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Abstract

In this paper, we study phenomenologically interesting soft radiation distributions in massless

QCD. Specifically, we consider the emission of two soft partons off of a pair of light-like Wilson

lines, in either the fundamental or the adjoint representation, at next-to-leading order. Our results

are an essential component of the next-to-next-to-next-to-leading order threshold corrections to

both Higgs boson production in the gluon fusion channel and Drell-Yan lepton production. Our

calculations are consistent with the recently published results for Higgs boson production. As a

non-trivial cross-check on our analysis, we rederive a recent prediction for the Drell-Yan threshold

cross section using a completely different strategy. Our results are compact, valid to all orders in

the dimensional regularization parameter, and expressed in terms of pure functions.
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The total cross section for Higgs boson production in the gluon fusion channel and the

total cross section for Drell-Yan lepton production are two of the most important Large

Hadron Collider-relevant, infrared-collinear (IRC) finite observables in QCD. Due to their

relatively simple kinematics, gluon fusion Higgs and Drell-Yan lepton production are bench-

mark processes for the application of perturbative QCD techniques. A great deal of progress

along these lines has been made over the last two decades and, as a consequence, total cross

sections for these processes are known to next-to-next-to-leading order (NNLO) [1–12]. The

calculation of these IRC finite observables to one order higher in the strong coupling constant

is highly desirable due to the largeK-factors and theoretical uncertainties inherent in the cal-

culation of such hadron collider observables [2, 4–11]. Unfortunately, this task is also highly

non-trivial; at next-to-next-to-next-to-leading order (N3LO), the current state-of-the-art,

one must compute three-loop virtual corrections, single-emission, two-loop real-virtual cor-

rections, double-emission, one-loop real-virtual corrections, triple-emission real corrections,

and collinear counterterms for the parton distribution functions. All of these ingredients

have severe infrared and/or collinear divergences which complicate their calculation and

IRC finiteness is only achieved once all contributions have been appropriately combined.

While full fixed-order calculations at N3LO remain a challenge, significant progress has

been made over the last few years. For gluon fusion Higgs production, the Wilson coefficients

obtained by integrating out top quark loops to construct an effective ggh Lagrangian are

known to three loops [13–15] and the relevant ultraviolet renormalization constants have

been worked out in Refs. [16–19]. The collinear counter terms at three loops are also known

and have been obtained by the authors of Refs. [20–22]. The three-loop virtual corrections

are under control, as they can be extracted from the three-loop quark and gluon form factors

computed in Refs. [23–26]. For finite top quark mass, an estimate of the N3LO cross section

for Higgs production was made in Ref. [27] by arguing that one can exploit information

encoded in the soft gluon and high energy limits to construct an accurate approximation to

the full result.

In recent years, rapid progress has been made towards the analytical calculation of the

relevant phase space integrals by expanding them in the threshold limit1. Two-loop, single-

soft currents for Higgs and Drell-Yan production were computed to O(ǫ0) in Refs. [29, 30], to

1 It should be noted that, as pointed out in Ref. [28], the evaluation of the leading term in the threshold

expansion by itself is not completely satisfactory. It may be necessary in future work to compute subleading

terms in the threshold expansion as well to determine the size and impact of power corrections.
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O(ǫ2) in Ref. [31], and, finally, to all orders in ǫ in Ref. [32], where ǫ is the usual parameter

of dimensional regularization, D = 4−2ǫ. The contribution from the square of the one-loop

amplitude for Higgs boson production in association with a single soft parton is also known

to all orders in ǫ [33–36]. Last year, the phase space integrals for soft triple-emission were

calculated in Ref. [37] to sufficiently high orders in ǫ for an N3LO calculation, and very

recently, the phase space integrals for Higgs boson production in association with two soft

partons were computed by the same group, thereby completing the threshold corrections to

Higgs boson production through gluon fusion at N3LO [28]. However, this final piece of the

soft part of the three-loop bare threshold cross section has not yet appeared in a separate

publication. In this paper, we report on a parallel calculation of the eikonal double-emission

phase space integrals relevant to the N3LO threshold calculation of gluon fusion Higgs or

Drell-Yan lepton production. Our results are remarkably compact and valid to all orders

in the dimensional regularization parameter. The higher order in ǫ terms will be useful

components of future N4LO calculations, for example higher order extractions of quark and

gluon collinear anomalous dimensions.

We describe our calculational strategy below. At a hadron collider with incoming hadrons

N1 and N2 and center-of-mass energy
√
s, the inclusive cross section for producing a Higgs

boson of mass MH or Drell-Yan lepton pair of invariant mass MDY can be written as

σi
(

s,M2
i

)

=

∑

a,b

∫ 1

0

dx1 dx2 fa/N1

(

x1, µ
2
F

)

fb/N2

(

x2, µ
2
F

)

∫ 1

0

dz δ

(

z − M2
i

ŝ

)

σ̂i
ab (ŝ, z, αs(µR)) , (1)

where i = DY or H and the summation is over all partonic channels. To save space, we will

often use the abbreviations DY and H when discussing the processes that we consider in this

paper. The parton distribution function of parton n in hadron N , fn/N (x, µ2
F ), depends on

the momentum fraction, x, and the factorization scale, µF . σ̂i
ab(ŝ, z, αs(µR)), the partonic

cross section, depends on the partonic center-of-mass energy,
√
ŝ =

√
x1x2s, the parameter

z defined by Eq. (1), and the renormalized strong coupling constant at renormalization

scale µR, αs(µR). In this work, we take µF = µR = Mi for the sake of simplicity. In full

fixed-order calculations, the dependence of partonic cross sections on ŝ and αs(Mi) is simple

but their dependence on z is quite non-trivial. Throughout this paper, we shall be concerned

only with a threshold expansion in the z → 1 limit of the σ̂i
ab (ŝ, z, αs(Mi)). In this regime,

additional partons radiated into the final state are constrained to be soft by virtue of the
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phase space constraint ŝ ≈ M2
i and the partonic cross sections for both H and DY simplify

dramatically:

σ̂H
gg(ŝ, z → 1, αs(MH)) = σgg

0 (MH)G
H(z) (2)

σ̂DY
qq̄ (ŝ, z → 1, αs(MDY)) = σqq̄

0 (MDY)G
DY(z) . (3)

For simplicity, we keep the running coupling dependence of the functions introduced on

the right-hand side of Eqs. (2) and (3) implicit. In D = 4 − 2ǫ dimensions, σgg
0 (MH) and

σqq̄
0 (MDY) are given respectively by2

σgg
0 (MH) =

πλ2(αs(MH))

8(1− ǫ)(N2
c − 1)

and σqq̄
0 (MDY) =

4π2(1− ǫ)α(MDY) e
2
q

NcM2
DY

, (4)

where λ(αs(Mi)) is the effective coupling of the Higgs boson to gluons in the limit of infinite

top quark mass [39],

Lint = −1

4
λ(αs(MH))HGµν, aGa

µν , (5)

Nc is the number of colors, α(MDY) is the fine structure constant at renormalization scale

MDY, and eq is the electric charge of quark q. It is worth pointing out that λ(αs(MH)) has

a perturbative expansion in the renormalized strong coupling constant of its own (see Ref.

[15] for explicit expressions in a slightly different normalization) and, throughout this work,

we employ the conventional dimensional regularization scheme. The coefficient functions

GH(z) and GDY(z) contain singular distributions of the form

δ(1− z) and

[

lnk(1− z)

1− z

]

+

, (6)

where the plus distribution [g(z)]+ acts on functions regular in the z → 1 limit as

∫ 1

0

dz f(z) [g(z)]+ =

∫ 1

0

dz
(

f(z)− f(1)
)

g(z) . (7)

The functional form of the coefficient functions can be obtained by taking the z → 1 limit

of the full partonic cross section. Alternatively, they can be directly calculated in the soft

limit of QCD, using a factorization formula derived from the soft-collinear effective theory

of QCD [40–43]. At our chosen scale, the Gi(z) factorize into products of the form [44–46]

Gi(z) = H iS̄i(z) (8)

2 We follow Moch and Vogt [38] and write Eq. (4) with off-shell photons in mind.
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where the H i are hard functions encoding the virtual corrections at threshold and the S̄i (z)

are renormalized soft functions encoding the real radiative corrections at threshold. At first,

it might seem peculiar that we have not taken the soft functions in Eq. (8) to be a functions

of ω/Mi, where ω is twice the energy of the soft QCD radiation in the final state. However,

in threshold kinematics, we have

ω = (1− z)
√
ŝ ≈ (1− z)Mi (9)

and we see that the form of Eq. (8) follows naturally from Eq. (9).

In general, hard functions in SCET are complex squares of hard Wilson coefficients ob-

tained by matching QCD onto SCET. The perturbative expansions of the Wilson coefficients

relevant to Higgs and Drell-Yan production are known to the order required for an N3LO

calculation of the Gi(z). They can be extracted from the three-loop quark and gluon form

factors [23–26]. In fact, they are written down explicitly in Ref. [25], Eqs. (7.4) - (7.9).

The actual hard coefficients that we need for our analysis are derived by taking the complex

square of Eq. (7.3) in that work, setting µ = Mi, and then expanding in αs(Mi) to third

order.

The bare soft functions can be written as squares of time-ordered matrix elements of

pairs of semi-infinite Wilson line operators,

Si (z) =
Mi

di

∑

Xs

〈0|T
{

YnY
†
n̄

}

δ
(

λ− P̂
0
)

|Xs〉〈Xs|T
{

Yn̄Y
†
n

}

|0〉 . (10)

As mentioned above, the soft functions defined in Eq. (10) depend on the ratio of twice the

energy of the soft QCD radiation to Mi (i.e. on 1− z), as well as the bare strong coupling

constant αs. di is a conventional normalization constant,

dH = N2
c − 1 and dDY = Nc , (11)

depending on whether the soft Wilson lines are in the adjoint or the fundamental represen-

tation of su(Nc). The summation in Eq. (10) is over all possible soft parton final states,

|Xs〉. The operator P̂0 acts on the final state |Xs〉 according to

P̂0|Xs〉 = 2EXs
|Xs〉 , (12)

where EXs
is the energy of the soft radiation in final state |Xs〉. The Wilson line operators,

Yn and Y †
n̄ , are respectively defined as in-coming, path-ordered (P) and anti-path-ordered
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(

P
)

exponentials [47],

Yn(x) = P exp

(

ig

∫ 0

−∞

ds n · A(ns+ x)

)

Y †
n̄ (x) = P exp

(

−ig

∫ 0

−∞

ds n̄ · A(n̄s + x)

)

. (13)

In the above, Aµ = Aa
µT

a, where the T a are either adjoint (for H) or fundamental (for DY)

su(Nc) matrices. As usual, n and n̄ are light-like vectors whose space-like components are

back-to-back and determine the beam axis. For a generic four-vector, kµ, we have

n · k = k+ and n̄ · k = k− (14)

given the usual definitions k+ = k0 + k3 and k− = k0 − k3.

In the perturbative regime, we can calculate the bare soft functions order-by-order in αs.

They admit αs expansions of the form

Si(z) = δ(1− z) +
∞
∑

L=1

(

αsSǫ

4π

)L (
µ2

M2
i

)ǫL
1

(1− z)1+2ǫL
Si
L(ǫ) . (15)

In Eq. (15), Sǫ is the usual MS factor,

Sǫ =
(

4πe−γE
)ǫ

, (16)

where γE = 0.5772 . . . is the Euler constant and µ is the ’t Hooft scale introduced from

continuing the space-time dimension to D = 4 − 2ǫ dimension. After renormalization in

the MS scheme, it will be replaced by the renormalization scale, µR = Mi. The factor

1/(1 − z)1+2ǫL can be expanded in ǫ in terms of the plus distributions introduced above

(Eqs. (6) and (7)),

1

(1− z)1+2ǫL
= −δ(1− z)

2ǫL
+

∞
∑

m=0

(−2ǫL)m
[

lnm(1− z)

1− z

]

+

. (17)

The expansion coefficients of the bare soft functions, Si
L(ǫ), are functions of ǫ and Nc

only. In the case of DY, the one- and two-loop results are well-known and were calculated to

all orders in ǫ in Ref. [48]. The structure of the eikonal approximation is such that, through

two-loop order, the color degrees of freedom completely factorize from the part of the bare

expansion coefficients which encodes the non-trivial soft dynamics; by simply replacing CF

everywhere with CA, the results reported in [48] can be carried over in a straightforward
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manner to the case of H as well3. At N3LO, many of the contributions can be converted from

the DY language to the H language in a similar way4 but, overall, the situation at three loops

is significantly more complicated than at one and two loops. Although it is reasonable to

expect some correspondence by virtue of the fact that the cut eikonal diagrams contributing

to H and DY differ only in the Lie algebra representation of their gluon-soft Wilson line

interactions, there are sufficiently many color structures for both H and DY at three-loop

order that finding such a correspondence requires non-trivial analysis. In fact, with dedicated

effort, it is possible to use the known results for the single-emission, two-loop real-virtual

corrections [31–36], the result for the double-emission, one-loop real-virtual corrections given

in this article, and the available constraints from the non-Abelian exponentiation theorem

[49, 50] to determine the triple-emission real contributions to DY from the analogous result

for H reported recently in Ref. [37]. In other words, the full N3LO result for DY can be

deduced from results available in the literature and the main result of this article. This

line of analysis was quite useful and facilitated additional non-trivial cross-checks on our

calculation which we summarize towards the end of this paper. In order to keep the length

of this article manageable, we defer a detailed discussion of this part of our analysis to a

separate publication which focuses on the triple-emission real contributions.

As mentioned briefly in the introduction and in the last paragraph, there are several types

of real radiative corrections in the threshold limit at three-loop order involving the emission

of one or more soft partons. To obtain complete results for the Si
3(ǫ), one must compute

soft single-emission, two-loop [31, 32] and one-loop squared real-virtual corrections [33–

36], soft triple-emission real corrections [37], and soft double-emission, one-loop real-virtual

corrections, which are not yet publicly available5. In what follows, we compute the soft

double-emission contributions to the Si
3(ǫ), referred to hereafter as Si: 2R−V

3 (ǫ), and fill this

last remaining gap in the literature.

To generate the full set of cut eikonal Feynman diagrams, we use QGRAF [51]. Repre-

sentative cut diagrams are shown in Fig. 1. In order to test the correctness of our squared

3 Here, CA and CF are the usual quadratic Casimir invariants, expressed in terms of Nc as

CA = Nc and CF =
N2

c − 1

2Nc

. (18)

4 For example, both the single-emission, two-loop real-virtual corrections computed in Refs. [31–36] and

the double-emission, one-loop real-virtual corrections discussed in the present paper fall into this category.
5 In a very recent paper [28], these contributions were computed, thereby completing the calculation of the

N3LO Higgs boson production cross section at threshold.
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(a) (b)

(c) (d)

FIG. 1. Panels (a) and (b) show cut eikonal Feynman diagrams with final state gluons and panels

(c) and (d) show cut eikonal Feynman diagrams with final state fermions.

matrix elements while computing them, we found it convenient to use a general Rξ gauge

for our internal gluons and lightcone gauge for our final state gluons. As we explain below,

the fact that our problem supplies two natural light-like reference vectors, n and n̄, allows

for a very stringent consistency check on our construction of the integrand. Once the di-

agrams are generated, they are processed by an in-house FORM [52] code which dresses the

cut eikonal diagrams with Feynman rules and performs all relevant Dirac and color algebra.

After that, we use an in-house Maple code to express all cut eikonal diagrams as a linear

combination of Feynman integrals belonging to one of 28 integral families introduced for the

eventual purpose of performing an integration by parts reduction [53, 54] on the integrand

using Laporta’s algorithm [55]. Mapping Feynman integrals to specific integral families is

not entirely straightforward in this case and requires the application of numerous partial

fraction identities to the raw integrand produced by our FORM code. This complication is

due in part to the constraint on the kinematics imposed by the delta function in the operator

definition of the soft functions (see Eq. (10)). We perform the integration by parts reduction
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using the development version of Reduze 2 [56] which, among other new features, supports

the reduction of phase space integrals. The idea behind this was worked out some time ago

and is usually called the reverse unitarity method [10, 57, 58]. The key insight is that, for

the purpose of integral reduction, one can use the relation

δ
(

k2
)

= − 1

2πi

(

1

k2 + i0
− 1

k2 − i0

)

(19)

to replace delta function constraints with propagator denominators. After integration by

parts reduction, the result is a rather simple linear combination of nine master integrals.

To present our result in a compact fashion, let us first introduce some additional notation.

Besides the Casimir invariants CA and CF , already defined above, and the number of massless

flavors, nf = 5, our result for Si: 2R−V
3 (ǫ) will depend on an additional Casimir invariant which

itself depends on the index i:

CH = CA and CDY = CF . (20)

Finally, if we make the definitions

∫

[k1k2q] = −iπ3ǫ−4e3γEǫ

∫

dDk1

∫

dDk2

∫

dDq δ+
(

k2
1

)

δ+
(

k2
2

)

δ
(

1− (n+ n̄) · (k1 + k2)
)

D1 = q2 + i0+

D3 = (k1 + k2 − q)2 + i0+

D5 = 2q · n + i0+

D7 = 2k1 · n̄+ i0+

D9 = 2(k1 − q) · n̄+ i0+

D2 = (k1 − q)2 + i0+

D4 = (k1 + k2)
2 + i0+

D6 = 2k1 · n+ i0+

D8 = 2k2 · n̄+ i0+

D10 = 2(k1 + k2 − q) · n̄+ i0+ ,

(21)

the nine master integrals mentioned above are given by

I1(ǫ) = −12(D − 4)(D − 3)3(3D − 11)Re

{∫

[k1k2q]
1

D1D3

}

=
e3γEǫΓ4(1− ǫ)Γ2(1 + ǫ)Γ(1− 3ǫ)

Γ2(1− 2ǫ)Γ(1 + 2ǫ)Γ(1− 6ǫ)

= 1− 33ζ2
2

ǫ2 − 65ζ3ǫ
3 +

417ζ4
16

ǫ4 +

(

2145ζ2ζ3
2

− 7563ζ5
5

)

ǫ5

+

(

−241541ζ6
128

+
4225ζ23

2

)

ǫ6 +O
(

ǫ7
)

(22)

I2(ǫ) = 12(D − 4)2(D − 3)(3D − 11)(3D − 10)Re

{
∫

[k1k2q]
1

D2D5D10

}
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=
e3γEǫΓ3(1 + ǫ)Γ2(1− ǫ)Γ(1− 2ǫ)

Γ(1 + 2ǫ)Γ(1− 6ǫ)

= 1− 31ζ2
2

ǫ2 − 67ζ3ǫ
3 − 359ζ4

16
ǫ4 +

(

2077ζ2ζ3
2

− 7713ζ5
5

)

ǫ5

+

(

−222195ζ6
128

+
4489ζ23

2

)

ǫ6 +O
(

ǫ7
)

(23)

I3(ǫ) = 2(D − 4)4(3D − 11)Re

{
∫

[k1k2q]
1

D1D2D5D9

}

=
e3γEǫΓ4(1− ǫ)Γ3(1 + ǫ)

Γ(1 + 2ǫ)Γ(1− 6ǫ)

= 1− 33ζ2
2

ǫ2 − 69ζ3ǫ
3 +

225ζ4
16

ǫ4 +

(

2277ζ2ζ3
2

− 7743ζ5
5

)

ǫ5

+

(

−209989ζ6
128

+
4761ζ23

2

)

ǫ6 +O
(

ǫ7
)

(24)

I4(ǫ) = −2(D − 4)3(D − 3)(3D − 11)Re

{
∫

[k1k2q]
1

D1D3D6D8

}

=
e3γEǫΓ4(1− ǫ)Γ2(1 + ǫ)Γ(1− 3ǫ) 3F2(1,−ǫ, ǫ; 1− 2ǫ, 1− ǫ; 1)

Γ2(1− 2ǫ)Γ(1 + 2ǫ)Γ(1− 6ǫ)

= 1− 35ζ2
2

ǫ2 − 71ζ3ǫ
3 +

713ζ4
16

ǫ4 +

(

2473ζ2ζ3
2

− 7938ζ5
5

)

ǫ5

+

(

−193303ζ6
128

+
5005ζ23

2

)

ǫ6 +O
(

ǫ7
)

(25)

I5(ǫ) = (D − 4)3(D − 3)(3D − 11)Re

{∫

[k1k2q]
1

D1D3D5D10

}

=
e3γEǫǫ2Γ5(1− ǫ)Γ3(1 + ǫ)Γ(1− 3ǫ) 3F2(1, 1 + ǫ, 1 + 2ǫ; 2− ǫ, 2 + ǫ; 1)

Γ2(1− 2ǫ)Γ(1 + 2ǫ)Γ(1− 6ǫ)Γ(2− ǫ)Γ(2 + ǫ)
(26)

= ζ2ǫ
2 + 3ζ3ǫ

3 − 29ζ4ǫ
4 +

(

−229ζ2ζ3
2

+
75ζ5
2

)

ǫ5 +

(

−12155ζ6
64

− 195ζ23

)

ǫ6 +O
(

ǫ7
)

I6(ǫ) = 2(D − 4)3(2D − 7)(3D − 11)Re

{
∫

[k1k2q]
1

D2D4D5D10

}

=
e3γEǫΓ3(1 + ǫ)Γ2(1− ǫ)Γ2(1− 3ǫ) 3F2(−ǫ, ǫ, ǫ; 1 − 2ǫ, 1− ǫ; 1)

Γ(1 + 2ǫ)Γ(1− 4ǫ)Γ(1− 6ǫ)

= 1− 33ζ2
2

ǫ2 − 74ζ3ǫ
3 − 223ζ4

16
ǫ4 +

(

1222ζ2ζ3 −
16701ζ5

10

)

ǫ5

+

(

−167333ζ6
128

+
5483ζ23

2

)

ǫ6 +O
(

ǫ7
)

(27)

I7(ǫ) =
3(D − 4)5

10
Re

{∫

[k1k2q]
1

D1D2D3D6D10

}

=
2e3γEǫΓ4(1− ǫ)Γ2(1 + ǫ)Γ(1− 3ǫ) 3F2(1, 1,−3ǫ; 1− 3ǫ, 1− 2ǫ; 1)

5Γ2(1− 2ǫ)Γ(1 + 2ǫ)Γ(1− 6ǫ)
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= 1− 201ζ2
10

ǫ2 − 451ζ3
5

ǫ3 +
5757ζ4
80

ǫ4 +

(

17439ζ2ζ3
10

− 9489ζ5
5

)

ǫ5

+

(

−163813ζ6
640

+
38261ζ23

10

)

ǫ6 +O
(

ǫ7
)

(28)

I8(ǫ) =
3(D − 4)5(3D − 14)

11(3D − 13)
Re

{
∫

[k1k2q]
1

D2D3D4D5D6D10

}

=
9e3γEǫΓ3(1 + ǫ)Γ2(1− ǫ)Γ(1− 2ǫ) 4F3(1,−2ǫ,−ǫ, 1 + ǫ; 1− ǫ, 1− ǫ,−3ǫ; 1)

11Γ(1 + 2ǫ)Γ(1− 6ǫ)

= 1− 349ζ2
22

ǫ2 − 741ζ3
11

ǫ3 − 1197ζ4
176

ǫ4 +

(

23427ζ2ζ3
22

− 84093ζ5
55

)

ǫ5

+

(

−2443225ζ6
1408

+
49683ζ23

22

)

ǫ6 +O
(

ǫ7
)

(29)

I9(ǫ) =
9(D − 4)5(3D − 14)

16(3D − 13)
Re

{
∫

[k1k2q]
1

D1D3D4D5D6D8D10

}

+
1

3D − 14

(

− 2I1(ǫ) + 3I4(ǫ)− 6I5(ǫ)
)

=
e3γEǫΓ3(1− ǫ)Γ3(1 + ǫ)Γ2(1− 3ǫ)

2Γ(−6ǫ)Γ(1 + 2ǫ)Γ(1− 2ǫ)Γ(1− 4ǫ)Γ(2 + ǫ)
×

× F 0:3:3
1:1:1





— 1, 1,−2ǫ −ǫ,−ǫ,−2ǫ

−4ǫ 2 + ǫ 1− ǫ
; 1, 1





− 1

2(1 + 3ǫ)

(

− 2I1(ǫ) + 3I4(ǫ)− 6I5(ǫ)
)

= 1− 3ζ2ǫ
2 − 14ζ3ǫ

3 − 5235ζ4
16

ǫ4 +

(

−1455ζ2ζ3
2

− 7131ζ5
10

)

ǫ5

+

(

−312085ζ6
64

− 2747ζ23
2

)

ǫ6 +O
(

ǫ7
)

. (30)

While integrals I1(ǫ) through I8(ǫ) can be simply expressed in terms of gamma functions and

generalized hypergeometric functions, I9(ǫ) is more complicated. In particular, it involves

the Kampé de Fériet function (see Ref. [59], Eq. (1.3.2.1) for our Kampé de Fériet function

conventions)

F 0:3:3
1:1:1





— 1, 1,−2ǫ −ǫ,−ǫ,−2ǫ

−4ǫ 2 + ǫ 1− ǫ
; 1, 1



 =
∞
∑

m=0

∞
∑

n=0

m!(−2ǫ)m [(−ǫ)n]
2 (−2ǫ)n

n!(1 − ǫ)n(2 + ǫ)m(−4ǫ)n+m

,

where (r)s =
Γ(r + s)

Γ(r)
. (31)

A few words about our derivation of the master integrals are in order. Although, for

the most part, we wish to defer the discussion of the novel method used to do the integrals

to a more technical future publication, let us briefly describe some consistency checks on

11



Eqs. (22)-(30) that we found useful. For all integrals, a good first step is to integrate out the

virtual momentum q since, in all cases, one obtains simple expressions built out of gamma

functions and Gauss hypergeometric functions. The numerical sector decomposition [60, 61]

code FIESTA 3 [62] was successfully used to check our virtual integrations for sign errors.6

Unfortunately, more stringent checks on the virtual integrations with FIESTA 3 could not

be performed with confidence due to apparent stability issues with the numerical integra-

tion routines. For all of the integrals except I5(ǫ) and I9(ǫ), we found that the phase space

integrals over k1 and k2 that remain once q has been integrated out could be numerically

checked in Mathematica for appropriate real, negative values of ǫ using a parametrization

employed in earlier work (see Refs. [63–65]). In all cases where our parametrization ap-

plies7, we found that our analytical results could be checked numerically at the level of the

phase space integrals to at least seven significant digits for several appropriately chosen but

essentially random values of ǫ.8 Fortunately, the two integrals whose phase space integrals

do not admit a straightforward parametrization for technical reasons, I5(ǫ) and I9(ǫ), are

actually the simplest to set up in our non-standard analytical approach. Our results for

I5(ǫ) and I9(ǫ) were verified a posteriori by using them to carry out the stringent global

consistency checks described at the end of this work. To derive the Taylor expansions of

integrals I1(ǫ) through I8(ǫ), we made extensive use of the Mathematica package HypExp

[66, 67]. As a sanity check, we performed a completely independent expansion of the master

integral I6(ǫ) using general-purpose integration scripts written by one of us (see Ref. [65])

and found complete agreement.

The master integral I9(ǫ) is somewhat more subtle than I1(ǫ)-I8(ǫ). In an attempt to

expand the second line of Eq. (30) in ǫ, we encountered the single-parameter integral
∫ 1

0

du u−2−3ǫ(1− u)−1−2ǫ
(

2F1 (−ǫ,−ǫ; 1 − ǫ; 1− u)
)2

. (32)

Historically, such integrals were considered pathological due to the fact that, näıvely, they do

not appear to be sector-decomposable. The problem is that the integrand of (32) has small

u asymptotics of the too-singular form u−2−3ǫ. Integrals such as (32) have appeared in other

6 It is worth pointing out that, although we have absorbed the operation of taking the real part into the

definitions of our master integrals, they are complex functions of ǫ at the level of FIESTA and it is therefore

essential to use version 3 since earlier versions of the code support only Euclidean kinematics.
7 Roughly speaking, we expect our methods to apply in a straightforward manner if the dependence of the

phase space integrals on the dot product k1 ·k2 is of the form (k1 ·k2)p(ǫ) for some linear polynomial, p(ǫ).
8 Of course, values of ǫ which lead to a convergent numerical integration must be chosen.
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QCD computations. For example, in Ref. [68], a dedicated unitarity-based sewing method

was used to avoid classes of integrals with similar power-law singularities. In fact, we found

that we were able to treat integrals like (32) in a very direct way. First, observe that the

above integral converges for all complex ǫ such that Re(ǫ) < −1/3. In spite of the fact that

the integral does not converge in a neighborhood of ǫ = 0, one can expand (32) in a Laurent

series about ǫ = 0 anyway by carefully applying the principle of analytical continuation. To

understand this, begin by considering a fictitious, alternative representation of our result,

Eq. (33), written in terms of integrals free of power-law divergences which converge in a

neighborhood of ǫ = 0. This hypothetical representation should always exist if all of the

divergences in the calculation are regulated by ǫ. Using the fact that all Feynman integrals

in dimensional regularization are analytic functions of ǫ, one can perform an analytical

continuation to a value of ǫ which happens to simultaneously lie in the region of convergence

of (32) and I1(ǫ) through I8(ǫ). Now, by performing an integration by parts reduction on

the fictitious representation, one can recover the precise form of Eq. (33), written in terms

of our preferred basis of master integrals. Due to the fact that, by assumption, the point in

the complex ǫ plane to which the original analytical continuation was performed lies within

the domain of convergence of all of our master integrals, one can derive the closed formulas

for I1(ǫ)-I9(ǫ) given above (the second lines of Eqs. (22)-(30)) in this region of the complex

ǫ plane. Finally, one can analytically continue back to the point ǫ = 0 and derive Laurent

expansions for all of the masters integrals using standard techniques. Carrying out this

program explicitly was necessary to Laurent expand I9(ǫ) about ǫ = 0 and our analysis will

be presented in a future publication which features an in-depth discussion of the master

integrals.

Our choice of integral basis also requires some explanation. As is clear from the Taylor

series expansions of our master integrals, the definitions we have made are such that all of

the Ij(ǫ) are pure functions in the sense of reference [69]. As we shall see, the all-orders-in-ǫ

result for Si: 2R−V
3 (ǫ) assumes a particularly simple form when expressed in terms of the

integral basis defined above. After integration by parts reduction, it can be written as

Si: 2R−V
3 (ǫ) = CiC

2
A

[(

− 170512

243(D − 4)
+

6368

9(D − 3)
− 560

243(D − 1)
+

14272

27(D − 4)2
+

180

(D − 3)2

− 68

81(D − 1)2
− 8576

27(D − 4)3
+

1408

9(D − 4)4
+

256

27(D − 4)5
− 32

9(D − 6)

)

I1(ǫ)
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+

(

− 160000

243(D − 4)
+

2048

3(D − 3)
− 32

D − 2
+

12032

1215(D− 1)
+

52864

81(D − 4)2

− 17152

27(D − 4)3
+

5632

9(D − 4)4
− 2816

9(D − 4)5
− 32

15(D − 6)

)

I2(ǫ) +
768

(D − 4)5
I3(ǫ)

+

(

160

9(D − 4)
− 64

3(D − 3)
+

64

45(D − 1)
− 64

3(D − 4)2
− 256

3(D − 4)5

+
32

15(D − 6)

)

I4(ǫ) +

(

− 320

9(D − 4)
+

128

3(D − 3)
− 128

45(D − 1)
+

128

3(D − 4)2

+
512

3(D − 4)5
− 64

15(D − 6)

)

I5(ǫ) +

(

81728

243(D − 4)
− 1024

3(D − 3)
+

896

1215(D− 1)

− 28160

81(D − 4)2
+

8576

27(D − 4)3
− 2816

9(D − 4)4
− 512

9(D − 4)5
+

64

15(D − 6)

)

I6(ǫ)

− 10240

27(D − 4)5
I7(ǫ)−

2816

9(D − 4)5
I8(ǫ)−

512

9(D − 4)5
I9(ǫ)

]

−C2
i CA

1536

(D − 4)5
I3(ǫ)

+CiCAnf

[(

− 928

243(D − 4)
− 64

9(D − 3)
+

16

D − 2
− 1664

243(D − 1)
− 16

9(D − 1)2

+
1504

81(D − 4)2
− 16

(D − 3)2
− 1216

27(D − 4)3
+

256

9(D − 4)4
+

16

9(D − 6)

)

I1(ǫ)

+

(

27328

243(D − 4)
− 512

3(D − 3)
+

112

3(D − 2)
+

24064

1215(D − 1)
− 8320

81(D − 4)2

+
64

(D − 2)2
+

2560

27(D − 4)3
− 1024

9(D − 4)4
+

16

15(D − 6)

)

I2(ǫ) +

(

− 256

9(D − 4)

+
128

3(D − 3)
− 16

D − 2
+

128

45(D − 1)
+

64

3(D − 4)2
− 16

15(D − 6)

)

I4(ǫ)

+

(

512

9(D − 4)
− 256

3(D − 3)
+

32

D − 2
− 256

45(D − 1)
− 128

3(D − 4)2

+
32

15(D − 6)

)

I5(ǫ) +

(

− 17984

243(D − 4)
+

256

3(D − 3)
− 32

3(D − 2)
− 32

15(D − 6)

+
5888

81(D − 4)2
− 1280

27(D − 4)3
+

512

9(D − 4)4
+

1792

1215(D − 1)

)

I6(ǫ)

]

+CiCFnf

(

− 544

3(D − 3)
+

160

243(D − 1)
− 128

3(D − 3)2

+
43904

243(D − 4)
− 11072

81(D − 4)2
+

2432

27(D − 4)3
− 512

9(D − 4)4

)

I1(ǫ)

+Cin
2
f

(

− 64

3(D − 3)
− 16

3(D − 3)2
− 16

81(D − 1)2

+
64

3(D − 4)
− 1280

81(D − 4)2
+

256

27(D − 4)3

)

I1(ǫ) . (33)

The compact form of Eq. (33) is due in large part to the absence of spurious poles in the
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coefficients of our master integrals; the coefficients of the basis integrals in Eq. (33) have

poles at positive integer values of D only. By rewriting the above expression in terms of a

more conventional basis such as the one supplied by Reduze 2 out of the box, it becomes

clear that this intriguing feature of our result is a direct consequence of the fact that the

Ij(ǫ) are pure functions. For a problem with similar kinematics, the computation of the

three-loop form factors in massless QCD, it was observed in Ref. [70] (in slightly different

language) that an integral basis of pure functions could be written down for all master

integrals. However, to the best of our knowledge, our paper is the first to show that,

even for single-scale problems, it is reasonable to expect the pole structure of the reduced

integrand to dramatically simplify when it is expressed in terms of a basis of pure functions.

Substituting the Taylor expansions of the master integrals, Eqs. (22)-(30), into Eq. (33) and

expanding in ǫ, we find

Si: 2R−V
3 (ǫ) = CiC

2
A

[

40

3ǫ5
+

88

3ǫ4
+

(

2144

27
− 692ζ2

3

)

1

ǫ3
+

(

16448

81
− 4004ζ2

9
− 3208ζ3

3

)

1

ǫ2

+

(

40744

81
− 33232ζ2

27
− 16280ζ3

9
− 667ζ4

6

)

1

ǫ
+

870688

729
− 256880ζ2

81

−134000ζ3
27

− 2101ζ4
6

+ 18380ζ2ζ3 −
70744ζ5

3
+

(

6039424

2187
− 1930348ζ2

243

−114112ζ3
9

− 1742ζ4
9

+
81620ζ2ζ3

3
− 636944ζ5

15
− 1591043ζ6

144
+

125284ζ23
3

)

ǫ

]

+C2
i CA

[

48

ǫ5
− 792ζ2

ǫ3
− 3312ζ3

ǫ2
+

675ζ4
ǫ

+ 54648ζ2ζ3

−371664ζ5
5

+

(

−629967ζ6
8

+ 114264ζ23

)

ǫ

]

+CiCAnf

[

− 16

9ǫ4
− 8

27ǫ3
+

(

200

81
+

200ζ2
9

)

1

ǫ2
+

(

−752

243
− 188ζ2

27

+
880ζ3
9

)

1

ǫ
− 22384

729
− 6676ζ2

81
− 280ζ3

27
+

469ζ4
3

+

(

−251120

2187

−11624ζ2
243

− 27272ζ3
81

+
5941ζ4
18

− 3400

3
ζ2ζ3 +

11712ζ5
5

)

ǫ

]

+CiCFnf

[

− 32

9ǫ4
− 304

27ǫ3
+

(

−2768

81
+

176ζ2
3

)

1

ǫ2
+

(

−21952

243
+

1672ζ2
9

+
2080ζ3

9

)

1

ǫ
− 163136

729
+

15224ζ2
27

+
19760ζ3

27
− 278ζ4

3

+

(

−1166080

2187
+

120736ζ2
81

+
179920ζ3

81
− 2641ζ4

9
− 11440

3
ζ2ζ3 +

80672ζ5
15

)

ǫ

]
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+Cin
2
f

[

− 32

27ǫ3
− 320

81ǫ2
+

(

−32

3
+

176ζ2
9

)

1

ǫ
− 19456

729
+

1760ζ2
27

+
2080ζ3
27

+

(

−140032

2187
+ 176ζ2 +

20800ζ3
81

− 278ζ4
9

)

ǫ

]

+O
(

ǫ2
)

. (34)

The Laurent series expansion of Si: 2R−V
3 (ǫ) given above is the main result of this paper.

In order to ensure the correctness of our results, we found it useful to perform several

consistency checks at various stages of the calculation. First, recall that, while constructing

the raw integrand, we made use of a physical lightcone gauge for our final state gluons. It

turns out that running our code twice, once with n as the lightcone reference vector for all

gluons and once with n̄ as the lightcone reference vector for all gluons, allows for a very

stringent check at the stage of integral reduction. The reason for this is as follows. At

the level of the unreduced integrand, using a physical gauge with some choice of reference

vector breaks the n − n̄ symmetry of the expression expected by virtue of the fact that

our soft Wilson line operators are back-to-back. This symmetry, however, is restored after

integral reduction and, most importantly, before reducing all Feynman integrals to masters,

we observed that many integrals enter one or the other of the two expressions we derived but

not both. Thus, reducing our two seemingly different expressions for the raw integrand down

to Eq. (33) furnished a non-trivial check on the calculation. This check was complementary

to a more conventional check on the gauge invariance of Eq. (33); we employed a general

Rξ gauge for our internal gluons and confirmed that the gauge parameter, ξ, drops out of

our final results.

The final and most important check on our calculation was an explicit comparison to the

relevant literature. After extracting the one-, two-, and three-loop expansion coefficients of

the hard functions from Refs. [23–26, 71, 72] and deducing the one-, two-, and three-loop

expansion coefficients of the renormalized soft functions from our calculation and various

complete and partial results existing in the literature [31–37, 48], we were able to use Eq.

(8) to reproduce the full tower of plus distributions of the form
[

lnm(1− z)

(1− z)

]

+

, m = 0 . . . 5

for both gluon fusion Higgs production and Drell-Yan lepton production. In this endeavor,

we used [38] as our primary reference for the predictions provided by renormalization group

invariance for the processes of interest but should point out that similar studies have been

carried out by many different groups over the years [44, 73–75]. Even better, for the case
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of Higgs boson production, we were able to reproduce the δ(1 − z) terms in the full N3LO

result obtained recently by the authors of Ref. [28] and, for the case of Drell-Yan lepton

production, we were able to reproduce the prediction for the δ(1 − z) terms made recently

in Ref. [76] using completely different methods. Of course, this is really a check on the

δ(1− z) term coming from the double-emission, one-loop real-virtual corrections treated in

this paper, not the δ(1 − z) term in the full N3LO result because, so far, no independent

calculation of the triple-emission real contributions has appeared confirming that the anal-

ysis of [37] is correct. Nevertheless, the fact that we were able to completely reproduce the

results presented in Ref. [28] is highly non-trivial and very encouraging.

We have taken a decisive step in this work towards a fully independent calculation of the

total cross section at threshold for gluon fusion Higgs production and Drell-Yan lepton pair

production at N3LO. In this paper, we focused on the calculation of the double-emission,

one-loop real-virtual contributions to the bare three-loop threshold soft functions for gluon

fusion Higgs production and Drell-Yan lepton production. As explained above, we found

results completely consistent with all of the available literature on the subject. During the

course of our calculation, we made significant technical advances in the evaluation of cut

eikonal phase space integrals which allowed us to compute all of our master integrals to all

orders in ǫ. It would be very interesting to try and carry out a similar program for the

master integrals that one finds in the computation of the triple-emission real contributions

to the bare three-loop soft functions. This would be useful because complete all-orders-in-ǫ

results for the three-loop bare soft functions would save future researchers the trouble of

revisiting the calculations performed in Ref. [37] if it turns out to be necessary to calculate

to one order higher (to N4LO) in perturbative QCD. In fact, it may well be that our master

integrals find useful application as input integrals to the systems of differential equations

that will presumably be derived in the future when an attempt is made to calculate the full

z-dependent partonic cross sections for the processes we have considered at threshold.

We also noted in this work that the use of an integral basis composed of pure functions

leads to remarkable simplifications at the level of the reduced integrand, Eq. (33). In stark

contrast to more conventional bases of master integrals, our basis of pure functions is such

that the coefficients of the master integrals have poles only at D = 1, 2, 3, 4, and 6. We

argued that this property is a direct consequence of the niceness of our integral basis which

would certainly not hold in general. In fact, the most complicated pure function in our basis
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was identified by demanding that spurious singularities at D = 14/3 disappear. In the near

future, we plan to complete the research program initiated by two of us in Ref. [31] and treat

the triple-emission real corrections. Whether or not we will manage to obtain all-orders-in-ǫ

expressions remains to be seen and should help us to more accurately assess the scope of

applicability of the methods that we developed to carry out the calculations discussed in

this paper. Our hope is that the N3LO threshold production cross section calculations con-

sidered in this work and elsewhere [28, 31–37] will, once N3LO parton distribution function

fits become available, allow for more accurate inclusive predictions than ever before and

significantly advance the physics program of the Large Hadron Collider.
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