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I. INTRODUCTION

Tests of the fundamental discrete symmetries of charge conjugation (C), parity (P), and time-reversal (T) have

played a vital role in developing the underlying structure of the Standard Model (SM). For example, the discovery of

parity-violation led to the formulation of the electroweak sector of the SM as a chiral gauge theory. The phenomena

of CP violation or equivalently T violation, as dictated by the CPT theorem for local quantum field theories, has

been extensively studied in various systems within the SM and beyond, and studies of CP-violating observables in

the kaon and B-meson systems are consistent with expectations based on the CP-phase in the Cabibbo-Kobayashi-

Maskawa (CKM) matrix. Nevertheless, the observation of T- and P-violating (TVPV) effects may be indicative of

new interactions arising from microscopic P- and CP-violating dynamics going beyond those associated with the CKM

CP-violation.

One interesting scenario is the possibility of a macroscopic spin-dependent (SD) force arising from a light mediator

particle associated with physics beyond the SM, where macroscopic is understood as corresponding to an interaction

range r � 1 Å. As emphasized in the seminal paper by Moody and Wilczek [1], a natural candidate for this mediator

is the axion, though in the more general case it need not be. Through its CP-odd couplings, the same mediator

particle can also induce non-zero electric dipole moments (EDMs) of electrons, nucleons, atoms and molecules (for a

recent review, see Ref. [2]). It is, then, interesting to ask to what extent dedicated searches for a macroscopic, TVPV

SD “fifth-force” and EDMs provide complementary probes of this scenario. In this paper, we attempt to address this

question.

A host of “fifth-force’” experiments devoted to direct searches of new TVPV SD forces have reported null results

[3–11], while ongoing work seeks to increase the level of sensitivity. For example, one of the more recent techniques

[12] looks for a shift in the spectrum of gravitational quantum states of ultracold “bouncing” polarized neutrons that

can arise from new SD forces. In another set of experiments, a search for NMR frequency shifts is performed when

an unpolarized mass is moved near and far from an ensemble of polarized 129Xe and 131Xe gas [13], or polarized 3He

gas [14, 15]. An overview of various fifth-force experiments can be found in Ref. [16].

In this work, we consider the possibility that a TVPV SD force is mediated by a neutral light spin-zero particle ϕ

that interacts with quarks of flavor q = u, d through the Lagrangian

Lϕqq = ϕ q̄
(
gqs + igqpγ

5
)
q . (1)

These quark-level couplings, in turn, induce the effective scalar and pseudoscalar couplings to the nucleons (N)

denoted by gs and gp respectively

LϕNN = ϕ N̄
(
gs + igpγ

5
)
N . (2)

For simplicity, we assume the aforementioned interactions are purely isoscalar gus,p = gds,p. The resulting, non-

relativistic nucleon-nucleon “monopole-dipole” potential is[1]

V (r) = gsgp
~σ2 · r̂
8πM2

(mϕ

r
+

1

r2

)
e−mϕr , (3)

where ~σ2 acts on the spin of the polarized nucleon and r̂ = ~r/r is the unit vector from the unpolarized object to the

polarized particle. Direct searches in fifth-force experiments constrain the strength and range of this potential, giving
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rise to upper limits on the product of couplings gsgp as a function of mϕ. A summary and detailed discussion of such

limits from various experiments using different techniques can be found in Ref. [16].

Since the interaction in Eq. (3) is TVPV, it will also induce permanent EDMs of nucleons, nuclei, and diamagnetic

atoms1. A non-zero EDM for an elementary fermion ψ arises from a term in the Lagrangian of the form

L = −i d
2
ψ̄σµνγ5ψ Fµν . (4)

In the non-relativistic limit, it gives rise to the Hamiltonian

H = −d ~E ·
~S

S
(5)

for a particle of spin ~S in an electric field ~E. For a non-zero value of d, CP violation is apparent from the CPT

theorem and the behavior of the Hamiltonian under time-reversal T ( ~E · ~S) = − ~E · ~S. The current 90% C.L. bounds

for the EDM of the neutron, electron2 , and (diamagnetic) Mercury atom are

|dn| < 2.9× 10−13 e fm [17] ,

|de| < 8.7× 10−16 e fm [18] ,

|dHg| < 2.6× 10−16 e fm [19] , (6)

(for a review, see e.g. Ref. [2]).

Null results for EDM searches generally imply severe constraints on TVPV interactions, so it is interesting to

investigate the implications of EDM searches for the interpretation of fifth-force designed to probe the interaction

inEq. (3). It is well-known that when ϕ is the axion(a) [20–23], invoked to solve the strong CP problem, EDM

constraints on gsgp are several orders of magnitude more stringent [24] than those derived from fifth-force experiments.

As we discuss below, this situation results from the unique properties of the axion as a pseudo Goldstone boson

of spontaneously broken Peccei-Quinn symmetry. On the other hand, when ϕ is a generic spin-zero particle, the

relative impact of EDM and fifth force searches depend strongly on mϕ. Thus, the two classes of experiments provide

complementary probes. Should either type of search (or both) yield a non-zero result, then one could infer information

about the existence and nature of the ϕ, its couplings to matter, and its mass. The key relevant differences between

axions and generic scalars are summarized in Table I and the details are explained in the subsequent sections.

In what follows, we provide a rationale for these observations. In Sections II and III, we review strong CP-violation

in the Standard Model and the axion mechanism invoked to solve the Strong CP-problem. Although this discussion

is not new, a brief pedagogical discussion is useful as a means of setting the stage for the generic ϕ scenario and of

elucidating the distinct EDM constraints on the interaction Eq. (3) for the axion and generic ϕ cases. In Section IV

we consider the generic ϕ scenario in detail. In particular, we derive order of magnitude bounds on gsgp from limits

on the 199Hg EDM and show that for mϕ << mπ, the fifth force constraints are several orders of magnitude stronger.

1 One could also extend the discussion to consider the interaction of ϕ with leptons and the corresponding implications for paramagnetic
systems. Here, we restrict our attention to purely hadronic interactions.

2 The bound on de is obtained from the EDM of the ThO molecule assuming the electron EDM would be the only source of any effect.
In general, the ThO EDM, as well as that of other paramagnetic systems, may receive significant contributions from a scalar quark
× pseudoscalar electron interaction. A model independent analysis of the most sensitive paramagnetic atomic and molecular EDM
experiments then leads to roughly a factor of ten weaker bound on de.
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Properties Axion (a) Generic Scalar (ϕ)

Leading source of EDM TVPV quark mass term dynamical ϕ exchange

∼ θ̄ mq q̄ iγ5 q

gs ∼ θ̄ mq
fa
∝ θ̄ ma arbitrary/unrelated to mϕ

gp ∼ mq
fa
∝ ma arbitrary/unrelated to mϕ

gsgp ∼ θ̄ m2
q

f2
a
∝ θ̄ m2

a arbitrary/unrelated to mϕ

TABLE I: For the case of the axion, a non-zero EDM arises from TVPV quark mass terms that are induced when eliminating
the QCD θ̄-term via an axial U(1)A rotation. The current EDM bounds on these TVPV quark mass terms imply |θ̄| < 10−10.

The product of couplings gsgp ∼ θ̄
m2
q

f2
a

are proportional to the same θ̄-parameter and fa denotes the Peccei-Quinn symmetry

breaking scale and is related to the axion mass as ma ∝ 1/fa. Thus, the EDM bound |θ̄| < 10−10 implies severe constraints
on gsgp which dominate over fifth-force constraints. By contrast for a generic scalar, unrelated to a solution to the Strong CP
problem, the EDM is generated by dynamical ϕ-exchange between quarks or nucleons and the product gsgp is unrelated to the
θ̄-parameter. Thus, EDM constraints have a much weaker impact on gsgp for a generic scalar and fifth-force limits dominate
for the range of interactions they probe.

Our approach in this instance is to obtain benchmark, order of magnitude estimates for the EDM constraints rather

than to carry out an exhaustive computation of all possible ϕ contributions that would require extensive nuclear

many-body computations. Nevertheless, we endeavor to be as complete as possible wherever analytic computations

are tractable. The corresponding technical details appear in a set of four Appendices that follow our conclusions in

Section VI.

II. STRONG CP-VIOLATION IN THE STANDARD MODEL

Within the SM, two sources of CP violation can generate a non-zero EDM. The first arises from the complex phase

in the CKM matrix that characterizes the strength of flavor changing charged currents. CP violation associated with

the CKM matrix has been confirmed and studied in great detail through the mixing and decay properties of K- and

B-mesons. The contribution of the CKM phase to the neutron EDM is of order dn ∼ 10−32 e cm [25–33], about

six orders of magnitude below the current experimental limit. As a result, CKM induced effects give a negligible

background to present and prospective EDM searches.

The second source of CP violation in the SM arises from the CP violating term in the QCD Lagrangian

LCPVQCD = θ̄
αs
16π

GaµνG̃
aµν , (7)

where G̃aµν = εµνρσG
a,ρσ. The parameter θ̄ is given by

θ̄ = θ + arg(detM ′q) , (8)

where the θ-parameter arises from the non-trivial structure of the QCD vacuum and M ′q corresponds to the original

non-diagonal quark mass matrix after electroweak symmetry breaking. Such a term is not forbidden by any symmetry

and is in fact expected due to the non-trivial structure of the QCD vacuum, the anomaly in the axial U(1)A trans-

formation on quarks [34, 35], and the absence of any massless quark in the SM. This term corresponds to a source of

flavor-diagonal CP violation, as opposed to the CKM phase associated with flavor-changing CP violation.
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The existence of gauge-equivalent vacuum instanton configurations, with distinct topological properties, requires

the QCD vacuum to be given by a gauge-invariant superposition of these configurations. Each such vacuum state is

labeled by a θ-parameter

|θ〉 =
∑
n

einθ|n〉 , (9)

where n denotes the topological winding number of the instanton configuration corresponding to the vacuum state

|n〉. This non-trivial structure of the QCD vacuum is accounted for by the θ-term in Eqs. (8) and (7). There exists a

connection between the QCD θ-vacuum and the axial U(1)A anomaly. The axial U(1)A transformation corresponds

to a phase rotation of a quark field given by

ψ → e−iαγ
5

ψ , ψ̄ → ψ̄ e−iαγ
5

, (10)

where α denotes the phase rotation angle. This transformation is a classical symmetry of the Lagrangian in the limit

of massless quarks. However, it is anomalous at the quantum level. The divergence of the current

j5
µ = ψ̄γµγ

5ψ , (11)

associated with the U(1)A transformation, is given by

∂µj5
µ = 2imq ψ̄γ

5ψ +
αs
8π

GaµνG̃
aµν . (12)

We see that the quark masses explicitly break the U(1)A symmetry of the Lagrangian even at the classical level.

The second term in Eq. (12), with the same structure as the QCD CP violating term in Eq. (7), is the result of the

anomaly and arises from the non-trivial Jacobian in the QCD path-integral [36–39] that arises from the transformation

in Eq. (10)

DψDψ̄ → DψDψ̄ Exp
[
2iα

∫
d4x

αs
16π

GaµνG̃
aµν
]

. (13)

For a U(1)A transformation of a massless quark, the only effect of the axial U(1)A transformation in Eq. (10) is to

shift the value of the θ-parameter

θ → θ + 2α . (14)

Since the U(1)A transformation just amounts to a change of variables on the QCD path integral, the shift in Eq. (14)

implies that the path integral cannot depend on θ, rendering it an unphysical parameter. Thus, if there is at least

one massless quark, the QCD CP violating term can be completely removed by an appropriate U(1)A phase rotation.

However, it is now well-established that there are no massless quarks in the SM [40]. In addition to the shift in

the θ-parameter, the U(1)A transformation then also changes the phase of the quark mass. In this case, the U(1)A

transformation cannot be used to eliminate the CP violating effect in QCD. Instead, it can only move the effect

between the GG̃ and the quark mass operators.

In fact, a flavor-diagonal U(1)A transformation can be used to remove the overall phase in the quark mass matrix

so that all of the flavor-diagonal CP violation is contained in the θ̄-term in Eq. (7), where θ̄ is given by Eq. (8).

Alternatively, one can perform an axial U(1)A rotation to eliminate the θ̄-term so that the flavor-diagonal CP violation

effect is contained entirely in CP violating quark mass terms. Integrating out the heavy quarks c, b and t one has

LCPV = iθ̄
mumdms

mumd +mums +mdms

(
ūγ5u+ d̄γ5d+ s̄γ5s

)
. (15)
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Note that this term is proportional to the product of quark masses so that in the presence of a massless quark, there

is no flavor-diagonal CP violation as expected.

Given that the contribution of the CKM phase to EDMs in the SM are negligibly small, the observation of a

non-zero EDM can be interpreted as arising from CP-violating mass term in Eq. (15) or equivalently from the θ̄-term

in Eq. (7). The current limits on dn and dHg, translate into the bound

| θ̄ | <∼ 10−10 . (16)

The absence of a SM explanation for such a small value of θ̄ corresponds to the well-known Strong CP problem.

III. EDMS AND SPIN-DEPENDENT FORCES VIA AXIONS

The generation of non-zero EDMs in the SM, through either the CKM phase or the θ̄-term (or both), is not in

general associated with a macroscopic SD force. Such an association can, however, arise in scenarios beyond the SM

that involve a light mediator particle with CP-violating couplings to SM fermions. A well-known example of such a

light mediator particle is the axion, introduced to provide a dynamical explanation of the strong CP problem. Here

we give a brief overview of the axion mechanism that can then be contrasted with the case of a more general scalar

mediator considered in this work. In particular, we will show that the relative implications of EDM and fifth-force

constraints are quite distinct for the axion and generic scalar cases. More comprehensive and detailed reviews on

axion physics can be found, for example, in Refs. [41, 42].

For the purposes of illustration, we consider the axion mechanism in the Kim-Shifman-Vainstein-Zakharov (KSVZ)

model [43, 44]. In this model, the SM is augmented by a new massless electroweak-singlet quark ψ and a complex

scalar Φ

δL = ∂µΦ†∂µΦ + µ2
ΦΦ†Φ− λΦ(Φ†Φ)2 + ψ̄i/∂ψ + y ψ̄RΦψL + h.c. , (17)

where ψL = 1
2 (1− γ5)ψ and ψR = 1

2 (1 + γ5)ψ denote the left-handed and right-handed chiral components of the new

massless quark respectively. The Lagrangian δL is invariant under a global chiral U(1)PQ Peccei-Quinn transformation

ψ → e−iαγ
5

ψ , ψ̄ → ψ̄ e−iαγ
5

, Φ→ e−2iα Φ . (18)

The SM fields are neutral under U(1)PQ, so that the full theory Lagrangian is invariant under this transformation

at the classical level. However, as in the case of the axial U(1)A transformation, the Peccei-Quinn transformation is

anomalous and contributes a shift to the value of θ, as shown in Eqs. (13) and (14). Thus, by an appropriate U(1)PQ,

one can completely rotate away the θ̄-parameter, thereby solving the Strong CP problem.

Since a massless, electroweak-singlet quark is not observed in nature, the U(1)PQ symmetry of the Lagrangian must

be spontaneously broken at a high enough scale fa so that the new quark acquires a large enough mass to avoid

current experimental limits. The spontaneous symmetry breaking occurs via the vacuum expectation value

〈Φ〉 = fa , (19)

and the excitations about this ground state value can be written as

Φ(x) =
fa + ρ(x)√

2
eia(x)/fa . (20)
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The heavy field ρ(x) corresponds to radial excitations and a(x) is the axion corresponding to the Goldstone boson

associated with the spontaneous symmetry breaking of U(1)PQ. However, since the U(1)PQ symmetry is explicitly

broken by the chiral anomaly, the axion is a pseudo-Goldstone boson and acquires a potential and a non-zero mass.

Experimental constraints imply that 109 ∼< fa ∼< 1012 GeV, which constitute the “axion-window” [42].

After the spontaneous symmetry breaking, the new electroweak-singlet quark acquires a large mass mψ ∼ fa via

its Yukawa interaction with Φ in Eq. (17). The field ρ(x) in Eq. (20) also acquires a large mass. One can construct

a low energy effective theory by integrating out the heavy fields ψ(x), ρ(x), where the low energy degrees of freedom

correspond to SM fields and the axion. The general form of such an effective theory is obtained by observing the

symmetry properties of the full theory. Note that the U(1)PQ transformation in Eq. (18) results in the shifts

θ̄ → θ̄ + 2α ,
a(x)

fa
→ a(x)

fa
− 2α , (21)

so that the quantity θ̄ + a(x)
fa

is left invariant. This implies that all axion interactions in the effective theory must be

formulated in terms of this invariant combination as a fundamental building block. In particular, the θ̄-parameter in

Eq. (7) must be replaced as

θ̄ → θ̄ +
a(x)

fa
, (22)

so that the θ̄ parameter is effectively promoted to a dynamical field. The effective interaction Lagrangian for the

axion now takes the general form

La =
αs
16π

(
θ̄ +

a

fa

)
GaµνG̃

aµν −mq q̄q + · · · . (23)

where the “+ · · · ” denote the axion kinetic and mass terms as well as possible higher-dimension axion interactions.

Note that we have included the quark mass term in the definition La since, as discussed below, an axial U(1)A

transformation can move the axion coupling entirely into the quark mass term. For purposes of illustration, we work

in QCD with one quark flavor.

The couplings of the axion to the SM matter fermions can be made more explicit by rotating θ̄-term in Eq. (7) into

the quark mass matrix before introducing axions by the replacement in Eq. (22). Prior to introducing the axion, the

relevant terms in the Lagrangian of QCD with a single quark flavor are

L = θ̄
αs
16π

GaµνG̃
aµν −mq q̄q . (24)

Performing an axial U(1)A transformation to rotate the θ̄-term into the quark mass, the Lagrangian can be brought

into the form

L = −mq cos θ̄ q̄q +mq sin θ̄ q̄iγ5q , (25)

which will reproduce the analog of the term in Eq. (15), when expanded to leading power in θ̄ and generalized to three

quark flavors [45]. Inclusion of the axion interactions in the effective theory can now be obtained by implementing

the replacement in Eq. (22), leading to

La = − cos
(
θ̄ +

a

fa

)
mq q̄q +mq sin

(
θ̄ +

a

fa

)
q̄iγ5q , (26)
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which is equivalent to the form in Eq. (23). The form of Eq. (26) makes manifest the couplings of the axion to the

SM quark. In general the axion can acquire a non-zero vacuum expectation value (vev) so that

a(x) = 〈a〉+ a(x) , (27)

where a(x) denotes the axion field corresponding to excitations above the vev 〈a〉. After the axion acquires a non-zero

expectation value, the new induced θ̄ parameter (θeff) is given by

θeff = θ̄ +
〈a〉
fa

, (28)

so that the axion Lagrangian in Eq. (26) can be brought into the form

La = − cos
(
θeff +

a

fa

)
mq q̄q +mq sin

(
θeff +

a

fa

)
q̄iγ5q . (29)

An axion potential is generated through non-perturbative QCD effects which generate a quark condensate so that

V
(
θeff +

a

fa

)
= −χ(0) cos

(
θeff +

a

fa

)
, (30)

where the topological susceptibility is given by

χ(0) = −mq 〈q̄q〉 . (31)

Generally, the ground state axion potential, when expanded around its minimum, has the form

V (θeff) ' 1

2
χ(0) θ2

eff . (32)

Since the minimization of the ground state axion potential requires θeff = 0, there is no flavor-diagonal CP violation

and a correspondingly vanishing contribution to the EDM. In this way, dynamical relaxation in the ground state axion

potential solves the strong CP problem and eliminates flavor-diagonal CP-violation.

The presence of additional higher-dimensional CP-odd operators, such as the quark chromo-electric dipole moment,

can generate terms that are linear in θeff in the axion potential. This can occur via mixed correlators of the form [41]

χCP(0) = −i limk→0

∫
d4x eik·x〈0|T (GG̃(x),OCP(0))|0〉 . (33)

Such mixed correlators can give rise to an axion potential of the form

V (θeff) ' χCP(0) θeff +
χ(0)

2
θ2

eff . (34)

In this case, the potential is minimized at non-zero value of θeff given by

θeff = −χCP(0)

χ(0)
, (35)

resulting in a non-vanishing contribution to EDMs3.

Expanding the Lagrangian in Eq. (29) in θeff and a(x), gives the result

La =
(θeff

fa
a− 1

)
mq q̄q +

(
θeff +

a

fa

)
mq q̄iγ

5q +
mq

2f2
a

a2 q̄q + · · · . (36)

3 This non-vanishing θeff corresponds to θind. in the notation of Ref. [41].
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This form of the Lagrangian makes explicit the scalar (gqa,s) and pseudoscalar (gqa,p) couplings and the induced mass

ma of the axion

gqa,s =
θeffmq

fa
, gqa,p =

mq

fa
, ma '

1

fa
|χ(0)|1/2 . (37)

Note that the CP-odd mass term θeffmq q̄iγ
5q in Eq. (36) is the analogue of Eq. (15) for the case of one quark

flavor. Moreover, since fa � |χ(0)|1/4, the axion is very light and can mediate a macroscopic SD force. Based on

the axion couplings to the quark, the product of couplings in the corresponding potential in Eq. (3) is expected to be

proportional to the product of the scalar and pseudoscalar axion couplings to the quark

gqsg
q
p ∝ θeff

m2
q

f2
a

, (38)

with the constant of proportionality being determined by the nuclear/nucleon matrix elements relevant to the test

objects in the experiment. Note that the size of the SD fifth-force induced by the axion is heavily suppressed by the

factor of m2
q/f

2
a .

The dominant contribution of the axion to EDMs will come from a matrix element involving the CP-odd quark mass

term mqθeffq̄iγ
5q in Eq. (36). Note that in this case, the suppression factor m2

q/f
2
a , present in the macroscopic SD

fifth-force, is absent. As a result, EDM constraints on θeff dominate over the constraints from fifth-force experiments

by several orders of magnitude.

EDM bounds require θeff ∼< 10−10, so that for quark masses mq ∼ 1 MeV and a Peccei-Quinn scale fa ∼ 109 −
1012 GeV, the coupling gqa,s must lie below 10−25 − 10−22. Correspondingly, the bound on the pseudoscalar coupling

is gqa,p < 10−15 − 10−12. The resulting product of the macroscopic couplings in Eq. (3), for the fifth-force potential

due to an axion mediator, are bounded from EDM constraints as

gsgp ∝ θeff

m2
q

f2
a

< 10−40 − 10−34 . (39)

These EDM bounds are the the most stringent constraints; in fact even stronger than those derived by combining the

existing fifth-force laboratory limits with astrophysical limits from SN 1987A (see bottom panel in Fig. 4 of [46]). As

we discuss below, this situation contrasts sharply with the case of a generic scalar, for which gs and gp are a priori

unrestricted free parameters and unrelated to the strong CP parameter θeff.

IV. SPIN-DEPENDENT FORCES AND EDMS FROM A GENERIC LIGHT SCALAR

We now turn to the generic light scalar case and return to the basic interactions of Eqs. (1,2). Our objective is to

estimate the diamagnetic atom and nucleon EDMs induced by these interactions as functions of the parameters gs and

gp and derive order-of-magnitude bounds on their product. Before doing so, we comment on the possible origin of the

interaction in Eq. (1). Although this interaction does not respect the SM electroweak symmetry, it may be the low-

energy remnant of a more complete theory that does so at high scales. Consider, for example, an extension of the SM

scalar sector that includes an additional complex gauge singlet. After electroweak symmetry-breaking, the SM Higgs

scalar will in general mix with one component of the singlet, unless one imposes a discrete Z2 symmetry on the scalar

potential. If the electroweak-singlet vacuum also spontaneously breaks CP, then mixed scalar-pseudoscalar states will

occur. The SM Yukawa interactions will then give rise to both types of terms in Eq. (1), with gs,p being functions of

the quark Yukawa couplings and parameters in the scalar potential. The question, then, is to determine the extent
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to which EDMs and fifth force experiments might constrain such a scenario if one of the scalars is ultra-light4 (for a

concrete realization, see, e.g. Ref. [47]).

A. EDMs induced by a generic light scalar

We identify three classes of effects associated with Eqs. (1,2) that contribute to EDMs, illustrated in Fig. 1: (a)

direct ϕ exchange between two nucleons that generates the potential (3) and contributes to the nuclear Schiff moments

of diamagnetic atoms (first panel) ; (b) ϕ loops involving one factor each of the scalar and pseudo scalar couplings that

induce a nucleon EDM (middle panel); and (c) ϕ loops that induce a TVPV πNN coupling that, in turn, generates

the nuclear Schiff moment via π-exchange between two nucleons (third panel).

N

N p p

γ

ϕ

π

π

N N

ϕϕ

FIG. 1: Representative diagrams of the contribution to nuclear EDMs arising from exchanges of the light scalar ϕ that mediates
the macroscopic SD force. The first diagram corresponds to ϕ exchanges between nucleons in the nucleus. The second and
third diagrams can be interpreted as an induced proton EDM and CP-odd pion-nucleon coupling due to ϕ-exchange.

The computation of an EDM of a strongly-interacting many-body system is highly non-trivial, and theoretical

subtleties arise at the hadronic, nuclear, and atomic levels (for reviews, see Refs. [2, 41, 48]). Our objective is not

to carry out definitive computations of the contributions illustrated in Fig. 1 that take these subtleties into account,

but rather to obtain benchmark estimates that give reasonable indications of the EDM bounds on gsgp. To that

end, we first observe that the dominant contribution to the nuclear Schiff moment is likely to arise from direct ϕ

exchange (first panel of Fig. 1). Unfortunately, we do not have at our disposal the machinery needed to carry out a

sophisticated many-body computation involving the potential of Eq. (3). On the other hand, detailed computations

of nuclear Schiff moments have been performed assuming a π-exchange mechanism, where one πNN vertex is the

leading order strong coupling and the other is a TVPV vertex. The leading TVPV πNN interaction is given by

LπNN = ḡ
(0)
πNN N̄τaNπa + ḡ

(1)
πNN N̄Nπ0 + ḡ

(2)
πNN

(
N̄τaNπa − 3N̄τ3Nπ0

)
, (40)

with ḡ
(0)
πNN , ḡ

(1)
πNN , and ḡ

(2)
πNN denote the induced isoscalar, isovector, and isotensor TVPV couplings, respectively.

The nuclear Schiff moment can then be expressed as [2]

SHg = gπNN

(
a0 ḡ

(0)
πNN + a1 ḡ

(1)
πNN + a2 ḡ

(2)
πNN

)
e fm3 , (41)

with gπNN = mngA/fπ ' 13.5. A compilation of the ai obtained from various calculations, along with a set of “best

values” and “reasonable ranges” is given in Ref. [2]. For 199Hg, one has 0.005 < a0 < 0.5, −0.03 < a1 < 0.09, and

4 In this case, there will in general also exist heavier mixed scalar-pseudoscalar states whose couplings to quarks will also be functions of
the Yukawa couplings and scalar potential.



11

0.01 < a2 < 0.06 with the “best” values for the coefficients are a0 = 0.01, a1 = ±0.02, a2 = 0.02. For the ϕ scenario

we consider here, only a0 is relevant. The resulting mercury EDM has the form [19, 49]

dHg = dHg(SHg[ḡ
(i)
πNN ]) ' −2.8× 10−4 SHg

fm2 , (42)

Under the assumption that the interactions in Eqs. (1,2) are isoscalar, the loop effects associated with the third

panel in Fig. 1 will induce a non-zero value for ḡ
(0)
πNN . Apart from the different ranges associated with π and ϕ

exchange, the effect of ϕ loop-induced TVPV π-exchange is likely to be suppressed by 1/16π2 relative to the impact

of the direct ϕ-exchange potential, implying that the impact of the latter is likely to be two-orders of magnitude

stronger than the former. With this context in mind, we are able to obtain tractable estimates of the loop-induced

ḡ
(0)
πNN and use them, along with existing computations of the a0 for mercury, to derive a bound on gsgp. To be

conservative, we will then multiply this bound by 10−2 to take into account the loop suppression relative to direct ϕ

exchange and compare the resulting bound with the direct, fifth force limits. As we discuss below, the latter are still

several orders of magnitude more stringent than our estimated EDM bound.

Before proceeding, we comment on the ϕ loop-induced contributions to the nucleon EDMs (Fig. 1, middle panel).

Since the neutron is electrically neutral, the leading contribution to dn involves the magnetic moment insertion. For a

consistent calculation, we employ heavy baryon chiral perturbation theory (HBChPT)[50], which involves expanding

about both the chiral (mπ → 0) and static nucleon (mN →∞) limits. At leading non-trivial order in the heavy baryon

expansion (order q/mN ∼ mπ/mN ), the photon-nucleon coupling is magnetic and, thus, no EDM is generated. At

next order, the spin-orbit correction induces a coupling to the electric field, allowing for an EDM to be generated.

The resulting dn contribution is thus second order in q/mn, where q denotes a small momentum or mπ. A proton

EDM can be generated via the electric photon coupling in Fig. 1 (middle panel). However, the contribution of this

diagram to the atomic EDM is suppressed by at least one power of q/mN relative to that of the diagram in the third

panel of Fig. 1 (see the discussion in appendix A 2 b). i.e. we find that the loop-induced ḡ
(0)
πNN arises at zeroth order

in the heavy baryon expansion and gives the dominant contribution at one loop. Consequently, we expect that our

strategy for bounding gsgp from dHg as outlined above will yield the most stringent limit.

The ϕ loop indicated in the third panel of Fig. 1 is but one of a number of topologies that induce a non-vanishing

ḡ
(0)
πNN . A detailed discussion of this and other graphs is given in appendix A. Since a subset of these diagrams are

divergent, one requires a counterterm whose a priori finite part is analytic in mq ∼ m2
π and mϕ and whose value we

estimate to be not larger in magnitude than the calculable loop contributions. The parts of the latter that are non-

analytic in mq and mϕ cannot be absorbed into the finite part of the counterterm and are, thus, uniquely identified

with the loops. For purposes of obtaining our benchmark, order-of-magnitude estimate, it suffices to concentrate on

the result for the topology indicated in the third panel of Fig. 1, which yields a finite result

δḡ
(0)
πNN =

1

16π

m2
π +mπmϕ +m2

ϕ

mπ +mϕ

gπs gpgA
mNfπ

, (43)

where gπs is the scalar ϕππ coupling. As we show in appendix C, one may relate the ϕππ and ϕNN couplings as

gπs '
m2
π

90 MeV
gs , (44)

so that the contribution to ḡ
(0)
πNN can be expressed in terms of the product gsgp.

One can obtain a conservative bound (assuming no spurious cancellations with other contributions) on gsgp by

requiring that the contribution to dHg via Eqs. (41,42) is less than the current EDM bound given in Eq. (6). Using



12

Range Fifth Force EDM EDM Combined Laboratory
λ [m] (Axion or Generic Scalar) (Generic Scalar) (Axion) & Astrophysics

(Axion or Generic Scalar)

∼ 2× 10−5 ∼ 10−16 ∼ 10−9 − 10−11 ∼ 10−33 ∼ 10−27

∼ 2× 10−1 ∼ 10−29 ∼ 10−9 − 10−11 ∼ 10−41 ∼ 10−30 − 10−34

TABLE II: Comparison of the upper bound on gsgp from fifth-force and EDM experiments and from combining astrophysical
limits with laboratory constraints. For the special case of the axion, the EDM limit dominates. For a generic scalar, fifth-force
and combined laboratory limits dominate for the range of interactions they probe. Thus, the relative strength of EDM and
laboratory/astrophysics limits depends strongly on whether the underlying force-mediator is an axion or a generic scalar.

the best value for a0 we then conclude that |gsgp| <∼ 10−9. As indicated earlier, we näıvely expect the contribution

from the direct ϕ-exchange to be about two orders of magnitude larger. Erring on the conservative side, we thus

arrive at a range of upper bounds on gsgp lying in the range

|gsgp| <∼
[
10−11, 10−9

]
. (45)

V. COMPARISON OF FIFTH-FORCE AND EDM LIMITS

The bound in Eq. (45) can be compared with those arising from laboratory fifth-force experiments. From Fig. 3 of

Ref. [14] the bound on gsgp for two different interaction ranges are given in Table II. In this case, one can conclude

that the laboratory fifth-force experiments place more stringent bounds by several orders of magnitude. Also note

that the bounds from laboratory fifth-force experiments exhibit far greater sensitivity to the interaction range, or

equivalently to the mass mϕ. This is simply understood by noting that EDM constrains have no sensitivity to mϕ,

since the typical nuclear size rN � 1/mϕ; in short, compared to typical nuclear scales, the light scalar ϕ is essentially

massless. Only when 1/mϕ ∼ rN ∼ 1/mπ can one expect EDM bounds to be sensitive to mϕ (see e.g. Eq. (43)). From

Ref. [16], this may occur somewhere in the region where 10−10 m <∼ λ <∼ 10−7 m, corresponding to 2 eV <∼ mϕ
<∼ 2

keV. Finally, for λ <∼ 10−10 m, corresponding to mϕ
>∼ 2 keV, one expects EDM limits to dominate over those from

fifth-force experiments. However, in this case the interaction range is too small for it to be observed as a macroscopic

SD force.

For the generic light scalar, even more stringent bounds on the product gsgp are derived by combining existing

laboratory limits with limits obtained from energy loss in the observed 1987A supernova. The laboratory limits on gs

from tests of Newtons inverse square law [4, 51–54], the weak equivalence principle [55, 56], and from astrophysical

limits [57–59] are combined with the SN 1987A limit on the pseudoscalar coupling gp (see Fig. 3 in Ref. [46]), to

obtain the most stringent limits, as seen in the last column of Table II. Nevertheless, pure laboratory searches remain

important, especially if with improvements over time they can compete with astrophysical limits5.

For the case of axion-mediated TVPV spin-dependent forces, the situation is reversed. As discussed in section III,

the linear dependence of gs on θ̄ that, in turn, is severly constrained by EDM searches, implies that the fifth-force

bounds on gsgp are several orders of magnitude weaker (see Eq. (39)). Numerically, the EDM constraints on gsgp for

5 T. G. Walker, private communication
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the axion take the form [24]

gsgp <∼ θeff

[1 mm

λ

]2
6× 10−27, (46)

where λ is the Compton wavelength of the axion obtained in terms of the axion mass which is related to the Peccei-

Quinn symmetry breaking scale ma ∼ 1/fa, as seen for the case of one quark flavor in Eq.(37). Thus, unlike the case

of the generic scalar, EDM constraints are sensitive to the axion Compton wavelength since gsgp ∝ m2
a. More recent

[60] calculations of the quark condensates do not affect the order of magnitude of the estimate in Eq. (46). For this

axion scenario, the fifth-force searches cannot compete with EDM limits, as seen in Table II where we have used the

bound θeff < 10−10.

Finally, we note that the dependence of the nucleon level couplings gs, gp on mϕ is different for the axion compared

to a more generic scalar. In the case of the axion, the mass is ma ∼ 1/fa (see Eq. 37), so we have gsgp ∼ 1/f2
a ∼ m2

a,

as seen in Eq. (38). On the other hand, as already discussed, for the case of a generic scalar the nucleon level couplings

gs, gp are independent of the mass mϕ. Thus, while EDM constraints are largely insensitive to the light scalar mass

mϕ in the case of generic scalars, they do exhibit sensitivity for the special case of the axion.

VI. CONCLUSION

If a non-zero signal is observed in EDM and/or fifth-force experiments, and if the culprit is an interaction mediated

by the exchange of an ultra-light spin-zero particle, a comparison of results from the two classes of laboratory exper-

iments considered here – along with the indirect astrophysical constraints – could provide insight into the nature of

the new boson. If, for example, an EDM signal is observed with no corresponding signal in fifth-force experiments,

then consistency with the astrophysical bounds would suggest that either the new particle is an axion or that the

range is microscopic rather than macroscopic. On the other hand, observation of a non-zero spin-dependent TVPV

effect in fifth-force experiments with no corresponding EDM signal would point to a generic (non-axion) light scalar.

Consistency with the astrophysical bounds would then indicate a range that is order tens of centimeters or larger.

Finally, the observation of non-zero signals in both classes of experiments would again point to the generic light scalar

mediating the fifth force signal, while an alternate mechanism would likely be responsible for a non-vanishing EDM.

Any of these outcomes would constitute a remarkable discovery, and its pursuit is well worth the effort on all fronts.
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Appendix A: Computation of the TVPV one-loop diagrams

In this section, we outline the calculation leading to the shift in the pion-nucleon couplings shown in Eq. (43).

These shifts arise from the two diagrams shown in Fig. 2, one of which was shown in Fig. 1. We employ techniques
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of Heavy Baryon Chiral Perturbation Theory (HBχPT) [61] for the computation.

In addition to the diagrams in Fig. 2, there are additional one-loop diagrams that can contribute to the shift in the

pion-nucleon couplings. These diagrams are either suppressed according to the power counting in HBχPT or involve

ϕπNN and ϕϕπNN couplings. For completeness, we discuss these diagrams in appendix A 2. However, the goal

here is to give an order of magnitude estimate of the contribution to dHg of the nucleon-nucleon potential from the

tree-level exchange in Fig. 1. For this purpose, it is sufficient to estimate it as being enhanced by 16π2 relative to the

contributions from the diagrams in Fig. 2. The additional one-loop diagrams are not expected to change this order

of magnitude estimate.

1. Leading contributions

The shift in the pion-nucleon coupling in Eq. (43) arises from the calculation of the two diagrams in Fig. 2. The

+

N N ′

π

p′p

ℓ

ϕ

N N ′

π

p′p

ℓ

ϕ

FIG. 2: Leading contributions from a virtual ϕ loop that give rise to the shift in the CP-odd pion-nucleon coupling in Eq. (43).

different vertices in the diagrams are described by the effective interactions in HBχPT

LπN̄N =
2gA
fπ

∂µπ
a N̄v

τa

2
SµNv , (A1)

Lϕππ = gπs ϕ π
aπa , (A2)

LϕN̄N = − gp
mN

N̄v (Sµ∂µϕ)Nv , (A3)

where gA ' 1.27, mN ' 940 MeV denotes the nucleon mass, and fπ ' 92.4 MeV is the pion decay constant. The

heavy baryon nucleon fields Nv are defined in terms of the full theory nucleon fields N as

Nv(x) = exp(imN v · x)
1 + /v

2
N(x) , (A4)

where vµ denotes the four-velocity which satisfies v2 = 1. The spin operator Sµ appearing in Eq. (A2) is given by

Sµ =
i

2
γ5σµνv

ν , (A5)

and obeys the relations

S · v = 0 , [Sµ, Sν ] = iεµναβv
αSβ . (A6)

In appendix C, it is shown that the coupling gπs , appearing in Lϕππ in Eq. (A2), can be written as gπs ' m2
π

90 MeV gs, so

that both diagrams are proportional to gsgp.
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The amplitude of the first diagram in Fig. (2) is given by

iMa
1 =

gπs gpgA
mNfπ

∫
dd`

(2π)d
N̄v(p

′)τa (S · q̄) (S · `)Nv(p)
1

v · p̄+ iε

1

`2 −m2
ϕ + iε

1

q̄2 −m2
π + iε

, (A7)

with q = p′ − p, p̄ = p − `, p̄′ = p′ + ` and q̄ = q + ` and N̄v(p) denotes the nucleon SU(2) isospinor in momentum

space. The superscript ‘a’ on the amplitude denotes the pion isospin index. The amplitude for the second diagram is

given by

iMa
2 =

gπs gpgA
mNfπ

∫
dd`

(2π)d
N̄v(p

′)τa (S · `) (S · q̄)Nv(p)
1

v · p̄′ + iε

1

`2 −m2
ϕ + iε

1

q̄2 −m2
π + iε

. (A8)

Both integrals can be solved exactly. Since the long-range limit qµ → 0 of the integral provides a good approximation,

we solve the integrals in this limit and the resulting expressions are more compact. Details of the calculation can be

found in appendix B. The result of computing the sum of these two diagrams is

iMa =
i

16π

m2
π +mπmϕ +m2

ϕ

mπ +mϕ

gπs gpgA
mNfπ

N̄v(p
′)τaNv(p) , (A9)

which we recast as the effective interaction

LCPVπN̄N =
1

16π

m2
π +mπmϕ +m2

ϕ

mπ +mϕ

gπs gpgA
mNfπ

πaN̄ τaN , (A10)

to be interpreted as a correction to the TVPV pion-nucleon coupling

δḡ
(0)
πNN =

1

16π

m2
π +mπmϕ +m2

ϕ

mπ +mϕ

gπs gpgA
mNfπ

. (A11)

After using gπs ' m2
π

90 MeV gs, the shift in the TVPV pion-nucleon couplings is given by Eq. (43).

2. Additional one-loop diagrams

Here we discuss additional one loop diagrams that are either subleading or diagrams generated from higher dimen-

sional vertices.

a. Sub-leading contributions

Additional contributions arise from diagrams with the scalar having both couplings to the nucleons as shown in

Fig. 3. To leading order in 1/mN expansion, the loop integral for the left diagram in Fig. 3 is∫
dd`

(2π)d
S · `

v · (p+ `) + iε

1

v · (p′ + `) + iε

1

`2 −m2
ϕ + iε

= Sµ Iµ(v, v · p, v · p′,m2
ϕ) , (A12)

where Sµ is the HBχPT spin operator of Eq. (A5) and the factor S · ` in the numerator is due to the derivative

pseudo-scalar coupling of scalar to nucleon shown in Eq. (A2). Since vµ is the only four-vector that the integration

variable `µ is contracted with in the integrand, the vector quantity Iµ must be proportional to vµ so that

Iµ(v, v · p, v · p′,m2
ϕ) = J (v, v · p, v · p′,m2

ϕ) vµ , (A13)

where J (v, v · p, v · p′,m2
ϕ) is a scalar integral. Therefore,∫

dd`

(2π)d
S · `

v · (p+ `) + iε

1

v · (p′ + `) + iε

1

`2 −m2
ϕ + iε

∝ S · v = 0 , (A14)
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+

N N ′

ϕ

π

N N ′

ϕ

π

p pp′ p′

ℓ ℓ

FIG. 3: The diagrams with the scalar coupling to nucleons. Each blob depicts the pseudo-scalar coupling.

as dictated by the properties of the spin operator Sµ shown in Eq. (A6). For the same reason, the diagram on the

right in Fig. 3 also vanishes. Thus, to leading order in 1/mN , the two diagrams in Fig. 3 give vanishing contributions.

Next we consider the TVPV nucleon wave-function renormalization diagrams, proportional to gsgp. Two of these

are depicted in Fig. 4, and the remaining two are identical except for the interchange of the scalar and pseudo-scalar

+

N

N ′

π

p′ − ℓp

ℓ

ϕ

N

N ′

π

p′p− ℓ

ℓ

ϕ

FIG. 4: Two of the four wave-function renormalization diagrams. Each dark blob depicts the pseudo-scalar coupling gp, as
defined in Eq. (2).

(dark blob) couplings. To leading order in the 1/mN expansion, the loop integral for the left diagram in Fig. 4 gives∫
dd`

(2π)d
S · `

v · (p′ − `) + iε

1

`2 −m2
ϕ + iε

. (A15)

Once again, this integral vanishes since it must be proportional to S · v = 0. Similarly, all the other TVPV nucleon

wave function renormalization diagrams vanish and do not contribute to the EDM at leading order in 1/mN . Note

that since the pion has no pseudoscalar coupling to ϕ, its wave function diagrams are not proportional to the product

gsgp and thus also do not contribute to the EDM.
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b. Proton EDM

Here we comment on the ϕ loop-induced contribution to the proton EDM (Fig. 1, middle panel). Diagrammatically,

the situation is similar to Fig. 3 but with the external pion replaced by a photon. The Lagrangian for the nucleon-

photon coupling in HBChPT is given by

LAN̄N = e vµA
µ N̄v

1 + σ3

2
Nv . (A16)

Following the same procedure as for the computation of Fig. 3, with the pion vertex replaced by the above photon

coupling, to leading order in 1/mN expansion, the same loop integrals as in diagram Fig. 3 appear and give vanishing

contributions

Sµ Iµ(v, v · p, v · p′,m2
ϕ) ∝ S · v = 0 . (A17)

Thus, the ϕ loop-induced proton EDM vanishes to leading order in 1/mN .

c. Diagrams with four or five point vertices

Here we consider the remaining one-loop diagrams shown in Fig. 5. These contributions have a more complicated

structure compared to the diagrams in Fig. 2. In addition to the dependence on the product of couplings gsgp of

interest, the diagrams in Fig. 2 depend on a non-perturbative matrix element through the coupling gπs , as explained in

appendix C. The diagrams in Fig. 5, however, depend on new types of non-perturbative matrix elements. Furthermore,

unlike the diagrams in Fig. 2, these contributions involve ultraviolet divergences and depend on the renormalization

scheme. For the sake of completeness, we discuss these contributions and where appropriate we give results for the

finite non-analytic parts of the contribution that cannot be removed via the renormalization counterterm.

N N ′

π
ϕ

N NN ′ N ′

π π

ϕ
ϕ

FIG. 5: Diagrams with NNπϕ and NNπϕ2 vertices.

The vertex in the first diagram in Fig. 5, denoted by λp, is determined in terms of the quark level coupling gqp in

Eq. (1) through the matching equation

λp 〈ϕπ0N |ϕ πaN̄τaN |N〉 = igqp 〈ϕπ0N |ϕ q̄γ5q|N〉 . (A18)

Using the soft pion theorem relation

limkµ→0〈π0(k)N |q̄γ5q|N〉 = − i

fπ
〈N |
[
Q3

5, q̄γ
5q
]
|N〉 =

i

fπ
〈N |q̄τ3q|N〉 , (A19)
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Eq. (A18) then leads to

λp N̄τ
3N = − g

q
p

fπ
〈N |q̄τ3q|N〉 . (A20)

The matrix element on the right hand side of Eq. (A20) can be related to the light quark contribution to the neutron-

proton mass difference, (∆mN )q

〈N |q̄τ3q|N〉 =
(∆mN )q
md −mu

N̄τ3N , (A21)

so that

λp = − g
q
p

fπ

(∆mN )q
md −mu

. (A22)

We now wish to relate gqp to the effective ϕNN pseudoscalar coupling

gqp 〈ϕN |ϕ q̄iγ5q|N〉 = gp 〈ϕN |ϕ N̄iγ5N |N〉 . (A23)

Using

〈ϕN |ϕ q̄iγ5q|N〉 = 〈N |q̄iγ5q|N〉 = 2G
(0)
P N̄iγ5N , (A24)

where G
(0)
P is the isoscalar nucleon pseudoscalar form factor at zero momentum transfer, we have

gp = 2G
(0)
P gqp . (A25)

Substituting this result into Eq. (A22) leads to

λp = − gp

2G
(0)
P fπ

(∆mN )q
md −mu

. (A26)

With the result in Eq. (A26) and the corresponding relation between gs and the induced scalar coupling gπs given in

Eq. (C7) below, we are able to compute the contribution to δḡ
(0)
πNN arising from the first diagram of Fig. 5. The graph

itself is divergent, thereby implying the need for a counterterm and an associated finite part that must be analytic in

mπ and mϕ. The contribution uniquely associated with the loop is non-analytic in these masses and is given by

δḡ
(0)
πNN = −g

π
s λp

16π2

(
m2
π log(m2

π/µ
2)−m2

ϕ log(m2
ϕ/µ

2)

m2
π −m2

ϕ

)
. (A27)

We now turn to the second diagram of Fig. 5, wherein the ϕ couples to the nucleon through the pseudoscalar

interaction and to the NNπ through the scalar interaction. To evaluate the latter vertex, we follow a similar logic to

that of the foregoing computation, starting with the matching equation

λs 〈ϕπ0N |ϕ πaN̄γ5τaN |N〉 = igqs 〈π0N |ϕ q̄q|N〉 , (A28)

and the soft pion relation

limkµ→0〈π0(k)N |q̄q|N〉 =
i

fπ
〈N |q̄γ5τ3q|N〉 , (A29)

to obtain

λs N̄γ
5τ3N = − g

q
s

fπ
〈N |q̄γ5τ3q|N〉 . (A30)
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The latter matrix element is given by

〈N |q̄γ5τ3q|N〉 = 2G
(1)
P N̄γ5τ3N , (A31)

where the isovector pseudoscalar form factor at zero momentum transfer is given by

G
(1)
P =

2gAm̄N

mu +md
, (A32)

with m̄N being the average of the neutron and proton masses. The coupling gqs can be related to the effective ϕNN

scalar coupling through

gs 〈ϕN |ϕ N̄N |N〉 = gqs 〈ϕN |ϕ q̄q|N〉 , (A33)

or

gs N̄N = gqs 〈N |q̄q|N〉 = 2gqsG
(0)
S N̄N , (A34)

with G
(0)
S being the iscoscalar nucleon scalar form factor at zero momentum transfer given in terms of the light quark

contribution to the average nucleon mass (m̄N )q by

G
(0)
S =

(m̄N )q
mu +md

. (A35)

Using Eqs. (A30) and (A31) in Eq. (A34) we obtain

λs = − gs
fπ

G
(1)
P

G
(0)
S

. (A36)

The second loop in Fig. 5 is finite and gives

δḡ
(0)
πNN = −gpλs

8π
mϕ . (A37)

The five-point vertex appearing in the last diagram in Fig. 5 contains the time ordered product of operators gqs q̄q

and gqp q̄iγ
5q. Its evaluation is non-trivial and goes beyond the scope of the present study whose aim is to provide order

of magnitude estimates. Consequently, we now restrict our attention to the results for the first two graphs of Fig. 5.

We wish to compare the magnitudes of the induced shifts in Eqs. (A27,A37) to the result obtained from Fig. 2 given in

Eq. (A11). Since (A37) vanishes in the mϕ → 0 limit while (A11) remains finite, the latter will dominate in the regime

mπ >> mϕ that is of interest to the experimental probes of macroscopic P- and T-odd interactions. Comparison of

(A11) with (A27) requires choice of a renormalization scale and knowledge of the scalar nucleon isoscalar form factor.

We will assume that the finite part of the counterterm is of the same magnitude as the loop contribution. Working

in the mϕ → 0 limit we have the ratio R of (A27) to (A11) is given by

R ' 1

2π

1

gAG
(0)
P

mN

mπ

(∆mN )q
md −mu

ln
m2
π

µ2
. (A38)

Lattice results for (∆mN )q imply that the fourth factor in Eq. (A38) is order one, as is mN/(2πmπ). For µ ∼ 1

GeV, the ratio R will then be O(1) to the extent that G
(0)
P is as well. Thus, we conclude that the result in Eq. (A11)

provides a reasonable, order of magnitude estimate for the loop-induced shifts δḡ
(0)
πNN .
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Appendix B: Calculational details

Here we give details of the computation of the integrals in Eqs. (A7) and (A8)

I1 =

∫
dd`

(2π)d
(S · [q + `]) (S · `) 1

v · (p− `) + iε

1

`2 −m2
ϕ + iε

1

(q + `)2 −m2
π + iε

, (B1)

and

I2 =

∫
dd`

(2π)d
(S · `) (S · [q + `])

1

v · (p′ + `) + iε

1

`2 −m2
ϕ + iε

1

(q + `)2 −m2
π + iε

, (B2)

respectively. The nucleon momenta are given by mNv + p with residual momentum p. Since the typical virtuality of

the nucleon inside a nucleus is mach smaller than its mass, we have (mNv+p)2 ' m2
N so that v ·p ' −p2/(2mN )� 1.

For on-shell external nucleons and in the limit qµ → 0, we can set v · p = v · p′ = 0 in the computation of the integrals

in Eqs. (B1) and (B2) so that we get

I1 =

∫
dd`

(2π)d
(S · `) (S · `) 1

v · `+ iε

1

`2 −m2
ϕ + iε

1

`2 −m2
π + iε

,

I2 =

∫
dd`

(2π)d
(S · `) (S · `) 1

v · `+ iε

1

`2 −m2
ϕ + iε

1

`2 −m2
π + iε

. (B3)

Adding both contributions and using the well-know relation {Sµ, Sν} =
1

2
(vµvν − gµν) (see e.g. [62]) we obtain

I = I1 + I2 = −1

2

∫
dd`

(2π)d
`2

v · `+ iε

1

`2 −m2
ϕ + iε

1

`2 −m2
π + iε

. (B4)

Applying the Feynman parametrization we obtain

I = −1

2

∫ 1

0

dx

∫
dd`

(2π)d
`2

v · `+ iε

1[
`2 − x(m2

ϕ −m2
π)−m2

π + iε
]2 . (B5)

Next we use the identity

1

arbs
= 2s

Γ(r + s)

Γ(r)Γ(s)

∫ ∞
0

dλ
λs−1

(a+ 2bλ)r+s
, (B6)

to find

I = −2

∫ 1

0

dx

∫ ∞
0

dλ

∫
dd`

(2π)d
`2[

`2 − x(m2
ϕ −m2

π)−m2
π + 2λv · `+ iε

]3
= −2

∫ 1

0

dx

∫ ∞
0

dλ

∫
dd`

(2π)d
`2 + λ2[

`2 − λ2 − x(m2
ϕ −m2

π)−m2
π + iε

]3
≡ IA + IB , (B7)

where IA and IB correspond to `2 and λ2 terms in the integrand. Working in d = 4−2ε dimensions, a straightforward

computation gives

IA = − i

(4π)2−ε (2− ε)Γ(ε)

∫ 1

0

dx

∫ ∞
0

dλ
[
λ2 + x(m2

ϕ −m2
π) +m2

π − iε
]−ε

,

IB =
i

(4π)2−ε Γ(1 + ε)

∫ 1

0

dx

∫ ∞
0

dλ λ2
[
λ2 + x(m2

ϕ −m2
π) +m2

π − iε
]−1−ε

. (B8)
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Next we use the identity ∫ 1

0

dx [Ax+B]α =
1

α+ 1

1

A

{
[A+B]α+1 −Bα+1

}
, (B9)

to obtain

IA = − i

(4π)2−ε
2− ε
1− ε

Γ(ε)

m2
ϕ −m2

π

∫ ∞
0

dλ
{[
λ2 +m2

ϕ − iε
]1−ε − [λ2 +m2

π − iε
]1−ε}

,

IB = − i

(4π)2−ε
1

ε

Γ(1 + ε)

m2
ϕ −m2

π

∫ ∞
0

dλ λ2
{[
λ2 +m2

ϕ − iε
]−ε − [λ2 +m2

π − iε
]−ε}

. (B10)

Next we use the relation ∫ ∞
0

dλ λ2α[λ2 +m2]β =
(m2)α+β+1/2

2

∫ ∞
0

du uα−1/2 [u+ 1]β , (B11)

obtained after the substitution λ2 = u and the definition

B(m,n) =

∫ ∞
0

du
um−1

(u+ 1)m+n
, (B12)

to get ∫ ∞
0

dλ λ2α[λ2 +m2]β =
(m2)α+β+1/2

2
B

(
α+

1

2
,−α− β − 1

2

)
. (B13)

The integrals IA and IB can now be brought into the form

IA = − i

(4π)2−ε
2− ε
1− ε

Γ(ε)

2

(m2
ϕ)3/2−ε − (m2

π)3/2−ε

m2
ϕ −m2

π

B

(
1

2
, ε− 3

2

)
,

IB = − i

(4π)2−ε
1

ε

Γ(1 + ε)

2

(m2
ϕ)3/2−ε − (m2

π)3/2−ε

m2
ϕ −m2

π

B

(
3

2
, ε− 3

2

)
, (B14)

and correspondingly the some of these two terms gives

I = − i
√
π

2

Γ(ε− 3/2)

(4π)2−ε
(m2

ϕ)3/2−ε − (m2
π)3/2−ε

m2
ϕ −m2

π

{
2− ε
1− ε

Γ(ε)

Γ(ε− 1)
+

1

2ε

Γ(1 + ε)

Γ(ε)

}
. (B15)

Going back to d = 4 dimensions via the limit ε→ 0, gives the final result for the sum of the two diagrams in Fig. 2 as

I =
i

16π

m2
ϕ +mϕmπ +m2

π

mϕ +mπ
. (B16)

Appendix C: Scalar coupling to the pion

In this section we show that the coupling gπs , appearing in Eq. (A2), is proportional to the scalar nucleon coupling

gs. We start with the quark level coupling gqs , assuming flavor universality for simplicity, so that

Lqϕ = gqs ϕ
(
ūu+ d̄d

)
, (C1)

which induces a coupling gπs to pions

Lπϕ = gπs ϕ π
aπa , (C2)
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and the coupling gs to nucleons

L = gs ϕ N̄N . (C3)

By taking pion and nucleon matrix elements of the operator Lqϕ in Eq. (C1), the quark level coupling gqs is related to

the pion (gπs ) and nucleon (gs) level couplings as

gπs = gqs 〈π|ūu+ d̄d|π〉 ,

gs = gqs
〈N |ūu+ d̄d|N〉
〈N |N̄N |N〉 , (C4)

so that gs and gπs are related as

gπs =
〈N |N̄N |N〉
〈N |ūu+ d̄d|N〉 〈π|ūu+ d̄d|π〉 gs . (C5)

We use the relations [63, 64]

〈N |ūu+ d̄d|N〉
〈N |N̄N |N〉 ' 90 MeV

mu +md
,

〈π|ūu+ d̄d|π〉 =
m2
π

mu +md
, (C6)

to write6

gπs
gs
' m2

π

90 MeV
' 218 MeV . (C7)

6 Note that pion matrix elements of quark bilinears have units of energy in our normalization.
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