
This is the accepted manuscript made available via CHORUS. The article has been
published as:

N=4 supersymmetry on a space-time lattice
Simon Catterall, David Schaich, Poul H. Damgaard, Thomas DeGrand, and Joel Giedt

Phys. Rev. D 90, 065013 — Published 10 September 2014
DOI: 10.1103/PhysRevD.90.065013

http://dx.doi.org/10.1103/PhysRevD.90.065013


N = 4 Supersymmetry on a Space-Time Lattice

Simon Catterall and David Schaich

Department of Physics, Syracuse University, Syracuse, NY 13244, USA

Poul H. Damgaard

Niels Bohr International Academy and Discovery Center,

Niels Bohr Institute, University of Copenhagen,

Blegdamsvej 17, DK-2100 Copenhagen, Denmark

Thomas DeGrand

Department of Physics, University of Colorado, Boulder, CO 80309, USA

Joel Giedt

Department of Physics, Applied Physics and Astronomy,

Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12065, USA

Abstract

Maximally supersymmetric Yang–Mills theory in four dimensions can be formulated on a space-

time lattice while exactly preserving a single supersymmetry. Here we explore in detail this lattice

theory, paying particular attention to its strongly coupled regime. Targeting a theory with gauge

group SU(N), the lattice formulation is naturally described in terms of gauge group U(N). Al-

though the U(1) degrees of freedom decouple in the continuum limit we show that these degrees of

freedom lead to unwanted lattice artifacts at strong coupling. We demonstrate that these lattice

artifacts can be removed, leaving behind a lattice formulation based on the SU(N) gauge group

with the expected apparently conformal behavior at both weak and strong coupling.
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I. INTRODUCTION

After close to thirty years of attempts to formulate lattice gauge theories in a manner

that would preserve supersymmetry, developments in the last decade led to the construction

of lattice versions of a number of interesting supersymmetric theories. The solution involves

no fine tuning in some cases and manageable fine tuning in others. See Ref. [1] for a

comprehensive review. In this work we employ the resulting lattice formulation of four-

dimensional maximally supersymmetric N = 4 Yang–Mills theory to initiate large-scale

numerical studies of this system. In addition to reporting these first numerical results, we

provide a detailed review of the lattice construction itself, which possesses several unusual

features that may not yet be common knowledge.

At the most basic level, the key observation is that only supercharges that transform as

Lorentz scalars can be exactly preserved on a lattice. These conserved charges anti-commute

and also individually square to zero, much like BRST charges. As we will briefly review in

the next section, there exists a very direct link between lattice supersymmetry and BRST

symmetry, through a formulation that builds on topological twisting of supersymmetric

gauge theories.

In four dimensions the only supersymmetric gauge theory that can be formulated on

a space-time lattice in this manner is N = 4 supersymmetric Yang–Mills (SYM) theory,

which has sixteen supersymmetry charges. On the lattice only one of these charges will be

exactly preserved, with the other fifteen broken by lattice artifacts and recovered only in the

continuum limit. In the continuum limit, these sixteen fermionic degrees of freedom give

rise to four Majorana (or two Dirac) fermions, in perfect balance with the bosonic degrees

of freedom. While the lattice fermion action that we will present looks quite different from

more familiar approaches to lattice fermions, in the free-field limit it can be mapped to a

theory of reduced staggered fermions [2].

The lattice construction has several other features that ensure a symmetric treatment of

fermions and bosons. Of course, all fields transform in the adjoint representation. However,

in the usual formulation gauge fields are identified with links on the lattice, while both scalars

and fermions are taken to live on sites, a distinction incompatible with supersymmetry. In

addition, the lattice gauge link variables are usually taken to be elements of the gauge group,

while the scalar and fermion fields are in the corresponding Lie algebra (as are the gauge
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potentials in the continuum).

The second issue is easier to address: we simply keep the gauge links in the algebra of

the gauge group, on equal footing with the scalar and fermion fields. A similar approach

has been explored in the case of pure (non-supersymmetric) Yang–Mills theory [3–5]. These

constructions feature a flat measure in the partition function, and are most naturally appli-

cable to U(N) gauge groups. In this formulation the emergence of an appropriate vacuum,

around which the continuum limit can be taken, results from a scalar mode achieving a vac-

uum expectation value, an interesting dynamical mechanism quite different from the usual

Wilson formulation of lattice gauge theory.

Since the gauge fields must necessarily be associated with links to retain gauge invari-

ance, supersymmetry dictates that the fermions should also be located on links. Such a

geometrical prescription can be implemented by working with the Kähler–Dirac equation,

as opposed to the usual Dirac equation [6]. The former describes precisely four degenerate

Majorana fermions in the continuum limit, in terms of Grassmann-valued p-form fields that

may be associated with links in a lattice. In four dimensions only the theory with N = 4

supersymmetry possesses the fermion degeneracy required by the Kähler–Dirac equation.

More formally, p-forms and the Kähler–Dirac equation arise when the fields of the theory

are decomposed under the diagonal subgroup of the SO(4) Euclidean Lorentz symmetry and

an SO(4)R subgroup of the R symmetry of the theory [7]. This process is the topological

twisting procedure mentioned above, and in flat space just corresponds to a change of vari-

ables in the theory. In this way, spin-1/2 fields are also distributed along links, on equal

footing with the gauge fields.

A similar construction works for the scalar fields, which decompose as an SO(4) vector

and two scalars after twisting. The vector combines with the lattice gauge field to form a

complexified link field, i.e., each link is an element of gl(N,C). It is natural to associate the

remaining two scalars with a fifth complexified link field, which can be incorporated into the

theory by working on the A∗4 lattice whose basis vectors consist of five links symmetrically

spanning four space-time dimensions [8]. The resulting five-component complexified gauge

field decomposes into two irreducible representations under the S5 point group symmetry of

the A∗4 lattice: a complex singlet and a complex four-component representation, as required

to target N = 4 SYM in the continuum limit [7]. To extract physical observables, one

simply “un-twists” and measures expectation values of combinations of fields that have the
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appropriate transformation properties under the Euclidean Lorentz group.

Because each link is an element of the algebra gl(N,C), the twisted lattice formulation

summarized above naturally describes the gauge group U(N), the maximal compact sub-

group of GL(N,C). Although the U(1) gauge degrees of freedom decouple in the continuum

limit, where U(N) = SU(N)⊗U(1), they introduce unwanted lattice artifacts at strong cou-

pling. A new development in the work we present below is a mechanism to remove these

lattice artifacts, leaving behind a lattice formulation based on SU(N). Specifically, we add

a deformation to the lattice action, which softly breaks the nilpotent Lorentz-scalar super-

symmetry. Additional soft supersymmetry breaking is introduced by another deformation

included to regulate flat directions in numerical calculations.

Our approach does not exhaust the possibilities for numerically studying N = 4 SYM

with gauge group SU(N). An intriguing alternative method employs the equivalence between

this theory in the large-N limit on the manifold R×S3 and a certain limit of supersymmetric

large-N quantum mechanics [9–14]. This treats all 16 supercharges on an equal footing, but

none of them are exactly preserved at a finite ultraviolet cut-off. There is also a proposal [15]

to preserve two supersymmetries by working with two commutative and two noncommutative

dimensions.

This paper is organized as follows: in the next two sections we review in more detail

the twisted lattice formulation of N = 4 SYM briefly summarized above, then spend two

sections presenting some first results from our large-scale numerical computations. We

begin by considering the continuum action in terms of the twisted fields, and show how this

system can be directly transcribed to produce the lattice theory. In Section II B we review

the A∗4 lattice itself, and the role that its structure plays in comparisons of lattice results

with continuum expectations. We then discuss how the continuum limit of the theory is

recovered from lattice calculations. Section III first shows that the U(1) sector of the U(N)

gauge group induces a transition to a strongly-coupled lattice phase with no analog in the

continuum theory. We then demonstrate that this problem may be cured by adding to the

lattice action a new term that suppresses the U(1) gauge degrees of freedom, leaving behind

a lattice formulation based on gauge group SU(N).

Using this new lattice action, we have initiated large-scale numerical studies of N = 4

SYM. The first results that we present in Section IV provide evidence that our lattice

theory simulates SYM to a good approximation, despite the deformations necessary to carry
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out numerical calculations. In addition, we show that direct measurements of the pfaffian

indicate no sign problem, and take a first look at the large-N limit, where we observe 1/N2

suppression of supersymmetry-breaking effects and no change in the pfaffian phase. Finally,

in Section V we study the static potential, which exhibits Coulombic behavior at both weak

and strong coupling. We consider potentials based on three different types of Wilson loops,

and find that their Coulomb coefficients have the expected relative magnitudes. We conclude

with a look forward at further investigations that we will soon present in future publications.

II. CONNECTING THE CONTINUUM AND LATTICE THEORIES

In the continuum, N = 4 SYM can be twisted in different ways to form topological field

theories. The known lattice construction closely mimics the twisting introduced by Mar-

cus [16], which is sometimes called the GL-twist due to its important role in the Geometric

Langlands program [17]. In this section we summarize the twisted theory and its transcrip-

tion to the A∗4 lattice, some features of which will play important roles in the numerical

results presented in Sections IV and V. Although most of the information in this section has

already appeared in Refs. [1, 7, 8, 18] among others (the new results in Section II C will be

derived in a separate future publication [19]), we suspect that much of it is not yet common

knowledge, which motivates this review.

A. From topological twisting to the lattice action

The central idea of the GL-twist is to form the complex combination

Aµ ≡ Aµ + iBµ, (1)

where Aµ are the usual four-dimensional gauge potentials and Bµ is a vector formed out of

four of the six adjoint scalars ΦIJ of the N = 4 theory. The two remaining scalars remain

singlets after twisting. The four Majorana fermions (ΨI and CPT-conjugate partners Ψc
I)

are regrouped into an anti-symmetric tensor χµν , two vectors ψµ and ψµ and two scalar

components η and η, altogether 16 single components.

It turns out to be more natural to work in terms of five-component objects, extending

the complex gauge combination to

Aa ≡ Aa + iBa, (2)
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where the roman index “a” runs from 1, · · · , 5. We assign the two singlet scalars to the new

fifth component A5. Similarly, the 16 fermionic fields can be regrouped into the multiplet

χab, ψa, η, with χab still anti-symmetric. We can then introduce complexified field strengths,

Fab ≡ [Da,Db] Fab ≡ [Da,Db], (3)

where the corresponding complexified covariant derivatives read

Da = ∂a +Aa Da = ∂a +Aa. (4)

One scalar supersymmetry charge Q takes on the meaning of a BRST charge after the

twisting. In the notation introduced above, it acts as follows:

Q Aa = ψa Q ψa = 0

Q χab = −Fab Q Aa = 0 (5)

Q η = d Q d = 0,

where d is a bosonic auxiliary field with equation of motion d =
[
Da,Da

]
(repeated indices

summed). The other fifteen supersymmetry charges are twisted into a vector Qa and anti-

symmetric tensor Qab.

Except for a topological Q-closed term,

Scl = − 1

4g2

∫
Tr εmnpqrχqrDpχmn, (6)

the fullN = 4 action can be written as the BRST gauge fixing of arbitrary field deformations:

S =
1

g2
Q
∫

Tr

[
χabFab + η[Da,Da]−

1

2
ηd

]
+ Scl (7)

where Q Scl = 0 is guaranteed by the Bianchi identity. Since we continue to work in four

space-time dimensions, the symmetric constraint
∑

a ∂a = 0 provides the proper number

of independent differentiations. Equivalently one can obtain the N = 4 theory by a naive

dimensional reduction of the five-dimensional theory.

As explained in detail in Ref. [20], this twisted formulation leads naturally to a lattice

construction of the theory. In fact, there is a very direct and geometric prescription for how

to map continuum variables (covariant derivatives and tensor fields of arbitrary rank) to

those of the lattice [20, 21]. In this particular case, the lattice inherits the five-component
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language, and is most naturally represented as the A∗4 lattice with manifest S5 point group

symmetry in four space-time dimensions. The basis vectors of the A∗4 lattice link the center

of an equilateral 4-simplex to each of its five vertices. This is the analog of the triangular

lattice in two dimensions, and we will review its properties in the next subsection.

In terms of the complex link variables Ua(n), and the finite difference operators

D(+)
a fb(n) = Ua(n)fb(n + µ̂a)− fb(n)Ua(n + µ̂b)

D(−)

a fa(n) = fa(n)Ua(n)− Ua(n− µ̂a)fa(n− µ̂a) (8)

D(−)

c fab(n + µ̂c) = fab(n + µ̂c)U c(n + µ̂a + µ̂b)− U c(n)fab(n)

from Refs. [20, 21], the lattice action can be written down by transcribing the continuum

action:

S0 =
N

λlat

∑
n

Tr Q
(
χab(n)D(+)

a Ub(n) + η(n)D(−)

a Ua(n)− 1

2
η(n)d(n)

)
+ Scl (9)

Scl = − N

4λlat

∑
n

Tr εabcdeχde(n + µ̂a + µ̂b + µ̂c)D
(−)

c χab(n + µ̂c). (10)

Here λlat = g2
latN differs from the continuum ’t Hooft coupling by a normalization factor of

1/
√

5, which we derive in the next subsection. On the lattice Scl is Q-closed on account of

a lattice analog of the continuum Bianchi identity [20],

εabcdeD
(−)

c Fab(n + µ̂c) = 0. (11)

We see that as a “topological lattice theory” the action (9) gauge fixes on our lattice analog

of complexified flat connections,

D(+)
a Ub(n) = Ua(n)Ub(n + µ̂a)− Ub(n)Ua(n + µ̂b) = 0, (12)

but we stress that this pseudo-topological interpretation of our lattice action is irrelevant

here. The physical observables are those of the untwisted theory to which we can always

map back.

Expanding the action (9) using the lattice analog of Eq. (5),

Q Ua = ψa Q ψa = 0

Q χab = −Fab Q Ua = 0 (13)

Q η = d Q d = 0,
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and integrating out the auxiliary field d one obtains

S0 =
N

λlat

∑
n

Tr

[
−Fab(n)Fab(n) +

1

2

(
D(−)

a Ua(n)
)2

−χab(n)D(+)
[a ψb](n)− η(n)D(−)

a ψa(n)
]

+ Scl.

(14)

As discussed in Ref. [18], to stabilize numerical computations we regulate the flat directions

by including in the lattice action a potential

S = S0 + µ2
∑
n, a

(
1

N
Tr
[
Ua(n)Ua(n)

]
− 1

)2

, (15)

with µ a tunable “bosonic mass” parameter. Non-zero µ softly breaks supersymmetry, an

issue we explore in Section IV. The full action is invariant under lattice gauge transforma-

tions,

Ua(n)→ G(n)Ua(n)G†(n + µ̂a) ψa(n)→ G(n)ψa(n)G†(n + µ̂a) (16)

χab(n)→ G(n + µ̂a + µ̂b)χab(n)G†(n) η(n)→ G(n)η(n)G†(n),

where G ∈ U(N). These transformation rules are as expected for lattice variables in the

adjoint representation. What is new here is that the gauge links

Ua(n) =
N2∑
C=1

TCUCa (n) (17)

are expanded in generators of the u(N) algebra with complex coefficients. (We use anti-

hermitian generators normalized by Tr (TATB) = −δAB.) These links are therefore elements

of the algebra gl(N,C).

To obtain the correct naive continuum limit, the complexified gauge links must have the

expansion Ua(x) = I + Aa(x) + . . . in some appropriate gauge. This requirement can be

satisfied by arranging for the imaginary part of the U(1) component of Ua to take on a

vacuum expectation value. This vacuum expectation value sets the lattice scale that allows

the theory to define a derivative in the continuum limit. The bosonic mass term in Eq. (15)

stabilizes just such a vacuum state. We discuss the continuum limit in more detail below,

following a review of the A∗4 structure underlying our lattice system.

B. The underlying A∗4 lattice structure

Dealing with the A∗4 lattice presents some conceptual issues which, while straightforward,

require a little discussion. We define the lattice variables on an abstract hypercubic lattice

8



that includes an additional body diagonal link:

µ̂1 = (1, 0, 0, 0)

µ̂2 = (0, 1, 0, 0)

µ̂3 = (0, 0, 1, 0) (18)

µ̂4 = (0, 0, 0, 1)

µ̂5 = (−1,−1,−1,−1).

Relative to this abstract basis a field can be given integer coordinates n = (n1, n2, n3, n4).

A specific basis for the A∗4 lattice takes the form of five lattice vectors [8]

ê1 =

(
1√
2
,

1√
6
,

1√
12
,

1√
20

)
ê2 =

(
− 1√

2
,

1√
6
,

1√
12
,

1√
20

)
ê3 =

(
0,− 2√

6
,

1√
12
,

1√
20

)
(19)

ê4 =

(
0, 0,− 3√

12
,

1√
20

)
ê5 =

(
0, 0, 0,− 4√

20

)
.

The basis vectors satisfy the relations

5∑
m=1

êm = 0 êm · ên =

(
δmn −

1

5

) 5∑
m=1

(êm)µ(êm)ν = δµν (20)

for µ, ν = 1, · · · , 4. The physical location of a lattice field is simply r =
4∑

ν=1

êνnν .

Using these basis vectors (19) one can construct a 5× 5 orthogonal matrix P where

Pµa = (êa)µ P5a =
1√
5

(21)

for µ = 1, · · · , 4 and a = 1, · · · , 5. As shown in Ref. [7], this matrix allows us to write down

the irreducible representations of the theory under the lattice point group S5.1 For example,

consider the five-component fermion ψa. Under S5 this transforms as ψ′a = Oabψb where

O(g) is the matrix representation of the group operation g. In general this group action is

1 Strictly, the representations are under the discrete rotational subgroup A5 = S5/Z2.
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reducible, which implies that there is a similarity transformation that block diagonalizes O.

In our case the two irreducible components have dimensions 4 and 1, where the singlet is

just 1√
5

∑
a ψa. Notice that the dimensions of these representations of S5 match precisely

those of representations of the continuum SO(4) twisted rotation group. This makes it clear

that indeed in the continuum limit one expects a vector fermion ψµ and an additional scalar

fermion η to arise precisely as in the twisted theory.

Indeed the matrix P makes this connection to the continuum explicit: the transformed

ψ′µ = Pµaψa with µ = 1, · · · , 4 yield the vector, while ψ′5 is the scalar. The story is identical

for the complexified gauge links and confirms that the A∗4 lattice theory yields a gauge field

Aµ, four scalars Bµ and two additional scalars in the continuum limit. Similar considerations

apply to the ten fields in χab, which break up into six- and four-dimensional irreducible

representations under S5. The mapping is just given by

χµν = PµaPνbχab. (22)

The six-dimensional representation corresponds to restricting the indices µ, ν < 5, while the

four-dimensional vector corresponds to the second vector fermion χ5µ = ψµ arising in the

continuum twisted theory. It is quite remarkable that the low-lying representations of the

lattice point group symmetry match perfectly the corresponding representations of SO(4)

in the continuum theory. Indeed, using this technology it is straightforward to show that in

the naive continuum limit the lattice action given in Eq. (9) correctly yields the continuum

twisted SYM theory as written down by Marcus [16].

This comparison between the lattice and continuum actions requires rescaling the lattice

coupling λlat = g2
latN , because the A∗4 basis vectors in Eq. (19) are not orthogonal. This

issue was encountered in non-supersymmetric lattice studies during the early 1980s [22–24],

and is discussed for N = 4 SYM in Ref. [8]. We can quickly understand it by considering

a continuum field theory in a D-dimensional finite volume V = LD. Compare this to the

lattice theory, for which Vlat =
∑

n V0 = NDV0 is defined by summing the volume V0 of

the unit cell over lattice sites n labelled by integers from 1 to N along each independent

direction. Taking the lattice sites in these independent directions to be separated by a

constant distance “a”, then L = aN , and Vlat only equals V if V0 = aD, which in turn only

occurs for a hypercubic lattice. For our A∗4 lattice defined by the basis (19), the unit cell

is a 4-parallelotope (a generalized parallelepiped) with volume V0 = a4 detPµν = a4/
√

5.
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For the A∗D lattice in D dimensions, V0 = aD/
√
D + 1 involves the determinant of the first

D ×D components of P (21).

We can recognize this V0 = a4/
√

5 as the jacobian of the transformation between the

lattice and continuum space-time coordinates. Therefore the action

S =
1

g2

∫
V

dDxL(x) =
V0

g2

∑
n

L(n) ≡ a4

g2
lat

∑
n

L(n), (23)

identifying the lattice coupling g2
lat = g2

√
5. That is, numerical calculations using a given

value of λlat = g2
latN correspond to a weaker continuum ’t Hooft coupling, by a factor

of 1/
√

5. This normalization factor affects comparisons of lattice results with continuum

expectations, as we will see for the static potential in Section V.

C. The continuum limit

Because lattice studies of N = 4 SYM are still in their early stages, it remains an

important task to verify that the continuum limit of the lattice system correctly recovers

all the symmetries of continuum theory: the SO(6) Euclidean conformal symmetry and the

SO(6)R ' SU(4)R R symmetry The GL-twist provides fields that transform as multiplets

under the twisted SO(4) rotation group, the diagonal subgroup of SO(4) Euclidean Lorentz

symmetry and an SO(4)R ⊂ SO(6)R. On the A∗4 lattice we retain the discrete S5 subgroup

of the twisted rotation group discussed in the previous subsection. The lattice action is also

invariant under a U(1)4 center symmetry,

Ua → zaUa Ua → z−1
a Ua ψa → zaψa χab → z−1

a z−1
b χab η → η, (24)

where za = exp(iφa) for φa ∈ R subject to the constraint φ1 + φ2 + φ3 + φ4 + φ5 = 0.

While the lattice action in Eq. (14) is invariant under the scalar supersymmetry Q, non-

zero µ in Eq. (15) softly breaks this symmetry. The other fifteen supersymmetries Qa and

Qab are broken by the lattice discretization itself, while the finite lattice volume and non-zero

lattice spacing break conformal symmetry. All of these symmetries must be recovered in the

continuum limit.

We obtain the continuum limit by taking 1/L → 0, where L is the linear length of the

lattice volume [18]. Since N = 4 SYM possesses a line of conformal fixed points, this

continuum limit may be taken for any fixed value of the bare ’t Hooft coupling λlat. To
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recover supersymmetry, we must also tune µ → 0; like 1/L, it is a relevant parameter of

the lattice system. Because the scalar modes stabilized by non-zero µ are constant in space

and time, we should only need to hold µ2LD fixed in numerical computations, which would

allow us to systematically decrease µ in tandem with 1/L.

As we approach the continuum limit, the long-distance effective action of the lattice

theory takes the form

Seff = Q Tr
{
α1χabFab + α2ηD

(−)

a Ua −
α3

2
ηd
}
− α4

4
εabcdeTr χdeD

(−)

c χab

+ βQ
{

Tr ηUaUa −
1

N
Tr ηTr UaUa

}
,

(25)

up to non-renormalizable terms. Ref. [25] studied this effective action at weak coupling in

perturbation theory, reaching the conclusion that mass terms are not generated at any order,

and that the divergent parts of the renormalizations at one loop are universal, and hence do

not violate the full supersymmetry. More recently, a blocking scheme has been developed

which preserves the Q supersymmetry and the lattice structure [19]. The effective action

above is the most general renormalizable action consistent with the symmetries preserved

by this blocking transformation.

Recovery of the full N = 4 supersymmetry in the continuum limit corresponds to univer-

sal αi and vanishing β in Eq. (25). Recently it has been realized, in Ref. [26], that discrete R

symmetries (subgroups of the continuum SU(4)R symmetry) enforce the desired conditions

αi = α ∀ i and β = 0. In addition it can be seen that the recovery of the Euclidean Lorentz

symmetry also follows from these R symmetries, so there is a connection between all of these

outcomes.

The remaining question is the extent to which the parameters in Eq. (25) must be fine-

tuned in order to realize the necessary discrete R symmetries in the lattice system, and

thus recover the complete symmetries of continuum N = 4 SYM as we take the 1/L → 0

continuum limit. Although five parameters appear in Eq. (25), it is possible to show that

even the worst-case scenario requires at most two fine tunings to target the correct continuum

theory [19]. In Section IV B we discuss newly-developed observables that allow us to monitor

the breaking and restoration of the relevant discrete R symmetries on the lattice, and present

promising initial results.
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III. U(N) VERSUS SU(N) GAUGE GROUP

A peculiar feature of the construction described in the previous section is that it is based

on gauge group U(N) rather than the preferred SU(N). This is a consequence of combining

the gauge and scalar fields into complexified link variables, which are elements of the algebra

gl(N,C). The maximal compact subgroup of GL(N,C) is U(N).

In the end, we are only interested in the SU(N) degrees of freedom. In the continuum

this is not an issue, as U(N) should be viewed as the product gauge group SU(N)⊗U(1)

and the U(1) sector decouples from observables in the SU(N) sector. At non-zero lattice

spacing, the decoupling of the compact U(1) degrees of freedom is not automatic. More

importantly, as we shall now see, these compact Abelian gauge degrees of freedom cause

our lattice theory to enter a phase totally dominated by lattice artifacts at strong coupling.

This issue was studied in the early 1980s for non-supersymmetric U(N) gauge theories on

both hypercubic and simplicial lattices [27, 28].

To illustrate the problem, Fig. 1 shows numerical results for the absolute value of the

Polyakov loop on small L4 = 64 and 84 lattices with gauge group U(2), as a function of

λlat at fixed µ = 1. We expect N = 4 SYM to be deconfined, so that 〈|PL|〉 should

be approximately unity, as is the case at weak coupling. As λlat increases, however, the

Polyakov loop collapses to a small, L-dependent value consistent with a confining theory.

(The lattices considered in Fig. 1 are too small to show a bona fide transition.) All numerical

results presented in this paper employ anti-periodic (thermal) temporal boundary conditions

for the fermions. The collapse of the Polyakov loop is still present when we use periodic

boundary conditions in all four directions.

The behavior of the Polyakov loop indicates that the lattice theory has a phase inconsis-

tent with our expectations for N = 4 SYM. We are able to attribute this behavior to the

U(1) sector, which was also the case for lattice transitions observed in the studies of the

non-supersymmetric U(N) gauge theories mentioned above [27, 28]. First consider Fig. 2,

which shows the real part of the determinant of the plaquette. This plaquette determinant

is a gauge-invariant quantity associated with the U(1) sector, and its expectation value de-

creases sharply around the same λlat values where 〈|PL|〉 collapses in Fig. 1. This suggests

a connection between the U(1) sector and the strong-coupling lattice phase, which we can

make more precise by studying magnetic monopoles in the U(1) sector.
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FIG. 1. The absolute value of the Polyakov loop plotted vs. the ’t Hooft coupling λlat for fixed

µ = 1 indicates that the lattice theory defined by Eqs. 14 and 15 transitions into a confining phase

at strong coupling, characterized by 〈|PL|〉 � 1.

A. Magnetic monopoles in the U(1) sector at strong coupling

Recall that compact U(1) lattice gauge theory undergoes a phase transition from a

Coulombic weak-coupling phase to a confined strong-coupling phase [29]. Above we sug-

gested that the behavior of the Polyakov loop in Fig. 1 and the plaquette determinant in

Fig. 2 could result from similar physics in the U(1) sector of our lattice system. To study

this question, here we consider the dual description of the U(1) sector in terms of magnetic

variables.

In this dual description, ordinary (“electric”) confinement in the strong-coupling phase

corresponds to screened magnetic fields. In three dimensions the dual variables are point

defects (instantons), and the dual description of confinement was famously first given by

Polyakov [30]. In four dimensions, the dual variables are one-dimensional objects, magnetic

world lines, which form closed loops of monopole flux. The Coulombic weak-coupling phase
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FIG. 2. The real part of the plaquette determinant is a gauge-invariant quantity associated with

the U(1) sector. As a function of the ’t Hooft coupling λlat for fixed µ = 1, it shows the same

confinement transition at strong coupling as the Polyakov loop in Fig. 1, suggesting that this

transition is related to the U(1) sector.

is associated with a small density of monopole world lines, while in the confined strong-

coupling phase the density of monopole world lines is large.

The technique that we employ is a small variation on the methodology of Ref. [29]. We

identify monopoles or monopole world lines by counting Dirac strings. To do this we need to

associate a U(1) variable with each link Uµ(x). Considering first gauge fields on a hypercubic

lattice, the phase of the determinant of the link is

φµ(x) = tan−1 Im detUµ(x)

Re detUµ(x)
, (26)

which runs between −π and π. The phase Φµν associated with each plaquette is the sum of

the oriented phases on the edges, and so can run from −4π to 4π. This is gauge invariant

because of the product rule for determinants. We define an integer Dirac string number Nµν

by Φµν = Φ′µν + 2πNµν , where −π < Φ′µν ≤ π. The rationale is that Fµν in the U(1) sector,

represented by Φ′µν , should have the same range as φµ, the U(1) variable on the link.
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Now we define a monopole by counting Dirac strings. This is easiest to visualize in three

dimensions where monopoles are point objects, living inside cubes. We count the number

of strings entering or leaving each face of the cube, and their net sum is the charge

M = εµνλ∆
(+)
µ Nνλ, (27)

with ∆
(+)
µ ψ(n) = ψ(n+ µ̂)−ψ(n). In four dimensions, defects are actually one dimensional

objects, monopole world lines. The local monopole current in direction µ is

Mµ = εµνρσ∆(+)
ν Nρσ. (28)

It is hard to follow the monopole world lines, but it is easy to check that the sum of all

charge (or current in a particular direction) adds up to zero. The interesting quantity is the

total perimeter of monopole strings, which is just the sum of the absolute values of Mµ over

all sites and directions.

On the A∗4 lattice, we should consider an object which transforms covariantly under the

S5 point group symmetry,

Mab = εabcde∆
(+)
c Nde. (29)

To transform this to continuum-like coordinates, and separate the four gauge fields in Uµ
from the additional scalars in U5, we apply the orthogonal matrix P from Eq. (21):

Mµν = PµaPνbMab = εabcdePµaPνbP
T
cρP

T
dσP

T
eλ∆

(+)
ρ Nσλ = (detP )εµνρσλ∆

(+)
ρ Nσλ. (30)

By orthogonality detP = 1 and the only non-zero contributions arise when ρ, σ, λ < 5

(both N5λ = 0 and ∆
(+)
5 = 0). Thus the only non-zero monopole currents are

Mµ5 = εµ5ρσλ∆
(+)
ρ Nσλ, (31)

which is consistent with the hypercubic expression (28).

The problem with this approach is that it necessitates gauge fixing (specifically to Lorentz

gauge), since one is taking linear combinations of different lattice gauge fields which trans-

form differently under gauge transformations. For this reason we have not used this S5-

symmetric approach in our current measurements of the monopole density. Instead we have

simply used the four µ̂µ (18) that point along the principal axes of the hypercubic lattice.

We can gain some intuition for the effects of this procedure by considering a similar, simpler

system, the two-dimensional XY model. This system possesses vorticity, defined as the sum
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FIG. 3. The density of monopole world lines in the U(1) sector plotted vs. the ’t Hooft coupling

λlat for fixed µ = 1 indicates that the strong-coupling confinement transition observed in Figs. 1

and 2 is caused by the compact U(1) degrees of freedom in the U(N) gauge group.

around the unit cell of the differences between the phases of spins at adjacent sites. Our

approach is analogous to measuring the total vorticity of two cells, which would average

nearby vortex–antivortex pairs to zero, a UV effect.

Results of U(2) simulations are shown in Fig. 3, where the mean density of monopole

world lines ρM = 1
4V

∑
n,µ |Mµ(n)| is plotted as a function of λlat at fixed µ = 1. The density

rises around the same values of λlat where the Polyakov loop and plaquette determinant

plunge in the left and center panels of that figure.
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B. Removing the confining phase

We can suppress the compact U(1) gauge degrees of freedom by adding to the action a

term

Sdet = κ
∑
P

| detP − 1|2, (32)

where κ is a new tunable parameter and P is the product of complexified gauge links Ua
around a fundamental plaquette of the lattice. This projects the plaquettes from gl(N,C)

to sl(N,C), and SL(N,C) does not have a compact U(1) subgroup. This is not precisely

equivalent to reducing the gauge group from U(N) to SU(N), but it certainly suppresses

the U(1) sector and hence serves the right purpose.

Fig. 4 shows what happens when we turn on the term (32) in the action to suppress the

U(1) gauge degrees of freedom. (This figure considers different κ = 0 ensembles than does

Fig. 2.) As κ increases, the U(1) confinement transition moves to larger λlat, disappearing

entirely for κ ≥ 0.5. There is a simple argument explaining this threshold value of κ: to

leading order the determinant term (32) yields a 2κFµνF
µν lattice action for the U(1) sector,

corresponding to compact four-dimensional QED with βU(1) = 2κ. Thus the known critical

value β
(c)
U(1) = 0.99 reported in Ref. [29] implies a critical κ ≈ 0.5 as observed. Larger values

of κ correspond to the weak-coupling phase of the U(1) theory.

Like the µ term in Eq. (15), the κ term (32) involves only the bosonic fields and thus

softly breaks the scalar supersymmetry Q. Unlike the relevant coupling µ, κ is marginal,

as we can see by its appearance in the FµνF
µν term of the U(1) sector. In addition, in

the continuum limit the U(1) sector in which κ breaks supersymmetry decouples from the

SU(N) theory of interest. This suggests that it may not be necessary to tune κ to zero in

the continuum limit 1/L → 0, and we intuitively expect its supersymmetry breaking to be

mild even without taking the continuum limit. In Section IV we present some numerical

evidence supporting this expectation.

We conclude this section by presenting the Polyakov loop and plaquette determinant on

83 × 24 lattices with non-zero κ > 0.5, in Fig. 5 and Fig. 6, respectively. These ensembles

will be the focus of our following investigations, and they are summarized in Table III in the

Appendix. There is no sign of a transition in these ensembles. For all investigated couplings

λlat ≤ 5 the Polyakov loop 〈|PL|〉 retains the O(1) magnitude expected for a deconfined

system. (At stronger couplings λlat & 4 larger fluctuations in the non-unitarized link fields
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FIG. 4. The real part of the plaquette determinant vs. the ’t Hooft coupling λlat on 64 lattices with

a variety of κ in Eq. (32) and fixed µ = 1. As κ increases the confinement transition associated

with the U(1) sector moves to larger coupling, and disappears entirely for κ ≥ 0.5. Lines connect

points with the same κ to guide the eye.

cause 〈|PL|〉 to increase, and require that we use larger values of µ to maintain stability.)

Note that these lattices possess a much longer temporal extent than those considered in

Fig. 1. The real part of the plaquette determinant is now a very smooth function of λlat

and remains O(1) for all couplings we study. A plot of the monopole density for these runs

would be uninteresting: ρM = 0 over this range of λlat for these κ = 0.6 and 0.8.

IV. NUMERICAL EVIDENCE FOR LATTICE N = 4 SUPERSYMMETRY

In the lattice theory described above, the twisted scalar supersymmetry Q is exactly

preserved at non-zero lattice spacing only if µ = 0 in Eq. (15) and κ = 0 in Eq. (32). Stable

numerical calculations require both non-zero µ and κ, softly breaking the Q supersymmetry.

Our choice of anti-periodic temporal boundary conditions for the fermionic (but not bosonic)

fields leads to further supersymmetry breaking as a finite-volume effect. The other 15
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FIG. 5. The absolute value of the Polyakov loop with non-zero κ > 0.5 on 83 × 24 lattices. The

six data sets with (µ, κ) = (0.2, 0.6), (0.2, 0.8), (0.4, 0.6), (0.4, 0.8), (0.8, 0.6) and (0.8, 0.8)

are plotted vs. the ’t Hooft coupling λlat. Despite the long temporal extent of lattice, Nt = 24,

the results remain O(1) for all investigated couplings, as expected for a deconfined system. No

significant dependence on µ or κ is visible. At stronger couplings λlat & 3 larger fluctuations in

the non-unitarized link fields cause 〈|PL|〉 to increase, and require that we use larger values of µ

to maintain stability. Lines connect points with fixed (µ, κ) to guide the eye.

supersymmetry charges Qa and Qab are broken by the lattice discretization itself, and must

be recovered in the continuum limit.

In this section we present evidence that the breaking ofQ is under control in our numerical

calculations. We then discuss the fate of the full N = 4 supersymmetry, developing lattice

observables that can be used to monitor the discrete R symmetries mentioned in Section II C.

We also explore the possibility of a sign problem in our phase-quenched simulations, which

omit the phase of the pfaffian from the measure of the path integral. All indications are

that our calculations do not suffer from a sign problem; while not conclusive, this result

is quite encouraging. Finally, in Section IV D we present encouraging initial results from
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FIG. 6. The real part of the plaquette determinant with non-zero κ > 0.5 on 83 × 24 lattices. The

six data sets with (µ, κ) = (0.2, 0.6), (0.2, 0.8), (0.4, 0.6), (0.4, 0.8), (0.8, 0.6) and (0.8, 0.8) are

plotted vs. the ’t Hooft coupling λlat. The results remain O(1) for all investigated couplings, with

no visible dependence on µ. As expected, larger κ keeps 〈Re detP〉 closer to unity, especially at

stronger couplings. Lines connect points with fixed (µ, κ) to guide the eye.

studies of the U(N) gauge groups with N = 3 and 4. We observe 1/N2 suppression of

supersymmetry-breaking effects and no change in the pfaffian phase as N increases.

A. The scalar supersymmetry Q

The bosonic action SB provides an indirect means to explore how badly the scalar

supersymmetry Q is broken by non-zero µ and κ in our numerical calculations. Nor-

malizing SB by the lattice volume, supersymmetry permits exact analytic calculation of

sB ≡ SB/V = 9N2/2 for gauge group U(N). In Fig. 7 we plot (〈sB〉 − 18)/18 for N = 2

on 83 × 24 lattices, as a function of the ’t Hooft coupling λlat for several values of (µ, κ).

As expected, deviations from the exact supersymmetric result increase with each of µ, κ

and λlat, reaching ∼20% for the strongest coupling we consider, λlat = 5. For λlat ≤ 1 the
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FIG. 7. Deviations of the bosonic action 〈sB〉 from its exact supersymmetric value 9N2/2 serve

as a measure of Q supersymmetry breaking due to non-zero µ and κ. Six 83 × 24 data sets with

(µ, κ) = (0.2, 0.6), (0.2, 0.8), (0.4, 0.6), (0.4, 0.8), (0.8, 0.6) and (0.8, 0.8) are plotted vs. the

’t Hooft coupling λlat. The results indicate mild O(10%) supersymmetry breaking in these 83× 24

lattice ensembles that are the focus of our current investigations. As expected, larger µ and κ each

increase supersymmetry breaking, though sB is more sensitive to κ than to µ. The deviations also

grow with the coupling, and approach zero in the free-field limit λlat → 0. Lines connect points

with fixed (µ, κ) to guide the eye.

deviations are ∼10% at most. We see that sB is much more sensitive to κ than to µ: the

effect of doubling µ = 0.2 → 0.4 is negligible compared to that of increasing κ from 0.6

to 0.8. This is consistent with Figure 4 in Ref. [18], which shows 〈sB〉 /18 & 0.98 for all

λlat ≤ 2.6 and µ ≤ 1 when the κ coupling (32) is not included in the action.

An alternate measure of Q-breaking is the vacuum expectation value of the supersymme-

try transformation of a suitable local operator, 〈QO〉. As discussed in Ref. [26], the exact

Q supersymmetry of our lattice action S0 (14) without the terms (15) and (32) implies the

Ward identity 〈QO〉 = 0. Because non-zero µ and κ softly break the supersymmetry Q, in
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numerical computations we will find 〈QO〉 to be non-zero. These Ward identity violations

indicate how badly supersymmetry is broken.

In order to measure 〈QO〉 on the lattice, we need to choose an appropriate operator O,

which must be fermionic so that its Q transformation is bosonic. One simple operator that

does not already appear in our action takes the continuum form

O = Tr

[
η
∑
a

AaAa

]
. (33)

Acting upon O with the supersymmetry Q produces

QO = Tr

[∑
b

[
Db,Db

]∑
a

AaAa

]
− Tr

[
η
∑
a

ψaAa

]
, (34)

where we have used the equation of motion for the auxiliary field Q η = d =
∑

b

[
Db,Db

]
.

The first term in the right-hand side above is constructed entirely from the complexified

gauge fields, while the second involves the ηψa fermion bilinear. The relative negative sign

comes from anti-commuting Q through η.

Transcribed onto the lattice,
[
Db,Db

]
→
[
Ub(n)U b(n)− U b (n− µ̂b)Ub (n− µ̂b)

]
and

QO = Tr

[∑
b

[
UbU b − U bUb

]∑
a

UaUa

]
− Tr

[
η
∑
a

ψaUa

]
. (35)

Averaging over the lattice volume, the vacuum expectation value of each term in the right-

hand side of Eq. (35) grows rapidly as λlat increases. We normalize their difference by the

average of the two terms, plotting in Fig. 8 the quantity

Tr
[∑

b

[
UbU b − U bUb

]∑
a UaUa

]
− Tr

[
η
∑

a ψaUa
]

1
2

{
Tr
[∑

b

[
UbU b − U bUb

]∑
a UaUa

]
+ Tr

[
η
∑

a ψaUa
]} ≡ 2

G− F
G+ F

= 2
QO
G+ F

, (36)

using the shorthand “G” and “F” to refer to the gauge and fermion-bilinear terms, respec-

tively. We find that the violations of this Ward identity are quite similar to the deviations

of the bosonic action from its exact value, though slightly less sensitive to λlat and slightly

more sensitive to µ. By considering 2–3 values of µ, each with two κ > 0.5, we can ob-

serve that supersymmetry breaking appropriately decreases as µ and κ get smaller. We

have not yet attempted to extrapolate these results to the supersymmetric continuum limit

(1/L, µ, κ)→ (0, 0, 0).

In both observables, additional supersymmetry breaking from finite-volume effects is neg-

ligible compared to that due to non-zero µ and (especially) κ. Considering fixed (λlat, µ, κ) =
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FIG. 8. Violations of the Ward identity 〈QO〉 = 0 as defined by Eq. (36) serve as a measure of Q

supersymmetry breaking due to non-zero µ and κ. Six 83×24 data sets with (µ, κ) = (0.2, 0.6), (0.2,

0.8), (0.4, 0.6), (0.4, 0.8), (0.8, 0.6) and (0.8, 0.8) are plotted vs. the ’t Hooft coupling λlat. The

results indicate mild O(10%) supersymmetry breaking in these 83 × 24 lattice ensembles that are

the focus of our current investigations. As expected, larger µ and κ each increase supersymmetry

breaking, though 〈QO〉 is more sensitive to κ than to µ. The Ward identity violations also grow

with the coupling, and approach zero in the free-field limit λlat → 0. Lines connect points with

fixed (µ, κ) to guide the eye.

(1, 1, 1), Table I shows that the bosonic action and Ward identity violations barely vary as

the total lattice volume increases by an order of magnitude from 83 × 24 to 163 × 32. Even

a very small 44 lattice volume produces only percent-level corrections to the dominant con-

tributions from the large κ = 1 and µ = 1. The results are also insensitive to the temporal

extent of the lattice, despite the different temporal boundary conditions we impose for the

bosonic and fermionic fields.

In addition to monitoring the effects of non-zero µ and κ in the 83× 24 lattice ensembles

that are the focus of our current investigations, we can also confirm that Q is indeed restored
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TABLE I. Deviations from the exact supersymmetric bosonic action 〈sB〉, and violations of the

Ward identity 〈QO〉 = 0 as defined by Eq. (36), for different lattice volumes at fixed (λlat, µ, κ) =

(1, 1, 1) and gauge group U(2). The results indicate that additional supersymmetry breaking from

finite-volume effects is negligible compared to that due to non-zero µ and κ. Even a very small 44

lattice volume produces only percent-level corrections compared to results from 83 × 24, 123 × 24

and 163 × 32 volumes.

Volume 〈sB〉−18
18 2

〈
QO
G+F

〉
163 × 32 −0.12254(4) −0.12785(23)

123 × 24 −0.12246(12) −0.12721(60)

83 × 24 −0.12269(16) −0.12701(61)

44 −0.1242(6) −0.1300(26)

in the limit (µ, κ) → (0, 0). This was done in Ref. [18] for the case κ = 0: Figure 4 in

that reference shows that the normalized bosonic action 〈sB〉 /18 approaches unity as the

bosonic mass decreases, indicating recovery of exact Q supersymmetry. Here we extend this

investigation to non-zero κ, scanning a broad range of 0.2 ≤ µ ≤ 1 and 0.1 ≤ κ ≤ 1 on 44

lattices with fixed λlat = 1.

Fig. 9 shows the resulting deviations of the bosonic action 〈sB〉 from its exact super-

symmetric value 9N2/2. With µ fixed, cubic κ → 0 extrapolations fit the data well, with

χ2/d.o.f. . 1. A subsequent quadratic µ → 0 extrapolation produces lim(µ,κ)→(0,0) 〈sB〉 =

17.956(37). If instead we consider the points with µ = κ and carry out a single cubic ex-

trapolation, we find lim(µ,κ)→(0,0) 〈sB〉 = 17.953(44). Both of these values are consistent with

the restoration of the Q supersymmetry in the (µ, κ) → (0, 0) limit. According to Table I,

the remaining differences between 〈sB〉 and its exact supersymmetric value are the size we

should expect to result from working on such a small 44 lattice.

Similarly, Fig. 10 plots violations of the Ward identity 〈QO〉 = 0 as defined by Eq. (36),

for the same 44 lattice ensembles with 0.2 ≤ µ ≤ 1, 0.1 ≤ κ ≤ 1 and fixed λlat = 1. These

results are noisier than those for the bosonic action, but lead to the same conclusion. Cubic

κ → 0 extrapolations with fixed µ, followed by a quadratic µ → 0 extrapolation, produce

lim(µ,κ)→(0,0) 〈QO〉 = −0.011(10), while a single cubic extrapolation with µ = κ leads to
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FIG. 9. Deviations of the bosonic action 〈sB〉 from its exact supersymmetric value 9N2/2, as in

Fig. 7. Nine 44 data sets with 0.2 ≤ µ ≤ 1 are plotted vs. κ for fixed λlat = 1. While the results again

show little dependence on µ, the deviations steadily grow as µ increases, as expected. The lines

are cubic κ → 0 extrapolations. A subsequent quadratic µ → 0 extrapolation of their intercepts

produces lim(µ,κ)→(0,0) 〈sB〉 = 17.956(37), consistent with the restoration of the Q supersymmetry

up to minor effects attributable to the small lattice volume.

lim(µ,κ)→(0,0) 〈QO〉 = 0.006(13). Again, Table I indicates that the remaining Ward identity

violations in the (µ, κ)→ (0, 0) limit may be attributed to the small 44 lattice volume.

The insensitivity to 1/L indicated by Table I is likely a simple reflection of the fact that

both observables are expectation values of local operators averaged over the lattice volume.

In order to explore Q supersymmetry breaking in the continuum limit, we may need to

search for appropriate extended operators 〈QO(x− y)〉, which would allow us to probe a

range of distance scales r = |x − y|. In the next subsection we will see that observables

sensitive to the restoration of the other 15 supersymmetries Qa and Qab naturally have such

an extended character.
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FIG. 10. Violations of the Ward identity 〈QO〉 = 0 as defined by Eq. (36), as in Fig. 8. Nine

44 data sets with 0.2 ≤ µ ≤ 1 are plotted vs. κ for fixed λlat = 1. Although the results are

somewhat noisy, the Ward identity violations grow as µ increases, as expected. The lines are cubic

κ → 0 extrapolations. A subsequent quadratic µ → 0 extrapolation of their intercepts produces

lim(µ,κ)→(0,0) 〈QO〉 = −0.011(10), consistent with the restoration of the Q supersymmetry up to

minor effects attributable to the small lattice volume.

B. The other 15 supersymmetries Qa and Qab

The fate of the 15 broken supersymmetry generators on the lattice is obviously of crucial

importance. As discussed in Section II C, we must recover these supersymmetries in the

continuum limit in order to claim that we are faithfully simulating N = 4 SYM. Recently

Ref. [26] showed how restoration of the full N = 4 supersymmetry follows from preservation

of Q and a set of discrete R symmetries, subgroups of the continuum SU(4)R symmetry.

These discrete R symmetries may be labeled in a way analogous to the twisted supersym-

metries, as the set {Ra, Rab}. As an example, the symmetry transformation Ra acts on the
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fields according to

Raη = 2ψa Raψa =
1

2
η Raψb = −χab

Raχab = −ψb Raχbc =
1

2
εbcaghχgh (37)

RaDa = Da RaDa = Da RaDb = Db RaDb = Db,

where “a” is a fixed index and b, c, g, h 6= a represent the other indices. This symmetry of

the continuum twisted action can be used to derive the Qa transformations of the fields;

morally speaking, Qa = RaQ. Similarly there are ten other discrete R symmetries Rab

that yield Qab. The main point, described in detail in Ref. [26], is that recovery of any

of these R symmetries enforces the correct coefficients on the long distance effective action

(25), and thus the recovery of the full N = 4 supersymmetry. Therefore we can test for the

restoration of all Qa and Qab simply by performing a single Ra transformation on a gauge

invariant observable.

From Eq. (37), we see that the Ra transformation of the continuum complexified gauge

fields is

RaAa = Aa RaAa = Aa RaAb = Ab RaAb = Ab (38)

for all b 6= a. Recalling that the lattice link fields Ua = I + Aa + O(a) in the continuum

limit, we define a lattice Ra transformation as

RaUa = Ua RaUa = Ua RaUb = U−1

b RaU b = U−1
b . (39)

This definition ensures that the lattice Ra transformation commutes with lattice gauge

invariance. Thus a simple test of the Ra invariance is to consider the plaquette

Pab = Tr
[
Ua(x)Ub(x+ êa)Ua(x+ êb)U b(x)

]
=⇒ RaPab = Tr

[
Ua(x)U−1

b (x+ êa)Ua(x+ êb)U−1
b (x)

]
≡ P̃ab. (40)

Because our gauge links are non-unitary elements of gl(N,C), P̃ab 6= Pab. However, P̃ab still

involves closed paths on the lattice and hence is gauge invariant.

In Fig. 11 we show the difference between Pab and P̃ab, normalized by their average value.

At non-zero λlat, the Ra symmetry is violated at O(10%) relative to the size of the plaquette.

This level of violation is smaller than one might anticipate, not much worse than we observed
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FIG. 11. Violations of Ra symmetry in the plaquette, based on Eq. (40). Six 83 × 24 data sets

with (µ, κ) = (0.2, 0.6), (0.2, 0.8), (0.4, 0.6), (0.4, 0.8), (0.8, 0.6) and (0.8, 0.8) are plotted vs. the

’t Hooft coupling λlat. The results indicate mild O(10%) R symmetry breaking in these 83 × 24

lattice ensembles that are the focus of our current investigations. No dependence on µ is visible,

while larger κ reduces R symmetry breaking, which may hint at a potential connection to the U(1)

sector. The Ra violations also grow with the coupling, and approach zero in the free-field limit

λlat → 0. Lines connect points with fixed (µ, κ) to guide the eye.

for the scalar Q supersymmetry in Fig. 8. After all, we only expect the continuum sym-

metries to be restored at long distances, while the 1×1 Wilson loop is certainly not a long

distance quantity, and is heavily influenced by lattice artifacts. We are currently examining

the transformation for larger Wilson loops. We have also not yet attempted to fine-tune the

two independent coefficients of the effective action (25), all of which are marginal with the

exception of the “β” term (which would be added as a counterterm and may be forbidden

by topological arguments [19]).

One novel feature of Fig. 11 is that (unlike the Q supersymmetry breaking discussed in

the previous subsection) the R symmetry breaking decreases as κ increases, which may hint
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at a potential connection to the U(1) sector. Recall, however, that restoration of Qa and

Qab relies on both the Q supersymmetry as well as the Ra symmetry. Consequently, and

as should be expected, the 15 supersymmetries Qa and Qab can not be restored simply by

increasing κ.

While these results are encouraging evidence that our lattice system simulates N = 4

SYM to a good approximation, more work is obviously required to directly confirm that we

recover all necessary symmetries in the 1/L → 0 continuum limit. In addition to consid-

ering larger Wilson loops, we must also study larger lattice volumes. The results of these

investigations will be reported in a future publication.

C. The phase of the pfaffian

After the redistribution of the Majorana fermion fields according to the prescription

of topological twisting, the integrations over these real fermionic components produce a

pfaffian, which for any given gauge field configuration is not manifestly real. We omit the

pfaffian phase from the integration measure, including only the absolute value of the pfaffian.

Such “phase quenching” leads to a drastic computational simplification, as it allows us to

perform simulations by means of pseudofermions Φ, based on the action Φ†
(
D†D

)−1/4
Φ,

where D is the matrix whose pfaffian defines the true measure [31].

In principle, the true expectation values 〈O〉rw can be reconstructed from phase-quenched

measurements via reweighting,

〈O〉rw =
〈Oeiα〉
〈eiα〉

(41)

〈O〉 =

∫
[dU ]Oe−SB |pfD|∫
[dU ]e−SB |pfD|

〈O〉rw =

∫
[dU ]Oe−SB pfD∫
[dU ]e−SB pfD

, (42)

where pfD = |pfD|eiα. If the pfaffian is real and positive at non-zero lattice spacing,

then 〈eiα〉 = 1 and phase reweighting has no effect, 〈O〉rw = 〈O〉. On the other hand, if

α fluctuates far from zero on a significant fraction of the gauge configurations generated

through phase-quenched importance sampling, then 〈eiα〉 may be consistent with zero and

reweighting itself breaks down. Such a sign problem would place a major obstacle in the

way of numerical simulation of the theory.

There are some reasons to suspect that the sign is probably not a problem. First, the pfaf-

fian of the 16-supercharge model dimensionally reduced to zero dimensions can be proven
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to be real and positive definite for the SU(2) gauge group [32]. Next, consider the 16-

supercharge model in two space-time dimensions. Even though this system admits a com-

plex pfaffian as in four dimensions, extensive numerical evidence indicates that there is no

sign problem even at non-zero lattice spacing (and certainly in the continuum limit) [33–36].

Finally, the results in Section IV A provide some indirect numerical evidence for the absence

of a sign problem in our lattice formulation of four-dimensional N = 4 SYM. Specifically,

we observed that in the limit (µ, κ) → (0, 0) the bosonic action approaches its exact su-

persymmetric value, and violations of the Ward identity 〈QO〉 = 0 as defined by Eq. (36)

vanish. While we only presented results for a single value of the ’t Hooft coupling λlat = 1,

our previous study [18] reported similar findings for fixed κ = 0 across a wide range of λlat.

One would not have expected such behavior from a theory with a sign problem.

Here we investigate the sign issue in more detail, initiating a study of the pfaffian phase

as a function of the lattice volume. To carry out this work, we have developed new par-

allel software implementing the algorithm in Ref. [37], which will be presented in a future

publication [38].2 Despite computational advances, we are still limited to small lattice vol-

umes. Direct measurement of the pfaffian phase is an extremely demanding computation, far

more expensive than generating phase-quenched gauge configurations through the rational

hybrid Monte Carlo algorithm. Its cost scales ∼N3
Ψ, where NΨ is the number of elements

in the fermionic fields. As an illustration, the largest system on which we measure the

pfaffian, a 43 × 6 lattice with gauge group U(2), has NΨ = 24, 576. Our algorithm requires

(NΨ/2)2 ≈ 151×106 applications of the fermion operator to compute the pfaffian for a single

43 × 6 gauge configuration, and uses almost 10,000 MB of memory. Running on 16 cores

to minimize the time to solution, each computation lasts for approximately eight days (not

including overhead for optional checkpointing).

Our results for the pfaffian phase α are shown in Fig. 12, considering fixed (λlat, µ, κ) =

(1, 1, 1). We find that 〈eiα〉 ≈ 1 for all volumes we can investigate, and therefore plot

1 − 〈Re (eiα)〉 = 1 − 〈cosα〉 vs. the lattice volume on a semi-log scale. When L = 1 in

any direction, we effectively consider dimensionally-reduced theories for which 1−〈cosα〉 is

dramatically suppressed. Although the phase is larger for truly four-dimensional systems,

1 − 〈cosα〉 is still small, at most 0.003. More significantly, the phase angle does not grow

noticeably on the largest volumes for which we are able to measure the pfaffian: all of our

2 The software can currently be obtained through usqcd.org.
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FIG. 12. Semi-log plot of 1 − 〈cosα〉 vs. lattice volume, where α is the phase of the pfaffian. All

points are for the U(2) gauge group with fixed (λlat, µ, κ) = (1, 1, 1). The inset zooms in on the

four largest-volume results, for 33× 8, 44, 43× 5 and 43× 6. We find that the phase of the phaffian

is small, 1− 〈cosα〉 . 0.003, and does not grow on the larger volumes with L > 3.

results with L > 3 are constant within uncertainties. While these initial results on small

volumes do not guarantee that our 83×24 systems are safe from the potential sign problem,

they are certainly encouraging, especially given the absence of a similar sign problem in two

dimensions. Further investigations will be presented in a future publication focused on the

potential sign problem in our system.

D. A first look at the large-N limit

All numerical results discussed above consider the gauge group U(2). Continuum studies

of N = 4 SYM, in contrast, tend to be anchored in the large-N limit. Moving to U(N) with

N > 2 will be central to our future lattice investigations. In this subsection we take a first

look at larger N , specifically the U(3) and U(4) gauge groups. So far we have analyzed only

small lattice volumes for these systems, no larger than 44. While we have started generating
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83×24 lattice ensembles for N = 3 and 4, these calculations will take some time to complete.

Empirically we find that the costs of numerical computations increase very rapidly with N ,

scaling ∝N5.

Fortunately, because all N = 4 SYM fields transform in the adjoint representation,

deviations from large-N predictions are suppressed by two powers of N ; they go as 1/N2.

Thus even N = 4 should suffice to access the large-N regime up to few-percent effects

that may be comparable to our initial statistical uncertainties. Systematically studying all

of N = 2, 3 and 4 will also allow us to extrapolate 1/N2 → 0 as a further check of the

approach to the large-N limit.

As a first example, in Figs. 13 and 14 we show how our measures of supersymmetry break-

ing – deviations of the bosonic action 〈sB〉 from its exact supersymmetric value 9N2/2, and

violations of the Ward identity 〈QO〉 = 0 as defined by Eq. (36), respectively – depend on

the gauge group. We consider N = 2, 3 and 4 on 44 lattices with fixed (λlat, µ, κ) = (1, 1, 1).

Recall from Table I that even though the small volume contributes to supersymmetry break-

ing, this is only a percent-level effect for 44 lattices, at least for N = 2. We find that both

observables clearly scale ∝ 1/N2. That is, supersymmetry breaking is significantly sup-

pressed as N increases. The straight lines in these plots are fits of the data to the simple

form A/N2; we find the slope A ≈ −0.5. This is encouraging evidence that our lattice theory

continues to simulate N = 4 SYM to a good approximation in the theoretically interesting

large-N limit. Indeed, the quality of the simulations improves as N increases, at the price

of significant increases in computational costs.

It is also important to investigate the pfaffian phase for U(N) gauge groups with larger N ,

to ensure that U(2) is not simply a special case where the pfaffian is especially well behaved.

Of course, these computations are even more challenging than those discussed above, and at

present we have only measured the U(3) and U(4) pfaffian phase for a handful of ensembles.

Table II shows our results for fixed (λlat, µ, κ) = (1, 1, 1). On 23 × 4 and 33 × 4 lattices,

α essentially agrees within uncertainties for all of N = 2, 3 and 4. The alternation of the

overall sign with N is irrelevant. This alternating sign is also present in the matrix model

obtained by dimensional reduction to zero dimensions, suggesting that it simply counts the

number of generators.
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FIG. 13. Deviations of the bosonic action 〈sB〉 from its exact supersymmetric value 9N2/2, as in

Fig. 7. Results from 44 ensembles with (λlat, µ, κ) = (1, 1, 1) are plotted vs. 1/N2 for gauge groups

U(2), U(3) and U(4). The deviations clearly scale ∝1/N2. The red line is a linear fit constrained

to vanish in the large-N limit.

TABLE II. The real part of the pfaffian phase, cosα, for N = 2, 3 and 4 on lattice volumes

23 × 4 and 33 × 4 with fixed (λlat, µ, κ) = (1, 1, 1). The phase remains small, and agrees within

uncertainties for all gauge groups. The irrelevant overall sign simply counts the number of U(N)

generators.

Volume U(2) U(3) U(4)

23 × 4 0.99978(4) −0.99980(3) 0.99989(4)

33 × 4 0.99914(22) −0.99922(20) —

V. THE POTENTIAL

In this section we describe our measurements of the potential between static test charges

(in the fundamental representation), as determined from the behavior of Wilson loops. The
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FIG. 14. Violations of the Ward identity 〈QO〉 = 0 as defined by Eq. (36), as in Fig. 8. Results

from 44 ensembles with (λlat, µ, κ) = (1, 1, 1) are plotted vs. 1/N2 for gauge groups U(2), U(3) and

U(4). The Ward identity violations clearly scale ∝1/N2. The red line is a linear fit constrained to

vanish in the large-N limit.

analysis has several parts. In the next subsection we describe the general methodology

we use to compute Wilson loops at many separations on the hypercubic representation of

the A∗4 lattice, and summarize the three different types of Wilson loops that we consider.

Section V B presents our results for the potential from 83 × 24 lattice ensembles.

We provided a first look at the static potential in Ref. [18]. That analysis considered only

84 lattices, which prevented us from extending the Wilson loops to large time extents. The

only Wilson loops considered were those oriented along the axes of the lattice, which limited

the number of spatial separations r ≡ |~r| at which we had data points for V (r). And we did

not correctly translate the fields and couplings of the lattice action defined on a hypercube,

to the lattice action defined on the A∗4 lattice, to the continuum theory. In this work we

address all of these issues.
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A. Lattice observables

We extract the static potential from the asymptotic behavior of Wilson loops, including

loops that are not oriented along the principal axes of the lattice. This is awkward to do

when explicitly constructing the Wilson loops as paths in the lattice. Instead, we exploit a

trick from QCD simulation technology, to measure loops with all available spatial separations

~r. The method is to gauge fix to Coulomb gauge, and then consider

W (~r, t) = Tr P (~x, t, t0)P †(~x+ ~r, t, t0), (43)

where P (~x, t, t0) is a product of temporal links at spatial location ~x extending from time-slice

t0 to time-slice t0 + t.

We are imagining a transfer matrix carrying information from each time-slice to the next,

and gauge fix to Coulomb gauge to ensure that this transfer matrix carries only gauge-singlet

information. Coulomb gauge fixing maximizes
∑

i Tr Ui, where the sum runs over all the

directions along which we are not propagating. The technical issue for us is how to do the

gauge fixing on the A∗4 lattice. Our anti-periodic boundary conditions identify the fourth

link as the temporal direction, but none of the basis vectors in Eq. (19) are orthogonal to

ê4. Since the first three links span each time-slice, we define Coulomb gauge by maximizing∑
i Tr Ui for i = 1, 2 and 3 only. In the future it may be worthwhile to explore whether

including the fifth link in the Coulomb gauge condition would have any effect.

After gauge fixing we compute W (r, t) with r calculated using the basis vectors (19) of

the A∗4 lattice (see Section II B for details). From these data we extract the potential by

performing a fit to W (r, nt) = exp(−V (r)(ant)), where “a” is the lattice spacing and nt is

dimensionless. This fit form corresponds to the standard r dependence of the rectangular

r × T Wilson loop in the continuum, when the temporal extent T is much greater than r:

− logW (r, T ) = T × V (r) (44)

V (r) = Cg2N

∫
d3~k

(2π)3
exp(i~k · ~r)D(k) (45)

where k = (0, ~k) is enforced by the limit T � r. For us D(k) = D00(k) = 〈A0(−k)A0(k)〉

is the temporal component of the bosonic two-point function, in the language of Ref. [25].

Cg2N is a Coulomb coupling constant, which to leading order in perturbation theory is

g2N/(4π) for supersymmetric Wilson loops.
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On the lattice, ~r is defined through a set of integers ni. We translate our data for the

potential to physical ~r =
∑

i niêi using the three-dimensional reduction of the A∗4 basis

vectors (19),

ê1 =

(
1√
2
,

1√
6
,

1√
12

)
ê2 =

(
− 1√

2
,

1√
6
,

1√
12

)
ê3 =

(
0,− 2√

6
,

1√
12

)
. (46)

We expect the data to reflect the discrete symmetries of the A∗4 lattice. For example,

the potential at n = (1, 0, 0) and n = (1, 1, 1) should be equal, since both correspond to

r =
√

3/4. This result can be checked by computing the potential using the propagator as

defined in Ref. [25]. Although we do not pursue this investigation in the present work, a

direct comparison of our numerical data for different ~r would allow us to test the rotational

invariance of our lattice system.

Unlike the results in previous sections, our analysis of the potential involves a direct

comparison to the continuum expectations discussed above. This requires us to account

for the relation between the lattice and continuum couplings from Eq. (23), λlat = g2N
√

5

for the A∗4 lattice. As we are interested in the continuum potential, we will plot V (r) as a

function of the continuum ’t Hooft coupling g2N = λlat/
√

5.

Finally, we measure three different kinds of Wilson loops. The first is the “usual” Wilson

loop formed from the complexified gauge links Ua ∈ gl(2,C). Next, we would like to probe

the SU(2) sector of the theory, which corresponds to the projection to sl(2,C) discussed in

Section III B. In this context, we measure the “determinant-divided” Wilson loop,

WD(~r, t) ≡ W (~r, t)

det1/N W (~r, t)
, (47)

with N = 2. If this division removes the U(1) sector, we expect the Coulomb term will be

reduced by a factor (N2 − 1)/N2 = 3/4. Finally, we would like to remove the contribution

of the scalars. We can do that with the “polar-projected” loop: we define a unitary matrix

u corresponding to each link variable via a polar decomposition

U = uH, (48)

where H is hermitian, positive definite. We expect loops Wpol built from these unitary

matrices u to produce a Coulomb coefficient half of that corresponding to the usual Wilson

loops, Cpol = C/2 = 1
2
λlat/(4π

√
5).
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B. Results

The results presented here are from 83× 24 lattices. While we have some ensembles with

larger spatial volumes (123 and 163), the size of the Coulomb coefficient is such that the signal

disappears into the background noise by r ≈ 3. Larger volumes only help by giving more

lattice sites over which we average the correlators (43). We chose Nt = 24 because Wilson

loops can only be measured up to halfway across the lattice without awkward considerations

about boundary conditions. (The Wilson loop has no special periodicity properties.) As we

will see, our signals are not asymptotic until tmin ≈ 5, so Nt = 24 (as opposed to the Nt = 8

considered in Ref. [18]) provides more data points below tmax = Nt/2, making it easier to

judge the quality of fits.

The extraction of a potential begins with the measurement of Coulomb gauge fixed Wilson

loops W (~r, t). To reliably fit W (r, t) = exp(−V (r)t), we must check that we obtain a stable

V (r) for each r. To do this, we perform fits over different ranges of tmin ≤ t < Nt/2, and

look for plateaus as we vary tmin. Representative examples of such tests are shown in Fig. 15,

considering the four smallest r =
√

3/4, 1,
√

2 and
√

11/4 on the A∗4 lattice, for the 83× 24

lattice ensemble with (λlat, µ, κ) = (0.5, 0.2, 0.6). For each r plateaus appear to begin at

tmin ≈ 5. Other data sets are similar, and we conclude that fits beginning at tmin = 5–6 are

safely asymptotic.

We then fit the results for V (r) to a Coulombic form,

V (r) = A− C

r
, (49)

and to a confining form

V (r) = A− C

r
+ σr. (50)

Representative Coulomb potential fits are shown in Fig. 16, again for the (λlat, µ, κ) =

(0.5, 0.2, 0.6) lattice ensemble, for two different tmin = 5 and 7. This figure considers the

potential from the usual Wilson loops; the corresponding results for the determinant-divided

loops and the polar-projected loops are presented in Figs. 17 and 18, respectively. The fits

in each figure use all points shown, which span the range
√

3/4 ≤ r ≤ 2.6. The upper bound

is set by the maximum length that doesn’t wrap around the A∗4 lattice with L = 8. As in

our earlier work [18], we do not find any statistically non-zero string tension σ from fits to

the confining form (50). This is consistent with the non-zero Polyakov loop in Fig. 5.
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FIG. 15. To extract the static potential V (r) we must determine the appropriate range tmin ≤

t < Nt/2 over which to fit the Coulomb gauge fixed Wilson loops to W (r, t) = exp(−V (r)t). We

do this by searching for a plateau in each V (r) plotted vs. tmin. These representative results for

the 83 × 24 lattice ensemble with (λlat, µ, κ) = (0.5, 0.2, 0.6) show plateaus appearing to begin at

tmin ≈ 5 for the four smallest r =
√

3/4, 1,
√

2 and
√

11/4 on the A∗4 lattice. Other data sets are

similar.

In Figs. 16, 17 and 18 we can see that the fit results for the Coulomb coefficients C

may depend on the chosen value of tmin, in addition to the value of λlat. Therefore we

should also monitor C itself as we vary tmin, in the same way we considered V (r) in Fig. 15.

Representative results for C, CD and Cpol vs. tmin are shown in Fig. 19, again for the

(λlat, µ, κ) = (0.5, 0.2, 0.6) lattice ensemble. We consistently see plateaus in the Coulomb

coefficients across a wide range of tmin, although the signal degrades at larger tmin and for

larger λlat. The strongest coupling with a reliable signal is λlat = 4.

We can now present our results for the Coulomb coefficients as functions of the contin-

uum ’t Hooft coupling λlat/
√

5. Fig. 20 shows C for the static potential from the usual
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FIG. 16. Representative results for the static potential V (r) vs. r from the usual Wilson loops,

for the (λlat, µ, κ) = (0.5, 0.2, 0.6) ensemble. The curves are fits of V (r) to the Coulombic form of

Eq. (49), for different tmin = 5 and 7 in the earlier fits to the Coulomb gauge fixed W (r, t).

Wilson loops, based on fits using tmin = 6 and r ≤ 2.6. The corresponding results for the

determinant-divided loops and the polar-projected loops are presented in Figs. 21 and 22, re-

spectively. The lines are the naive predictions of lowest-order perturbation theory combined

with the scaling expectations from Section V A:

C =
λlat/
√

5

4π
CD =

3

4

λlat/
√

5

4π
Cpol =

1

2

λlat/
√

5

4π
(51)

for the usual, determinant-divided, and polar-projected Wilson loops, respectively.

The perturbative predictions describe our results quite well, which is not too surprising

given the relatively small continuum ’t Hooft couplings λlat/
√

5 < 1.8 that we study. There

is a famous continuum prediction that C ∝
√
λ at strong coupling in the large-N limit (with

λ � N) [39, 40]. We see no sign of such behavior in Figs. 20 through 22, as we would

expect based on the small N = 2 we currently consider. It is not clear whether our future
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FIG. 17. Representative results for the static potential VD(r) vs. r from the determinant-divided

Wilson loops, for the (λlat, µ, κ) = (0.5, 0.2, 0.6) ensemble. The curves are fits of VD(r) to the

Coulombic form of Eq. (49), for different tmin = 5 and 7 in the earlier fits to the Coulomb gauge

fixed WD(r, t).

large-volume studies of the U(3) and U(4) systems will involve large enough N to probe

this predicted
√
λ dependence. In the meantime, we can more directly check our scaling

expectations for the three different kinds of potentials by considering ratios of the different

Coulomb coefficients for fixed (λlat, µ, κ). Results for CD/C are presented in Fig. 23, while

Cpol/C is shown in Fig. 24. In each case we observe the expected value of 3/4 or 1/2,

respectively, although the results are fairly noisy.

We expect that, as in lattice QCD simulations [41], the signal for the potential can be

improved by employing “fat”, or smeared, link variables. We are currently exploring this

possibility.
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FIG. 18. Representative results for the static potential Vpol(r) vs. r from the polar-projected

Wilson loops, for the (λlat, µ, κ) = (0.5, 0.2, 0.6) ensemble. The curves are fits of Vpol(r) to the

Coulombic form of Eq. (49), for different tmin = 5 and 7 in the earlier fits to the Coulomb gauge

fixed Wpol(r, t).

VI. CONCLUSIONS

In this paper we have reported first results from large-scale lattice studies of N = 4 SYM

based on the SU(N) gauge group, focusing on the case N = 2. We employ a lattice action

that retains an exact supersymmetry for (µ, κ) = (0, 0), where µ is a bosonic mass parameter

that regulates the flat directions, and κ is the coupling in a new plaquette determinant

term in the action, which enforces an approximate projection from U(N) down to SU(N).

When κ = 0 we observe a transition to a strongly-coupled lattice phase dominated by U(1)

monopoles. This is a pure lattice artifact, with no analog in the continuum theory where

the U(1) sector decouples. We can remove this lattice phase for arbitrarily large ’t Hooft

coupling by setting κ ≥ 0.5.

The existence of an exact supersymmetryQ ensures that the couplings to all supersymmetry-
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FIG. 19. Representative results for the static potential Coulomb coefficients C vs. the tmin used

in the fits to Coulomb gauge fixed Wilson loop data, for the (λlat, µ, κ) = (0.5, 0.2, 0.6) ensemble.

The three C, CD and Cpol correspond to the usual Wilson loops, determinant-divided loops and

polar-projected loops, respectively. Plateaus in the Coulomb coefficients extend over a wide range

of tmin, and the other data sets behave similarly.

breaking counterterms vanish in the limit (µ, κ) → (0, 0). In practice, we observe that the

soft breaking of this supersymmetry is largely determined by κ, is at most O(10%) for bare

’t Hooft couplings λlat . 1, and (on small lattice volumes) is suppressed ∼ 1/N2. Ref. [26]

shows how the recovery of the other 15 supersymmetries in the 1/L → 0 continuum limit

follows from certain discrete R symmetries. In this paper we carried out a first numerical

study of these R symmetries at the scale of the plaquette. The R symmetry breaking we

observe is rather mild, O(10%), which encourages more thorough investigations that we will

carry out in the near future. This future work will focus on larger Wilson loops, to more

directly probe the restoration of N = 4 supersymmetry in the long-distance effective theory,
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FIG. 20. Static potential Coulomb coefficients C for the usual Wilson loops, based on fits with

tmin = 6 and r ≤ 2.6. Six 83 × 24 data sets with (µ, κ) = (0.2, 0.6), (0.2, 0.8), (0.4, 0.6), (0.4, 0.8),

(0.8, 0.6) and (0.8, 0.8) are plotted vs. the continuum ’t Hooft coupling λlat/
√

5. No significant

dependence on µ or κ is visible. The line is the leading-order perturbative prediction from Eq. (51),

not a fit. The results agree quite well with this perturbative prediction, and show no sign of the

C ∝
√
λ scaling predicted at strong coupling in the large-N limit.

and thus in the continuum limit.

Next, we presented evidence that our lattice theory does not suffer from a genuine sign

problem despite possessing a complex pfaffian. Employing new parallel software to directly

evaluate the pfaffian, we find that it is approximately real and positive on all lattice volumes

we can explore. Fluctuations in the phase show no significant dependence on either the

lattice volume or the gauge group U(N) for N = 2, 3 and 4. Further lattice studies of the

N = 4 pfaffian, hopefully leading to improved qualitative understanding of this issue, will

be the focus of another future publication.
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FIG. 21. Static potential Coulomb coefficients CD for the determinant-divided Wilson loops, based

on fits with tmin = 6 and r ≤ 2.6. Six 83 × 24 data sets with (µ, κ) = (0.2, 0.6), (0.2, 0.8), (0.4,

0.6), (0.4, 0.8), (0.8, 0.6) and (0.8, 0.8) are plotted vs. the continuum ’t Hooft coupling λlat/
√

5.

No significant dependence on µ or κ is visible. The line is the leading-order perturbative prediction

from Eq. (51), not a fit. The results agree quite well with this perturbative prediction, and show

no sign of the CD ∝
√
λ scaling predicted at strong coupling in the large-N limit. The axes cover

the same range as those in Fig. 20.

Finally, we reported results for the static potential on the 83× 24 lattice ensembles listed

in Table III, significantly improving the initial study of Ref. [18]. We confirm the basic con-

clusion of that work, finding that the potential appears Coulombic at both weak and strong

’t Hooft coupling. Furthermore, by more carefully relating our lattice calculations to the

continuum theory, we observe good agreement with leading-order perturbative predictions

for the Coulomb coefficients. The Coulomb coefficients extracted from Wilson loops of the

full complexified gauge links, from loops projected to sl(N,C), and from loops of unitary

matrices that omit the scalar-field contributions, show the expected relative magnitudes
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FIG. 22. Static potential Coulomb coefficients Cpol for the polar-projected Wilson loops, based on

fits with tmin = 6 and r ≤ 2.6. Six 83 × 24 data sets with (µ, κ) = (0.2, 0.6), (0.2, 0.8), (0.4, 0.6),

(0.4, 0.8), (0.8, 0.6) and (0.8, 0.8) are plotted vs. the continuum ’t Hooft coupling λlat/
√

5. No

significant dependence on µ or κ is visible. The line is the leading-order perturbative prediction

from Eq. (51), not a fit. The results agree quite well with this perturbative prediction, and show

no sign of the Cpol ∝
√
λ scaling predicted at strong coupling in the large-N limit. The axes cover

the same range as those in Fig. 20.

(51).

Obviously there are many interesting directions to be pursued by future lattice studies of

N = 4 SYM. These include the issues of the pfaffian and of supersymmetry restoration in

the continuum limit discussed above. We could also revisit the eigenvalue spectrum studied

by Ref. [42], for our new large-volume lattice ensembles with non-zero κ. In addition,

our results for the static potential and its Coulomb coefficients (e.g., Figs. 16, 20 and 23)

remain rather noisy. We believe this situation can be improved by developing techniques

to smear the (non-unitary) gauge links on the A∗4 lattice. Such smearing may be necessary
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FIG. 23. Ratios CD/C of static potential Coulomb coefficients for the determinant-divided Wilson

loops relative to those for the usual loops, based on fits with tmin = 6 and r ≤ 2.6. Six 83×24 data

sets with (µ, κ) = (0.2, 0.6), (0.2, 0.8), (0.4, 0.6), (0.4, 0.8), (0.8, 0.6) and (0.8, 0.8) are plotted

vs. the continuum ’t Hooft coupling λlat/
√

5. No significant dependence on µ or κ is visible. The

results, although noisy, are consistent with the expected ratio of 3/4 from Eq. (51).

to obtain precise results for other correlation functions of the theory, which we are also

actively investigating. In particular it would be exciting for lattice calculations to make

predictions for the anomalous dimensions of single-trace operators like the Konishi [43].

Such lattice results would be complementary to those obtainable in perturbation theory or

via the conformal bootstrap program [44].

Since continuum studies of N = 4 SYM tend to be anchored in the large-N limit, it

will also be important for us to investigate the U(3) and U(4) gauge groups on larger

lattices than those considered in Section IV D. Specifically, we have started generating

83 × 24 lattice ensembles for both of these systems, calculations that will take some time

to complete. On these saved configurations, we can easily carry out the same studies as
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FIG. 24. Ratios Cpol/C of static potential Coulomb coefficients for the polar-project Wilson loops

relative to those for the usual loops, based on fits with tmin = 6 and r ≤ 2.6. Six 83× 24 data sets

with (µ, κ) = (0.2, 0.6), (0.2, 0.8), (0.4, 0.6), (0.4, 0.8), (0.8, 0.6) and (0.8, 0.8) are plotted vs. the

continuum ’t Hooft coupling λlat/
√

5. No significant dependence on µ or κ is visible. The results,

although noisy, are consistent with the expected ratio of 1/2 from Eq. (51).

discussed above for gauge group U(2). For example, we can analyze the static potential and

explore whether the coupling dependence of its Coulomb coefficient approaches the famous

prediction C ∝
√
λ [39, 40].

Finally, there may be alternative formulations or implementations of lattice N = 4 SYM

that would be advantageous to explore. As one example, it might be possible to drop the

supersymmetry-breaking bosonic mass term (15) from our action, by instead using twisted

temporal boundary conditions to regulate the SU(N) flat directions. Since the relevant

plaquettes involve two links crossing the temporal boundary in opposite directions, we would

need to impose twists that aren’t elements of the center symmetry group. It remains unclear

whether this approach would work. It will be interesting to consider, and we are confident
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there are many further possibilities that have not yet been conceived.
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APPENDIX: DATA SETS

Table III summarizes the large-volume U(2) lattice ensembles considered in this work,

omitting the ensembles with κ = 0 that were only used to explore monopole condensation

in Section III. We impose anti-periodic temporal boundary conditions for the fermionic

(but not bosonic) fields. We generate gauge configurations through the phase-quenched

rational hybrid Monte Carlo algorithm discussed in Ref. [31], using new parallel software

that will be presented in a forthcoming publication [38]. For each ensemble specified by

{V, λlat, µ, κ}, Table III lists the total number of molecular dynamics time units (MDTU)

generated, our thermalization cut, the number of measurements after the thermalization

cut, and the resulting number of jackknife blocks used in analyses. All measurements are

separated by 10 MDTU, and we use jackknife blocks with a fixed size of 100 MDTU (ten

measurements).
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TABLE III. Large-volume lattice ensembles for N = 4 SYM with gauge group U(2).

Volume λlat µ κ MDTU Therm. # meas. # blocks

0.2 0.6 1500 400 110 11

83 × 24 0.2 0.2 0.8 1300 200 110 11

0.4 0.6 1700 300 140 14

0.4 0.8 1300 300 100 10

0.2 0.6 1300 200 110 11

83 × 24 0.5 0.2 0.8 1300 200 110 11

0.4 0.6 2000 300 170 17

0.4 0.8 2000 300 170 17

0.2 0.6 1500 500 100 10

0.2 0.8 1300 200 110 11

83 × 24 1.0 0.4 0.6 1600 500 110 11

0.4 0.8 3000 300 270 27

1.0 1.0 1605 405 120 12

0.2 0.6 1300 300 100 10

83 × 24 2.0 0.2 0.8 1600 600 100 10

0.4 0.6 2500 1400 110 11

0.4 0.8 1300 300 100 10

0.2 0.6 1300 300 100 10

83 × 24 0.2 0.8 1800 800 100 10

3.0 0.4 0.6 1300 300 100 10

0.4 0.8 2200 500 170 17

0.8 0.6 2000 700 130 13

0.8 0.8 2000 500 150 15

83 × 24 4.0 0.8 0.6 2000 600 140 14

0.8 0.8 2200 700 150 15

83 × 24 5.0 0.8 0.6 1400 300 110 11

0.8 0.8 1500 400 110 11

123 × 24 1.0 1.0 1.0 3000 2000 100 10

163 × 32 1.0 1.0 1.0 3500 2200 130 13
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