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We apply the GLV reaction operator solution to the Vitev-Gunion-Bertsch (VGB) boundary
conditions to compute the all-order in nuclear opacity non-abelian gluon bremsstrahlung of event-
by-event fluctuating beam jets in nuclear collisions. We evaluate analytically azimuthal Fourier
moments of single gluon, vMn {1}, and even number 2` gluon, vMn {2`} inclusive distributions in high
energy p+A reactions as a function of harmonic n, target recoil cluster number, M , and gluon
number, 2`, at RHIC and LHC. Multiple resolved clusters of recoiling target beam jets together
with the projectile beam jet form Color Scintillation Antenna (CSA) arrays that lead to character-
istic boost non-invariant trapezoidal rapidity distributions in asymmetric B + A nuclear collisions.
The scaling of intrinsically azimuthally anisotropic and long range in η nature of the non-abelian
bremsstrahlung leads to vn moments that are similar to results from hydrodynamic models, but due
entirely to non-abelian wave interference phenomena sourced by the fluctuating CSA. Our analytic
non-flow solutions are similar to recent numerical saturation model predictions but differ by pre-
dicting a simple power-law hierarchy of both even and odd vn without invoking kT factorization. A
test of CSA mechanism is the predicted nearly linear η rapidity dependence of the vn(kT , η). Non-
abelian beam jet bremsstrahlung may thus provide a simple analytic solution to Beam Energy Scan
(BES) puzzle of the near

√
s independence of vn(pT ) moments observed down to 10 AGeV where

large x valence quark beam jets dominate inelastic dynamics. Recoil bremsstrahlung from multiple
independent CSA clusters could also provide a partial explanation for the unexpected similarity of
vn in p(D) +A and non-central A+A at same dN/dη multiplicity as observed at RHIC and LHC.

PACS numbers: 24.85.+p; 12.38.Cy; 25.75.-q

I. INTRODUCTION

An unexpected discovery at RHIC/BNL in D+Au re-
actions at

√
s = 200 AGeV [1] and at LHC/CERN in√

s = 5.02 ATeV p+Pb reactions [2–4] is the large mag-
nitude of mid-rapidity azimuthal anisotropy moments,
vn(kT , η = 0), that are remarkably similar to those
observed previously in non-central Au + Au [5–7] and
Pb+Pb [8–12] reactions. See preliminary p+Pb data in
Fig. 1 taken from ATLAS [13] Fig. 24 that also shows a
large rapidity-even dipole v1 harmonic[14].

In addition, the Beam energy Scan (BES) at RHIC [15]
revealed a near

√
s independence from 8 AGeV to

2.76 ATeV of the vn in A + A at fixed centrality that
was also unexpected.

In high energy A+A, the vn moments have been inter-
preted as possible evidence for the near “perfect fluidity”
of the strongly-coupled Quark Gluon Plasmas (sQGP)
produced in such reactions [16–20]. However, the recent
observation of similar vn in much smaller p(D) + A sys-
tems and also the near beam energy independence of the
moments observed in the Beam Energy Scan (BES) [15]
from 7.7 AGeV to 2.76 ATeV in A + A have posed a
problem for the perfect fluid interpretation because near
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FIG. 1: (Color online) Reproduced from ATLAS [13] p+Pb
Figure 24 vn(pT ) with n=2 to 5 obtained for |∆η| > 2 and
the pT range of 1-3 GeV. An overlay sketch of preliminary
rapidity-even v1 data shown at QM14 [14] is also indicated by
a dark green curve. The error bars and shaded boxes repre-
sent the statistical and systematic uncertainties, respectively.
ATLAS v2 (v3) data in 220Nch < 260 range are compared
to the CMS data [2] obtained by subtracting the peripheral
events (the number of offline tracks N trk

off < 20), shown by the
dashed (solid) curves.
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inviscid hydrodynamics is not expected to apply in space-
time regions where the local temperature falls below the
confinement temperature, T (x, t) < Tc ∼ 160 MeV. In
that Hadron Resonance Gas (HRG) “corona” region, the
viscosity to entropy ratio is predicted to grow rapidly
with decreasing temperature [21] and the corona volume
fraction must increase relative to the ever shrinking vol-
ume of the perfect fluid “core” with T > Tc when either
the projectile atomic number A and size A1/3 fm or the
center-of-mass (CM) energy

√
s decrease .

While hydrodynamic equations have been shown to be
sufficient to describe p(D) + A data with particular as-
sumptions about initial and freeze-out conditions [22],
its necessity as a unique interpretation of the data is not
guaranteed. This point was underlined recently using a
specific initial state saturation model [23] that was shown
to be able to fit p(D) + A correlation even vn moments
data without final state interactions. That saturation
model has also been used [19] to specify initial condi-
tions for perfect fluid hydrodynamics in A+A. However,
in p + A such initial conditions for hydrodynamics are
not as well-controlled because the gluon saturation scale
scale, Qs(x,A = 1) < 1 GeV is small and its fluctua-
tions in the transverse plane on sub-nucleon scales are
not reliably predicted.

The near independence of vn moments on beam energy
observed in BES [15] at RHIC from 7.7 AGeV to 2760
AGeV pose further serious challenges to the uniqueness
of the perfect fluid interpretations of the data because of
previous predictions [24] for systematic reduction of the
moments due to the increasing HRG corona. Those pre-
dictions appeared to be confirmed by SPS

√
s = 17 AGeV

data [25]. The most recent BES measurements, however,
appear to contradict the diluting role of the HRG corona.
The HRG corona fraction should dilute perfect fluid QGP
core flow signatures at lower energies unless additional
dynamical mechanisms possibly associated with increas-
ing baryon density accidentally conspire to compensate
for growing HRG corona fraction. Such combination of
canceling effects with

√
s was demonstrated to be pos-

sible using a specific hybrid hydro+URQMD model [27]
or three fluid models [28]. While such hybrid models are
sufficient to explain the BES independence of v2 data
in A + A, the necessity and, hence, uniqueness of such
hybrid descriptions are not guaranteed.

The BES [15] data also a pose a challenge to color
glass condensate (CGC) gluon saturation model [50] used
to specify initial conditions for hydrodynamic flow pre-
dictions in A + A. This is because Q2

s is predicted de-
crease with log(s), and thus gluon saturation-dominated
high energy gluon fusion models of initial-state dynam-
ics should switch over into valence quark-diquark domi-
nate inelastic dynamics when partons with fractional en-
ergy x > 0.01 play the dominant role. At RHIC and
lower energies valence quark and diquark QCD string
phenomenology based on the LUND [52] model(diquark-
quark) beam jet phenomenological QCD string model
and its B + A nuclear collision generalization via HI-

JING [38] can smoothly interpolate between AGS and
RHIC energies. Such multiple beam jet based approach
to B + A naturally accounts for example for the strik-
ing long range triangular, boost non-invariant, form of
(dNpA/dη)/(dNpp/dη) nuclear enhancement of the final
hadron rapidity density in p(D) +A observed at all CM
energies up to LHC [32]. By including multiple mini and
hard jet production it can account for the

√
s growth of

dNB+A/dη though at top
√
s = 200 AGeV RHIC and

at LHC energies there is strong evidence for the onset
for gluon saturation [33] that limits 2 → 2 minijet pro-
cesses to pT > Qs(x,A) ∝ A1/3/xλ that grows with A
and 1/x =

√
s/(pT e

η).

The importance of multiple beam jets with rapidity
kinematics controlled by valence quarks and diquarks was
first proposed within the Brodsky-Gunion-Kuhn (BGK)
model [30] which is reproduced also in the HIJING [31]
model. The trapezoidal boost non-invariant dependence
of the local density, dN/dηd2x, predicted in [31] as a
function of the transverse coordinate x even in symmetric
A+A, may also play an important role in in the triangular
long range η dependence of v2(η,

√
s) as observed in Au+

Au by PHOBOS [34].

In this paper we explore the possibility that a dynami-
cal source that could partially account for the above puz-
zling azimuthal moment systematics may be traced to a
basic perturbative QCD (pQCD) feature. The pQCD
based model here extends the opacity χ = 1 Gunion-
Bertsch [35] (GB) perturbative QCD bremsstrahlung
used to model for π + π → g + X to all orders in opac-
ity, e−χ

∑∞
n=1 χ

n/n! · · ·, Vitev-Gunion-Bertsch (VGB)
multiple interaction pQCD bremsstrahlung for applica-
tions to B + A nuclear collisions. We show that VGB
bremsstrahlung naturally leads on an event by event ba-
sis to a hierarchy of non trivial azimuthal asymmetry
moments similar to that observed in p+A (see fig.1) and
peripheral A+A at fixed dN/dη [9, 11, 12] .

A particularly important feature of beam jet non-
abelian bremsstrahlung is that it automatically leads to
long range rapidity η “ridge” correlations and to az-
imuthal asymmetry harmonics from n = 1, 2, 3, · · · Con-
ventional Lund string beam jet models [52], as encoded
e.g. in HIJING, on the other hand neglect recoil induced
moderate pT color bremsstrahlung azimuthal asymme-
tries. From the pQCD perspective, beam jets are sim-
ply arrays of parallel color antennas that radiate due to
multiple soft transverse momentum transfers |qi| ∼ 1
GeV between participant projectile and i = 1, · · · , NT (b)
target nucleons. Many event generators include φ av-
eraged (azimuthally randomized) bremsstrahlung effects
via ∼ αs/k

2
T up to the minijet scale kT < Qs(x,A).

In HIJING the ARIADNE [54] code is used in conjunc-
tion with the non-perturbative Lund string fragmenta-
tion code JETSET [53] to incorporate this effect, while
highly azimuthally asymmetric hard pQCD jets with
kT > Qs(x,A) are included via the PYTHIA [53]) code.
In [52] it was emphasized the high string tension of color
strings reduces greatly the sensitivity of Lund string
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fragmentation to QCD bremsstrahlung and is an im-
portant infrared safety feature of that non-perturbative
hadronization phenomenology.

In p + A multiple collisions, however, the projectile
accumulates multiple transverse momentum kicks (the
Cronin effect) from scattering with cold nuclear partic-
ipants [39, 49] that enhances the bremsstrahlung mean
square < k2T >pA≈ A1/3µ2 via random walk in the tar-

get frame. In the CGC approach this A1/3 growth is built
into Q2

s(x,A) in the infinite momentum frame.
At the minijet scale the underlying azimuthal asym-

metry of non-abelian bremsstrahlung will tend to focus
gluons toward the azimuthal directions of exchanged mo-
menta. At present, this basic azimuthal dependence is
not taken into account in HIJING.

As we show below, there is a very important as-
pect to the multiple color antenna arrays in high en-
ergy p + A due to the longitudinal coherence of clus-
ters of participant target beam jets separated by small
transverse coordinates too small to be resolved by the
transverse momenta involved. While the total average
number of Glauber participant nucleons that interact
with a projectile at impact parameter b is determined by
the area of the inelastic cross section σin(s) ∼ few fm2

as NT (b) = σin(s)
∫
dzρT (z,b), for moderate momen-

tum transfers with kT ∼ Qs ∼ 1-2 GeV bremsstrahlung
the target participant antennas naturally group event by
event into M ≤ NT resolved clusters separated in the
transverse plane by sub-nucleon distances 1/kT ∼ 0.2 fm,
similar to the CGC model [47] and in AdS/CFT shock
modeling [48] of p+A, but here simply to transverse res-
olution scale of multiple scattering recoil kinematics in
the target frame versus the infinite momentum frame.

This partial decoherence of the NT (b) participating
target dipoles creates non-isotropic spatial distributions
of color antennas that radiates according to the fluctuat-
ing spatial asymmetries from even to event. Each cluster
is characterized by the number ma of target participant
dipole antennas that exchange coherently Q2

a = maµ
2

with the projectile at a specific azimuthal angle ψa con-
trolled by the transverse geometrical distribution of the
clusters.

Each recoil cluster a = 1, · · · ,M radiates coherently
into a broad range of rapidities that appears in two par-
ticle correlations as M + 1 “ridge” components with k
near the cluster accumulated recoil transverse momenta
−Qa = −

∑
i∈Ia qi and with k near the the projectile

dipole (cluster) radiates near the total momentum trans-

fer received Q0 = (Q0, ψ0) =
∑M
a=1 Qa. On an event by

event basis M and the color antenna geometry fluctuate
producing naturally n = M+1 and other other azimuthal
harmonics in two gluon vn = 〈cos(n(φ1 − φ2))〉.

Our goal here is to estimate analytically the magnitude
of the color bremsstrahlung source of pQCD dynamical
azimuthal two particle correlations and its dependence of
n, k,M,NT . We illustrate the results with specific ana-
lytic cluster geometric limits including Zn symmetric and
Gaussian random CSA. We propose a future generaliza-

tion of HIJING that could enable more realistic testing
the influence of anisotropic VGB bremsstrahlung on the
final hadron flavor dependent azimuthal moments and
competing minijet and hard jet sources of anisotropies.

II. FIRST ORDER IN OPACITY (GB)
BREMSSTRAHLUNG AND AZIMUTHAL

ASYMMETRIES vn

The above puzzles with BES [15], D + Au at RHIC,
and with p + Pb at LHC motivate us to consider
an alternative, more basic, perturbative QCD sources
of azimuthal asymmetries.The well known non-abelian
bremsstrahlung Gunion-Bertsch (GB) formula [35] for
the soft gluon radiation single inclusive distribution is

dN1
g

dηd2kd2q
=

CRαs
π2

µ2

π(q2 + µ2)2
q2

k2(k− q)2
, (1)

where we characterize the parton scattering elastically
cross section dσ0/d

2q = σ0µ
2/π(q2 + µ2)2 off color neu-

tral target participants with a momentum transfer q
in terms of a characteristic cold nuclear matter scale
µ2 ≈ 0.12 GeV2 taken from fits to forward dihadron cor-
relations in [43–45]. Here q = |q| and the produced gluon
has rapidity η and transverse momentum k (k = |k|)
in the final state. It is obvious from Eq. 1 that non-
abelian gluon bremsstrahlung is preferentially emitted
along two directions specified by the beam “ẑ” axis and
the transverse momentum transfer vector q. The uniform
rapidity-even, η ≈ log(xE/k), distribution associated
with moderate q scattering is a unique feature of non-
abelian bremsstrahlung in the kinematic k � xE � E
range of interest associated with beam jets and is due
to the triple gluon vertex. The uniform rapidity-even
distribution is an especially important characteristic of
non-abelian radiation. The combination of the two leads
to a uniform rapidity “ridge” in the direction of the mo-
mentum transfer q that fluctuates in both magnitude
and direction from event to event but measurable in
two or higher gluon correlation measurements. The ra-
pidity even ridge is of course kinematically limited to
η ∈ [YT , YP ] interval between the target and projectile ra-
pidities. Independent but kinematically correlated multi-
ple target and projectile beam jet bremsstrahlung sources
can account for the triangle boost non-invariant rapidity
density observed in p+A.

For scattering of color neutral dipoles considered in [35]
the Rutherford perturbative α2/q4 distribution of mo-
mentum transfers were modeled by color neutral form
factors of the form q2(q2 + µ2)−1. For GB radiation the
k = q singularity is also regulated by such a form factors.
Therefore the color neutralization scale µ2 also regulates
the (k− q)2 singularity in Eq. 1 as well. That x and A
dependence of that scale arises naturally in small x mod-
els based the gluon saturation scale Qs(x,A) [46, 47, 50].
Our emphasis here however is to explore the general char-
acteristics of g+ g → g “br” from the perturbative QCD
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perspectives that allows us to derive analytically many
of the observed remarkably simple scaling relations be-
tween 2` azimuthal harmonic cummulants, vn(2`), as a
basic coherent state semi-classical wave interference ef-
fect without invoking hydrodynamic local equilibrium as-
sumptions.

The screened single inclusive GB perturbative gluon
distribution is

dN
(1)
g

dηd2kd2q
≡ f(η,k,q)

=
CRαs
π2k2

µ2q2

π(q2 + µ2)2
Pη

(k− q)2 + µ2
(2)

≡ F P

A− cos(φ− ψ)
(3)

where φ is the azimuthal angle of k and ψ is the azimuthal
angle of q and abbreviations

A ≡ Akq ≡ (k2 + q2 + µ2)/(2k q) ≥ 1 (4)

F ≡ Fkq ≡
CRαs
π2k2

µ2q2

π(q2 + µ2)2
1

2kq
(5)

P ≡ Pη ≡ (1− eYT−η)nf (1− eη−YP )nf , (6)

where we introduced a kinematic rapidity envelope fac-
tor Pη corresponding to approximately uniform rapidity
dependence of the non-abelian bremsstrahlung [35] regu-
lated with (1−|xF |)nf kinematic spectator power count-
ing [36, 46] Note nf = 2nspec − 1 ∼ 4 for gluon produc-
tion from the scattering of two color neutral dipoles in
the large |xF | → 1 limit. The Pη rapidity envelopes can
be used to build up multi beam jet boost non-invariant
triangular dNpA/dη as in the BGK [30] model and also to
model the intrinsic boost non-invariance of dNAA/dηdx⊥
in even in symmetric A+A collisions as with HIJING [31].

The single gluon azimuthal moments, vn = vn{1} in
cummulant notation, from a single GB color antenna de-
fined by by the momentum transfer q = (q, ψ) with az-
imuthal angle ψ are defined by

vGBn (k, q, ψ)f0(k, q) = F P

∫
dφ

2π

cos(nφ)

A− cos(φ− ψ)

= F P Re

∮
|z|=1

dz

2πi

(−2einψ)zn

(z2 − 2Az + 1)

= F P Re
2(eiψ z−)n

z+ − z−
, (7)

where we defined z ≡ exp(i(φ−ψ)), so that dφ = −idz/z
and cos(φ − ψ) = (z + 1/z)/2. Note that there are two

simple real poles z± = A±
√
A2 − 1. Since A ≥ 1, only z−

contributes to the unit contour integral, resulting in the
final analytic expression above. Note that the azimuthal
averaged single gluon inclusive (n = 0) bremsstrahlung
distribution with v0 = 1 is then

f0 = 2F P/(z+ − z−) = FkqPη/(A
2
kq − 1)1/2

∝ dN/dηdk2dq2 . (8)
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FIG. 2: (Color online) Single GB beam jet bremsstrahlung az-
imuthal Fourier moments, vGB

n (k, q) from Eq. (11) are shown
versus k/µ for n = 1− 5 for q/µ = 1(3) solid(dashed).
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FIG. 3: (Color online) Single GB beam jet bremsstrahlung
azimuthal Fourier moments, 〈vGB

n (k, q)〉q averaged over q with
M2/(q2 + M2)2, are shown versus k/µ for n = 1 − 5 for
(M/µ)2 = 1 (10) solid(dashed).

This has a linear divergence at k = q in the µ = 0 limit in
addition to the usual abelian collinear 1/k2 divergence.
The first is regulated by the color neutral dipole form
factor in the GB model.
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FIG. 4: (Color online) The ideal 1/n power scaling of q

averaged 〈vGB
n (k, q)〉1/n with k

<∼ M (see Eq.11) breaks
down at higher k because in the µ = 0 limit of non-abelian
bremsstrahlung limits k ≤ q (see Eq. (12)).

The azimuthal Fourier moments are however finite in
Eq. (7) even in the case of vanishing µ and depend ana-
lytically on n and A via

vGB1 (k, q, ψ) = cos[ψ](Akq −
√
A2
kq − 1) (9)

lim
µ→0

vGB1 (k, q, 0) = (k/q) θ(q − k) (10)

vGBn (k, q, ψ) = cos[nψ] (vGB1 (k, q, 0))n (11)

lim
µ→0

vGBn (k, q, 0) = (k/q)n θ(q − k) . (12)

Note that in the µ = 0 limit, all vn → 1 reach unity
at k = q but vanish for k > q. For finite µ > 0, all
moments maximizing at k2 = k2∗ = q2+µ2 with vn(k∗) =

(
√

(1+µ2/q2)−µ/q)n. Figure 2 illustrates the magnitude
of GB vn(k/µ, q/µ) moments as a function of k/µ for
n = 1, · · · , 5 and two different q/µ = 1, 3.

Note the remarkable power law scaling with n
(for fixed k, q.ψ) of the azimuthal moments of gluon
bremsstrahlung from a single GB color antenna:

[vGBn (k, q, 0)]1/n = [vGBm (k, q, 0)]1/m , (13)

that is similar to the scaling observed by ALICE, CMS
and ATLAS [4, 8, 11] at LHC at least for the higher n ≥
3 moments dominated by purely geometric fluctuations.
This scaling is of course not expected to hold perfectly
for ensemble averaged over q ratios of cos(n∆φ) averaged
di-hadron inclusive rates. One of our aims below is to
test the survival of the above ideal scaling in Eq. (13) to
ensembles averages in two gluon inclusive processes.

However, note that by rotation invariance all harmon-
ics n > 0 vanish for single inclusive GB antennas when
averaged over the momentum transfer azimuthal angle ψ.
We show below in section V that the finite rms fluctu-
ating harmonics of two particle inclusive (〈cos(n∆φ)〉)1/2
survive with similar magnitude and k dependence as in
Figs. 1,2.

In Fig. 4 we see that the simple fixed q power law
scaling of Eqs. (11,13) holds for k/M < 1 but gradually
breaks down at higher k > M when ensemble averaged
over q2 in 〈fn(k)〉.

III. ALL ORDERS IN OPACITY VGB
GENERALIZATION OF GUNION-BERTSCH

RADIATION

A recursive reaction operator method was originally
developed in GLV [37, 38] to compute final-state multiple
collision-induced gluon bremsstrahlung and elastic colli-
sional energy loss [39] to all orders in opacity for applica-
tions to jet quenching. Extensions of the method to final
state heavy quarks jet energy loss was given in [40, 41].

Vitev further extended the reaction operator method
to compute non-abelian energy loss in cold nuclear
matter in Ref. [42]. In addition to Final-State (FS)
bremsstrahlung , Vitev solved the cold matter Initial-
State (IS) bremsstrahlung problem to all orders in opac-
ity and also the generalization of the first order in
opacity Gunion-Bertsch [35] non-abelian bremsstrahlung
problem to all orders in opacity for asymptotic (t0 →
−∞, tf → +∞) boundary condition. We refer here to
the Vitev all-order in opacity generalized GB radiation
solution as VGB.

In [42] the VGB solution was regarded to be of mainly
academic interest, since the focus there was on induced
initial state IS and final state FS gluon bremsstrahlung
associated with hard processes in p + A [43–45]. In this
paper, we focus entirely on the application of the VGB so-
lution to low to moderate transverse momentum k < few
GeV gluon radiation from multiple beam jets in the same
spirit as in GB [35], where the aim was to understand
the general qualitative characteristics of inelastic high
energy single inclusive processes from low order pertur-
bative QCD perspective.

Our aim here is to calculate azimuthal asymmetry mo-
ments, vn(η,k), arising from basic perturbative QCD
bremsstrahlung effects in high energy p+A interactions.
The physical picture approximates p+A scattering as the
scattering of an incoming color dipole at an impact pa-
rameter, b, of high (positive) rapidity YP � 1 with

Npart
T ∼ A1/3 nuclear target participant nucleons with

high (negative) YT � −1 in the CM. The target par-
ticipant dipoles at a fixed transverse coordinate R are
separated longitudinal separations ∆zi = zi − zi−1 ∼ fm
in the cold nucleus target rest frame. However they act
coherently when emitting gluons near mid rapidity due to
Lorentz contraction in the CM and long formation time
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of gluons ∼ [2 cosh(η)]/k in the lab frame.
However, the target participants are distributed in

the transverse direction by by transverse separations

Rij = |Ri −Rj |
<∼
√
σin/π ∼ fm which can be resolved

for k > 1 GeV. This leads incoherent groups of of target
nucleons that radiate mid-rapidity gluons with |η| < 1,
k > 1 GeV gluons coherently. We propose in section IV

below a simple percolation model to estimate the par-
tially coherent target recoil bremsstrahlung . However,
we concentrate in this section on the coherent projectile
bremsstrahlung contribution.

The complete all orders in opacity, χ ≡ χ(b) =∫
dzσg(z)ρ(z,b), VGB solution derived by Vitev in [42]

is

dNV BG

dηd2k
=

∞∑
n=1

dNV BG
n

dηd2k
=
CRαs
π2

∞∑
n=1

[
n∏
i=1

∫
d∆zi
λg(zi)

] n∏
j=1

∫
d2qj

(
v2j (qj)− δ2(qj)

)
× Bb

21 ·

Bn
21 + 2

n∑
i=2

Bn
(i+1)i cos

 i∑
j=2

ωjn∆zj

 , (14)

where the transverse vector “antenna” amplitudes Bn
jk

are defined in terms of differences between“cascade” vec-
tor amplitudes Cjn as

Bn
jk = Cjn −Ckn (15)

Cjn =
k− qj − · · · − qn

(k− qj − · · · − qn)2
=

k−Qjn

(k−Qjn)2
. (16)

Indices j, k, n here keep track of combinations of non-
vanishing momentum transfers qi from direct versus vir-
tual diagrams contributing at a given opacity order n of
the opacity expansion. The partial summed momentum
transfers are Qjn =

∑n
i=j qi being the singular directions

of non-abelian bremsstrahlung that also control the in-
verse formation times

ωjn =
(k−Qjn)2

2Eg
. (17)

Here Eg = xEP � EP is the energy of the gluon in a
frame where the energy of the proton projectile is as-
sumed to be large EP � mn.

There are two simple limits depending on the kine-
matic range of interest. In the coherent or factoriza-
tion limit where nωjnλg � 1 we can approximate all the
cosines by unity. This is the limit we are interested in for
our present applications to mid-rapidity multi-particle
production not too close to projectile and target frag-
mentation regions, i.e YT + 1 < η < YP − 1.

The target scattering centers are ordered in this VGB
problem as z0 = −∞ < z1 < · · · < zn < zf = +∞ with
∆zi = (zi − zi−1) for i ≥ 2. σg(z)ρ(z,b) is the local
inverse mean free path of a gluon the nuclear target at
position z impact parameter b in the target rest frame.

The v2(qj) =
dσel(zj)
d2qj

denote normalized distributions of

transverse momentum transfers at scattering center zj .

In the coherent scattering limit of relevance to near
mid-rapidity radiation and neglecting possible z depen-
dence of the screening scale µ of the normalized distri-
bution v2(q), we can write more explicitly at impact pa-
rameter b

dNV GB
coh

dηd2k
=

CRαs
π2

∞∑
n=1

[
n∏
i=1

∫
d∆zi σel(zi)ρ(zi,b)

] n∏
j=1

∫
d2qj

(
1

σel

dσel
d2qj

− δ2(qj)

)
×
(

k− q2 − · · · − qn
(k− q2 − · · · − qn)2

− k− q1 − · · · − qn
(k− q1 − · · · − qn)2

)
·
[(

k− q2 − · · · − qn
(k− q2 − · · · − qn)2

− k− q1 − · · · − qn
(k− q1 − · · · − qn)2

)
+2

n∑
i=2

(
k− qi+1 − · · · − qn

(k− qi+1 − · · · − qn)2
− k− qi − · · · − qn

(k− qi − · · · − qn)2

)]
. (18)

In order extract the the physical interpretation of the above compete but unwieldy expression, we derive in the
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FIG. 5: (Color online) Schematic diagram corresponding
to coherent bremsstrahlung from the projectile dipole from
Eqs. (19,20). At opacity order n the azimuthal distribution
is enhanced for transverse momenta k near the total accu-
mulated momentum transfer Q0 ≡ Q1n =

∑
a
Qa where

a = 1, · · · ,M groups of recoiling target dipoles.

Appendix A the linked cluster theorem version of Eq. 18
to be

dNV GB
coh (k) =

∞∑
n=1

∫
d2Q P eln (Q) dNGB(k,Q) , (19)

where P eln (Q) is the probability density that after n elas-
tic scatterings the cumulative total momentum transfer
is Q,

P eln (Q) = exp[−χ]
χn

n!

∫ 
n∏
j=1

d2qj
σel

dσel
d2qj


×δ2(Q− (q1 + · · ·+ qn)) , (20)

that is independent of the azimuthal direction ψ of Q
by rotation invariance. This distribution also arose natu-
rally in the reaction operator derivation of the link cluster
theorem for multiple elastic scattering in Ref. [39].

Eq. (19) is clearly the intuitive factorization limit
where at each order only the total accumulated momen-
tum transfer, Q, controls the azimuthal and momentum
transfer dependence of the bremsstrahlung distribution.

By rotation invariance dNGB(k,Q) = dNGB(k,Q, φ−
ψ) can only depend on the k and Q azimuthal angles
through their difference. After integrating over ψ, the
azimuthal angle of Q, then of course dNV GB cannot de-
pend on the azimuthal angle φ of k. Therefore, it is ob-
vious that at the single inclusive level all vn = 0 vanish
for n > 0. To observe the intrinsic fluctuating azimuthal
asymmetries event-by-event we turn to two particle cor-
relations to extract non-vanishing second moments like
〈cos(n(φ1 − φ2))〉. First we discuss the bremsstrahlung
contribution from recoil target participants.

FIG. 6: (Color online) Schematic diagram corresponding to
partial coherent backward η < 0 gluon bremsstrahlung from
Eqs. (23). At opacity order n the azimuthal distribution is
enhanced in transverse momenta k near the recoil momentum
transfers −Qa where a = 1, · · · ,M labels incoherent target
groups of color dipoles fragmenting into the negative rapidity
region.

IV. BREMSSTRAHLUNG FROM RECOILING
TARGET PARTICIPANTS

Incoherent groups of transversely overlapping recoil-
ing target dipoles radiate gluon bremsstrahlung domi-
nantly into the negative rapidity η < 0 hemisphere, as
illustrated in Fig. 6. In a given event when a projec-
tile nucleon penetrates through a target nucleus A at
impact parameter b, the projectile nucleon moving with
positive rapidity YP > 0 is approximated as in Ref. [35]
by a color dipole with a separation d0 = n̂0/µ0 . The
A target nucleons moving toward negative rapidities,
YT < 0, are however distributed with transverse coordi-
nates Ri, according to a Glauber nuclear profile distribu-
tion TA(Ri) =

∫
dzρA(z,Ri) over a large area πA2/3 fm2

scale. Each target nucleon dipole is assume to have a sep-
aration di = n̂i/µi. Projectile target dipole-dipole inter-
actions with low transverse momentum transfer qi < µi
are suppressed by dipole form factors approximated by
q2i /(q

2
i + µ2

i ). Therefore, the projectile interacts domi-
nantly with only nearby target dipoles in the transverse

plane with (Ri − b)2
<∼ πα2(d0 + di)

2/4 ∼ σin. This
leads to a fluctuating number n of target participants
with probability Pn = e−χχn/n! that follows also from
the GLV opacity expansion [37, 39, 42].

For a given target participant number, n, the target
dipoles naturally cluster near the projectile impact pa-
rameter b as illustrated in Figs. (5,6). In a specific event,
there are in general 1 ≤M ≤ n overlapping clusters that
radiate coherently toward the negative rapidity η < 0
hemisphere as illustrated in Fig.(6). The distribution of
the number M of recoiling coherent groups depends on
n,k, and the momentum exchanges qi with the projectile
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that build up to the total exchange to the projectile

QP =

M∑
a=1

Qa =

M∑
a=1

(
∑
i∈Ia

qi) , (21)

where Ia is a particular subset of the n indices i ∈
[1, n] =

∑
a Ia that the emitted gluon with transverse

wavenumber k (and generally η < 0) cannot resolve, and
Qa =

∑
i∈Ia qi is the contribution from group Ia to the

total momentum transfer to the projectile.
A simple percolation model for identifying clusters of

coherently recoiling target groups of dipoles is to require
that all members in a cluster have separation Rij = Ri−
Rj in the transverse plane in modulus is less than the
produced gluon transverse momentum resolution scale,
i.e.

Rij
<∼ d(k) =

c

k
, (22)

where c ∼ 1 is of order unity. If i ∈ Ia and j ∈ Ia as well
as j ∈ Ib, then j is added to Ia if its 〈dij〉i∈Ia < 〈dij〉i∈Ib .
The M clusters are percolation groups in the above sense.
Of course many other variants of transverse clustering
algorithms exist. For our purpose of illustrating ana-
lytically dynamical sources vn in p+A compared to pe-
ripheral A + A it suffices to study the dependence of vn
on the number of independent recoil antennas M with
< n >= N fixed by Glauber participant geometry. In fu-
ture applications via Monte Carlo generators such as HI-
JING [29] the sensitivity of results to more realistic multi
beam jet geometric fluctuations can be studied. Note
that independent target participant beam jet clusters are
cylindrical cuts into the target frame near the impact pa-
rameter b with diameters ∼ 1/k. We expect typically
M ∼ 2− 4 independent recoil clusters even for the most
central p+A collisions, as illustrated in Figs. (5,6). This
picture is similar to the CGC model picture except that
no classical longitudinal fields are assumed in our entirely
perturbative QCD dynamical bremsstrahlung approach
here.

In a given event, recoil bremsstrahlung contribution to
the single inclusive gluon distribution from M coherently
acting but transversely resolvable target antenna clusters
is given by

dNM,N
T (η,k; {qj}) ≡

M∑
a=1

dNGB(k,−Qa)Pa(η) , (23)

where Pa(η) specifies different rapidity profile functions
for each cluster required to produce the characteristic
BGK [30] boost non-invariant triangular enhancement of
the rapidity density, (dNpA/dη)/(dNpp/dη), growing to-
ward the value < n >= N near the target rapidity YT
and dropping toward unity near the projectile rapidity
Yp.

In the special doubly coherent projectile and target

limit with M = 1, dN1,N
T reduces to

dN1,N
T (η,k; {qi}n) ≡ dNGB(k, −QP )PT (η) , (24)

with PT (η) =
∑
a Pa(η). Note that in the high energy

small x− ∝ exp[YT − η] gluon saturation dynamics cor-
relates QP with rapidity η instead of the simple factor-
ization assumed in Eq. (24). In our simple perturbative
dipole picture this correlation can be implemented para-
metrically by taking µi(η) ∝ Qs(η,A) [23, 46, 47].

The fully coherent projectile bremsstrahlung contribu-
tion is

dNM,N
P (η,k; {qi}) ≡ dNGB(k, +QP )P0(η). (25)

For p + p scattering with M = N = 1, the sum reduces
in the CM to

dNpp = dNGB(k, +QP )PP (η)+dNGB(k, −QP )PP (−η) ,
(26)

which is symmetric with respect to changing the sign of
the total momentum transfer, QP , as well as to reflecting
η.

In the more general partially coherent target case with
1 < M ≤ N independent clusters of dipole antennas,
the total single inclusive radiation distribution in mode
(k1, η1) is

dNM,N = dNN
P (η,k1;QP ) + dNM,N

T (η,k1; {Qa})

=

M∑
a=0

B1a

(k1 + Qa)2 + µ2
a

, (27)

where we defined Q0 ≡ −QP = −
∑
aQa to be able to

include the projectile contribution into the summation
over target clusters. The numerator factor Bia is defined
using Eqs. (5,6) to be

Bia ≡ Fki,Qa
Pa(ηi) . (28)

For a fixed set of Qa = (Qa, ψa) of independent recoil
momenta, the single gluon inclusive azimuthal Fourier
moments 〈cos(nφ)〉 are given by linear combinations of
vGBn (k1, Qa) cos(nψa) from Eqs. (7)-(12). However,
since all the terms in the sum contribute with one ofM+1
cos(nψa) factors, averaging over rotations ψa → ψa + θ
again causes all ensemble averaged < vn >= 0 to van-
ish for n ≥ 1. In order to extract information about the
relative fluctuating vn, we therefore turn to two gluon
correlations in the next section.

V. MULTI GLUON CUMMULANT
AZIMUTHAL HARMONICS, vn{2`}, FROM
COLOR SCINTILLATION ANTENNA (CSA)

ARRAYS

Multiple bremsstrahlung gluons are radiated over a
long ranges (“ridges”) in YT < ηi < YP from multi-
ple kinematically and transverse space correlated beam
jets that form “Color Scintillation Antenna” (CSA) ar-
rays that fluctuate from event to event. Depending on
the transverse space geometry, Ra and the transverse
momentum transfers , Qa, and their distributions, the
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CSA bremsstrahlung leads to fluctuating patterns of az-
imuthal correlations among the radiated gluons. Gluon
bremsstrahlung from a single beam jet color dipole an-
tennas build up a “near side” correlations. Kinematic
recoil momentum correlations between N participant tar-
get and the projectile antennas however also naturally ra-
diates with k2 ∼ Nµ2 in complex fluctuating azimuthal
harmonic bremsstrahlung patters. At much high trans-
verse momenta k2 � Mµ2, collinear factorized back-to-
back hard jet production dominates over multiple beam
jets bremsstrahlung and leads to very strong the away
side n = 1 correlations that must be subtracted in or-
der to reveal the moderate k2

<∼ Mµ2 correlations that

we compute here. We also assume that we can neglect
a possibly large in magnitude transverse isotropic non-
perturbative bulk background through appropriate ex-
perimental mixed event subtraction schemes.

Assuming that M antenna clusters out of the N =
Npart
T (b) target participants radiate independently - i.e.,

assuming that each cluster in the CSA array produces ap-
proximately a semi-classical coherent state of gluon ra-
diation with random phase with respect other clusters
(see analogous partially coherent pion interferomentry
formalism in Ref.[51]) - the even number 2` inclusive glu-
ons distribution factorizes as

dNM
2` (η1,k1, · · · , η2`k2`) =

2∏̀
i=1

(
M∑
ai=0

Bkiai
Akiai − cos(φi + ψai)

)
, (29)

where Bia is defined in Eq. (28) and again the summa-
tion range includes the projectile a = 0 contribution with
Q0 ≡ −QP . We emphasize that the total gluon inclusive
has in addition to dNM

2` an isotropic dNnon.pert.
2` and a

highly away side correlated dNdijet
2` components that we

assume can be subtracted away. Implicitly we also as-
sume here the greatly simplified “local parton hadron”
duality hadronization prescription as in CGC models.
Of course, in CGC saturation models the details, espe-
cially the x,A, and b will differ, but it is useful to ex-
plore here the basic consequences of this simple analytic
model to get a feeling of how much of the azimuthal fluc-
tuation phenomenology may have its roots in low order
Low-Nussinov/Gunion-Bertsch pQCD interference phe-
nomena. Quenching of signals due to especially to more
realistic hadronization phenomenology [29, 52, 53] in the
few GeV minijet scale will also need to be investigated
in the future.

Even with uncorrelated gluon number coherent state
product ansatz for the multi gluon inclusive distribution

above, the even number m = 2` gluons with (k1, η1) to
(km, ηm) become correlated through the CSA geometric
and kinematic recoil correlations.

Consider, for example, the M = 2 case (see Appendix
B) of two recoiling target dipoles antennas that emit
k1 preferentially near −Q1 = (q1, ψ1 + π) and near
−Q2 = (q2, ψ2 + π), at two different recoil azimuthal
angles ψ1 + π and ψ2 + π, while the projectile dipole
emits k2 preferentially near QP = Q1 + Q2 at a third
φP azimuthal angle. Such a three color antenna sys-
tem then naturally leads to two particle triangularity
v3{2} ≡ 〈cos(3(φ1 − φ2)) 6= 0 due to dynamical corre-
lations between k1 and k2. As we also shown below in
section V, special cases of Zn symmetric antenna arrays
that illustrate “perfect” bremsstrahlung leading to a pure
vn′{2} = δnn′vZn

n {2} two particle harmonic.

Consider in detail the prototype M = 1 VGB antenna
case again but for 2` gluon cummulant nth relative har-
monic moments. For a fixed Q impulse from

fM=1
n {2`} ≡

〈
e
+i n

{∑`

i=1
φi

}
e
−i n

{∑2`

j=`+1
φj

}〉
fM=1
0 {2`}

=
∏̀
i=1

(∫
dφi
2π

BkiQ e+inφi

AkiQ − cos(φi + ψQ)

) 2∏̀
j=`+1

(∫
dφj
2π

BkjQ e−inφj

AkjQ − cos(φj + ψQ)

)

=
∏̀
i=1

(
einψQ (zkiQ)

n
f0,ki,Q

) 2∏̀
j=`+1

(
e−inψQ

(
zkjQ

)n
f0,kj ,Q

)
= fM=1

0 {2`}
2∏̀
i=1

(
vGB1 (ki, Q

)n
. (30)
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Note that by construction fMn {2`} are SO(2) rotation in-
variant about the beam axis and thus independent unlike
odd moments of the random orientation, ψQ, of the reac-
tion plane defined by the transverse momentum transfer

Q. Here zkiQ = AkiQ −
√
A2
kiQ
− 1 are the poles insides

the unit circle that contribute to the nth harmonics. For
odd number of gluons all harmonics vanish but for even
numbers all harmonics both even and odd are generated
already by one M = 1 color GB bremsstrahlung antenna.
For M = 2, two recoiling GB antennas, Q and −Q all
odd n = 1, 3, · · · moments vanish by symmetry. An M
odd number of antennas are needed to generate odd n
harmonics through even number of gluon correlators.

In the “mean recoil” approximation Q ≈ Q̄, we see
that a single GB antenna satisfies the generalized power
scaling law in case that subsets of the 2` gluons have
identical momenta. Suppose there are 1 ≤ L ≤ 2` dis-
tinct momenta Kr with r = 1, · · · , L such mr of the 2`
gluons have momenta equal to a particular value Kr such

that
∑L
r=1mr = 2`. In this case

vM=1
n {2`}(k1, · · · , k2`; Q̄) ≈

L∏
r=1

(vGBn (Kr, Q̄))mr

=

L∏
r=1

(vGB1 (Kr, Q̄))nmr . (31)

The approximate factorization and power scaling of az-
imuthal harmonics from CSA coherent state non-abelian
bremsstrahlung is similar to “perfect fluid hydrodynamic
collective flow” factorization and scaling, but in this case
no assumption about local equilibration or minimal vis-
cosity is necessary.

Higher order cummulant harmonic correlations were
proposed [55–58] to help remove “non-flow” sources of
correlations such as momentum conservation, back to
back dijet, and Bose statistics effects and isolate true
collective bulk fluid flow azimuthal asymmetries. The
2`-particle cummulant suppresses “non-flow” contribu-
tion by eliminating the correlations which act between
fewer than 2` particles (see. e.g., fig.9 of [57]). The
first few cummulants for 2` = 2, 4, 6 (notation from from
Ref. [56, 57]) are

(vn{2})2 ≡
〈
ein(φ1−φ2)

〉
≡ 〈|v2|2〉

(vn{4})4 ≡
〈
−ein(φ1+φ2−φ3−φ4)

〉
+ 2

〈
ein(φ1−φ3)

〉〈
ein(φ2−φ4)

〉
= 2〈|v2|2〉2 − 〈|vn|4〉

(vn{6})6 ≡
〈
ein(φ1+φ2+φ3−φ4−φ5−φ6)

〉
− 9

〈
|v2|2

〉 〈
|vn|4

〉
+ 12

〈
|v2|2

〉3
)/4 . (32)

The observed[57] near equality of vn{2`} for ` = 2, 3, 4
in Pb+Pb at LHC has been interpreted as evidence sup-
porting perfect fluid flow. The similarity of “elliptic flow”
v2{4}(pT ) in p+Pb and Pb+Pb observed by ATLAS[4]
and also for “triangular flow” v3{4}(pT ) by CMS[2] has
been interpreted as further evidence for perfect fluidity
even on sub-nucleon scales in p+Pb.

However, we see that color bremsstrahlung exhibits
similar scaling of azimuthal harmonic cummulants in the
mean recoil approximation. In the case that all 2` gluon
momenta are identical,

v̄n{2`} ≡ (vM=1
m {2`}(k, · · · , k; Q̄))n/m (33)

which implies in the above notation that

〈|vn|4〉 =
〈
|v2|2

〉2
(34)

〈|v6|6〉 = 〈|v2|2〉〈|vn|4〉 =
〈
|v2|2

〉3
(35)

and similarly for all cummulants. Therefore color
bremsstrahlung obeys the similar azimuthal harmonic
cummulant independence on the number of gluons 2`
used to determine the harmonic moments as does the

perfect hydrodynamic flow hypothesis. However in our
CSA bremsstrahlung case, the apparent “flow” effect
comes purely from zero temperature coherent state (semi-
classical) non-abelian wave interference effects that de-
pend on the transverse geometric arrangement of CSA
arrays .

For the p + A case of multiple M > 1 independent
target cluster CSA arrays, the cummulant harmonic mo-
ments depend in a more complex way on the particular
geometric and recoil correlations defining the CSA. Spe-
cial analytic CSA cases for v2{2} corresponding to ide-
alized Zn and Gaussian CSA array are discussed in the
following two sections.

VI. SPECIAL CASE OF ZN CSA
BREMSSTRAHLUNG

As see in Appendix B, from Eqs. (54) it is clear that
a particularly simple special cases of color antenna ar-
rays where M = n − 1 target beam jet clusters all have
similar number of recoiling target partons ma = N/M =
N/(n − 1) and for which transfer all n = M + 1 projec-
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(a)

(b)

FIG. 7: (Color online) Example illustrating apparent per-
fect “triangular flow”but arising entirely from non-abelian
bremsstrahlung sourced by Color Scintillation Antenna (CSA)
arrays. In this case, M = 2 target beam jet clusters re-

coil off a projectile beam jet with Q0 = −
∑M

a=1
Qa and

all Qa are assumed to have same magnitude but spaced in
azimuth by 2π/3. A Z3 CSA radiates only n = 3 harmon-
ics vn{2}(k1, k2) = δn,3 vGB

3 (k1, Q0)vGB
3 (k2, Q0). Part (a)

shows an extreme case with v3 = 0.45 while (b) shows a more
realistic v3 = 0.07 case. An arbitrary isotropic soft non per-
turbative background is assumed to be subtracted out.

tile and target beam jets recoil with similar momentum
transfers, Q2

a = N/Mµ2, but with specially spaced az-
imuthal angles, {ψa} = 2πa/n.

These particular color antenna arrays that we will refer
to as Zn Color Scintillation Arrays (CSA) have a special
discrete azimuthal rotation symmetry corresponding to
the finite group of n roots of unity,

Zn =

{
za,n = ei2πa/n|a = 0, · · · , n− 1;

n−1∑
a=0

za,n = 0

}
.

(36)
For these Zn CSA geometries of projectile and target
color dipole antennas the double sum over a and b is
trivial because

cos(n(ψa − ψb)) = cos(2π(a− b)) = 1 , (37)

(a)

(b)

FIG. 8: (Color online) As in Fig. 7 but for Z5 symmetric CSA
that radiates an apparent “perfect pentatonic flow” pattern
with vn{2}(k1, k2) = δn,5 v

GB
5 (k1, Q0)vGB

5 (k2, Q0). Part (a)
show an extreme v5 = 0.45 case, while part (b) shows a more
realistic v5 = 0.03 case.

and thus all (M + 1)2 = n2 terms are identical. Note
that Eq.(37) is invariant to global SO(2) simultaneous
rotations of all antennas.

What is remarkable about ZM+1 symmetric CSA is
that due to the orthogonality properties of the zan
phases,

n−1∑
a=1

zka,n = nδk,n (38)

n−1∑
a=1

(za,n)k(z∗a,n)k
′

= nδk,k′ , (39)

all harmonics except n = M + 1 vanish! The Zn CSA
thus scintillate with “perfect” n-harmonic azimuthal cor-
relations. For Zn CSA the two particle relative Fourier
moments vn{2} simply factor into a product of single
particle moments vGBn (ki, Q0, 0) because the n complex
Qa = Q0za,n form a regular polygon with equal radii
as illustrated for an n = 5 “star fish” antenna array in
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Fig. (7) that generate a perfect cos(5(φ1 − φ2)) two par-
ticle azimuthal correlation.

For roots of unity CSA color antenna geometries all
M + 1 antennas receive the same Q2

a = Q2
0 = N/(n −

1)µ2 momentum transfer and produce the same single
particle vGBM+1(k,Q0, 0) harmonics. Since the two particle
harmonics vanish except for n = M + 1,

vM,N
n {2}(k1, k2)

Zn−→ δn,M+1v
GB
M+1(k1, Q0)vGBM+1(k2, Q0)

vM,N
n {2}(k1, k2)

vGBM+1(k2, Q0)

Zn−→ δn,M+1 (vGB1 (k1, Q0))M+1 , (40)

and for n = M+1 , vM,N
M+1{2}(k1, k2) is reduced to simply

the product of single GB CSA moments at k1 and k2.
Examples of Zn radiation patterns for n = 3, 5 for

extreme high vn = 0.45 in parts (a) and more realis-
tic v3 = 0.7 and v5 = 0.03 from Fig. (1) are shown in
Figs. (7,8).

VII. SPECIAL CASE OF GAUSSIAN CSA
BREMSSTRAHLUNG

Another simple limit is when the recoil azimuthal an-
gles ψa are in random [0, 2π] and the Qa are distributed

with a Gaussian of same width squared 〈Q2
a〉 = Q2

T =
(N/M)µ2 for a ∈ [1, · · · ,M ]. In this antenna array, the
projectile Q0 is also Gaussian distributed with zero mean
but with an enhanced second moment,

〈Q2
0〉 = MQ2

T = Nµ2 . (41)

Unlike for perfect nth harmonic antenna arrays with
Eq. (37), in the random Gaussian distributed case

cos(n(ψa − ψb)) = δa,b , (42)

and so only the a = b diagonal terms contribute. All
a ≥ 1 target terms are identical and only the projectile
contribution is enhanced due to 〈Q2

0〉/Q2
T = M random

walk exchanges from each cluster. In this case, Eq.(54)
reduces to

fN,Mn (k1, k2)
Gauss→

∫
d2Q

{
exp[−Q2/(2Nµ2)]

2πNµ2
+M

exp[−Q2/(2(N/M)µ2)]

2π(N/M)µ2

}
{B1QB2Q f0,1,Q f0,2,Q

×vGBn (k1, Q) vGBn (k2, Q)
}

, (43)

fN,Mn (k, k)
Gauss→

∫
d2Q

{
exp[−Q2/(2Nµ2)]

2πNµ2
+M

exp[−Q2/(2(N/M)µ2)]

2π(N/M)µ2

}{
BkQf0,k,Qv

GB
n (k,Q)

}2
. (44)

We have suppressed target and projectile kinematic ra-
pidity factors.

To get a feeling for the magnitude of the two particle
azimuthal moments we can approximate Q in the inte-

grand outside the Gaussian weights by its rms ∆Q =√
〈Q2〉 and perform the normalized integral over the

Gaussians to estimate

√
fN,Mn (k, k) ≈

(
CRαsµ

2

π2k2

){
1

(N + 1)µ2

(vGB1 (k,
√
Nµ))n

((k2 + (N + 1)µ2)2 − 4Nk2µ2)1/2

+
M

(N/M + 1)µ2

(vGB1 (k,
√
N/Mµ))n

((k2 + (N/M + 1)µ2)2 − 4(N/M)k2µ2)1/2

}
. (45)

The rapidity dependence corresponding to the BGK[30]
triangular rapidity enhancement N(YP − η)/(YP − YT )
of the single inclusive multiplicity toward the target frag-

mentation region is suppressed above to simplify the re-
sult. In addition we emphasize that the mostly non-
perturbative low k background is ignored in our simpli-
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fied consideration here. Full account for that background
will require implementation of the above non-isotropic
soft bremsstrahlung in an event generator such as HI-
JING.

A qualitative BGK[30] rapidity dependence for target
cluster number M(η) that ignores the c/k resolution scale
considerations discussed in Eq. (22) can be estimated by
identifying N = χ =

∫
dzρA(z,b) with the opacity as a

function of b and taking

MBGK(η) ∼ χ(YP − η)/(YP − YT )(1− eYT−η)nf . (46)

The main feature expected from such a BGK[30] rapid-
ity dependence of the target cluster number is that the
mean transverse momentum radiated gluons from com-
bined projectile and target bremsstrahlung gluons grows
toward the projectile rapidity region dominated by the
projectile contribution. This predicts then that the peak
k∗ of the vn(k) moments move to larger

k2∗ ≈
N +M(η)

1 +M(η)
µ2 (47)

as η is increased.

VIII. HIJNG MONTE CARLO COLOR
SCINTILLATING BEAM JET ARRAYS

To get a realistic estimate for the magnitudes and
systematics of pQCD VGB induced harmonics in re-
alistic p + p, p + A,A + A collisions, we have to em-
bed the anisotropic recoil bremsstrahlung gluons into
phenomenological Lund strings Schwinger hadronization
scheme that has been tuned to reproduce low pT φ aver-
aged inclusive hadronic observables in e++e−, e+p, p+p,
p+A, as well as A+A. HIJING Monte Carlo event gen-
erator is one such model based on the LUND [52] string
model and PYTHIA and JETSET [53] Monte Carlo mod-
els.

Simple local parton-hadron duality prescription as
used in CGC cannot be expected to predict quantita-
tive hadron mass dependent moderate pT < 2 GeV
anisotropy moments over three decades of

√
s. The ad-

vantage of Monte Carlo event generators built on multi-
decade phenomenological analysis is that they summarize
the world data by taking into account the particle data
book, quantum number, and energy momentum conser-
vation and numerous Standard Model dynamical details.
Of course, they do not proport to cover all possible phe-
nomena.

A key feature missing in HIJING and most other event
generators for A + B collisions so far are basic pQCD
azimuthal anisotropies at the moderate pT < 2GeV
scale that are so clearly predicted by GB and gener-
alized VGB bremsstrahlung models. What is included
in most event generators are strong back-to-back jet az-
imuthal anisotropies due to collinear factorized pQCD
mini and hard jet production above some saturation scale

pT > p0 ∼ 2 GeV. As currently implemented, HIJING
takes into account softer scale k < p0 gluons phenomeno-
logically via random transverse LUND string “wiggles”
using ARIADNE [54], but HIJING neglects the basic
pQCD azimuthal recoil correlations predicted by VGB
color bremsstrahlung. An current open question is the
magnitude of radiated anisotropies that would arise when
the ARIANDE part of the JETSET code is replaced by
VGB anisotropic bremsstrahlung derived in this paper.
We intend to address this numerically intensive problem
elsewhere.

IX. CONCLUSIONS

In summary, we applied the GLV reaction operator ap-
proach to Vitev-Gunion-Bertsch (VGB) boundary condi-
tions in order to compute the all-order in nuclear opac-
ity non-abelian gluon bremsstrahlung for event-by-event
fluctuating semi-soft beam jets produced in high energy
nuclear collisions. We derived analytic expressions for
the azimuthal Fourier cummulant moments vn{2`} as a
function of the gluon transverse momenta and rapidities,
{ki, ηi}, in terms of remarkably simple single gluon beam
jet GB bremsstrahlung harmonics. These moments were
shown to obey power law scaling laws similar to those
observed recently in high energy p+A reactions at RHIC
and LHC as a function of the target participant clusters
geometry. Multiple clusters of projectile and target beam
jets form Color Scintillation Antenna (CSA) arrays radi-
ate gluons with characteristic boost non-invariant trape-
zoidal rapidity distributions in asymmetric B+A nuclear
collisions. The intrinsically azimuthally anisotropic and
long range in η nature of the non-abelian bremsstrahlung
leads to vn moments systematics that are remarkably
similar to those predicted by perfect fluid hydrodynamic
models. However, in our case, they arise entirely from
non-abelian wave interference phenomena sourced by the
fluctuating CSA of multiple beam jets.

We presented examples of simple solvable CSA models
of and showed that our analytic non-flow bremsstrahlung
solutions for vn{2`} are similar to recent numerical satu-
ration model predictions but differ by predicting a simple
power-law hierarchy of both even and odd vn{2`} without
invoking essential details of kT factorization. However,
CGC saturation evolution is expected to be important for
future quatitative comparisons to data. The basic CSA
mechanism can be tested via its predicted systematics in-
volving boost non-invariant trapezoidal BGK η rapidity
dependent substructures involved in B +A reactions.

Non-abelian beam jets CSA bremsstrahlung , investi-
gated in this paper, may provide a partial analytic solu-
tion to the Beam Energy Scan (BES) puzzle of the ob-
served near

√
s independence of the azimuthal moments

down to very low CM energy of ∼ 10 AGeV, where large
x valence quark beam jet physics dominates over gluon
production in inelastic dynamics. Recoil bremsstrahlung
from multiple independent CSA clusters also provides a
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natural qualitative pQCD explanation for the surprizing
similarity of vn in p(D) + A and non-central A + A at
same dN/dη multiplicity observed at RHIC and LHC.

This pQCD based model shows that the uniqueness of
perfect fluid interpretation of p+A and B+A azimuthal
correlation data cannot be taken for granted. However,
a great deal of work remains to sort out quantitatively
the fraction of the observed vn{2`} azimuthal harmonic
systematics that can be ascribed to final state hydrody-
namic collective flow versus initial state QCD coherent
state color scintillating interference wave phenomena.

X. APPENDIX: THE LINKED CLUSTER
THEOREM FOR COHERENT VGB GLUON

BREMSSTRAHLUNG

To derive the link cluster theorem for the coherent limit
of VGB we introduce the shorthand notation for the in-

tegrations over momentum transfers

n∏
j=1

∫
d(wj − δj) ≡

∫ n∏
j=1

d2qj

(
1

σel

dσel
d2qj

− δ2(qj)

)
,

(48)
which have the convenient properties

∫
dwj =

∫
dδj =

1 and
∫
d(wj − δj) = 0, that is particularly useful to

be able to discard any terms in the integrand that does
not depend simultaneously on all n qj momenta at fixed
opacity order n. Using this shorthand and Cjn notation
from Eqs.16, we rewrite the right hand side of Eq. (18)
as

V GB =
CRαs
π2

∞∑
n=1

χn

n!

 n∏
j=1

∫
d(wj − δj)


× (C2n −C1n) ·

[
(C2n −C1n) + 2 (C3n −C2n) + · · ·+ 2

(
C(n+1)n −Cnn)

]
=

CRαs
π2

∞∑
n=1

χn

n!

 n∏
j=1

∫
d(wj − δj)

 (C2n −C1n) · [(C2n −C1n) + 2 (H−C2n))]

=
CRαs
π2

∞∑
n=1

χn

n!

 n∏
j=1

∫
d(wj − δj)

 [−(H−C2n) + (H−C1n)] · [(H−C2n) + (H−C1n)]

=
CRαs
π2

∞∑
n=1

χn

n!

 n∏
j=1

∫
d(wj − δj)

{|H−C1n|2 − |H−C2n)|2
}

=
CRαs
π2

∞∑
n=1

χn

n!

 n∏
j=1

∫
d(wj − δj)

 |H−C1n|2

=

∞∑
n=1

χn

n!

 n∏
j=1

∫
d(wj − δj)

(∫ d2Q δ2(Q− (q1 + · · ·+ qn))

){
CRαs
π2

Q2

k2(k−Q)2

}
. (49)

Here, we used the notation H ≡ C(n+1),n ≡ k/k2 to de-
note the “hard” vacuum radiation amplitude that shows
up at zeroth order in opacity in the case final state in-
duced radiation in GLV [37]. Note that in this notation
convention Bn

(n+1),n) ≡ H−Cnn.

Note that
∫
d(wj − δj) = 0, and therefore j = 1 inte-

gral of −|H−C2n|2 automatically vanishes. Note further
that the |H − C1n|2 integrand depends only on k and
the Total accumulated Q =

∑n
i=1 qi momentum trans-

fer. Thus, the integrand is symmetric under arbitrary

permutations if the indices. This is the key to obtain the
linked cluster rearrangement because out of the the 2n

combinations of the wj and minus delta functions −δi,
all combinations with the same number m of

∫
dw and

n − m of
∫
dδ integrations give the same contribution.

At fixed opacity order n the 2n combinations of inte-
grals reduce to sum over only n integrals of the form
n!/(m!(n − m)!)

∫
dw1 · · · dwm(−1)n−m|Bm1m|2. There-

fore,
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dNV GB
coh

dηd2k
=

∞∑
n=1

χn

n!

n∑
m=1

(−1)n−m n!

m!(n−m)!

∫
d2Q

[∫
dw1 · · · dwmδ2(Q− (q1 + · · ·+ qm))

]{
CRαs
π2

Q2

k2(k−Q)2

}
. (50)

Changing summation variables from, ∞ > n ≥ 1 and
n ≤ m ≥ 1 to ∞ > ` = n−m ≥ 0 and ∞ > m ≥ 1, the
double sum

∑∞
`=0

∑∞
m=1 factorizes, and the sum over `

produces a factor exp[−χ] corresponding to the proba-
bility of no scattering. Therefore, Eq.(50) leads to link
cluster theorem Eq.(19) for the multiple collision VGB
generalization of Gunion-Bertsch gluon bremsstrahlung .

XI. APPENDIX B: TWO GLUON
BREMSSTRAHLUNG AZIMUTHAL

HARMONICS vn{2}

For the two gluon case azimuthal harmonic correlations
can be directly derived in another way by integrating over

both φ1 = Φ + ∆φ/2 and φ2 = Φ − ∆φ/2 keeping the
relative azimuthal angle ∆φ = φ1−φ2 fixed and weighing
the integrand by cos(n∆φ) from

fMn {2}(k1, k2) ≡
∫ π

−π

dΦ

2π

∫ π

−π

d∆φ

2π
cos(n∆φ)dNM

2 (k1,Φ + ∆φ/2, k2,Φ−∆φ/2)

=

M∑
a,b=0

B1aB2b

∫ π

−π

d∆φ

2π
cos(n∆φ)

∫ π

−π

dΦ

2π

1

A1a − cos(Φ + ψa + ∆φ/2)

1

A2b − cos(Φ + ψb −∆φ/2)
(51)

=

M∑
a,b=0

B1aB2b

∫ π

−π

dΦ′

2π

1

A1a − cos(Φ′)

∫ π

−π

d∆φ

2π

cos(n∆φ)

A2b − cos((Φ′ + ψb − ψa)−∆φ)
(52)

=

M∑
a,b=0

B1aB2b fn,2,b

∫ π

−π

dΦ′

2π

cos(n(Φ′ + ψb − ψa))

A1a − cos(Φ′)
=

M∑
a,b=0

B1aB2b fn,2,b fn,1,a cos(n(ψb − ψa)) (53)

=

M∑
a,b=0

B1aB2b f0,1,a f0,2,b (vGB1 (k1, Qa)vGB1 (k2, Qb))
n cos(n(ψb − ψa)) , (54)

where we defined Φ′ = Φ+ψa+∆φ/2 and used periodicity
of the integrand to shift the Φ′ range back to [−π, π] in
Eq. (52), then performed the ∆φ integral with the help
of Eq. (7). We used here the shorthand notation

fn,1,a =

∫ π

−π

dΦ

2π

cos(nΦ)

A1a − cos(Φ)
= (vGB1 (k1, Qa))nf0,1,a,

(55)

fn,1,a =

(
Ak1,Qa

−
√
A2
k1,Qa

− 1
)n

√
A2
k1,Qa

− 1)
(56)

lim
µ→0

fn,1,a =

(
k1
Qa

)n
θ(Qa − k1)

Q2
a − k21

Q2
a . (57)
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