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The squeezed limit of the solid inflation three-point function
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The recently proposed model of ‘solid inflation’ features a peculiar three-point function for scalar
perturbations with an anisotropic, purely quadrupolar, squeezed limit. We confirm this result as
well as the overall amplitude of the three point-function via an extremely simple computation,
where we focus on the squeezed limit from the start and follow the standard logic adopted in
deriving the consistency relations. Our system violates the consistency relations, but in the squeezed
limit the three-point function can still be traded for a background-dependent two-point function,
which is immediate to compute. Additionally, we use these simple methods to derive some new
results – namely, certain squeezed limits of the three-point correlators involving vector and tensor
perturbations as well.

I. INTRODUCTION

Solid inflation is a cosmological model where primor-
dial inflation is driven by a peculiar solid – this model
was studied recently in detail by some of us in [1]; see [2]
for alternate formulations.
In field theory terms, a generic solid can be described

via three scalar fields φI(x) with background (or equilib-
rium) values that depend on the spatial coordinates but
not on the time [3];

〈φI(x)〉 = xI . (1)

Their time-independence survives even when the solid is
placed in an expanding FRW universe and gets physi-
cally stretched by the Hubble expansion, provided ~x is
now identified with the FRW comoving coordinates. Of
course the solids to which we are accustomed break when
stretched by even a small fraction of their original size;
however, as long as the solid does not break, the config-
uration above is a consistent solution that corresponds
to a solid physically expanding at the same rate as the
universe. What makes solid inflation possible in the first
place is the existence of a field theory for the solid such
that neither breaks down—the solid nor the theory—
when the system is stretched by many e-folds.
This feature can be guaranteed by an approximate in-

ternal dilation symmetry [1]

φI → λφI , (2)

which also guarantees that the ‘slow-roll’ condition ρ +
p≪ ρ is met, thus implying that such a solid can indeed
drive a near exponential phase of inflation. This sym-
metry is of course not realized in everyday solids—their
dynamics are very sensitive to dilations—and as a conse-
quence they have ρ + p ≃ ρ, which makes them useless
for inflationary purposes.
Such an approximate dilation symmetry should sup-

plement the exact internal symmetries obeyed by all ho-
mogeneous and isotropic solids, i.e. constant shifts and
rotations [3]

φI → φI + aI , φI → SO(3) · φI . (3)

The existence of these symmetries is crucial for recovering
physical homogeneity and isotropy of the background so-
lution as well as of the dynamics of perturbations, which
are formally broken by the equilibrium configuration (1).

Notice that this unusual breaking pattern of spacetime
symmetries never involves breaking time translations. It
is thus natural to expect that the dynamics of cosmo-
logical perturbations in this model do not fit into the
standard parameterization provided by the effective field
theory of inflation developed in [4], which identifies adia-
batic perturbations with the Goldstone bosons of sponta-
neously broken time translations [5]. In fact, solid infla-
tion yields physical predictions for cosmological observ-
ables that have no counterparts in the effective field the-
ory of inflation, most notably, the absence of adiabatic
perturbations during inflation, and a peculiar three-point
function for scalar perturbations. The latter feature will
be the focus of our paper.

Perhaps one of the most relevant features of the solid
inflation three-point function is its drastic violation of
the standard single-field consistency relation [6, 7] for
the curvature perturbation ζ,

〈ζ~q→0ζ~kζ−~k〉
′ ≃ −(nS − 1)Pζ(q)Pζ(k) , (4)

which demands that the three-point function factorize
and be suppressed by the scalar tilt (nS − 1) ≪ 1 in
the so-called squeezed limit. In solid inflation, the three-
point function for the curvature perturbation in the same
limit is claimed to reduce to [1]

〈ζ~q→0ζ~kζ−~k〉
′ ≃ −
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where θ is the angle between ~q and ~k, FY and F are free
parameters of the solid Lagrangian, and cL is the speed
of longitudinal phonons. We have kept only the leading
order in the slow-roll expansion, and in both expressions
the prime denotes that a momentum-conserving (2π)3δ3

has been removed. By using the explicit form for the
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power spectrum (also to leading order in slow roll1) [1]

Pζ(k) =
H2

4ǫc5LM
2
Pl

1

k3
, (6)

we see that the three-point function above can be written
as

〈ζ~q→0ζ~kζ−~k〉
′ ≃−
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1

ǫc2L
×
(

1− 3 cos2 θ
)

× Pζ(q)Pζ(k) . (7)

This violates the consistency relation (4) in two direc-
tions. First, the angular dependence is that of a pure
quadrupole, whereas eq. (4) has no angular dependence
whatsoever, that is, it is a pure monopole2. Second, once
the two spectra are factored out, the overall amplitude of
the three-point function is not constrained to be small,
nor proportional to the scalar tilt. In fact, the two pa-
rameters F and FY can in principle be of the same order
of magnitude, and the scalar tilt in solid inflation has a
contribution (nS − 1) ⊃ 2ǫc2L, so the overall size of the
three-point function in the squeezed limit can be as large
as one over the scalar tilt [1]. Up to O(1) factors, this
can make the three-point function as large as is allowed
by current observational limits [8, 9].
Notice that solid inflation is a model with a single

scalar mode: under the unbroken rotation group, the
original scalars’ perturbations decompose into one scalar
and the two polarizations of a transverse vector. It is thus
at first glance surprising that solid inflation can violate
the consistency relations, which are supposed to hold for
all “single-field” models. At the formal level, however,
there is no contradiction, since the peculiar symmetry
breaking pattern of solid inflation implies that there is
no gauge in which the matter fluctuations are set to zero
and the only scalar mode is parameterized by ζ in the
usual manner gij ∝ e2ζ . And yet, given that the full
computation yielding (5) is quite involved, it would be
useful to have an independent and simpler confirmation
of this unusual squeezed limit behavior. It is the purpose
of this note to provide such a check.

II. BACKGROUND FIELD METHODS

The usual derivations [7, 11] of the consistency re-
lations rely on two main steps. The first involves re-
expressing a squeezed limit three-point function first as
a nested correlation function, and then as a product of

1 Note that for this expression to be valid, we must assume not
only that the slow-roll parameters are small, but that the slow-
roll parameters times the number of e-foldings are small. For a
more involved example where the first subleading piece needs to
be kept, see the Appendix.

2 The quadrupolar squeezed limit also appears in the f(φ)F 2

model introduced in [10].

two two-point functions. Schematically, if ζ1 is a very
long-wavelength mode, and ζ2 and ζ3 are much shorter,
one has

〈ζ1(x)ζ2(y)ζ3(z)〉 =
〈

ζ1(x) 〈ζ2(y)ζ3(z)〉ζ1
〉

(8)

where 〈. . . 〉ζ1 denotes a correlation function in the pres-
ence of a background field. Such a formula can be mo-
tivated in the following way. For modes that are well
outside the horizon at some given time t, one can ne-
glect quantum effects and think of the modes as classical
stochastic variables. At fixed time t, there will be some
classical probability distribution functional P [ζ] for the
field’s spatial configuration ζ(~x), which one can formally
use in a purely spatial functional integral to express equal-
time correlation functions. In Fourier space:

〈ζ~k1

. . . ζ~kN
〉 =

∫

[Dζ]P [ζ] ζ~k1

. . . ζ~kN
. (9)

If one of the modes—say ζ~k1

—is much longer than the
others, one can perform the path integral in two steps,
by first integrating over the short modes with k ≫ k1 in
the presence of given long modes, and then integrating
over these background long modes at the end:

∫

[Dζ]P [ζ, t] ζ~k1

. . . ζ~kN
→ (10)

∫

[Dζℓ]ζ~k1

∫

[Dζs]P [ζℓ + ζs]ζ~k2

. . . ζ~kN
.

The integral over the short modes yields the background-
dependent correlation function

〈ζ~k2

. . . ζ~kN
〉ζℓ (11)

times an overall normalization factor, which is nothing
but the reduced probability functional for the long modes
only:

Peff [ζℓ] ≡

∫

[Dζs]P [ζℓ + ζs] . (12)

Then the original equal-time correlation function can be
rewritten as

〈ζ~k1

. . . ζ~kN
〉 =

∫

[Dζℓ]Peff [ζℓ] ζ~k1

〈ζ~k2

. . . ζ~kN
〉ζℓ , (13)

which is what we actually mean by expressions like (8).
Then—the argument goes—one can Taylor-expand the

short-mode correlation function in powers of the back-
ground field,

〈ζ~k2

. . . ζ~kN
〉ζℓ = 〈ζ~k2

. . . ζ~kN
〉
∣

∣

ζℓ=0
(14)

+ ζℓ ∗
δ

δζℓ
〈ζ~k2

. . . ζ~kN
〉
∣

∣

ζℓ=0
+ . . . ,

where ‘∗’ denotes a purely spatial convolution. The ze-
roth order term does not contribute to (13), because ζ
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has vanishing expectation value. The leading contribu-
tion thus comes from the first order term, which yields

〈ζ~k1

. . . ζ~kN
〉 ≃ 〈ζ~k1

ζℓ〉 ∗
δ

δζℓ
〈ζ~k2

. . . ζ~kN
〉
∣

∣

ζℓ=0
. (15)

So far the derivation is very general. For one thing,
we have assumed that all the modes can be treated as
classical stochastic variables, but in fact these results
make perfect sense beyond the semiclassical limit [12–
14]. Since all the ζ operators inside our equal-time cor-
relation functions commute with one another, one can
just interpret the probability distribution functional P
as the square of the wave functional at time t, and
then the purely spatial path-integrals above are noth-
ing but the usual expressions for quantum mechanical
equal-time expectation values in the Schrödinger repre-
sentation, i.e. 〈O(q)〉 =

∫

dqO(q) |ψ(q)|2. 3 Moreover,
since no special property of ζ has been used so far, all the
manipulations above can be generalized to non-minimal
models—for instance to accommodate more fields. In a
generic model, if one is able to compute the first-order
dependence on background fields for an (n−1)-point cor-
relation function, one immediately has the squeezed limit
of the correspoding n-point correlation function.
What is special about the standard single-field infla-

tion case? In this scenario a very long wavelength ζ is a
pure gauge mode to zeroth order in gradients, and can
thus be set to zero via a rescaling of the spatial coordi-
nates. One can then express the derivative with respect
to ζℓ in (15) as a derivative with respect to scale, which in
the case of the two-point function is proportional to the
tilt, thus ending up with consistency relations like (4).
This is the second main step we alluded to above, and is
not available in solid inflation, because a long wavelength
curvature perturbation ζ is not equivalent to a rescaling
of spatial coordinates. Even so, nothing prevents us from
following the standard consistency-relation logic all the
way to eq. (15), which for the three-point function case
reads simply

〈ζ~k1

ζ~k2

ζ~k3

〉 ≃ 〈ζ~k1

ζℓ〉 ∗
δ

δζℓ
〈ζ~k2

ζ~k3

〉
∣

∣

ζℓ=0
. (16)

III. SCALAR THREE-POINT FUNCTION IN

SOLID INFLATION

Our first task then is to compute the two point func-
tion of two high momentum modes in the presence of
some long wavelength perturbation. In practice, in solid

3 The wave-functional at time t admits a path-integral representa-
tion from t′ = −∞ to t′ = t. The square of the wave-functional
involves two such path-integrals. Our formula (9) for comput-
ing correlators thus reduces to the standard in-in path-integral
representation of equal-time correlators.

inflation it is more convenient to first compute the cor-
relation functions of the phonon field πI ≡ φI − xI in
spatially flat gauge, and then convert them to correla-
tion functions of ζ via the linear relation [1]

ζ = 1
3
~∇ · ~π . (17)

Since we are interested in taking the derivative of the
short-mode two-point function with respect to ζℓ and
then evaluating it at ζℓ = 0, there are going to be two
pieces from the full action that will give us relevant con-
tributions: the longitudinal phonon quadratic action [1]

S(2) =M2
Pl

∫

dt
d3k

(2π)3
a3
{

k2/3

1 + k2/3a2ǫH2

∣

∣π̇ + ǫHπ
∣

∣

2

− ǫH2c2L k
2
∣

∣π
∣

∣

2
}

, (18)

where π ≡ k̂ ·~π parameterizes the longitudinal mode, and
the cubic action [1]

S(3) =M2
Pl

∫

d4xa3H2FY

F

{

7
81 (∂iπ

i)3 − 1
9∂iπ

i∂jπ
k∂kπ

j

− 4
9∂iπ

i∂jπ
k∂jπ

k + 2
3∂jπ

i∂jπ
k∂kπ

i
}

. (19)

The complicated non-local structure in (18) comes from
having integrated out N and N i via the constraint equa-
tions. In principle this yields extra contributions (some
of which are also non-local) to the cubic action as well,
but one can check that the terms we have kept are the
leading ones in the slow-roll expansion [1].
In the presence of a very long wavelength background

field, the cubic action expanded to first order in the back-
ground gives rise to a correction to the quadratic ac-
tion for the short modes. Restricting to the longitudinal

phonons only and using ∂iπj
ℓ = 3 k̂iℓk̂

j
ℓ ζℓ, this is simply

∆S(2) =−M2
Pl

∫

d4xa3H2 8

9

FY

F
ζℓ

×
(

δij − 3k̂iℓk̂
j
ℓ

)

∂iπ
k∂jπ

k , (20)

where we have freely integrated by parts and used ∂iπj =
∂jπi, which is appropriate for longitudinal modes. We
can already see the emergence of the quadrupole struc-
ture discussed above.
To lowest order in slow roll, all the parameters

(H, ǫ, cL, F, FY ) appearing in S(2) and ∆S(2) can be
treated as constant. Moreover, at the freeze-out time for
the short modes (which, as usual, roughly corresponds to
the time when the correlation functions get their domi-
nant contributions), the long background mode is well
outside the horizon and is thus approximately constant
in time, with a relative time dependence of order ǫ [1]. We
thus see that, to lowest order in slow-roll, the only effect
of a long wavelength background is a direction-dependent
correction to the longitudinal phonon speed:

c2L → c2L +
8

9

FY

F

1

ǫ
(1 − 3 cos2 θ)ζℓ ≡ c̃2L , (21)
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where θ is the angle between the momenta of the short
and long modes. The short-mode two-point function as-
sociated with S(2) + ∆S(2) is therefore nothing but the
original one, eq. (6), with cL → c̃L. We thus get that to

zeroth order in ~kℓ, the relevant functional derivative with
respect to the background is simply 4

δ

δζℓ
〈ζ~k2

ζ~k3

〉
∣

∣

ζℓ=0
= (2π)3δ3(~k2 + ~k3 − ~kℓ)

×
∂

∂c2L
〈ζ~k2

ζ~k3

〉′ ·
∂c̃2L
∂ζℓ

(22)

with

∂

∂c2L
〈ζ~k2

ζ~k3

〉′ ·
∂c̃2L
∂ζℓ

= −
20

9

FY

F

1

ǫc2L
(1 − 3 cos2 θ)〈ζ~k2

ζ~k3

〉′

Plugging this into (16), performing the trivial convolu-
tion over the delta functions, and factoring out a total-
momentum delta function, one gets precisely the desired
result (7). This provides an independent check of the
three-point function computation of [1], and confirms the
peculiar size and angular dependence that emerge in the
squeezed limit 5.

IV. SYMMETRY CONSTRAINTS ON THE

ANGULAR DEPENDENCE

It is interesting to ponder what the fundamental rea-
son behind the purely quadrupolar angular dependence
may be 6. At first sight, a monopole contribution seems
to be allowed by all the symmetries and by the deriva-
tive structure of the cubic interactions (19). Yet when
all contributions are added up in (20), one is left with no
monopole. The symmetry reason behind these cancella-
tions is that a monopole would violate the approximate
dilation symmetry (2). To see this, consider the generic
structure for ∆S(2) one gets by using one power of a gen-
eral background field π0 in S(3):

S(3) → ∆S(2) ∝

∫

T ij,kl,mn∂iπ
0
j ∂kπ

s
l ∂mπ

s
n . (23)

The T tensor can be taken to be symmetric under the
exchange of any two of the (ij), (kl), and (mn) pairs (if
all the fields are longitudinal, it can also be taken to be

4 For functional derivatives in Fourier space, we are using the con-
vention δ

δf(~q1)
f(~q2) = (2π)3δ3(~q2 − ~q1), which goes well with

the standard d3k/(2π)3 integration measure.
5 Strictly speaking, the calculation in [1] was performed in the
“not-so-squeezed” regime where q2/k2 > ǫ to simplify the ana-
lytic expression. A more thorough treatment allows us to push
the original calculation to q → 0, however, and we have checked
that the results match the squeezed limits reported here.

6 We thank Enrico Pajer for posing the question in the first place.

symmetric within each pair). The action of (2) on the
phonon field is

~π → ~π + ω ~x+ . . . , ω ≡ λ− 1 (24)

where, for simplicity, we are restricting to infinitesimal
ω, and we are keeping the leading order only. At the
level of derivatives of ~π, the infinitesimal symmetry is
∂iπj → ∂iπj + ω δij , which implies that a background
field with ∂iπ

0
j ∝ δij is physically trivial, i.e. equivalent

to no background at all, since it can be ‘undone’ via
a symmetry transformation. Then, using such a back-
ground in (23) should yield zero, which means that the
(ij) trace of T · (∂π)(∂π) vanishes. In particular, for lon-

gitudinal short modes with momentum ~ks, traceleness in
(ij) implies

T ij,kl,mn∂kπ
s
l ∂mπ

s
n ∝ (δij − 3 k̂isk̂

j
s) . (25)

Contracting this now with a physical background of mo-

mentum ~kℓ yields our quadrupole structure. These con-
siderations make it clear that beyond lowest order in
slow-roll we do expect to get a monopole signal in the
squeezed limit of the three-point function, since slow-roll
corrections break the dilation symmetry (2).
We can generalize this argument to accommodate vec-

tor perturbations as well. This will provide us with a
useful check for the results of the next section. Without
specializing to scalar or vector perturbations, but keeping
instead generic polarizations, from (23) we have that the
tensor structure of a generic squeezed three-point func-
tion is

〈πℓ
λℓ,~kℓ

πs
λ1,~ks

πs
λ2,−~ks

〉 ∝ T ij,kl,mn× (26)

k̂iℓε̂
j
λℓ
k̂ks ε̂

l
λ1
k̂ms ε̂

n
λ2
,

where the λ’s denote the polarizations, and the ε̂’s
the corresponding polarization vectors. The dilation-
invariance argument above still tells us that

T ij,kl,mn k̂ks ε̂
l
λ1
k̂ms ε̂

n
λ2

(27)

is traceless, but now this combination depends on the
polarization vectors as well, and so we cannot rewrite it
as simply as in eq. (25). If the short modes are scalars
there is no problem of course, because their polarization

vectors are aligned with k̂s, but for vector short modes,
to get a result that only depends on the momentum we
have to sum (or average) over polarizations 7. So, in
general we can write

∑

λ1

T ij,kl,mn k̂ks ε̂
l
λ1
k̂ms ε̂

n
λ1

∝ (δij − 3 k̂isk̂
j
s) , (28)

7 We are implicitly using that the transverse polarization vectors
provide an orthonormal basis for the plane orthogonal to ~ks, that
is

∑
λ ε̂iλε̂

j
λ
= δij − k̂isk̂

j
s.



5

where it is understood that the sum runs over all values
that are appropriate for the perturbations in question—
i.e. no sum for scalars, and a sum over the two transverse
polarizations for vectors. We thus get a sum rule for the
angular dependence of a (fairly) generic squeezed three-
point function

∑

λs

〈πℓ
λℓ,~kℓ

πs
λs,~ks

πs
λs,−~ks

〉 ∝ (29)

(k̂ℓ · ε̂λℓ
)− 3(k̂ℓ · k̂s)(ε̂λℓ

· k̂s) ,

of which our quadrupolar result for the purely scalar
three-point function is just a special case.
We say ‘fairly generic’ because the sum rule above does

not apply to squeezed limits in which the two short modes
are a scalar and a vector. For those, we can replace ε̂λ1

in

eq. (27) with k̂s. Then, the traceleness of such a combi-
nation and its involving only one transverse polarization
vector imply that it can be rewritten as

T ij,kl,mn k̂ks k̂
l
sk̂

m
s ε̂nλ2

∝ (δij − 3 k̂isk̂
j
s) (30)

+ β k̂isε̂
j
λ2

+ γ ε̂iλ2
k̂js ,

where γ and β are two unconstrained constants. This
still implies a constraint on the angular structure of the
three-point function in question, but one that is consid-
erably looser than the one above, which involves no free
parameters.

V. THREE-POINT CORRELATORS WITH

VECTOR MODES

The simple computational method discussed in sect. III
is of course very general, and not limited to our model,
nor, within our model, to scalars only. For instance,
we can calculate the squeezed limit of the scalar-vector-
vector three-point function. For simplicity, let us take the
scalar mode to be the long wavelength one, and therefore,
using the logic outlined above, we have that

〈ζq π
i
T,k1

πj
T,k2

〉 ≃ 〈ζqζℓ〉 ∗
δ

δζℓ
〈πi

T,k1
πj
T,k2

〉
∣

∣

ζℓ=0
, (31)

where the vector ~πT is the transverse phonon field in
spatially flat gauge. In Fourier space its quadratic action
is given by

S
(2)
T =M2

Pl

∫

dt
d3k

(2π)3
a3
{

k2/4

1 + k2/4a2ǫH2

∣

∣π̇i
T

∣

∣

2

− ǫH2c2T k
2
∣

∣πi
T

∣

∣

2
}

, (32)

which yields a spectrum of super-horizon modes

PT (k) =
9H2

4ǫc5TM
2
Pl

1

k5
= 9

c5L
c5T

Pζ(k)

k2
(33)

for each of the two transverse polarizations of ~πT [1]. The
different k-dependence from the scalar two-point function
just arises from the k-dependent relation between ζ and
~π, eq. (17).

Inserting one long wavelength scalar mode and two
vector modes into the cubic action (19), and freely inte-
grating by parts while taking advantage of the identities
∂iπj

L = ∂jπi
L and ∂iπ

i
T = 0, we have a correction to the

quadratic action of the vector perturbations:

∆S
(2)
T =−M2

Pl

∫

d4xa3H2 2

3

FY

F
ζℓ ∂aπ

b
T ∂cπ

d
T

×
(

2δacδbd − 3δbdk̂aℓ k̂
c
ℓ − 3δack̂bℓ k̂

d
ℓ

)

. (34)

Once again, just as above, working to lowest order in slow
roll, the only effect of a long wavelength background is
a direction-dependent (and polarization dependent) cor-
rection to the transverse phonon speeds. In fact, the
last term generically induces a direction-dependent mix-
ing between the two transverse polarizations. To remove
this mixing, one could proceed by diagonalizing this last
term by a judicious choice of the polarization vectors.
However, we can instead proceed in a quicker (or lazier)
way by simply recognizing that in the full three-point
function—of which we are calculating just the squeezed
limit—the vector structure comes from the cubic vertex
above, as so it follows that

〈ζ~q→0πλ1,~k
πλ2,−~k〉 ∝

[

− 3(q̂ · ε̂λ1
)(q̂ · ε̂λ2

)

+ (2 − 3 cos2 θ)(ε̂λ1
· ε̂λ2

)
]

, (35)

where we have expressed the vector field as a sum over
the two transverse polarizations:

~πT (~k) =
∑

λ

ε̂λ(~k)πλ(~k) . (36)

where the polarization vectors are normalized so that

ε̂λ(~k) · ε̂λ′(−~k) = δλλ′ .
Now, we determine the overall coefficient by doing a

much more restricted calculation. Choosing the polar-
ization of both the vector modes to be perpendicular to
the momentum of the long mode,

ε̂λ1
, ε̂λ2

→ ε̂⊥ ∝ k̂ℓ × ~k , (37)

eq. (34) becomes a simple shift in the phonons’ speed
cT → c̃T,⊥ as before, where

c̃2T,⊥ ≡ c2T +
2

3

FY

F

1

ǫ

(

2− 3 cos2 θ
)

ζℓ . (38)

Moving forward as we did above, we can express

δ

δζℓ
〈π⊥,k1

π⊥,k2
〉
∣

∣

ζℓ=0
= (2π)3δ3(~k1 + ~k2 − ~kℓ)

×
∂

∂c2T
〈π⊥,k1

π⊥,k2
〉′ ·

∂c2T,⊥

∂ζℓ
. (39)
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Using the two-point function of the vector modes (33)
and putting everything together as in (31) we can com-
pare to (35) . This gives us the overall coefficient and the
promised three-point function:

〈ζ~q→0πλ1,~k
πλ2,−~k〉

′ ≃ −
5

3

FY

F
Pζ(q)PT (k)

1

ǫc2T

×
[

(2− 3 cos2 θ)(ǫ̂λ1
· ǫ̂λ2

)− 3(q̂ · ǫ̂λ1
)(q̂ · ǫ̂λ2

)
]

.

(40)

Apart from the obvious differences in the angular (and
tensor) structure, this result is suppressed with respect
to the purely longitudinal case (5) by a (cL/cT )

7 fac-
tor, which, as discussed in [1], can range from arbitrarily
small for cL ≪ 1, to roughly 2% for cL ≃ 1/3, cT ≃ 1.
Notice that if we average over the two polarizations the
angular dependence reduces once again to that of a pure
quadrupole, as predicted by our sum rule (29).
Similarly, we can compute the vector-scalar-scalar

three-point function in the limit of a long vector mode.
This is, once again, easy as the coupling of the back-
ground long wavelength vector perturbation to the scalar
modes gives just a direction-dependent renormalization
of the longitudinal speed of sound: c2L → c̃2L. A nearly
identical calculation as above yields:

〈πλ, ~q→0ζ~kζ−~k〉
′ ≃ iq

20

9

FY

F
PT (q)Pζ(k)

1

ǫc2L

×(ε̂λ · k̂) cos θ , (41)

which obeys the sum rule (29).
The vector-vector-vector three-point function in the

squeezed limit is also within reach of these techniques.
We proceed as we did for the 〈ζ~q→0πλ1

πλ2
〉 correlation

function. From the structure of the cubic action it is
clear that

〈πλ,~q→0πλ1,~k
πλ2,−~k〉 ∝

[

2(q̂ · k̂)(ε̂λ · k̂)(ε̂λ1
· ε̂λ2

)

+ (ε̂λ1
· q̂)(ε̂λ2

· ε̂λ) + (ε̂λ2
· q̂)(ε̂λ1

· ε̂λ)
]

. (42)

Choosing a particularly convenient choice of polariza-
tions one can now fix the overall coefficient as before. One
can for instance choose the long mode to be polarized in

the plane defined by k̂ℓ and k̂, so that ε̂λ ·k̂ = sin θ. Then,
one can choose the short modes to be polarized in the

orthogonal direction, as in eq. (37), so that ε̂⊥ ⊥ k̂ℓ, ǫ̂λ.
For this particular configuration, the propagation speed
of the short modes shifts as

c2T → c̃2T,⊥ ≡ c2T −
2

3

FY

F

1

ǫ
(ikℓ)(cos θ sin θ)πλ,~kℓ

. (43)

We can then calculate the three-point function
〈πλ,~q→0π⊥,~kπ⊥,−~k〉 and match with (42) in order to de-

termine the overall coefficient. When the dust clears we
are left with the desired result:

〈πλ,~q→0πλ1,~k
πλ2,−~k〉

′ ≃ iq
5

6
PT (q)PT (k)

FY

F

1

ǫc2T

×
[

2 cos θ (ε̂λ · k̂)(ε̂λ1
· ε̂λ2

)

+ (ε̂λ1
· q̂)(ε̂λ2

· ε̂λ) + (ε̂λ2
· q̂)(ε̂λ1

· ε̂λ)
]

. (44)

Recalling that q̂ and ε̂λ are orthogonal, it is a matter of
straightforward algebra to check that the sum rule (29)
is obeyed in this case as well.
The careful reader might have noticed that we have

computed all the squeezed limits of three-point functions
involving scalars and vectors, apart from those in which
the short modes are one vector and one scalar, i.e.

〈ζ~q ζ~k π
i
T,−~k

〉 and 〈πj
T,~q ζ~k π

i
T,−~k

〉 (45)

with q → 0. The problem with these is that the back-
ground long mode induces a mixing between the scalar
and vector short modes, which makes their mixed two-
point function (a) nonzero, and (b) not immediate to
compute, because it cannot be derived through a sim-
ple background-dependent renormalization of a param-
eter already appearing in the quadratic Lagrangian for
these modes. One really has to diagonalize the scalar-
vector system in the presence of this mixing and then
compute the relevant two-point functions anew, which
we leave for future work. Notice that treating the mixing
term as a small correction and trying to assess its effect
on the scalar-vector two-point function in perturbation
theory is not particularly effective from our standpoint:
the leading order contribution to our mixed two-point
function comes from a diagram with two external legs
and one insertion of the mixing vertex, integrated over

the time of this vertex (in the standard t,~k representa-
tion), which is not much easier—nor much different, in
fact—than the full three-point function computation.
For completeness we collect in the Appendix a number

of squeezed three-point functions involving tensor modes
as well.

VI. CONCLUDING REMARKS

The techniques we have outlined in this paper are
clearly very general, and can be applied to all situations
in which (i) the two-point functions for the perturba-
tions are known, and (ii) the only effect of a very long-
wavelength background field at the relevant time (e.g.
at the freeze-out time) is a renormalization of the coeffi-
cients already appearing in the quadratic Lagrangian for
the perturbations. In principle these techniques can be
extended to higher orders as well: we plan to use them
to compute the solid inflation four-point function in the
“triangular” limit.
We close with a couple of comments on the validity

of our methods. First, we have used throughout the pa-
per that to lowest order in the slow-roll expansion the
long-wavelength background fields are constant in time.
However, this property is not crucial for our methods to
be applicable, and these can thus be extended to higher
orders in slow-roll. For instance, in the purely scalar case,
if we take into account the weak time-dependence of ζℓ in
(20), we get a weakly time-dependent renormalization of
cL. But since at first order in slow roll cL is weakly time-
dependent to begin with—with rate s = ċL/(cLH)—this
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can be seen as a ζℓ-dependent simultaneous renormal-
ization of cL and s, with obvious implications for the
first-order-in-slow-roll spectrum of perturbations.

Second, and perhaps more relevant: even though the
general discussion in sect. II makes sense at the quan-
tum mechanical level as well, when we implement these
techniques in the subsequent sections we make implicit
use of the assumption that the long background mode is
in fact classical. The reason is somewhat subtle, and it
deserves to be spelled out in detail. Recall that all corre-
lators in sect. II are equal-time correlators, which admit
a purely spatial, equal-time functional integral represen-
tation. As we mentioned there, at this level there is no
difference between quantum field theory and classical sta-
tistical field theory, provided we identify P = |Ψ|2. The
difference between the two then must come from time-
evolution. Indeed, for any given realization at time t, in
classical statistical field theory we can evolve it in time
just by using the classical equations of motion. By con-
trast, in quantum field theory we should integrate over all
trajectories with that boundary condition at t, with the
usual path-integral measure. This difference is crucial
when we are asked to compute a background-dependent
short-mode correlator like 〈ζsζs〉ζℓ . According to our dis-
cussion in sect. II, all these modes are evaluated at the
same time t. In particular, the background ζℓ is only
specified at time t. Then, in principle, to compute this
correlator we have to extrapolate this given background
configuration back in time and assess its effect on the
build-up of the short-mode correlator, from −∞ to t. If
the long mode can be treated as classical, this extrapo-
lation just involves the equations of motion. In our case,
they taught us that the long mode is constant in time
to lowest order in slow-roll. On the other hand, if one
wants to go beyond the classical limit and treat the long
mode at the quantum level, then this extrapolation back
in time involves a path-integral with given future bound-
ary conditions at t, which, although well-defined, clearly
complicates the computation substantially.

Note added— Recently, motivated by the violation of the
‘cosmic no-hair theorem’ [15] in this model, an interest-
ing paper [16] computed up to an order-one factor the
scalar two point function in the presence of an anisotropic
gravitational background. In perturbation theory, their
anisotropic metric perturbation can be interpreted as a
zero-momentum tensor mode

γij = diag(2σ,−σ,−σ) . (46)

With this identification, the computation of the scalar
two-point function on the anisotropic background is
amenable to the techniques spelled out throughout this
paper. We just need the trilinear action for one tensor
and two scalar modes, which to lowest order in slow-roll

reads8:

Sγζζ =M2
Pl

∫

d4xa3H2 FY

F

{

8
9γij ∂

iπj ∂kπ
k

− 4
3γij ∂

iπk∂jπk)
}

, (47)

where we have used that for scalar modes ∂iπj is a sym-
metric matrix. For a very long wavelength background γ,
we can then see immediately that this interaction term
is, once again, just a renormalization of the speed of the
longitudinal modes c2L → c̃2L where

c̃2L = c2L +
4

9

FY

F

1

ǫ
(k̂ik̂jγij) . (48)

For the γij of eq. (46), and letting θ now denote the

angle between ~k and the x̂ direction, this corrects the
scalar spectrum as

Pζ(k) → Pζ(k)

(

1− σ
10

9

FY

F

1

c2Lǫ
(3 cos2 θ − 1)

)

, (49)

thus allowing us to compute the order-one factor that
was left generic in [16].
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Appendix: Tensors

The cubic part of the solid Lagrangian involving a sin-
gle tensor can be found by expanding the action in [1]:

Lγππ =M2
Pl a

3H2FY

F

{

8
9∂kπ

kγij∂
iπj − 2

3γij∂
jπk∂kπ

i

− 1
3γij∂jπ

k∂jπ
k − 1

3γij∂kπ
j∂kπ

i
}

. (A.1)

This yields the soft limits

〈γλ~q→0ζ~kζ−~k〉
′ = −

10

9

FY

F
Pγ(q)Pζ(k)

1

c2Lǫ

(

k̂ik̂jǫλij
)

,

(A.2)

〈γλ~q→0πλ1,~k
πλ2,−~k〉

′ =−
5

6

FY

F
Pγ(q)PT (k)

1

c2T ǫ

× ǫλij
(

k̂ik̂jελ1
· ελ2

+ εiλ1
εjλ2

)

,

(A.3)

8 This can be found by expanding the full action for solid inflation
contained in [1]. We note that working to lowest order in the
slow-roll parameters allows one to neglect δN and N i as they
will be of order ǫπ.
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for the scalar and vector cases, where the polariza-

tion tensors are normalized according to ǫsij(
~k)ǫs

′

ji(−
~k) =

2δss
′

, and where the power spectrum is given in [1]:

Pγ(q) =
H2

M2
Pl

1

q3
. (A.4)

We omit the mixed tensor-scalar-vector case, for the
same reasons as before, as well as the relations where
the two-point function for the short modes contains a
single tensor. Since Pγ(k) does not depend on speed c2T to
leading order in slow-roll, in order to find the correlators
〈ζγγ〉, 〈πT γγ〉, 〈γγγ〉 we need to keep the next to leading
corrections in the expression in [1]:

Pγ(k) =
H2

c

M2
Pl

(k/aH)8c
2

T
ǫc/3

(k/acHc)ǫc
1

k3

∼
H2

c

M2
Pl

1

k3

{

1 +
8c2T ǫc
3

log

(

k

aH

)

− ǫc log

(

k

acHc

)}

(A.5)

where the subscript denotes the value of the parameter at
some fiducial time (e.g. at the horizon crossing time for
the longest observable mode), and the approximation is
appropriate when the logarithm is large (typically it will
be of order the number of e-foldings) but the combination
ǫ× log is still small. In this approximation, the relevant
parts of the cubic solid Lagrangian for calculating the
leading order contribution to the squeezed three-point

function are

Lγγγ =M2
Pl a

3H2FY

F

{

− 1
9γijγjkγki

}

, (A.6)

Lπγγ =M2
Pl a

3H2FY

F

{

− 2
9 (∂ · π)γijγji +

2
3γijγjk∂

kπi
}

.

(A.7)

which yield the soft limits

〈ζ~q→0γ
s
~k
γs

′

−~k
〉′ =

16

9

FY

F
Pζ(q)Pγ(k) log

(

k

aH

)

×
(

ǫsijǫ
s′

ji − 3q̂iǫsijǫ
s′

jk q̂
k
)

, (A.8)

〈πλ,~q→0γ
s
~k
γs

′

−~k
〉′ =−

8

9
iq
FY

F
PT (q)Pγ(k) log

(

k

aH

)

× εiλ{ǫ
s
ijǫ

s′

jk + ǫs
′

ijǫ
s
jk}q̂

k , (A.9)

〈γs~q→0γ
s′

~k
γs

′′

−~k
〉′ =

8

9

FY

F
Pγ(q)Pγ(k) log

(

k

aH

)

× ǫsijǫ
s′

jkǫ
s′′

ki . (A.10)

where the first two of these relations can be checked to
satisfy the obvious generalization of the sum rule (29)
when the appropriate trace over tensor polarizations is
taken.
Note that the extra powers in (A.5) can in principle

give an O(1) correction to the power spectrum. In this
limit, the combination ǫ× log is of order one and formally
perturbation theory breaks down, unless we are able to
resum all the terms with arbitrary powers of ǫ × log. It
would be interesting to understand and to formalize this
along the lines of standard renormalization group tech-
niques.
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