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Abstract

n-DBI gravity explicitly breaks Lorentz invariance by the introduction of a unit

time-like vector field, thereby giving rise to an extra (scalar) degree of freedom. We

look for observational consequences of this mode in two setups. Firstly, we compute the

parametrized post-Newtonian (PPN) expansion of the metric to first post-Newtonian

order. Surprisingly, we find that the PPN parameters are exactly the same as in

General Relativity (GR), and no preferred-frame effects are produced. In particular

this means that n-DBI gravity is consistent with all GR solar system experimental tests.

We discuss the origin of such degeneracy between n-DBI gravity and GR, and suggest

it may also hold in higher post-Newtonian order. Secondly, we study gravitational

scalar perturbations of a Friedmann-Robertson-Walker space-time with a cosmological

constant Λ ≥ 0. In the case of de Sitter space, we show that the scalar mode grows as

the universe expands and, in contrast with a canonical scalar field coupled to GR, it

does not freeze on superhorizon scales.

1 Introduction

After an almost century-old quest, General Relativity (GR) continues to stand as the best

description of gravitational phenomena. Numerous attempts to generalize it have been made,

∗Emails: flavio@physics.org, herdeiro@ua.pt, shinji.hirano@wits.ac.za, satoyuki@post.kek.jp
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motivated either by the development of observational and precision cosmology, by the desire

to make it compatible with quantum mechanics or simply to explore its theoretical properties

and better understand how special and unique it is.

Recently, there has been an increased interest in theories which break the gauge symmetry

of GR (full invariance under coordinate transformations or diffeomorphisms) down to the

sub-group of foliation-preserving diffeomorphisms, mostly motivated by Hořava’s proposal

[1] of an anisotropic scaling of space and time as an attempt to produce an ultraviolet (UV)

completion of GR, whilst retaining its properties in the infrared (IR).

Any explicit breaking of general diffeomorphism invariance forcefully gives rise to extra

degrees of freedom in a theory of gravity. This violation of Lorentz symmetry is no exception

and induces a scalar mode describing excitations in the foliation structure of space-time.

Another theory in this class, n-DBI gravity [2]-[6], was motivated by scale invariance

and designed to reduce to the Dirac-Born-Infeld (DBI) scalar field theory for homogeneous

conformally flat geometries. Having only two dimensionless parameters, λ and q, it nicely

accommodates two accelerated epochs mediated by radiation- and matter-dominated periods,

with a natural hierarchy between the two effective cosmological constants [2]. The dynamics

of its scalar mode were extensively studied in [4], where its existence as a full degree of

freedom was established and none of the pathologies associated with similar models were

found. Its physical action, however, remains somewhat elusive.

The purpose of this paper is to explore the physical action and possible observational

consequences of this scalar graviton in n-DBI gravity, and we shall pursue this goal using

two different directions. Firstly we will consider the parametrized post-Newtonian (PPN)

framework applied to n-DBI gravity. Secondly we shall study cosmological perturbations of

n-DBI gravity around Friedmann-Robertson-Walker (FRW) models.

The PPN formalism (see [7] for an overview) is a general framework which allows for a

systematic comparison of different theories of gravity in the weak field, slow velocities regime.

Each theory is then fully characterized by ten dimensionless parameters, each of which can

be ascribed a distinct meaning or effect. Of particular interest to us are the parameters α1

and α2, known to be responsible for preferred-frame effects.1 They vanish in GR but are

expected to be non-zero in theories with a preferred foliation. Indeed, they were computed in

the context of the IR limit of Hořava-Lifshitz theory [8] (also known as khronometric theory)

and Einstein-aether theory [9]. Given all the free parameters of these theories, however, it is

not very surprising that constraints can be imposed such that the experimental bounds on

α1 and α2 are obeyed (see [10]-[11] for recent numbers).

n-DBI gravity presents a potentially more interesting scenario since it has only two free

parameters. In [2] the parameters λ and q were estimated to be

λinf ∼ 10−8 , q ∼ 1 + 10−110 , (1.1)

1The parameter α3 belongs to the same category but is necessarily absent in semi-conservative theories,

derived from a covariant Lagrangian.
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in order to produce the required orders of magnitude for the scale of inflation and for the late-

time cosmological constant. In particular one observes that the dimensionless parameter λ is

small. On the other hand, GR is recovered in the limit λ→ ∞ [3]. Since GR is a good theory

in the weak field limit we expect a lower bound for λ to be provided by a post-Newtonian

analysis. This makes the PPN analysis for n-DBI gravity particularly interesting, since a

constraint incompatible with the value required by cosmology would rule out the theory

whereas a constraint compatible with that value would increase the appeal of the theory.

The result of our investigation is, in a sense, neither of these two possibilities, which is

rather surprising. We find that there is no constraint on λ, q. The central point is that there

is a subclass of solutions of the theory that coincides with those of GR and that exists for

any λ, q; these parameters are therefore left unconstrained. This was already observed at

the level of black hole solutions [3, 5]. Herein we observe this subclass of solutions is large

enough to include all of GR at PN level. Hence, n-DBI gravity looks indistinguishable from

GR, at least at first post-Newtonian order, and in particular there are no preferred-frame

effects. In this analysis we conclude the scalar graviton eludes us again.

In the second part of this paper, we look for observational consequences of the scalar

graviton in a different setup: we study scalar perturbations in a time-dependent, spatially

homogeneous and isotropic cosmological model. We start by reviewing the flat space-time

case [4] and then specialize the FRW model to represent a patch of de Sitter space-time. We

study the scalar mode and show that it endows the metric with a spatially-arbitrary pertur-

bation which grows in time as the universe expands. This is a novel feature, suggesting that,

in contrast to a scalar field propagating in a de Sitter universe in GR, the perturbations of

the scalar mode in n-DBI gravity do not freeze on super-horizon scales. This fact may find its

origin in the lack of Lorentz invariance in this model, and introduces a clear distinction with

GR when considering the concept and computation of the density perturbations spectrum

sourced by the scalar mode perturbations.

This paper is organized as follows. A short review of the basic equations of n-DBI gravity,

in one of its formulations [4], is provided in Sec. 2. The PPN analysis is performed in Sec. 3,

wherein a self-contained review of the method is provided, which turns out to be applicable

to the case under study, mutatis mutandis. Sec. 4 is devoted to the analysis of gravitational

scalar perturbations in n-DBI gravity. Concluding remarks and a discussion are presented

in Sec. 5.

2 Basic equations for n-DBI gravity

In the linearized form of [4], n-DBI gravity is defined by the action

S = − 1

16πGN

∫

d4x
√
−g e (R− 2GNΛ(e)) + Smatter , (2.1)

where we use natural units in which c = 1, GN is Newton’s constant,

R = R − 2∇µ(n
µ∇νn

ν) , (2.2)
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Λ(e) =
3λ

G2
N

(

2q

e
− 1− 1

e2

)

, (2.3)

nµ is the everywhere normalized time-like vector field defining the space-time foliation, λ, q

are the two parameters of n-DBI gravity [2] and e is an auxiliary field whose equation of

motion reads

e =

(

1 +
GN

6λ
R
)−1/2

. (2.4)

We will also work in the covariant formulation of n-DBI gravity [4] by defining the vector

field nµ through a Stückelberg field ϕ, dubbed khronon field

nµ = − ∂µϕ√
−X

, X ≡ gµν∂µϕ∂νϕ . (2.5)

For convenience, we denote

Kµν ≡ ∇µnν , aµ ≡ nν∇νnµ , (2.6)

where the latter quantity is the acceleration of n, and the trace of Kµν by K.

Variation of (2.1) with respect to the metric yields the field equations

eRµν = gµνGNeΛ(e) +

(

T e
µν −

1

2
gµνT

e

)

+

(

T ϕ
µν −

1

2
gµνT

ϕ

)

+ 8πGN

(

Tmat
µν − 1

2
gµνT

mat

)

,

(2.7)

where

T e
µν = ∇µ∂νe− gµν∇σ∂σe , (2.8)

T ϕ
µν = −gµν (aσ∂σe+ nσnρ∇σ∂ρe) + nµnν (n

σnρ∇σ∂ρe−Knσ∂σe + aσ∂σe)

+2n(µ

(

Kν)σ∂
σe + nσ∇ν)∂σe−K∂ν)e

)

. (2.9)

The equation for the khronon field ϕ can be written as the conservation of a current,

∇µJ
µ
ϕ = 0 , (2.10)

where √
−XJµ

ϕ = 2(gµν + nµnν) (Kνσ∂
σe−K∂νe+ nσ∇σ∂νe) . (2.11)

This follows from the conservation of the energy-momentum tensor for the khronon field and

is also equivalent to the extra equation of [4] obtained through the time-derivative of the

Hamiltonian constraint which, unlike in GR, is not automatically preserved by time-evolution

in the 3 + 1 formulation of n-DBI gravity.

3 PPN framework for n-DBI gravity

n-DBI gravity is a metric theory of gravity (see [7] for a discussion of the postulates obeyed by

metric theories of gravity). As such, the post-Newtonian effects for n-DBI, that are tested by

solar system observations, can be discussed using the parameterized post-Newtonian (PPN)

framework. In this section we discuss the PPN framework and its application to n-DBI

gravity.
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3.1 Summary of the PPN framework

The PPN framework (see [7] for an overview) is a perturbative and iterative scheme to

provide a solution of the field equations of a given metric theory of gravity, where it is

assumed there exists a suitable small parameter ε, which reflects both a slow-motion and a

weak field limit of the theory. A quantity X is then said to be of order n, denoted O(n), if

it is of order n in ε, and the expansion in ε is applied to both sides of the field equations.

Concerning the right hand side, matter is usually taken to be a perfect fluid with energy-

momentum

Tmat
µν = (ρ(1 + Π) + p)uµuν + pgµν , (3.1)

where uµ = dxµ/dτ is the 4-velocity of an element of fluid, with 3-velocity vi, ρ is the rest

mass density of the element, ρΠ is its internal energy density ans p its total pressure. The

following dimensionless quantities are then assumed to have the orders:

U ∼ v2 ∼ p/ρ ∼ Π ∼ O(2) ,

∣

∣

∣

∣

∂/∂t

∂/∂x

∣

∣

∣

∣

∼ O(1) , (3.2)

where U is (minus) the Newtonian gravitational potential. In the solar system ε2 . 10−5

and thus the perturbative expansion is justified. Observe that time derivatives effectively

increase the order of smallness.

Concerning the left hand side, the metric is expanded around the background cosmolog-

ical solution (Minkowski space-time is a good approximation at the solar system level); the

same applies to any additional fields present in the theory. Requiring a matching with New-

tonian gravity, i.e. considering the Newtonian limit for the given metric theory of gravity

including consistency with its conservation laws, determines the lowest order terms for the

metric coefficients:

g00 = −1 + 2U +O(4) , g0i = 0 +O(3) , gij = δij +O(2) . (3.3)

Thus, the post-Newtonian corrections appear at order O(4) for g00, O(3) for g0i and O(2)

for gij . The goal of the PPN framework is to compute these corrections for the metric

theory of gravity under study. To do so, a concrete form of the metric is constructed, to

facilitate the comparison between different metric theories of gravity as well as comparison

with experiment. Such form of the metric is obtained in three steps. First, a set of post-

Newtonian potentials is introduced. These potentials are denoted:

ΦW ,Φ1,Φ2,Φ3,Φ4,A,B ∼ O(4); Vi,Wi ∼ O(3); Uij ∼ O(2);

where the potentials have been separated according to being scalars, vectors and tensors,

respectively, under the rotation group. These potentials encode the functional dependence

that can arise, to this order, in the metric due to the matter sources, leaving as the only

remaining freedom the coefficients with which the potentials enter the metric.2 Second,

2To give a concrete example (the definitions of all post-Newtonian potentials can be found in [7])

Φ1 ≡
∫

ρ′v′2

|x− x′|d
3x′ .
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a convenient coordinate system is chosen, called standard post-Newtonian gauge, in which

the spatial part of the metric is isotropic, thus eliminating the potential Uij, and in which

the potential B is gauged away from g00. The PPN metric coefficients then include ten

post-Newtonian corrections and thus ten coefficients are needed:

g00 = −1 + 2U − 2βU2 − 2ξΦW + (2γ + 2 + α3 + ζ1 − 2ξ)Φ1

+2(3γ − 2β + 1 + ζ2 + ξ)Φ2 + 2(1 + ζ3)Φ3 + 2(3γ + 3ζ4 − 2ξ)Φ4 − (ζ1 − 2ξ)A
+O(5) , (3.4)

g0i = −1

2
(4γ + 3 + α1 − α2 + ζ1 − 2ξ)Vi −

1

2
(1 + α2 − ζ1 + 2ξ)Wi +O(4) , (3.5)

gij = (1 + 2γU)δij +O(3) . (3.6)

The ten constants, called the PPN parameters,

α1, α2, α3, β, γ, ξ, ζ1, ζ2, ζ3, ζ4 ,

enter the metric in various linear combinations, designed to provide a cleaner intepretation

for each of the PPN parameters, that we shall discuss shortly. The numerical value of these

parameters can then be established for any theory and compared with experiments. GR, for

instance, has β = γ = 1 and all others vanish.

Observe that the next order correction in (3.4)-(3.6) beyond the post-Newtonian terms

- dubbed the post-post Newtonian terms - are of order O(5) for g00, O(4) for g0i and O(3)

for gij ; in particular cases, for instance if post-Newtonian energy is conserved, the next non-

trivial term will actually be one order higher: O(6) for g00, O(5) for g0i and O(4) for gij . The

natural dissipative effect of relativistic gravity, i.e. gravitational radiation emission, occurs

only at higher order in this expansion.

The metric form (3.4)-(3.6) uses a quasi-Cartesian coordinate system (t,x), whose outer

regions are at rest with respect to the Universe rest frame, i.e. a frame in which the Universe

appears isotropic. The third and final step is to change to a moving coordinate system, with

velocity w ∼ O(1), with respect to the Universe rest frame. This is achieved by performing

a Lorentz transformation, to the appropriate order. The final result for the PPN metric can

still be expressed in standard post-Newtonian gauge, where now all quantities refer to the

new coordinates:

g00 = −1 + 2U − 2βU2 − 2ξΦW + (2γ + 2 + α3 + ζ1 − 2ξ)Φ1

+2(3γ − 2β + 1 + ζ2 + ξ)Φ2 + 2(1 + ζ3)Φ3 + 2(3γ + 3ζ4 − 2ξ)Φ4 − (ζ1 − 2ξ)A
−(α1 − α2 − α3)w

2U − α2w
iwjUij + (2α3 − α1)w

iVi +O(5) , (3.7)

g0i = −1

2
(4γ + 3 + α1 − α2 + ζ1 − 2ξ)Vi −

1

2
(1 + α2 − ζ1 + 2ξ)Wi

−1

2
(α1 − 2α2)w

iU − α2w
jUij +O(4) , (3.8)

It should be understood that there is an infinite number of such possible potentials and thus the chosen

expansion, albeit justified by reasonable arguments, is really an ansatz.
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gij = (1 + 2γU)δij +O(3) . (3.9)

A first observation to interpret the PPN parameters can be obtained by inspection of

(3.7)-(3.9): if any of α1, α2, α3 are non-zero, there are observable effects that depend on the

velocity w with respect to the preferred frame of the Universe. Thus, the PPN parameters

α1, α2, α3 are interpreted as measuring preferred frame effects.

An interpretation of the PPN parameters α3, ζ1, ζ2, ζ3, ζ4 is given by considering energy

momentum conservation at post-Newtonian level: they measure the violation of total energy

and momentum in a metric theory of gravity. It was shown that these parameters vanish for

metric theories of gravity derived from an action principle.

Theories with vanishing α1, α2, α3, ζ1, ζ2, ζ3, ζ4 conserve also total angular momentum and

are called fully conservative. Such theories have only three non-trivial PPN parameters: γ,

which measures the space-curvature; β, which measures the non-linearity of the theory to

this order; and ξ, which measures the existence of preferred location effects. Note that these

interpretations are not covariant (except for γ) and hold only in the standard post-Newtonian

gauge.

In n-DBI , α3, ζ1, ζ2, ζ3, ζ4 all vanish, since it is a Lagrangian based theory, defined by

(2.1). But naively, one may expect that due to the breakdown of local Lorentz invariance

associated to the existence of the vector field nµ, a non-zero α1 and/or α2 may exist, since

these parameters measure preferred-frame effects. We shall see in the next section, however,

that this naive expectation is not confirmed.

3.2 PPN parameters for n-DBI gravity

The computation of the PPN parameters for a given metric theory of gravity follows a well

defined recipe. We shall now describe the method, which again has three steps, using the

case of GR for concreteness. As we shall see shortly, the case of n-DBI will reduce to this

one.

The first step is to identify the relevant variables and expand them to post Newtonian

order. In the case of GR these are solely the metric gµν and the matter, described by the

energy momentum tensor (3.1). We take the background to be Minkowski space-time with

metric ηµν , in a global, almost inertial chart xµ = (t, xi). The PPN expansion for the metric

is

gµν = ηµν + hµν , (3.10)

where

h00 = h
(2)
00 + h

(4)
00 , h0i = h

(3)
0i , hij = h

(2)
ij . (3.11)

Observe that we have denoted the post-Newtonian order of each term by a superscript. The

matter energy momentum tensor, on the other hand, is not dimensionless. But extracting

the mass density one obtains a dimensionless quantity

Tmat
µν = ρ

[

(1 + Π +
p

ρ
)uµuν +

p

ρ
gµν

]

; (3.12)
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the expansion of each component then yields

Tmat
00 = ρ

[

1 + Π− h
(2)
00 + v2 +O(4)

]

, (3.13)

Tmat
0i = −ρ [vi +O(3)] , Tmat

ij = ρ

[

vivj +
p

ρ
δij +O(4)

]

. (3.14)

It follows from these components and (3.10)-(3.11) that the trace of the matter energy-

momentum tensor is (which actually coincides with the exact result)

Tmat = ρ

[

−1 −Π+
3p

ρ
+O(4)

]

. (3.15)

The orders given are sufficient for the computation of the PPN parameters.

The second step is to substitute (3.10)-(3.11) and (3.13)-(3.14) in the field equations,

Rµν = 8πGN

(

Tmat
µν − 1

2
gµνT

mat

)

, (3.16)

keeping the necessary terms to obtain a consistent PPN solution. This turns out to require

including the following terms for the various components of the Ricci tensor:

R00 = −1

2
h00,ii −

1

2
(hjj,00 − 2hj0,j0) +

1

2
hjkh00,jk −

1

4
h00,ih00,i +

1

2
h00,j(hjk,k −

1

2
hkk,j) ,

R0j = −1

2
(h0j,ii − hk0,jk + hkk,0j − hkj,0k) ,

Rij = −1

2
(hij,kk − h00,ij + hkk,ij − hki,kj − hjk,ki) . (3.17)

Observe that there are both linear and quadratic terms in the metric perturbation around

Minkowski space-time (3.11). The criterion for neglecting other terms take both into account

the orders in (3.11) and in the derivatives (3.2). Then, separating different orders, the field

equations (3.16) yield

∆h
(2)
00 = −8πGNρ , (3.18)

and

−∆h
(4)
00 − h

(2)
jj,00 + 2h

(3)
j0,j0 + h

(2)
jk h

(2)
00,jk + h

(2)
00,j

(

−1

2
h
(2)
00,j + h

(2)
jk,k −

1

2
h
(2)
kk,j

)

= 8πGNρ

[

Π− h
(2)
00 + 2v2 +

3p

ρ

]

, (3.19)

both from the 00 component. We have denoted the Laplacian on R
3 by ∆. From the 0j

component we get

∆h
(3)
0j − h

(3)
k0,jk + h

(2)
kk,0j − h

(2)
kj,0k = 16πGNρvj , (3.20)

and finally from the ij component we find

∆h
(2)
ij − h

(2)
00,ij + h

(2)
kk,ij − h

(2)
ki,kj − h

(2)
jk,ki = −8πGNρδij . (3.21)
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The third step is to solve the resulting equations (3.18)-(3.21), using a specific order that

starts from lower to higher order equations and making appropriate gauge choices. We start

by solving the 00 equation to O(2), i.e. (3.18), which by comparison with Poisson’s equation

in Newtonian gravity yields

h
(2)
00 = 2U , (3.22)

in agreement with (3.3). This is the Newtonian limit and yields no information about the

PPN parameters. Next we solve the ij equation to O(2). This becomes very simple if we

choose three gauge conditions corresponding to the spacial part of the de Donder gauge:

hµk,µ − 1
2
(hµαη

µα),k = 0. This gauge condition, to O(2), simplifies (3.21) to

∆h
(2)
ij = −8πGNρδij ⇒ h

(2)
ij = 2Uδij . (3.23)

Comparison with (3.9) determines the first PPN parameter: γ = 1. Next we solve the 0j

equation to O(3). We use the gauge condition hµ0,µ − 1
2
(hµαη

µα),0 = −1
2
h00,0, which is not

the temporal component of the de Donder gauge condition. Making use of the solutions

(3.22) and (3.23) the equation (3.20) becomes

∆h
(3)
0j + U,0j = 16πGNρvj ⇒ h

(3)
0j = −7

2
Vj −

1

2
Wj , (3.24)

since the PPN potentials Vj and Wj obey

∆Vj = −4πGNρvj , ∆(Vj −Wj) = −2U,0j . (3.25)

It can be checked that this solution obeys the imposed gauge condition as it should. Since

GR is derived from an action we know that α3, ζ1, ζ2, ζ3, ζ4 = 0; then comparison of (3.24)

with (3.9) yields α1 = α2 = ξ = 0. Finally we solve the 00 equation to O(4). Using the

lower order solutions and gauge conditions (3.19) becomes

−∆
(

h
(4)
00 + 2U2

)

= 8πGNρ

[

Π + 2U + 2v2 +
3p

ρ

]

⇒ h
(4)
00 = −2U2+4Φ1+4Φ2+2Φ3+6Φ4 ,

(3.26)

since the PPN potentials Φ1,Φ2,Φ3,Φ4 obey

∆Φ1 = −4πρv2 , ∆Φ2 = −4πρU , ∆Φ3 = −4πρΠ , ∆Φ4 = −4πp . (3.27)

Comparison with (3.9) determines the final PPN parameter: β = 1.

We now turn our attention to n-DBI. The relevant variables are the same as in GR plus

the khronon field ϕ. The background value of the khronon is ϕ = t, where t is the time

coordinate in the standard PPN gauge. Thus, considering a first order perturbation to this

value we have

ϕ = t + χ(1) . (3.28)

The expansions of some other quantities relevant for computing the field equations (2.7) and

(2.10) to PPN order are:

1√
−X

= 1− χ̇(1) − 1

2
h
(2)
00 +

1

2
∂iχ

(1)∂iχ
(1) , (3.29)
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n0 = −1 +
1

2
h
(2)
00 − 1

2
∂iχ

(1)∂iχ
(1) , ni = −∂iχ(1) , (3.30)

n0 = 1 +
1

2
h
(2)
00 +

1

2
∂iχ

(1)∂iχ
(1) , ni = −∂iχ(1) , (3.31)

K00 = 0 , K0i = −∂i
(

χ̇(1) +
1

2
h
(2)
00

)

, (3.32)

Ki0 = −1

2
∂i
(

∂jχ
(1)∂jχ

(1)
)

, Kij = −∂i∂jχ(1) , (3.33)

K = −∆χ(1) , (3.34)

a0 = 0 , ai = −∂i
(

χ̇(1) +
1

2
h
(2)
00 − 1

2
∂jχ

(1)∂jχ
(1)

)

, (3.35)

∇µa
µ = −∆

(

χ̇(1) +
1

2
h
(2)
00 − 1

2
∂jχ

(1)∂jχ
(1)

)

, (3.36)

R = ∆h
(2)
00 − δij∆h

(2)
ij + ∂ijh

(2)
ij − 2∆χ(1)∆χ(1) + 2∆χ̇(1) − 2∂iχ

(1)∂i∆χ
(1) ,(3.37)

Jϕ
0 = 0 , Jϕ

i = 2
[

∂iė
(2) + ∂ie

(2)∆χ(1) − ∂i∂jχ
(1)∂je

(2) − ∂i∂je
(2)∂jχ

(1)
]

,(3.38)

where in the last expression e is computed from (2.4) and, to lowest order, from (3.37). This

fixes step 1.

For steps 2 and 3 we consider the field equations given by (2.7) and (2.10).

We begin the computation with the khronon equation (2.10). To lowest order, using

(3.38) we obtain

−∆χ(1)∆e(2) + 2∂i∂jχ
(1)∂i∂je

(2) + ∂iχ
(1)∂i∆e

(2) = ∆ė(2) . (3.39)

This is solved if we require e(2) = 0. From (2.4) this is equivalent to R(2) = 0 which, from

(3.37), determines χ(1) through

−2∆χ(1)∆χ(1) + 2∆χ̇(1) − 2∂iχ
(1)∂i∆χ

(1) = −∆h
(2)
00 + δij∆h

(2)
ij − ∂ijh

(2)
ij . (3.40)

If this last condition holds, the e and ϕ energy-momentum tensors (2.8)-(2.9) therefore vanish

to O(2), and the field equations (2.7) reduce to those of GR (3.16). Then, with solutions

(3.22) and (3.23) the khronon perturbation equation (3.40) becomes

∆χ̇(1) −∆χ(1)∆χ(1) − ∂iχ
(1)∂i∆χ

(1) = ∆U = −4πρ . (3.41)

Thus, determining the first order perturbation of the khronon field by the matter density in

this way, guarantees degeneracy with GR to this order. Although an analytical solution of

equation (3.41) for general ρ is not available, let us note as an example that for a point-like

source at rest,

ρ = mδ(~r) , U =
m

r
, (3.42)

one can ignore the time derivative and equation (3.41) becomes

∇i
(

∂iχ
(1)∆χ(1) − m

r2

)

= 0 , (3.43)
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whose simplest solution is

χ(1) = ±
√

8

3
mr . (3.44)

Note that although χ(1) grows with r, the physical meaning is in its derivative, which con-

veniently decays as 1/
√
r.3

The pattern should now be clear. Inspection of the khronon equation (2.10) reveals that

e = constant is a solution. From (2.4) this is equivalent to R = 0 to the appropriate order.

Demanding R = 0 to a given order, the field equations (2.7) reduce to those of GR (3.16) and

so does the PPN or the post-PPN solutions. Observe that whereas χ(1) will only depend on

ρ, the next order perturbation, χ(3), will depend also on vi, Π and p; in fact a computation

of the condition R(4) = 0 determines that χ(3) obeys

∆χ̇(3) − 2∆χ(1)∆χ(3) − ∂iχ(1)∂i∆χ
(3) − ∂iχ(3)∂i∆χ

(1) =
1

2
R(4) + (. . . ) , (3.45)

where (. . .) does not contain χ(3), i.e. is already determined by the metric and χ(1). The

structure of the equations determining χ(1) and χ(3) is therefore quite similar (actually,

equation (3.45) is simpler than (3.41) since it is linear in χ(3)).

For the solution (3.44), equation (3.45) becomes a second order ODE for χ′(3)(r) whose

solution is

χ′(3)(r) = ± 1√
6mr

∫ r

1

dxRHS(x)

(

x5

r3
− x2

)

, (3.46)

where RHS(x) is the right-hand side of equation (3.45). One can check that the r-dependence

of the terms in (. . .) ensure that χ′(3)(r) doesn’t grow with r. For example, ∆χ(1)∂iχ(1)∂iχ
(1)

and h
(2)
ij ∂i∂jχ

(1) both go as r−5/2.

3.3 Discussion

Contrary to our expectations, the solution just found is nothing but the usual GR solution.

Our derivation relied on the ability to set R = 0, which is a sufficient condition for a GR

solution to be also a solution of n-DBI [3, 5]. From (2.2), this means solving

∇µ(n
µ∇νn

ν) = −1

2
R , nµ = − ∂µϕ

√

−gµν∂µϕ∂νϕ
, (3.47)

for ϕ. This slicing condition is certainly not feasible for generic space-times, but it seems

likely that a perturbative expansion around a background solution can be found order by

order. Most importantly, setting R = 0 does not impose any additional constraints on the

two parameters of λ, q. This subset of solutions exists for any λ, q, and therefore this analysis

leaves the parameters of n-DBI gravity unconstrained apart from the requirement that the

effective cosmological constant is small (which we assumed when choosing Minkowski as

3Observe also that more involved solutions for χ(1) exist, but they do not change the main feature, which

is that the first order PPN expansion of n-DBI gravity reduces to that of GR.
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the background solution). In particular, we conclude that n-DBI gravity predicts no post-

Newtonian preferred-frame effects, a counter-intuitive property given its similarity to Hořava-

type theories. In fact, at first PPN order, n-DBI gravity is indistinguishable from GR and

it is plausible this equivalence remains at higher orders.

4 Scalar Perturbations of FRW in n-DBI

The results of Section 3 show that n-DBI is consistent with solar system experiments and

provide an indication that the theory matches the predictions of GR at higher perturbation

theory (PN) order around flat space-time. An experimental signature of this theory, there-

fore, must be searched for in a different arena. In this section we will discuss gravitational

scalar perturbations around a homogeneous and isotropic (FRW) cosmological background.

Our ultimate goal is to analyze if the perturbations of the scalar graviton may give rise to a

power spectrum compatible with observational constraints.

4.1 Scalar perturbations of a spatially flat FRW model

We want to study gravitational scalar perturbations around a spatially flat FRW model in

n-DBI gravity. Using a conformal time coordinate, τ , and denoting by φ(τ) the conformal

factor, the geometry reads

ds2 = φ2(τ)
[

−(1 + 2A)dτ 2 + 2∂iBdx
idτ + ((1− 2ψ)δij − 2∂i∂jE) dx

idxj
]

, (4.1)

The short-hands H ≡ φ̇/φ and κ ≡ GN/6λ will be used, and the Laplace operator ∆ shall be

interpreted as acting in Fourier space (≡ −k2) where needed. As in Section 3, the khronon

field will also be perturbed as

ϕ = τ + χ . (4.2)

Under a gauge transformation

τ → τ + T , xi → xi + ∂iL , (4.3)

these perturbations transform as

χ → χ + T , (4.4)

A → A + Ṫ +HT , (4.5)

ψ → ψ −HT , (4.6)

B → B − T + L̇ , (4.7)

E → E − L . (4.8)
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4.2 Flat background

Before going to the cosmological relevant de Sitter background, we shall review the behavior

of the scalar mode around flat Minkowski space-time [4]. This is given by φ(τ) = 1 in the

previous expressions and q = 1 in the action. Note that the combinations

ψ , A+ Ḃ + Ë (4.9)

are fully gauge-invariant. The second-order Lagrangian, in unitary gauge (χ = 0), reads

L(2) = −6ψ̇2 + 4ψ(∆A +∆Ḃ +∆Ë)− 2ψ∆ψ − 1

2
κ
(

R(1)
)2
, (4.10)

where

R(1) = 4∆ψ − 2∆A . (4.11)

The three independent equations of motion can be cast as

∆ψ̇ = 0 , (4.12)

∆ψ = −κ
4
∆R(1) , (4.13)

∆(Ḃ + Ë + A + ψ) = 0 , (4.14)

emphasizing the fact that they reduce to GR whenever R(1) = 0 (or in the GR limit κ→ 0).

Note this is a gauge-invariant statement, even if we make use of the khronon field, in which

case

R(1) → 4∆ψ − 2∆A+ 2∆χ̇ , (4.15)

becomes gauge-invariant as well. It shows, however, that GR solutions are a subset of all

possible solutions. In the Newtonian (or longitudinal) gauge B = E = 0, the metric contains

one arbitrary function of space,

ψ(x) = −A(x) , (4.16)

which accounts for half degree of freedom, whereas the other half is hidden in the khronon

perturbation and is obtained by solving (4.13) with the substitution of (4.15):

χ(x, τ) = C(x)−
(

3 +
2

κ∆

)

ψ(x)τ , (4.17)

where C(x) is an arbitrary function of space.

4.3 de Sitter background

The de Sitter universe is an exact solution of n-DBI gravity [2, 3]. Moreover, it describes

the late time behaviour of the cosmological solution described in [2]. It is described by (4.1)

without the perturbations and

φ(τ) = −
√

3

Λ

1

τ
, Λ =

3λ(1− q−2)

GN
=

1− q−2

2κ
, H = −1

τ
. (4.18)
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We shall now consider the behaviour of the gravitational scalar perturbations in this

particular background of n-DBI gravity. We recall that in standard inflationary theory, the

power spectrum for density perturbations, generated by quantum fluctuations of the scalar

field during the inflationary era, is obtained by studying a canonical scalar field on a de

Sitter background in GR. Thus our study aims at testing how the perturbations of the n-

DBI gravity scalar mode compare with the behaviour of scalar perturbations in the standard

theory.

It is convenient to define

Φ1 ≡ ψ̇ +HA , Φ2 ≡ ψ −H(B + Ė) , Φ3 ≡ 4ψ − A . (4.19)

Φ1 and Φ2 are fully gauge-invariant, whereas ∆Φ3 is invariant under FPD’s only. As before,

however, if we introduce the khronon field,

Φ3 → 4ψ − A+ χ̇+ 5Hχ , (4.20)

then Φ3 becomes fully gauge-invariant as well. Another set of gauge-invariants, called

Bardeen potentials [12], are common in cosmology:

ΦB ≡ A+H(B + Ė) + (Ḃ + Ë) = H−1(Φ1 − Φ̇2) , (4.21)

ΨB ≡ ψ −H(B + Ė) = Φ2 . (4.22)

It turns out that the equations of motion assume a very simple form when written in terms

of Φ1,2,3. The Hamiltonian and momentum constraints, respectively,

−6H(φ2 − κ∆)Φ1 + 2(φ2 − κ∆)∆Φ2 + κ(∆− 6H2)∆Φ3 = 0 , (4.23)

φ2∆Φ1 − 2κH∆2Φ2 + κH∆2Φ3 = 0 , (4.24)

can be readily solved for Φ1,2(Φ3),

Φ1 =
κ∆

κ∆− φ2
HΦ3 , Φ2 =

1

2

κ∆

κ∆− φ2
Φ3 . (4.25)

The evolution equation,

3Φ̇1+6HΦ1−∆Φ2+H−1∆(Φ1−Φ̇2) = κφ−2
(

12H∆Φ1 − 2∆2Φ2 + (∆− 3H2)∆Φ3 − 3H∆Φ̇3

)

,

(4.26)

upon using (4.25), simplifies to a first-order in time equation for Φ3,

Φ̇3 −H5φ2 − 3κ∆

φ2 − κ∆
Φ3 = 0 . (4.27)

The solution, with an arbitrary function of wavenumber k, C1(k), can be written as

Φ1,k(τ) = 2

√

Λ

3
C1(k)φ(τ)

4 , Φ2,k(τ) = C1(k)φ(τ)
3 , (4.28)
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Φ3,k(τ) = 2C1(k)φ(τ)
3

(

1 +
φ(τ)2

κk2

)

. (4.29)

Then the Bardeen potentials,

ΨB = −ΦB = Φ2 , (4.30)

are enough to completely determine the metric in the conformal Newtonian (or longitudinal)

gauge B = E = 0. The function C1(k) accounts for half degree of freedom. The other half

appears when solving (4.29) for χ by substituting (4.20),

χk(τ) = −
√

3

Λ
C1(k)

(

3φ(τ)2

7
− 2φ(τ)4

9κk2

)

+
C2(k)

φ(τ)5
. (4.31)

The scalar graviton of n-DBI gravity grows as the universe expands, i.e., as φ(τ) increases.

Firstly, this contrasts with a canonical scalar field in General Relativity, which oscillates on

subhorizon scales (−kτ >> 1) but becomes frozen once it crosses the horizon (see [13, 14]

for pedagogical reviews; and [15] for cosmological perturbations in Hořava-Lifshitz gravity).

Secondly, this result indicates that de Sitter space is unstable in n-DBI gravity, and the

lifetime of de Sitter universe is set by the cosmological constant, Tlife ∼ 1/
√
Λ.

4.3.1 Flat limit Λ → 0

The coordinates (τ, xi) that we have been using are ill-defined in the limit Λ → 0. Therefore,

we introduce the new time coordinate T defined by

τ = −
√

3

Λ
e−

√
Λ

3
T , (4.32)

or equivalently φ(τ) = e
√

Λ

3
T . Then the metric ansatz (4.1) becomes

ds2 = −(1 + 2A)dT 2 + 2∂iBdx
ie
√

Λ

3
TdT + e2

√
Λ

3
T ((1− 2ψ)δij − 2∂i∂jE) dx

idxj . (4.33)

The Big Bang was at τ = −∞ and is now at T = −∞, but the distant future τ = 0− has

been mapped to T = +∞. The limit Λ → 0 is now well defined. It is useful to note that, in

this limit,

φ→ 1 , τ → −
√

3

Λ
, H →

√

Λ

3
. (4.34)

The gauge invariant perturbation is now

Φ1,k(T ) = 2

√

Λ

3
C1(k)e

4
√

Λ

3
T , Φ2,k(T ) = C1(k)e

3
√

Λ

3
T , (4.35)

Φ3,k(T ) = 2C1(k)e
3
√

Λ

3
T

(

1 +
e2
√

Λ

3
T

κk2

)

. (4.36)
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In the limit Λ → 0, it can be easily checked that ψk = −Ak = C1(k) in the Newtonian gauge

in consistent with (4.16). It is also straightforward to show that the khronon perturbation

(4.31) reduces to (4.17).4

5 Discussion and final remarks

GR has successfully passed a battery of observational tests in astrophysical systems but it

is in tension with cosmology. The GR based FRW cosmological model can only be compat-

ible with observations by invoking two dark components, plus adding an extra ingredient -

typically in the form of one or many scalar fields - that sources an early inflationary epoch,

widely accepted to be required for consistency of the picture. All these ingredients are,

at present, mysterious at the level of fundamental physics, and as such, exotic. Thus, it

is important to explore alternative models of gravity that may improve the cosmological

picture - by requiring less exotic ingredients - but simultaneously keeping the astrophysical

predictions of GR.

n-DBI gravity provides an example where these two aims are achieved in a novel way. On

the one hand, solar system predictions of GR will be kept, as shown in the first part of this

paper, because the theory contains, as a subsector, a class of solutions that matches solutions

of GR. And this does not hold only for a discrete set of exact solutions as shown before [3, 5];

this subsector has a self-contained perturbation theory, so that the PPN parameterization

coincides, at first order, with that of GR. In a sense, this subsector is a consistent truncation

of n-DBI gravity. Moreover, this subsector does not depend on the two adjustable parameters

of n-DBI gravity and hence solar system tests do not constrain them. As we have argued at

the end of Section 3.3, it seems likely that by adjusting the khronon field that controls the

space-time foliation, the matching with the post-Newtonian expansion of GR will hold at

higher orders as well and hence that n-DBI will equally pass all astrophysical tests provided

by compact binary systems. The analysis performed in Sec. 3, however, was not exhaustive,

in the sense that we have not shown that the solution provided, which matches that of GR,

is unique. This is an important open question.

On the other hand, the cosmological solution that matches observations [2] is not in this

subsector; in other words, it is not a solution of GR (with the same energy momentum tensor).

This suggests we might find experimental signatures of n-DBI by analyzing cosmological

perturbations. As a first step towards that goal we have considered in Section 4 generic

gravitational scalar perturbations in n-DBI gravity. Specializing to de Sitter space-time

we have found solutions for this scalar perturbation which grow with time as the universe

expands. Moreover, performing a mode decomposition, we observe that there is no freezing

of the oscillations on super-horizon scales, in contrast with the behaviour of scalar fields in

4Care is needed when taking the Λ → 0 limit. As it turns out, it is most appropriate to consider φ5χk

instead of χk. The time independent divergent piece proportional to
√

3/ΛC1(k) can be absorbed by a

trivial redefinition of C2(k).
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de Sitter, in GR. This provides an example on how cosmological perturbations computed

in a model where Lorentz invariance is broken may differ, conceptually, from the standard

GR case. Although it is not clear if and to what extent this qualitative feature applies to

scalar perturbations in the inflationary era of the cosmological solution in [2], the detailed

computation of the power spectrum of scalar perturbations will presumably have to take into

account the detailed evolution of the universe, from the inflationary to the non-accelerating

epochs, in order to obtain the amplitude of the different modes as they re-enter the horizon.

We expect to report on the power spectrum obtained in this cosmological solution in the

near future.

Finally, let us comment on the Parameterized Post-Friedmannian (PPF) formalism [16],

developed to compare the cosmological predictions of a large set of modified gravity theories

in a unified framework, much in the same way as the PPN formalism is used to compare

deviations from Newtonian gravity for different theories of gravity. The PPF formalism gives

an ansatz for the equations of motion, which are required to be covariant and at most second

order in time. Although the ADM formulation of n-DBI [3], as defined by the Hamiltonian

constraint, momentum constraint and evolution equation for the 3-metric, contains no more

than two time derivatives, its covariant form, as presented in Section 2, necessarily contains

higher time derivatives in the equation of the khronon (Stückelberg) field. Indeed, even in

unitary gauge, the extra equation for the scalar mode, obtained by taking the time derivative

of the Hamiltonian constraint, is higher order in time [4]. This makes the PPF inapplicable

to n-DBI gravity, at least in this formulation. Curiously, the PPF framework can be applied

to Hořava-Lifshitz gravity. The reason why it works for Hořava-Lifshitz gravity can be traced

to the the fact that the action contains only one derivative of the vector field nµ, whereas

n-DBI has two derivatives. As shown in [17], this makes the linearised equation for the scalar

mode, in unitary gauge, only second-order in time, despite being generically higher-order.
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