelian
dyons DlA are determined by

√

ξsmall ∼ √
µm (3.1)

and are much smaller than the VEVs of the Abelian dyons DJ in the domain (2.10). The
latter are of the order of

√

ξlarge ∼
√

µΛN=2. (3.2)

This circumstance is most crucial. It allows us to increase µ and decouple the adjoint fields
without violating the weak coupling condition in the dual theory [5].

Let us uplift µ to the intermediate domain

|µ| ≫ |mA|, A = 1, ..., Nf , µ ≪ ΛN=2. (3.3)

The VEVs of the Abelian dyons (2.13) are large. This makes U(1) gauge fields of the dual
group (2.11) heavy. Decoupling these gauge factors, together with the adjoint matter and
the Abelian dyons themselves, we obtain the low-energy theory with the

U(Ñ ) (3.4)

gauge fields and the following set of non-Abelian dyons: DlA (l = 1, ..., Ñ , A = 1, ..., Nf).
The superpotential for DlA has the form [5]

W = − 1

2µ
(D̃AD

B)(D̃BD
A) +mA (D̃AD

A) , (3.5)

where the color indices are contracted inside each parentheses. Minimization of this super-
potential leads to the VEVs (2.12) of non-Abelian dyons determined by ξsmall, see (2.17).

Below the scale µ our theory becomes dual to N = 1 SQCD with the scale

Λ̃N−2Ñ
N=1 =

ΛN−Ñ
N=2

µÑ
. (3.6)
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In order to keep this infrared-free theory in the weak coupling regime we impose that

|√µm| ≪ Λ̃N=1 . (3.7)

This means that at large µ we must keep the quark masses sufficiently small.
Let us briefly summarize the mass spectrum of our U(Ñ) r-dual theory at intermediate

µ [5]. The lightest states are 4NÑ bifundamental dyons (we count real bosonic degrees of
freedom). Their masses are of the order of quark mass differences (mA − mB). A half of
dyons, namely, 2Ñ2, from singlet and adjoint representations of SU(Ñ) are also light with
masses of the order of m ∼ mA. Another Ñ

2 dyonic states become scalar superpartners for
the massive gauge bosons of the U(Ñ) gauge group (altogether 4Ñ2 states). These are much

heavier, with masses of the order of g̃
√

ξsmall, where g̃ is the gauge coupling constant of the
r-dual theory. On top of that we have stringy monopole-antimonopole mesons (see Fig. 1)
MB

A (P, P + 1), where P = 1, ..., (Ñ − 1), while A,B = 1, ..., Nf . Their masses are of the

order of
√

ξsmall; they are determined by tensions of light non-Abelian strings.
Note that in the intermediate domain of µ (3.3) we assume that µ ≪ ΛN=2. This

condition ensures that the heavy Abelian U(1)(N−Ñ) sector is at weak coupling too and
really heavy. At weak coupling the masses of the states in this sector can be determined
in the quasiclassical approximation. They are of the order of gU(1)

√

ξlarge for “elementary”

states, where gU(1) are couplings in the U(1) factors, and are of the order of
√

ξlarge for

stringy mesons MB
A (P, P + 1) with P = Ñ, ..., (N − 1).

If we relax the condition µ ≪ ΛN=2 this sector enters a strong coupling regime and
certain states could in principle become light and couple to our low-energy U(Ñ) theory. We
will see in the next section that this is exactly what happens at larger values of µ and is, in
fact, required by the ’t Hooft anomaly matching [14].

3.2 Connection to Seiberg’s duality

The gauge group of our r-dual theory is U(Ñ), the same as the gauge group of the Seiberg’s
dual theory [2, 3]. This suggests that there should be a close relation between two duals.
For intermediate values of µ this relation was found in [26, 13].

Originally Seiberg’s duality was formulated for N = 1 SQCD which in our set-up corre-
sponds to the limit µ → ∞. Therefore, in the original formulation Seiberg’s duality referred
to the monopole vacua with r = 0. Other vacua, with r 6= 0, have condensates of r quark
flavors 〈q̃q〉A ∼ µmA and, therefore, disappear in the limit µ → ∞: they become runaway
vacua. However, as was already mentioned in Sec. 1, Seiberg’s duality can be generalized
to the µ-deformed N = 2 QCD [9, 12]. At large µ, µ-deformed N = 2 QCD flows to
N = 1 QCD with an additional quartic quark superpotential. This theory has all r vacua
which were present in original N = 2 QCD in the small-µ limit. The generalized Seiberg’s
dual theory for the µ-deformed U(N) N = 2 SQCD at large but finite µ has the gauge group
U(Ñ), Nf flavors of Seiberg’s “dual quarks” hlA (l = 1, ..., Ñ and A = 1, ..., Nf) and the
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superpotential

WS = −κ2

2µ
Tr (M2) + κmA MA

A + h̃Alh
lB MA

B , (3.8)

where MB
A is the Seiberg’s neutral mesonic field defined as

(q̃Aq
B) = κMB

A . (3.9)

Here κ is a parameter of dimension of mass needed to formulate Seiberg’s duality [2, 3]. Two
last terms in (3.8) were originally suggested by Seiberg, while the first term is a generalization
to finite µ which originates from the quartic quark potential [9, 12].

Now let us assume the fields MB
A to be heavy and integrate them out. This implies that

κ is large. Integrating out the M fields in (3.8) we get

WLE
S =

µ

2κ2
(h̃Ah

B)(h̃Bh
A) +

µ

κ
mA (h̃Ah

A) . (3.10)

The change of variables

DlA =

√

−µ

κ
hlA, l = 1, ..., Ñ , A = 1, ..., Nf (3.11)

brings this superpotential to the form

WLE
S =

1

2µ
(D̃AD

B)(D̃BD
A)−mA (D̃AD

A) . (3.12)

We see that (up to a sign) this superpotential coincides with the superpotential of our r-dual
theory (3.5). As was already mentioned, the dual gauge groups also coincide for Seiberg’s
and r-dual theories in the r = N vacuum. Note, that the kinetic terms are not known in the
Seiberg’s dual theory; thus, normalization of the h fields is not fixed.

We see that the r-dual and Seiberg’s dual theories match. However, it seems that this
match is not complete. The mesonic field MB

A is supposed to be light in the Seiberg duality.
It seems, there is no apparent candidate for a light neutral field with these flavor quantum

numbers in the r-dual theory. Moreover, the match outlined above assumes that the M field
is heavy and can be integrated out.

In principle, there are candidates for the SeibergM field with correct flavor quantum num-
bers in the r-dual theory. These are the monopole-antimonopole stringy mesonsMB

A (P, P+1)
from the Abelian sector with P = Ñ, ..., (N − 1). They could produce the Seiberg M field.
But ...

At intermediate µ (3.3) the U(1)(N−Ñ) Abelian sector is at weak coupling. This ensures
that the masses of the Abelian MB

A (P, P +1) mesons can be determined quasiclassically. As

was discussed in Sec. 3.1, they are of the order of
√

ξlarge and cannot possibly become light.
We will come back to this issue in Sec. 4.2.
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The resolution of this puzzle is that Seiberg’s duality refers to a much larger values of
µ than those given by the upper bound in (3.3). In fact, the generalized Seiberg duality
assumes that

µ ≫ ΛN=1 (3.13)

where ΛN=1 is the scale of the original N = 1 QCD

Λ2N−Ñ
N=1 = µN ΛN−Ñ

N=2 . (3.14)

The domain (3.13) is above the intermediate-µ domain considered in this section.
This leads us to the conclusion that at intermediate µ we have a perfect match between the

r-dual and Seiberg’s dual theories. In this domain the Seiberg M meson is heavy and should
be integrated out implying the superpotential (3.12) which agrees with the superpotential
(3.5) obtained in the r-dual theory.

This match, together with the identification (3.11), reveals the physical nature of Seiberg’s
“dual quarks.” They are not monopoles as naive duality suggests. Instead, they are quark-
like dyons appearing in the r-dual theory below the crossover. Their condensation leads to
confinement of monopoles and the “instead-of-confinement” phase [24] for quarks and gauge
bosons of the original theory.

4 Large µ

Now we turn to the large-µ domain. Increasing µ we simultaneously reduce m keeping ξsmall

sufficiently small, see (3.7). Namely, we assume

ξsmall ∼ µm ≪ Λ̃N=1, µ ≫ ΛN=1. (4.1)

This ensures that our low-energy U(Ñ) r-dual theory is at weak coupling. However, the

Abelian U(1)(N−Ñ) sector ultimately enters the strong coupling regime. As was already
mentioned, we loose analytic control over this sector and, in particular, certain states can
become light and couple to our low-energy U(Ñ) theory. Below we will show that this indeed
happens, as required by the ’t Hooft anomaly matching.

The anomaly matching was previously analyzed in [2] as a basis for the very formulation
of the Seiberg duality. In particular, the anomaly matching requires to have light neutral
meson M field in the dual theory. Without Seiberg’s M meson the anomalies do not match.
A novelty of our discussion in this section is that we have a symmetry breaking in the r-
dual theory at the scale

√

ξsmall and have to match anomalies at energies above and below
this scale. This leads to a rather restrictive bound for the M-meson mass. Also, since we
µ-deform our r-dual theory and start from a well understood N = 2 limit, we can reveal a
physical interpretation for the M meson.
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4.1 Anomaly matching

The limit (4.1) ensures that the quark masses are rather small. They are the smallest
parameters of the theory. Thus, we are in the chiral limit. Above the scale m the global
group of our theory before the symmetry breaking includes independent left and right chiral
rotations, namely,

SU(Nf)L × SU(Nf )R × U(1)R, (4.2)

where U(1)R is the nonanomalous with respect to the non-Abelian gauge bosons R symmetry
[2] 5. Note, that here we used the fact that µ is large and the adjoint matter is decoupled.
Say, in the N = 2 limit in which the adjoint matter is present the chiral group in (4.2) is
broken by the Yukawa couplings to the adjoint matter even at small values of the quark
masses.

The general prescription of the anomaly matching is as follows: the anomalies of all
unbroken global currents must be the same at all energies well above m (below m chiral
symmetries are broken). In particular, we calculate the anomalies in the ultraviolet (UV)
domain in terms of quarks and gauge bosons of the original theory and match them with the
anomalies calculated in the infrared (IR) domain in terms of the relevant degrees of freedom
of the dual theory. The UV energy should be large enough to ensure the original theory to
be at weak coupling, EUV ≫ ΛN=1. Note that µ should be even larger, µ ≫ EUV , so the the
adjoint matter really decouples and we do have chiral symmetry. This explains why we do
not check the anomaly matching at intermediate values of µ (see Sec. 3).

Under the symmetry (4.2) the squark fields transform as [2, 3]

q :

(

Nf , 1,
Ñ

Nf

)

, q̃ :

(

1, N̄f ,
Ñ

Nf

)

. (4.3)

In particular, the R-charges of the squarks under U(1)R are determined by the number of
flavors Nf and the rank of the gauge group N . Note, that the fermions (quarks) has R-
charges R − 1, where R is the charge of the boson component of a given multiplet, while
gauginos have the unit R charge.

Quark-like dyons of the r-dual theory transform as

D :

(

N̄f , 1,
N

Nf

)

, D̃ :

(

1, Nf ,
N

Nf

)

, (4.4)

where the R-charges of dyons are determined by Nf and Ñ , the rank of the dual gauge
group. Also, in much the same way as in [2] we assume that D is in the anti-fundamental
representation of SU(Nf )L. We µ-deform our r-dual theory starting from the N = 2 limit
in which the chiral symmetries are broken. Hence, no memory remains as to which of the

5The gauge group of our original theory is U(N), thus it includes Abelian U(1) gauge fields. U(1)R
symmetry is anomalous with respect to U(1) gauge fields. Still we have a freedom to make the U(1) gauge
coupling small so the U(1)R current is approximately conserved.
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two SU(Nf ) factors in (4.2) was left-handed or right-handed in the original quark theory. It
is possible that the dyon appears in the fundamental representation of SU(Nf )R at large µ.
Then the transformations in (4.4) ensure (upon redefinition of D and D̃).

The anomaly matching in the IR domain EIR ≫
√

ξsmall closely follows the calculation
in [2], and we skip it here. The main result is that without the M meson the anomalies
do not match. Including the M meson we see that it has quantum numbers of q̃Aq

B and
transforms as [2]

M :

(

Nf , N̄f ,
2Ñ

Nf

)

. (4.5)

Thus, the anomaly matching requires the presence of the M meson.
So far we considered the anomaly matching at energies EIR ≫

√

ξsmall which ensures

that the M meson cannot be heavier than
√

ξsmall. Below we will show that in fact the
upper bound on the the M meson mass is much more restrictive.

To this end let us consider energies EIR ≪
√

ξsmall still well above the scale of the chiral
symmetry breaking. At these energies the unbroken global group is

SU(N)× SU(Ñ)×U(1)V × U(1)R′ , (4.6)

where first three factors are vector-like symmetries (2.18), while the additional R symmetry
appears in the chiral limit.

Let us check that we have an unbroken R symmetry. Consider first dyons of the r-dual
theory. We can combine the U(1)R transformation with the axial subgroup of the non-
Abelian factors in (4.2) to make the R′ charges of the last Ñ dyons vanish. In this way we
arrive at

R′
D =

N

Nf

+

(

Ñ

Nf

, ...,
Ñ

Nf

,− N

Nf

, ...,− N

Nf

)

= (1, ..., 1, 0, ..., 0), (4.7)

where we divide the charges of Nf dyons into N + Ñ entries shown in the brackets. This
U(1)R′ symmetry is unbroken by the dyon VEVs, see (2.12).

This leads to the following transformation law of dyons under the unbroken symmetry
(4.6):

DP :

(

N̄ , 1,
Nf

2N
, 1

)

, D̃P :

(

N, 1, −Nf

2N
, 1

)

,

DK :
(

1, ¯̃N, 0, 0
)

, D̃K :
(

1, Ñ , 0, 0
)

, (4.8)

where P = 1, ..., N and K = (N +1), ..., Nf . Here we also combine the vector flavor SU(Nf )
transformation with the U(1) gauge transformation to get vanishing charges under U(1)V of
the last Ñ dyons.

Now let us find the quark R charges. We will see below that the diagonal entries of the
N ×N upper left block of the meson matrix MB

A also develops VEVs in the vacuum of the
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dual theory. Since the M mesons are defined as quark-antquark pairs of the original theory,
this means that the U(1)R′ symmetry is unbroken if the first N quarks have vanishing R′

charges. We define

R′
q =

Ñ

Nf

+

(

− Ñ

Nf

, ...,− Ñ

Nf

,
N

Nf

, ...,
N

Nf

)

= (0, ..., 0, 1, ..., 1). (4.9)

Thus, the quarks transform under the unbroken symmetry (4.6) as follows:

qP : (N, 1, 0, 0) , q̃P :
(

N̄, 1, 0, 0
)

,

qK :

(

1, Ñ ,
Nf

2Ñ
, 1

)

, q̃K :

(

1, ¯̃N, −Nf

2Ñ
, 1

)

, (4.10)

Here we again combine the vector flavor SU(Nf ) transformation with the U(1) gauge trans-
formation to get vanishing charges of the first N quarks under U(1)V . The transformation
properties of the M field ensue from Eq. (4.10),

MP
P ′ :

(

NN̄, 1, 0, 0
)

, MP
K :

(

N, ¯̃N, 0, 1
)

,

MK
P :

(

N̄ , Ñ , 0, 1
)

, MK
K ′ :

(

1, Ñ ¯̃N, 0, 2
)

, (4.11)

where P, P ′ = 1, ..., N and K,K ′ = (N + 1), ..., Nf .

The list of anomalies to be checked is

U(1)R′ × SU(N)2 : −δmn

2
N |UV = −δmn

2
N |IR,

U(1)R′ × SU(Ñ)2 : 0|UV =
δps

2
(−Ñ + Ñ)|IR,

U(1)R′ × U(1)2V : 0|UV = 0|IR,

U(1)R′ : −2N2 +N2|UV = −N2 = −Ñ2 −N2 + Ñ2|IR,

U(1)3R′ : −2N2 +N2|UV = −N2 = −Ñ2 −N2 + Ñ2|IR,
(4.12)

where n,m and p, s are the adjoint indices in SU(N) and SU(Ñ), respectively. Here the
UV contributions are calculated in terms of the fermion quarks and gauginos, while the IR
contributions come from the fermion components of (screened) dyons and M fields. For
example, in the second line the IR anomaly is saturated by DK and MK

K ′. In the fourth line
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the UV contribution comes from the quarks qP , q̃P and gauginos. The IR contribution comes
from the light dyons (a half of DK and D̃K states, see Sec. 3.1), MP

P ′ and MK
K ′, respectively.

Needless to say, all anomalies match. The contribution of the M meson is essential. Since
EIR can lie in the window m ≪ EIR ≪

√

ξsmall we find the upper bound for the M meson
mass,

mM
<∼ m. (4.13)

We see that the M meson is rather light, its mass is determined by the small scale m of the
chiral symmetry breaking. Thus, the M mesons play a role of π mesons in our theory.

4.2 Interpretation of the Seiberg M mesons

As was already discussed, the candidates for the Seiberg M mesons in the r-dual theory are
stringy mesons MB

A (P, P +1) (P = Ñ , ..., (N − 1)) from the Abelian U(1)(N−Ñ) sector. This
sector is at strong coupling at large µ; therefore, certain states from this sector can become
light. Perturbative states from this sector (quark-like dyons and Abelian gauge fields) are
singlets with respect to the global group (4.6) and cannot play the M meson role. Note, that
stringy mesons MB

A (P, P + 1) (where P = 1, ..., (Ñ − 1)) from the U(Ñ) low-energy theory
also cannot play the M meson role. First, they are represented in the U(Ñ) low-energy
theory by themselves as nonperturbative solitonic states and cannot be added to this theory
as new “fundamental” or “elementary” fields. Second, they are too heavy, with mass of
the order of

√

ξsmall determined by the tensions of the non-Abelian strings, which can be
calculated at weak coupling.

Thus, we propose that the Seiberg MB
A meson is one of a multitude of the monopole-

antimonopole stringy mesons MB
A (P, P + 1) (where P = Ñ, ..., (N − 1)) from the Abelian

U(1)(N−Ñ) sector. At large µ this meson should become light, with mass of the order of
m. It should be incorporated in the U(Ñ) low-energy theory as a new “fundamental” or
“elementary” field. Note, that other states from the Abelian sector are still heavy and
decouple.

4.3 Effective action

Since our U(Ñ) r-dual theory is at weak coupling we can write down its effective action. In
particular, since this theory is a µ deformation of a particularN = 2 r-dual theory, the quark-
like dyons DlA have canonically normalized kinetic terms. Using the procedure described in
Sec. 3.2 in the opposite direction we “integrate the M-meson in” the superpotential (3.5).
In this way we arrive at

W =
κ2

2µ
Tr (M2)− κmA MA

A +
κ

µ
D̃AlD

lB MA
B . (4.14)

We suggest that (4.14) is a correct continuation of the superpotential (3.5) of the r-dual
theory to large µ.
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Then the effective action of the r-dual theory at large µ takes the form

S =

∫

d4x

{

1

4g̃2
(

F a
µν

)2
+

1

4g̃2
U(1)

(Fµν)
2 +

∣

∣∇µD
A
∣

∣

2
+
∣

∣

∣
∇µ

¯̃DA
∣

∣

∣

2

+
2

γ
Tr |∂µM |2 + g̃2

2

(

D̄A T aDA − D̃AT
a ¯̃DA

)2

+
g̃2U(1)

8

(

D̄AD
A − D̃A

¯̃DA
)2

+
κ2

µ2
Tr|DM |2 + κ2

µ2
Tr| ¯̃DM |2

+
γ

2

κ2

µ2

∣

∣

∣
D̃AD

B − µmAδ
B
A + κMB

A

∣

∣

∣

2
}

, (4.15)

where the covariant derivative is defined as

∇µ = ∂µ −
i

2
Aµ − iT aAa

µ , (4.16)

and we introduced gauge potentials for SU(Ñ) and U(1) gauge groups while, g̃ and g̃U(1) are
associated dual gauge couplings. We also introduced the coupling constant γ for the M field.

We assume that κ is a function of µ and m with the following behavior

κ ∼







µ
3

4Λ
1

4

N=2 , µ ≪ ΛN=2 ,

√
µm , µ ≫ ΛN=2 .

(4.17)

This dependence ensures that the M meson is heavy, with mass of order of
√

ξlarge at
intermediate µ, and becomes light, with mass of order of m at large µ.

Minimization of the potential in (4.15) gives VEVs (2.12) for dyons (see also (2.16),
(2.17)), while the M-field VEVs are

diag〈MB
A 〉 = µ

κ

(

m1, ..., mN , 0, ..., 0
)

. (4.18)

These VEVs ensure chiral symmetry breaking (4.6) in the (almost) equal mass limit.
Now let us briefly discuss mass spectrum of r-dual theory (4.15). Much in the same way

as at intermediate µ, the lightest states are 4NÑ bifundamental dyons with masses of the
order of the quark mass differences (mA −mB). A half (2Ñ2) of dyons from the singlet and
adjoint representations of SU(Ñ) have masses of the order of m. Moreover, the M mesons
are also light, with masses of the order of m.

Other Ñ2 dyonic states together with the gauge bosons of U(Ñ) gauge group are much

heavier, with masses of the order of g̃
√

ξsmall. In addition, we have stringy monopole-
antimonopole mesons MB

A (P, P + 1), where P = 1, ..., (Ñ − 1), with masses of the order of
√

ξsmall.
However, now at large µ all these stringy monopole-antimonopole mesons can decay into

light Seiberg’s M mesons.
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5 Vacua with r < Nf/2 at small µ

Now consider r vacua with r < N in which the first r quarks develop nonvanishing VEVs
in the large-mass limit. In the classically unbroken U(N − r) pure gauge sector the gauge
symmetry gets broken through the Seiberg–Witten mechanism [6]: first down to U(1)N−r

by the condensation of the adjoint fields and then almost completely by the condensation of
(N − r− 1) monopoles. A single U(1) gauge factor survives, though, because the monopoles
are charged only with respect to the Cartan generators of the SU(N − r) group.

The presence of this unbroken U(1) factor in all r < N vacua makes them different from
the r = N vacuum: in the latter there are no long-range forces.

The low-energy theory in the given r vacuum has the gauge group

U(r)× U(1)N−r , (5.1)

if the quark masses are almost equal. Moreover, Nf quarks are charged under the U(r)
factor, while (N − r− 1) monopoles are charged under the U(1) factors. If 0 < r < (N − 1)
then the r-vacua are hybrid vacua in which both, quarks and monopoles, are condensed.
Note that the quarks and monopoles are charged with respect to orthogonal subgroups of
U(N) and therefore are mutually local (i.e. can be described by a local Lagrangian). The
low-energy theory is infrared-free and it is at weak coupling as long as VEVs of quarks and
monopoles are small. The quark VEVs are given by

〈qkA〉 = 〈 ¯̃qkA〉 = 1√
2





√
ξ1 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . .
0 . . .

√
ξr 0 . . . 0



 ,

k = 1, ..., r , A = 1, ..., Nf , (5.2)

where in the quasiclassical domain of large quark masses the r parameters ξ1,...,r are

ξP ≈ 2 µmP , P = 1, ..., r . (5.3)

These parameters can be made small in the limit of large mA if µ is sufficiently small.
In quantum theory the ξP parameters are determined by the roots of the Seiberg-Witten

curve (2.14), see [24, 28]. The Seiberg-Witten curve in the r < N vacuum has N − 1 double
roots which are associated with r condensed quarks and (N − r − 1) condensed monopoles.

Namely, the Seiberg–Witten curve factorizes [29],

y2 =
r
∏

P=1

(x− eP )
2

N−1
∏

K=r+1

(x− eK)
2 (x− e+N)(x− e−N ) . (5.4)

The first r quark double roots are associated with the mass parameters in the large mass
limit,

√
2eP ≈ −mP , where P = 1, ..., r. The other (N − r− 1) double roots associated with
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the light monopoles are much smaller, and are determined by ΛN=2. The last two unpaired
roots are also much smaller. For the single-trace deformation superpotential (2.1) their sum
vanishes [29],

e+N + e−N = 0 . (5.5)

The root e+N determines the value of the gaugino condensate [27],

e2N =
2S

µ
, S =

1

32π2
〈TrWαW

α〉 . (5.6)

The superfield Wα includes the gauge field strength tensor.
In terms of the roots of the Seiberg-Witten curve the quark VEVs are given by the

formula [24, 28]

ξP = −2
√
2µ
√

(eP − e+N)(eP − e−N), P = 1, ..., (N − 1). (5.7)

In fact, this formula is universal: it determines both, the VEVs of r quarks and (N − r− 1)
monopoles [28]. Namely, the index P runs over P = 1, ..., (N − 1) in (5.7) with quark and
monopole VEVs given by (5.2) and

〈mP (P+1)〉 = 〈 ¯̃mP (P+1)〉 =
√

ξP
2
, P = (r + 1), ..., (N − 1), (5.8)

respectively. Here mPP ′ denotes the monopole with the charge given by the root αPP ′ =
wP − wP ′ of the SU(N) algebra with the weights wP (P < P ′).

Condensation of r quarks leads to formation of non-Abelian magnetic strings that confine
monopoles from the SU(r) sector (strings are non-Abelian in the (almost) equal quark mass
limit). Tensions of the magnetic strings are determined by (2.6) with P = 1, ..., r. In a
similar way condensation of (N − r − 1) monopoles leads to the formation of the Abelian
electric strings which confine quarks from U(1)N−r. Their tensions are also given by Eq. (2.6)
with P = (r + 1), ..., (N − 1), for more details on confinement of monopoles and quarks in
the hybrid vacua see [28].

Now let us consider the limit of small quark masses. As was already mentioned, in the
r vacua with r > Nf/2 there is a crossover to the r-dual theory with the dual gauge group
U(Nf−r)×U(1)N−Nf+r [24]. The r = N vacuum considered in the previous sections provides
us with the simplest example of this behavior.

Now let us focus on r-vacua with smaller r. If r < Nf/2 the low-energy theory essentially
remains the same as at large mA, namely, infrared-free U(r)×U(1)N−r gauge theory with
Nf flavors of light states charged under non-Abelian gauge factor and (N − r − 1) singlet
monopoles charged under U(1)N−r [30, 13]. Although the color charges of light non-Abelian
states are identical to those of quarks 6 they are not quarks. In much the same way as in

6As we reduce m the quarks pick up root-like color-magnetic charges, in addition to their weight-like
color-electric charges due to monodromies, see [30].
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the r = N vacuum we call these states quark-like dyons DlA, l = 1, ..., r, A = 1, ..., Nf . We
will see in Sec. 6.2 that they have chiral R-charges different from those of quarks.7 At large
masses these dyons are heavy monopole-antimonopole stringy states while below crossover,
at small masses, they become light fundamental (or elementary) states of the U(r)×U(1)N−r

gauge theory.
The quark-like dyons from the U(r) sector and the monopoles from the orthogonal

U(1)N−r sector develop VEVs determined by Eq. (5.7). In particular, dyons develop VEVs

〈DlA〉 = 〈 ¯̃DlA〉 = 1√
2





√
ξ1 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . .
0 . . .

√
ξr 0 . . . 0



 ,

l = 1, ..., r , A = 1, ..., Nf . (5.9)

The theory is at weak coupling provided the ξP parameters are small.
What happens to quarks of the original theory? In much the same way as in the r = N

vacuum the screened qkA quarks (with k = 1, ..., r) of the U(r) gauge sector decay into
monopole-antimonopole pairs and evolve into stringy mesons shown in Fig. 1. These quarks
are in the instead-of-confinement phase.

We would like to stress however, that there is a peculiar distinction of this picture with
the one in the r = N vacuum. In the limit of small and almost equal masses the dyon
condensation breaks the global SU(Nf ) group down to

SU(r)C+F × SU(Nf − r)×U(1)V . (5.10)

In particular, color-flavor locking takes place in the SU(r) factor. In contrast to the case of
the r = N vacuum both dyons and monopole-antimonopole stringy mesons, which originate
from screened quarks of the large-m theory are in the same representations of this group.
Namely, they form singlet and adjoint representaions of SU(r)C+F as well as bifundamental
representations,

(1, 1), (r2 − 1, 1), (r̄, Nf − r), (r, N̄f − r̄) , (5.11)

where we mark representations with respect to two non-Abelian factors in (5.10). The U(1)R
symmetry which distinguishes screened dyons and monopole-antimonopole mesons (former
screened quarks) is broken. Therefore monopole-antimonopole stringy mesons are unstable
and decay into dyons, which are lighter.

There are also other quarks qkA charged with respect to the Abelian U(1)N−r gauge
group with l = (r + 1), ..., N in the original theory. These are still confined by Abelian
strings formed as a result of the monopole condensation in the small-m limit.

7In [13] the chiral limit was not considered. It was concluded that these states are identical to quarks.
Here we correct this interpretation.
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6 Zero vacua

In this section we consider zero vacua at intermediate and large µ [13]. These vacua form a
subset of r vacua with small r, r < Ñ .

6.1 Intermediate µ

In the small mass limit r double roots of the Seiberg-Witten curve associated with light
dyons are still determined by quark masses

√
2eP = −mP , P = 1, ..., r . (6.1)

The above expression is valid in r vacua with r < Nf/2. Other roots are much larger, of
the order of ΛN=2. However, in contrast to the r = N vacuum (see Sec. 3.1) this does not
allow us to increase µ keeping the U(r) theory at weak coupling. The point is that dyons’
VEVs which are supposed to be small to ensure weak coupling (in the IR free theory) are
not determined entirely by eP in the r < N vacua. They are given by parameters ξP that
depend also on the gaugino condensate which determines the values of the unpaired roots in
(5.7). In the majority of the r vacua the gaugino condensate is of the order of S ∼ µΛ2

N=2.
We refer to these vacua as the Λ vacua. In the Λ vacua all parameters ξ are of the order of
ξ ∼ µΛN=2, and we cannot increase µ without destroying the weak coupling condition [13].

However, there are two exceptions. One is the r = N vacuum in which the gaugino
condensate vanishes, and Ñ parameters ξ are determined by the quark masses, see (2.16)
and (2.17) [5]. We considered this vacuum in the previous sections. Another exception is the
subset of the r < Ñ vacua, which we call the zero vacua [13]. In the zero vacua the gaugino
condensate is extremely small [12, 13],

S ≈ µ
m

Nf−2r

Ñ−r

Λ
N−Ñ

Ñ−r

N=2

e
2πk

Ñ−r
i ≪ µm2, k = 1, ..., (Ñ − r) , (6.2)

in the limit of small equal quark masses. This behavior can be obtained from the exact
Cachazo-Seiberg-Witten solution for the chiral ring of the theory [27], see also [13].

Thus in the zero vacua we can neglect contributions of the unpaired roots as compared
to the quark masses in (5.7). It turns out that ξ’s are given by [13]

ξP ≈ −2µ
(

m1, ..., mr, 0, ..., 0, ΛN=2, ...,ΛN=2e
2πi

N−Ñ
(N−Ñ−1)

)

, (6.3)

where (Ñ − r) entries are of the order of
√

S/µ and taken to be zero in the quasiclassical

approximation, while the last entries are large. They determine VEVs of (N−Ñ ) monopoles.
Now we can increase µ to intermediate values

|µ| ≫ |mA|, A = 1, ..., Nf , µ ≪ ΛN=2. (6.4)

21



The monopole U(1)(Ñ−r) sector associated with almost vanishing entries in (6.3) enters the
strong regime. It is shown in [13] that it goes through a crossover at µ ∼ eN ∼

√

S/µ, and
the domain of intermediate µ can be described in terms of the weak coupling µ dual theory
with the gauge group

U(Ñ)×U(1)N−Ñ , (6.5)

Nf flavors of quark-like dyons charged with respect to the U(Ñ) gauge group and (N − Ñ)

singlet monopoles charged with respect to the U(1)N−Ñ Abelian sector. The restoration
of the U(Ñ) gauge group occurs because (Ñ − r) Coulomb branch parameters φP of the
Seiberg-Witten curve almost vanish, being determined by the small value of the gaugino
condensate [13].

Qualitatively the enhancement of the U(r) gauge group to U(Ñ) can be understood as
follows. As we reduce m, the expectation values of monopoles in the U(Ñ − r) sector tend
to zero, see (6.3). Confinement of quarks in this sector becomes weaker and eventually
disappears. However, confined quark-antiquark pairs cannot just move apart because they
have “wrong” chiral charges, see the next subsection. They decay into a pair of quark-like
dyons

q + q̃ → D̄ + ¯̃D + λ+ λ (6.6)

via emission of two gauginos.
These dyons and gauge fields of the U(Ñ − r) sector become unconfined and enter the

non-Abelian Coulomb phase. Moreover, dyons of the U(Ñ − r) sector combine with dyons
of the U(r) sector to form light non-Abelian matter of the enhanced U(Ñ) gauge group.

Note also that VEVs of r dyons are given by ξsmall while VEVs of (N − Ñ) monopoles
are much larger and given by ξlarge, see (6.3). Therefore, the monopole sector is heavy and
can be integrated out together with the adjoint matter. In much the same way as in the
r = N vacuum this leaves us with the low-energy theory with Seiberg’s dual gauge group

U(Ñ) (6.7)

and Nf flavors of dyons with the superpotential [13]

Wzero vac = − 1

2µ
(D̃AD

B)(D̃BD
A) +mA (D̃AD

A) . (6.8)

This is the same superpotential as in the r = N vacuum, see (3.5).
Note, that the dyons in this setup have Ñ colors, however, only r of them condense,

r < Ñ . Thus our low-energy infrared free U(Ñ) theory is in the mixed Coulomb-Higgs phase
with regards to dyons. In particular, the U(Ñ − r) subgroup of U(Ñ) remains unbroken,
and (Ñ − r) massless gauge bosons are present. The gauge bosons of the U(r) subgroup and

their dyon N = 1 superpartners have masses of the order of g̃
√

ξsmall. Other dyons charged
with respect to U(Ñ) have masses of the order of m.

Quarks of the original theory charged with respect to U(1)N−Ñ are confined by electric

strings formed due to the condensation of monopoles in the heavy U(1)N−Ñ Abelian sector.
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In much the similar way as in the r = N vacuum these stringy mesons are the candidates
for Seiberg’s M mesons. At intermediate values of µ the U(1)N−Ñ Abelian sector is at weak

coupling, and these mesons are heavy, with masses of the order of
√

ξlarge ∼ √
µΛN=2.

We can compare our low-energy U(Ñ) µ-dual theory to Seiberg’s dual. In much the
same way as in the r = N vacuum we find a perfect match [13]. Namely, if we integrate
out M fields in Seiberg’s dual superpotential (3.8) (they are heavy at intermediate values
of µ) and make identification (3.11) similar to that in the r = N vacuum we arrive at the
superpotential which coincides (up to a sign) with our superpotential (6.8).

The identification (3.11) reveals the physical nature of the Seiberg “dual quarks.” In
much the same way as in the r = N vacuum they are not monopoles. Instead, they are
quark-like dyons which have color charges identical to those of quarks but different global
charges. Condensation of r dyons leads to confinement of monopoles and the “instead-of-
confinement” phase for quarks in the U(r) sector.

6.2 Large µ

Now we assume that µ is large while
√

ξsmall is small enough to ensure the weak coupling
regime in the low-energy U(Ñ) µ-dual theory, see (4.1). By the same token as in the r = N
vacuum we can use the anomaly matching to show that Seiberg’s M mesons should become
light at large µ.

If the IR energy scale is large, EIR ≫
√

ξsmall, the global group is given by (4.2) and in this
case the anomaly matching was carried out in [2]. Namely, the transformation properties of
quarks of the original theory andM mesons are given by Eqs. (4.3) and (4.5). Let us consider
the dyon charges. The R charge is determined by the anomaly cancellation requirement with
respect to non-Abelian gauge bosons [2]. It is determined by the number of flavors and the
rank of the gauge group. Say, for quarks of the original theory it is given by Ñ/Nf , see (4.3).
The rank of the gauge group in the µ-dual theory is different, however. It equals Ñ . Thus,
the R charges of the DlA dyons are given by

RD =
N

Nf

. (6.9)

This tells us that the quarks and dyons are in fact different states, as was mentioned
above. We arrive at our µ-dual theory starting from the N = 2 limit by virtue of the µ
deformation. Moving along this way we break the U(1)R symmetry. Thus, we were unable to
observe the above distinction. The dyons appeared just as quarks with a truncated number
of colors. Now, studying the chiral limit, we see that in fact they are different states.

As was already explained, the weakly confined quark-antiquark pairs decay into uncon-
fined dyon pairs via a wall-crossing-like process

q + q̃ → D̄ + ¯̃D + λ+ λ, (6.10)

upon increasing µ, see (6.6). It is easy to see that this decay respects the R-charge conserva-
tion, where we use the fact that the gaugino R charge is unity. Equation (6.10) shows that
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the dyon transformation laws are

D :

(

N̄f , 1,
N

Nf

)

, D̃ :

(

1, Nf ,
N

Nf

)

. (6.11)

In particular, the DlA dyon transforms in the N̄f representation of the SU(Nf )L rather than 8

in the representation Nf .
We see that the dyon transformation properties are the same in both, the zero and r = N

vacua (see (4.4)), and coincide with those for the Seiberg dual quarks [2]. Thus, the anomaly
matching at the IR energy scale

EIR ≫
√

ξsmall

follows the calculation presented in [2]. The concluding result is: the light neutral MB
A field

is needed to match the anomalies.
If EIR ≪

√

ξsmall, the unbroken global group is

SU(r)× SU(Nf − r)× U(1)V . (6.12)

In particular, it is easy to see that the chiral U(1)R symmetry is broken in the zero vacua in
contradistinction with the r = N case. In fact, we cannot arrange combinations similar to
that in (4.7) and (4.9) to ensure that the R′ charges of r components of quarks and (Nf − r)
components of M mesons (which develop VEVs) vanish. The required axial rotation from
the non-Abelian subgroups in (4.2) does not respect the Yukawa interaction (D̃AD

B)MA
B .

Therefore, we cannot match anomalies at energies below
√

ξsmall.
Thus, in the zero vacua the anomaly matching gives a less restrictive upper bound on

the M-meson mass as compared to the r = N vacuum, namely mM
<∼

√
µm. Still we can

obtain a more restrictive estimate for the M-meson mass using the Goldstone theorem. The
number of broken generators in the breaking of (4.2) down to (6.12) is

r2 + (Nf − r)2 + 4r(Nf − r). (6.13)

While r2 and 4r(Nf − r) broken generators can be accounted for by light dyons in the rr̄
and bifundamental representations, respectively, the extra (Nf − r)2 light states are missing.
These can be accounted for by the light M meson. As a result, we conclude that M-meson
mass should be lighter, namely

mM ∼ m, (6.14)

as is the case in the r = N vacuum.
The physical interpretation of the Seiberg’s M mesons in the zero vacua is as follows. As

was already mentioned, the candidates for the M mesons can be found among mesonic states
from the heavy Abelian U(1)N−Ñ sector – quark-antiquark pairs connected by confining
strings. The majority of these mesons are similar to those shown in Fig. 1 in which the
monopoles should be replaced by quarks. However, a peculiar feature of all r < N vacua

8This important circumstance was noted by Chernyak [8].

24



is that there are only (N − 1) strings, one of strings is missing. Therefore, some of these
mesons are formed by quarks and antiquarks connected by only one string, while the other
one is missing, see [24, 28] for more details.

Now, similarly to the situation in the r = N vacuum, we suggest that one of these
quark-antiquark stringy meson become light at large µ when the U(1)N−Ñ sector enters the
strong coupling regime. This M meson should be integrated in the U(Ñ) µ-dual theory as

a “fundamental” (elementary) field. Other fields of the Abelian U(1)N−Ñ sector are heavy
and can be integrated out. The superpotential and action of the low-energy U(Ñ) µ-dual
theory are given in Eqs. (4.14) and (4.15).

7 Summary and Conclusions

To summarize, at large µ and small ξsmall µ-deformed SQCD in the r = N vacuum is
described by the weakly coupled infrared-free r-dual U(Ñ) theory (4.15) with Nf light quark-
like dyon flavors. Condensation of the light dyons DlA in this theory triggers formation of
the non-Abelian strings and confinement of monopoles. The quarks and gauge bosons of
the original N = 1 SQCD are in the “instead-of-confinement” phase: they evolve into
monopole-antimonopole stringy mesons shown in Fig. 1. There is also Seiberg’s neutral
meson M field which is monopole-antimonopole stringy meson from heavy Abelian sector.
It becomes anomalously light and plays the role of a “pion” at large µ.

In the zero r-vacua we have the weak coupling description in terms of the infrared-free
µ-dual U(Ñ) theory (4.15) with Nf flavors of quark-like dyons. Only r dyons condense
(r < Ñ) leading to confinement of monopoles in the U(r) sector. The U(Ñ − r) sector is
in the non-Abelian Coulomb phase for dyons. The Seiberg’s M-meson is a quark-antiquark
stringy state which comes from the heavy Abelian sector. It becomes light at large µ.
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