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The simplest renormalizable effective field theories with asymmetric dark matter bound states
contain two additional gauge singlet fields one being the dark matter and the other a mediator
particle that the dark matter annihilates into. We examine the physics of one such model with a
Dirac fermion as the dark matter and a real scalar mediator. For a range of parameters the Yukawa
coupling of the dark matter to the mediator gives rise to stable asymmetric dark matter bound
states. We derive properties of the bound states including nuggets formed from N � 1 dark matter
particles. We also consider the formation of bound states in the early universe and direct detection
of dark matter bound states. Many of our results also hold for symmetric dark matter.

I. INTRODUCTION

An attractive idea for the origin of the cosmological dark matter (DM) density relies on a primordial DM asymmetry
that prevents the near complete annihilation of the DM particles with their anti-particles resulting in the observed
relic density. DM that arises from this mechanism is called asymmetric dark matter (ADM) [1]. If DM is asymmetric
then the universe today is composed of DM particles with their antiparticles absent. An interesting possibility that
can impact the properties of DM relevant for direct and indirect detection and influence its distribution in galaxies is
the presence of stable bound states of DM particles. For ADM these bound states involve DM particles (but not DM
anti-particles). The cosmology of ADM bound states has been explored previously in various contexts, such as the
dark atom models with two species of ADM [2–6], and strongly interacting non-abelian hidden sector models [7–10].

In the Standard Model (SM) there is no particle that can be the DM. Minimality can be a useful guiding principle
when considering speculative extensions of the SM. The purpose of this paper is to study one of the two minimal
renormalizable extensions of the SM with stable ADM bound states. We will not discuss the mechanism that generates
the primordial DM asymmetry. Rather we focus on the low energy effective theory well below the scale where the
primordial asymmetry is generated. In the model we study, the DM is a Dirac fermion χ with no standard model
quantum numbers. To facilitate annihilation of χ particles with their anti-particles χ̄ in the early universe, we
introduce a Yukawa-coupling of χ to a real scalar field φ lighter than the DM.

Unlike U(1) gauge boson exchange1, scalar exchange is always attractive among particles (or antiparticles), and so
for a range of model parameters stable ADM bound states occur2 in the model we consider. The new scalar φ mixes
with the Higgs boson, allowing it to decay to SM particles, and mediate interactions between ADM and SM particles
that lead to a possible signal in direct detection experiments. We discuss the spectrum of non-relativistic ADM bound
states from two-body to multi-particle bound states, and the production of bound states in the early universe. We
find regions of parameter space where most of the DM particles do not reside in bound states, and regions where most
of the DM does. The border between these two regions occurs (roughly speaking) when the Yukawa coupling of φ to
the dark matter is large enough and the φ mass is comparable to the binding energy of the two body ground state.3

The low energy effective theory of ADM we consider must be (approximately) invariant under global U(1)χ transfor-
mations, χ→ eiαχ. Like the ADM density the baryon density of the universe may arise from a primordial asymmetry,
in that case in B−L. For the baryon asymmetry of the universe, the (approximate) conservation of B−L in the low
energy effective theory, i.e., the SM, below the scale where the primordial asymmetry is generated is a consequence of
gauge invariance and the particle content, since no renormalizable interactions between SM particles violate B − L.4
Naively this is not true for the ADM model we consider, global U(1)χ invariance is not an automatic consequence of
the gauge symmetries and particle content. For example, while a Dirac mass term χ̄χ preserves χ number a Majorana
mass term χ̄cχ does not. However, there could be an unbroken discrete gauge subgroup of U(1)χ that forbids the
Majorana mass term resulting in a low energy effective theory, where the gauge symmetries are enough to ensure the
renormalizable couplings in the low energy theory are invariant under U(1)χ.

Even in models where the DM is not asymmetric, some of the results of the paper may be applicable. Scalar
exchange could give rise to stable bound states of DM particles and stable bound states of anti-DM particles. This

1 DM interacting via dark U(1) gauge boson exchange was considered in for example Refs. [11–13].
2 Having additional scalars aggravates the hierarchy problem of the standard model but in this case since the scalar is related to the DM
density there may be environmental reasons for it being light compared with the Planck or GUT scales.

3 The other minimal renormalizable extension of the standard model with stable ADM bound states has scalar dark matter.
4 Violation of this global symmetry occurs at dimension five through the operators that are responsible for neutrino masses.
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will have an impact in cosmology and for direct detection. For a range of parameters, such bound states occur in for
example [14–17].

II. THE SIMPLEST FERMIONIC ADM EFT WITH BOUND STATES

The most minimal renormalizable low energy effective theory for ADM contains complex scalar DM that annihilates
via the Higgs portal in the early universe [18]. However, it is not difficult to show that in this case there is not a
robust region of parameter space where non-relativistic ADM bound states exist. Demanding the existence of stable
non-relativistic ADM bound states in a renormalizable model requires one more degree of freedom than this minimal
model.

We focus on a renormalizable model with Dirac fermionic ADM χ and a real scalar mediator φ,

L = iχ̄ 6∂χ−mχχ̄χ− χ̄(gχ + ig5γ5)χφ+
1

2
(∂φ)2 − 1

24
λ4φφ

4 − 1

6
λ3φφ

3 − 1

2
m2
φφ

2

− µφhφ(H†H − v2/2)− 1

2
λφhφ

2(H†H − v2/2)− V (H) , (1)

where H is the SM Higgs doublet, and V (H) is the usual Higgs potential. The vacuum expectation value for the
neutral component of the Higgs doublet is v/

√
2, and v = 246GeV. We have shifted the scalar field φ so that it has

no vacuum expectation value. After electroweak symmetry breaking, φ picks up a small mixing with the SM Higgs
boson h, thus allowing it to decay into SM particles, and mediate the DM interaction to the SM. This simple model
can already have a very complicated spectrum of bound states with important implications for cosmology and direct
detection.

With the above interactions, we calculate the cross section for χχ̄ annihilation into the lighter mediator during
thermal freeze out. In the region of parameter space with bound states mφ is much less than mχ. Neglecting mφ/mχ,
µφh/mχ, λ3φ/mχ, and expanding to order v2 the annihilation cross section is,

〈σv〉anni =

[
3π

2m2
χ

α2
χv

2 +
2π

m2
χ

αχαI +
π

6m2
χ

α2
Iv

2

]
, (2)

where v is the relative velocity between χ, χ̄, given by mχv
2 ' 3T , and αχ ≡ g2

χ/(4π), αI ≡ g2
5/(4π). We work

to lowest order in perturbation theory neglecting the Sommerfeld enhancement factor which is not very important
at freeze out [14, 19]. Roughly speaking, asymmetric DM needs a larger annihilation rate than that of the WIMP,
〈σv(T ' mχ/26)〉anni > 3×10−26cm3/s [20, 21]. With this condition, the symmetric component of DM can annihilate
efficiently, and today’s relic density is dictated by the initial DM asymmetry.

For χχ̄ annihilation, the contribution from the coupling gχ is velocity suppressed but not the contribution from
interference between gχ and g5. For non-relativistic interactions between DM particles the influence of g5 is suppressed.
In Fig. 1 the dashed lines are the limits on αχ assuming αI = 0 (upper dashed line) and αχ = αI (lower dashed lines)
that arise from demanding that enough annihilations take place.

In order to be consistent with Big-Bang Nucleosynthesis (BBN), φ has to decay before a second or so. In this
model, φ decays to SM particles via mixing with the Higgs boson h, so its decays are similar to those of the Higgs
boson [22]. For mφ below twice of the pion mass, its decay rate is

Γφ =

GFm2
emφ

4
√

2π

(
1− 4m2

e

m2
φ

)3/2

Θ(mφ − 2me) +
GFm

2
µmφ

4
√

2π

(
1−

4m2
µ

m2
φ

)3/2

Θ(mφ − 2mµ)

+
GFα

2m3
φ

128
√

2π3

[
A1 + 2× 3

(
2

3

)2

A1/2 + 3

(
−1

3

)2

A1/2

]2
 µ2

φhv
2

m4
h

, (3)

where the second row is for φ → γγ decay and we have taken into account of the W -loop (A1 term) and the heavy
quark loops (A1/2 term) from t, b, c, and A1 = −7, A1/2 = 4/3 [23]. The φ → µ+µ− decay dominates above the
two-muon threshold. For heavier φ, hadronic decay channels open, and the dimuon branching ratio reduces to around
10% [24], for φ mass up to a few GeV.

The φ− h mixing can also mediate the interaction between DM and SM particles, and lead to DM direct detection
signals. The direct detection cross section for χ scattering on a nucleon is [25]

σSI '
4αχf

2m4
Nµ

2
φh

m4
hm

4
φ

, (4)
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FIG. 1: Ground state binding energy (in blue curves) of two-body DM bound state in the αχ −mφ space, for DM mass equal
to 1TeV (left), 100GeV (middle) and 10GeV (right), respectively. No two-body bound state exists in the dark blue region, and
only one (1s) bound state exists in the lighter blue region. The yellow region is not consistent with BBN and LUX constraints
in the minimal model described by Eq. (1). The black dashed curves are lower bound on αχ from having a large enough
annihilation rate for the ADM, in the case αI = 0 (upper) and αI = αχ, respectively.
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FIG. 2: Upper bound on the φ−h mixing parameter µφhv/m2
h from dark matter direct detection (LUX), assuming all DM are

free particles today. The solid and dashed curves corresponds to αχ = 0.1 and 0.01, respectively. We fix mφ = 500MeV.

neglecting the q2 in the φ propagator, where q is the momentum transfer, and f ' 0.35 [26]. Fig. 2 shows the
constraints on the φ−h mixing from the DM direct detection by the LUX collaboration [27] for given φ mass and αχ.

We find that combining the LUX and BBN constraints generically requires the φ → µ+µ− decay channel to be
open, i.e., mφ & 210MeV. The regions of parameter space that are excluded by direct detection and consistent with
BBN are shaded yellow in Fig. 1. This eliminates a large part of the available parameter space. More complicated
models with an enlarged dark sector may evade this constraint. See the appendix for an example.

The scalar field φ can mediate self interactions between two free DM particles, and is constrained by the bullet
cluster observation [28] which requires σT /mχ < 1.25 cm2/gram. For some of the parameter space of interest to this
study, i.e., αχmχ > mφ, the Born level cross section σT /mχ = 4πα2

χmχ/m
4
φ is not valid and quantum mechanical

effect become relevant. Unless resonantly enhanced, the quantum regime the cross section is typically smaller than the
naive Born estimate [17]. With this knowledge, we find that typically the bullet cluster constraint is only important
in the region of parameter space with a light mediator mφ < 0.5GeV and strong coupling αχ > 0.3.
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A. Two-body Bound States

The exchange of a scalar field φ gives an attractive force among the ADM particles. For sufficiently light φ bound
states occur. Because the φ force is always attractive, multi-particle ADM bound states (N ≥ 2) are also expected.

In this section, we discuss two-body bound states. The states containing more than two DM will be discussed in
the following subsection.

For two-DM-particle system, the non-relativistic Hamiltonian describing two DM interaction is

H = −∇2
cm

4mχ
− ∇2

mχ
− αχ

r
e−mφr +Hint , (5)

where xcm is the center of mass coordinate, and r is the relative position of two χ’s. Hint is the interaction for on-shell
φ creation/annihilation, which controls transition rates, that involve φ particle emission and absorption. The other
terms in Eq. (5) control the spectra and wave functions of the two-body bound states and scattering states in the
non-relativistic limit.

The non-relativistic two-body bound state problem with a Yukawa potential has been solved numerically in [29]
(see also [30]). In order for a bound state to exist, the screening length (∼ 1/mφ) must be large enough compared to
the size of the corresponding wave function (∼ the Bohr radius). The condition for having at least one bound state
(the 1s state) is

αχmχ

2mφ
> 0.8399 . (6)

In Fig. 1, we plotted contours of fixed 1s state binding energy as thin blue curves in the αχ versus mφ plane, for
fixed DM mass in each panel. The dark blue region does not satisfy the bound state condition in Eq. (6). In the light
blue region, the 1s state is the only bound state. Outside these regions, for mφ � αχmχ, the φ force is very close to
Coulombic, and the solution approaches a hydrogen-like state, with a Bohr radius

a0 =
2

αχmχ
. (7)

In this case, the ground state wave function and binding energy are, approximately,

ψ0(r) =
1√
π
a
−3/2
0 e−r/a0 , BE0 =

α2
χmχ

4
. (8)

A two-particle bound state Bi can decay to one with greater binding energy Bf by real or virtual φ emission. Real
φ emission is kinematically allowed when the the difference in binding energies ∆BE between the final and initial
states is greater than the mass of the φ. Also bound states can be formed by scattering two χ’s and emitting either a
real or virtual φ and dissociated by scattering the bound state with a φ. The couplings of the φ to the SM particles
are restricted to be very small by current direct detection bounds so we concentrate on real φ emission and absorption
in these processes. Also for simplicity we only consider the s-wave bound states. They have the spins of the χ’s
combined into a total spin zero state.

In the non relativistic limit the interaction Hamiltonian that is needed for these calculations is

Hint = gχ

[
φ
(
xcm +

r

2

)
+ φ

(
xcm −

r

2

)]
, (9)

where we neglected the g5 term which plays a subdominant role here. Our calculations are valid as long as the χ’s are
non-relativistic but the φ can be relativistic. Excited bound states can decay to lower bound states by φ emission,

Γ(Bi → Bf + φ) = 8αχk|Gif (k)|2 , (10)

where k =
√

∆BE2 −m2
φ is the magnitude of the φ momentum and the transition form factor is

Gif (k) =

∫
d3re−ik·r/2ψ∗f (r)ψi(r) . (11)

We will need, for the cosmology discussion in the forthcoming section, the cross sections for the formation and
dissociation of the two-body states via real φ emission and absorption (see Fig. 3). The relativistic correction to the
Hamiltonian in eq. (9)

∆Hint = gr

[
φ
(
xcm +

r

2

)
+ φ

(
xcm −

r

2

)](∇2

m2
χ

+
∇2

cm

4m2
χ

)
(12)
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is important for bound state production and dissociation.
We first consider the formation process in the center of mass frame, χ(p) + χ(−p) → Bi + φ. Including the

relativistic correction from eq. (12) the cross section is expressed in terms of the form factor.

Fi(p,k) =

∫
d3rψ∗i (r)(eik·r/2 + e−ik·r/2)

(
1 +

∇2

m2
χ

)
ψc(p, r) , (13)

where ψi is the spatial wave function for the i-th s-wave bound state, k is the three momentum of the outgoing φ,
and (neglecting mφ) ψc is the Coulomb wave function with fixed incoming momentum p,

ψc(p, r) = eπ/(2a0p)Γ

(
1− i

a0p

)
F

(
i

a0p
, 1, i(pr − p · r)

)
eip·r , (14)

and F is the confluent hyper-geometric function.
Because the above ψi and ψc are eigenstates of the same Hamiltonian with different energy eigenvalues, they are

orthogonal each other. Therefore, one has to go to order p2/m2
χ by including the relativistic correction, or to order

k2/(p2 + 1/a2
0) in the small k expansion. Using the identity [31],∫

d3r

r
ei(p−k)·r−ηrF (iξ, 1, i(pr − p · r)) = 4π

[k2 + (η − ip)2]−iξ

[(p− k)2 + η2]1−iξ
, (15)

we find the squared form factor after averaging over the angle between p and k to be

|Feff(p, k)|2 =
64π

a3
0

e
π
a0p

∣∣∣∣Γ(1− i

a0p

)
(η − ip)−2iξ

(η2 + p2)1−iξ

∣∣∣∣2
×

[
α2
χ

m2
χ

− 2αχ
3mχa0

k2p2

(p2 + 1/a2
0)3

(
1 +

1

p2a2
0

)
+

1

15

k4p4

(p2 + 1/a2
0)6

1

a2
0

(
1 +

1

p2a2
0

)(
23 +

7

p2a2
0

)]
.

(16)

Here we have neglected mφ. It is interesting to examine |Feff(p, k)|2 in the limit of small p, i.e. p � 1/a0. Then,
using the Sterling’s approximation

|Feff(p, k)|2 →
(

128π2

e4p

)[
α2
χ

m2
χ

− 2

3

k2a3
0αχ

mχ
+

7

15
k4a6

0

]
. (17)

In the center of mass frame,

σ(χ(p) + χ(−p)→ Bi + φ)v =
αχ
2
k|Feff(p, k)|2 , (18)

where energy conservation fixes the magnitude of the final state φ momentum to be,

k =
√

(BEi + p2/mχ)2 −m2
φ . (19)

It is evident from the above formula that as long as the χ’s are non-relativistic, keeping only the leading k dependence
in the form factor is reasonable.

Similarly the cross section for the dissociation process in the lab frame, Bi(0) + φ(k)→ χ+ χ is,

σ(Bi(0) + φ(k)→ χ+ χ)v =
αχ
Ek

mχp|Feff(p, k)|2 , (20)

where p is the magnitude of the relative momentum of the final state χ’s, i.e. p = (p1 − p2)/2 with p1 and p2 are
the three momenta of the two final state χ’s. Ek =

√
k2 +m2

φ is the energy of the incoming φ. Energy conservation
determines the magnitude of the relative χ momentum to be,

p =
√
mχ(Ek −BEi) , (21)

where BEi is the binding energy of the two body bound state Bi.
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B B

FIG. 3: Feynman diagrams for two-body ADM bound state formation (dissociation) with an on-shell φ emission (absorption).

If some of the DM is in the two-body bound ground state today the direct detection predictions may be modified.
The momentum transfer associated with direct detection is less than 1/a0 so under most circumstances the scattering
is coherent, the form factor suppression negligible and the cross section is just 4 times the single χ cross section in
Eq. (4). An exception occurs when the two body scattering length is very large. At zero momentum the (spin zero)
χ − χ scattering cross section σ(χχ → χχ) = 4πa2, where a is the spin zero scattering length. If there is a two
body bound state (or resonance) very near threashold (i.e. zero binding energy) then the scattering length a is very
large5. In this case there are universal properties at low momentum for few body χ systems. This is familiar from the
effective range expansion for two body nuclear physics processes (e.g. n+ p→ d+ γ) and was applied to DM direct
detection in [32].

B. Dark Matter Nuggets

As mentioned above, the φ force among DM particles is always attractive. Therefore, for small enough φ mass we
expect DM to have N > 2 particle bound states (nuggets). For sufficiently large N , we assume the DM nugget can
be described as non-relativistic degenerate Fermi gas. Undoubtably this is a gross simplification of the dynamics.
One expects more complicated phenomena like pair formation [33] to occur and impact the equation of state for the
DM. However, our main purpose here is not a quantitative analysis of the spectrum and properties of multi-particle
DM bound states but rather to argue that such states exist and that they are probably small enough that in direct
detection experiments the scattering is coherent and gives rise to a cross section that grows as N2. This will also
affect the capture rate for DM by neutron stars [34–37]. The capture rate may be enhanced by the self interactions
of ADM [34, 38].

We first discuss this multi-particle bound state problem using a heuristic approach where the DM density is constant
and then a more quantitative approach that relies on hydrostatic equilibrium. In expressions for physical quantities
the scaling with N , mχ and αχ is the same in the heuristic and hydrostatic equilibrium approaches.

We restrict our attention to the non-relativistic regime so we can neglect relativistic corrections to the potential
energy, for example from the Darwin term. Also we will find that the size of the state decreases with N so that we
can neglect mφ replacing the Yukawa potential by a Coulomb potential.

1. Heuristic Approach

Assuming a constant density of χ particles filling the momentum levels up to the Fermi momentum pF the number
density of χ particles is

n =
p3
F

3π2
. (22)

For a spherical volume of radius R, the total number of particles is N = 4p3
FR

3/(9π). The kinetic energy KE, and
potential energy PE, of the χ particles expressed as a function or the total number of particles N and the radius R

5 This is the origin of the enhancements in [14], [16] and [17].
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are

KE =
2π2/3

15R2mχ
N5/3

(
9

4

)5/3

, PE = −3N2αχ
5R

. (23)

Minimizing the total energy E = KE + PE with respect to R at fixed N determines the radius to be,

R =

(
9π

4

)2/3
1

N1/3αχmχ
. (24)

Notice that the volume of the nugget decreases as 1/N and if mφa0 � 1, then we also have for large N that mφR� 1.
Hence as long as two body bound states exist the Yukawa potential can be treated as Coulombic for nuggets.

At the value of R in Eq. (24) the kinetic and potential energies become,

KE ' 0.08
(
α2
χmχN

7/3
)
, PE ' −0.16

(
α2
χmχN

7/3
)
. (25)

For large N the nuggets have a binding energy that is of order N4/3 times the binding energy of N/2 two body bound
states BE0.

There are a number of conditions that must be satisfied to apply even the crude approximations we have made.
Firstly as N increases the Fermi momentum increases and the system eventually becomes relativistic. Demanding
that pF /mχ � 1 implies that

N �
(

9π

4

)1/2

α−3/2
χ ' 2.7

(
1

αχ

)3/2

. (26)

Determining the properties of the nugget using classical methods is valid for pFR� 1. This implies that

N �
(

9π

4

)−1/3

' 0.52 . (27)

In the presence of a background number density for χ’s, the Yukawa coupling of the scalar induces a density
dependent tadpole and for large enough R a scalar expectation value. However, neglectingmφ and λ3φ and treating λ4φ

as order unity, we find that these effects are subdominant compared to those we have included, provided N �
√

1/αχ.

2. Hydrostatic Equilibrium

For a non-relativistic degenerate Fermi gas the equation of state relating the pressure density p to the number
density n is

p = Kn5/3 , (28)

where K = 5−132/3π4/3m−1
χ , and n is the number density of χ particles. For a stable solution, the Fermi pressure is

balanced by the attractive φ force among the particles. When 1/mφ is larger than the size of the nugget, the attractive
force is Coulomb-like. In this case, the hydrostatic equilibrium equation is

1

r2

d

dr

(
r2

n

dp

dr

)
= −4παχn . (29)

Together with the above equation of state, Eq. (28), this equation can be solved for N DM particles and it has a
finite-size solution, with

R =
(3π)2/32−7/3

N1/3αχmχ
(ξ2

1 |θ′(ξ1)|)1/3 · ξ1 '
4.5

N1/3αχmχ
, (30)

where θ(ξ) is the solution to the Lane-Emden equation with index n = 3/2, and ξ1 = 3.65, ξ2
1 |θ′(ξ1)| = 2.71 [39] .

The Fermi momentum near the center of the nugget is

(pF )c =
22/3N2/3αχmχ

31/3π4/3(ξ2
1 |θ′(ξ1)|)2/3

' 0.1N2/3αχmχ . (31)

For this description to apply, there are consistency conditions.
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• Non-relativistic condition: (pF )c � mχ requires N � (0.1αχ)
−3/2. For αχ ≤ 0.1, the right hand side is of order

103 or larger.

• Classical description: (pF )cR� 1 requires N � 6.4 .

• Long range force condition: mφR� 1 requires mφ � N1/3αχmχ/4.5 .

Large N nuggets are smaller than the the two-body bound ground state, while the momentum of the DM inside the
nugget is much larger than in the two-body case. Therefore, as long as the two-body bound state exists, the screening
effect due to mφ can be neglected. Note that nuggets with large N can exist even for mφa0 > 1 where the two-body
bound states do not occur.

Within the degenerate Fermi gas picture, for very large N , a non-relativistic description is no longer valid. Other
interactions we have not included become important in the analysis of such systems. However, it seems plausible that
relativistic bound states exist.

As we noted before, since the size of DM nuggets shrinks with N we expect their direct detection scattering cross
section to be coherent and be proportional to N2.

III. COSMOLOGY

In this section, we study the formation of bound states in the early universe. In general, there are two stages in
the evolution of the universe when bound states may form most efficiently: 1) shortly after the DM freeze out when
the ADM number density is still high, 2) at a later stage where structure growth has gone non-linear and the DM
density can be locally large. Here we focus on 1).

We perform a calculation of two-body bound state production in stage 1), taking into account two competing
processes, formation χχ → Bφ, and dissociation Bφ → χχ. The fraction of DM in bound states depends on the
interplay between these two rates and the Hubble parameter. Our goal here is to understand two-body bound state
production. To calculate the formation of bound states with more than two particles, we need to know the binding
energies and wave functions of those states.

For convenience, in this section we fix µφhv/m2
h = 10−7 and take mφ > 2mµ. These values are consistent with

constraints from DM direct detection for αχ < 1. In this region of parameter space, φ decay is dominated by hadronic
and the two muon-final state. Neglecting threshold effects, the two-muon contribution gives the bound,

τφ < 10−2 sec

(
1 GeV

mφ

)
. (32)

Recall that then the universe is 10−2 second old, its temperature is ∼ 10MeV.
When t < 1/τφ in the early universe there is a plasma of φ particles which couples to the DM. In order to calculate

the averaged bound state formation and dissociation rates in this plasma, we need to know the energy/momentum
distributions of χ and φ. At very high temperature, the mediator φ was in thermal equilibrium with SM fermions via
the Higgs boson exchange, φφ ↔ ff̄ . For λφh ∼ O(1) and mφ . 1GeV, such interactions freeze out at temperature
equal to 1 GeV or so, slightly below the charm quark threshold. Afterwards, φ can only remain in chemical equilibrium
with itself through the 2 ↔ 3 scattering φφ ↔ φφφ, with the λ3φ, λ4φ couplings. This allows it to have its own
temperature Tφ, which satisfies

Tφ
Tγ
'
{

1, Tγ > 1 GeV

[g∗(Tγ)/g∗(1 GeV)]
1/3

, Tγ < 1 GeV
(33)

where Tγ is the photon temperature and g∗(Tγ) is the number of relativistic degrees of freedom in the SM at Tγ .
When the temperature falls below mφ, the φ number density becomes Boltzmann suppressed and the 2↔ 3 scattering
process freezes out, at temperature around an order of magnitude below mφ. Another important way to deplete the
φ’s is decay. For simplicity, we take the phase-space distribution of φ to be

fφ(E) ' e−E/Tφe−1/(2Hτφ) . (34)

Second, after the anti-DM χ̄ are efficiently depleted (T . mχ/30), the remaining ADM component χ can stay in
kinetic equilibrium with φ, via the elastic scattering χφ → χφ. For the range of parameters we study, this rate is
always larger than the Hubble rate, until φ’s decay away. In this case, the phase-space distribution of DM χ is

fχ(p) = Ce−p
2/(2mχTφ), C = 25/2π−1/2ζ(3)

T 3
γ

(mχTφ)3/2

(
η

ΩDM

Ωb

mp

mχ

)
, (35)
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Case B: mΧ= 100 GeV, Α Χ=0.2, mΦ=300 MeV

FIG. 4: Temperature dependence of the two-body ADM bound state formation (red), dissociation (blue) rates in together with
the Hubble expansion rate (black). In both cases, we set µφhv/m2

h = 10−7 such that both DM direct detection and BBN
bounds can be satisfied.

where η ' 6× 10−10 is the ratio of baryon to photon number in the universe, and mp is the mass of the proton.
We will use the φ and χ distributions described above to calculate the thermal averaged rates. For the formation

rate Γform per particle, we do a thermal integral of the cross section Eq. (18) over the incoming χ momentum. The
thermally averaged dissociation rate Γdiss per particle is obtained by integrating Eq. (20) over the incoming φ energy.

When both Γform and Γdiss are larger than the Hubble rate and only two-body bound states exist, the dark
ionization fraction, Xd ≡ nχ/(2

∑
i nBi + nχ), (the index i goes over all possible two-body bound states) satisfies the

dark sector counterpart of the Saha equation6

1−Xd

X2
d

=
8ζ(3)√
π
η

(
5.4 GeV

mχ

)(
Tφ
mχ

)3/2∑
i

eBEi/T . (36)

The large number of φ’s in the plasma implies that Γdiss � Γform until the time of φ decay. In the end, how many
two-body bound states are formed is determined by the comparison of formation rate and Hubble rate at that time.

For simplicity below, we only discuss the formation and dissociation of the ground state. However, kinematically,
excited states are harder to form and easier to destroy. Therefore, we expect most of the two-body bound state
formation to occur in the ground state. The parameter space can be divided into two regimes.

• Case A: mφ � BE0.
In this case, the mediator mass is much larger than the binding energy, and the formation process χχ → Bφ
cannot happen unless the two DM are energetic enough. In other words, for DM in kinetic equilibrium, the
temperature of the universe must be large enough. When the temperature falls below a threshold Tth =
(mφ − BE0)/3 ' mφ/3, the formation rate becomes exponentially suppressed. In contrast, with a plasma of φ
the dissociation rate does not shut off until φ eventually decays, which happens at a temperature lower than
Tth.
This feature is shown as the left panel of Fig. 4, where when Γform falls below H, Γdiss is still much larger
than the Hubble rate H. In this case, any bound states that were formed will eventually be ionized back to
unbounded DM particles. For the same reason, bound state formation when the structure growth becomes
non-linear is also suppressed because the DM is more non-relativistic.

• Case B: mφ � BE0.
In this case, the binding energy release itself is sufficient to produce an on-shell φ. There is no temperature
threshold for bound state formation. The thermally averaged formation cross section Eq. (18) can be simplified

6 A similar equation could be derived in the nugget case.
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FIG. 5: Same as Fig. 4, but the parameters are chosen such that at the temperature when Γdiss = H, the formation rate
satisfies P = Γform/H = 1 (solid), or P = Γform/H = 5% (dashed).

in the following two regimes

〈σ(χ+ χ→ B0 + φ)v〉 '

 0.5πα6
χ/(mχTφ), Tφ � BE0

10π2α5
χ/
√
m3
χTφ, Tφ � BE0

(37)

Because nχ ∼ T 3
φ , the formation rate keeps decreasing as Tφ drops. Hence, as a necessary condition for bound

state production, there is a lower bound on the coupling constant αχ. For the formation rate to ever be larger
than the Hubble rate it must be larger at T ∼ mχ/30, which implies that,

αχ & 0.1
( mχ

100 GeV

)1/3

. (38)

If this condition is satisfied, the formation rate can remain greater than the Hubble rate for a long time. In
contrast, there will be a threshold for dissociation. At mφ < T < EB , there is a suppression in the number of
φ in the plasma that are energetic enough to ionize the bound state. Moreover, there is a sharper suppression
when φ begins to decay.
This allows us to have a picture where the ground state formation process is still active (Γform > H) when
dissociation is suppressed (Γdiss < H), as shown in the right panel of Fig. 4. In this regime, the two-body
ground state can efficiently form. In this regime, the formation of more than two-body bound states is also
expected to be efficient.

• The critical case.
In the region that interpolates between the two above limiting cases, for given mφ, we find it is always possible
to arrange the parameters such that both formation and dissociation freeze out at similar temperature Tc, where
Γdiss(Tc) = H(Tc), but Γform(Tc) is somewhat below H(Tc), as shown in Fig. 5. Below Tc, the dissociation
rate is more suppressed because of φ decay. In this case, the fraction of DM particles that finally end up in the
two-body ground state is roughly,

P ' Γform
H

(Tc) . (39)

Since P is smaller than one, we expect the formation of more than two-body bound states to be further
suppressed.

We summarize the results in the αχ versus mφ parameter space in Fig. 6. The thick red curves are where the above
critical condition is satisfied. Below the thick red curves, almost all the DM ends up as unbound χ particles. Above
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FIG. 6: Same parameter space as Fig. 1. The thick red curves represent where the critical condition like Fig. 5 is reached, i.e.,
at the temperature when Γdiss = H, the formation rate satisfies P = Γform/H = 1 (solid), or P = Γform/H = 5% (dashed).
The dot-dashed lines are where mφ = BE0 is satisfied.

solid (dashed) red curves, most (5%) of the DM resides in bound states. These curves lie at mφ somewhat above the
binding energy BE0 because of the kinetic energy of the χ particles (see Eq. (19)). Note the thick red curves bend up
towards/crossing the mφ = BE0 line near the two muon threshold for φ decay. This occurs because the φ decay rate
is suppressed which postpones the suppression of dissociation rate, and a larger value of αχ is needed to reach the
critical point. In this regime, if the DM is sufficient heavy, the binding energy BE0 can already exceed mφ (see the
mχ = 100GeV case for example), and the formation rate is less sensitive to the change in αχ, i.e., it depends on αχ
as power law instead of exponentially. This explains why above the green line the P = 1 (solid red) and 5% (dashed
red) curves deviate more from each other.

The force between any pair of DM particles is attractive and so for mφa0 � 1, the binding energy for a bound
state with N particles grows faster than linearly with N . That was what we found in the degenerate Fermi gas model
where the binding energy grew as N7/3. Thus it is likely that for mφ < BE0 there are no thresholds that suppress
the formation of non-relativistic bound states with more than two particles.

IV. CONCLUDING REMARKS

We showed that, for a range of parameters, one of the simplest low energy effective theories of asymmetric dark
matter has a rich spectrum of bound states. In this paper, we explored some of the features of the spectrum, and
the implications for cosmology and dark matter direct detection. We find a region of parameter space where the dark
matter in the universe is primarily in bound states. Roughly speaking, this occurs when the binding energy of the
two-particle ground state is greater than the mediator mass and the coupling of the mediator to the dark matter
is large enough. We find that bound state formation and dissociation rates are suppressed because the operator
mediating the transition is the unit operator in the dipole approximation and non relativistic limits. The matrix
element is then the overlap of orthogonal wave functions which vanishes. Hence the transition matrix element for φ
absorption and emission comes from small deviations from the dipole and non-relativistic approximations. Significant
cosmological bound state production occurs only for rather large couplings, αχ & 0.1. Later, after structures form
there are other ways that bound states can form including in the core of neutron stars.

There are a number of issues that require further examination. For example, the details of the spectrum of the
bound states with more than two dark matter particles, i.e., nuggets, and the formation of these multi-particle bound
states in the early universe. Without further investigation of these issues, it is even conceivable that for a range of
parameters most of the asymmetric dark matter ends up as black holes. In that case, the black holes must have a
lifetime longer than the age of the universe. It seems worthwhile to elucidate further the bound state properties and
cosmology in this simple model for asymmetric dark matter.

Some of the work in this paper is also applicable to dark matter that is not asymmetric. For a range of parameters,
scalar exchange could gives rise to stable bound states of dark matter particles and stable bound states of anti dark
matter particles. One difference from the asymmetric case is that the values of αχ and αI are constrained to give the
correct dark matter relic density.
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APPENDIX: A MORE NATURAL MODEL

The smallness of µφh in the minimal we consider requires an awkward fine-tuning that is unlikely to have an
environment origin. More complicated models can avoid this feature. For example, suppose the dark sector possesses
a global dark isospin symmetry SU(2), under which the DM χ is a doublet and the mediator φ is a triplet. The
Lagrangian is

L = iχ̄ 6∂χ−mχχ̄χ− gχχ̄Φχ+
1

4
Tr(∂Φ)2 − 1

24
λ4φTrΦ4 − 1

6
λ3φTrΦ3 − 1

2
m2
φTrΦ2

− 1

2
λφhTrΦ2(H†H − v2/2)− V (H) , (40)

where Φ = σaφa. In order for the φ to decay, a dark doublet of left-handed fermions ψ is introduced that couples to
Φ via the interaction ψ̄cΦψ + h.c.. Note the dark isospin forbids a mass term for ψ. The coupling between Φ and ψ
should be large enough for Φ to decay before BBN.

In this model, the DM direct detection occurs at the one loop level (see Fig. 7). The cross section is given by
Eq. (4), with µφh/m2

φ replaced by ∼ gχλφh/(16π2mχ), which is adequately small even for λφh of order unity.

v h

p p

FIG. 7: Feynman diagram for direct detection in the SU(2) model.
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