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1 Introduction

The purpose of the present note is to establish a geometric formula for the entropy of certain
superconformal interfaces between N = (2, 2) superconformal sigma models. As is well known,
in the large volume limit the target spaces of such sigma models are Calabi-Yau manifolds. The
interfaces of interest separate theories with the same Kähler modulus but different complex
structure, or vice versa, and they reduce to the trivial interface when the moduli of the two
theories coincide. Our main result is that for such interfaces

2 log g = K(t, t̄) +K(t′, t̄′)−K(t, t̄′)−K(t′, t̄), (1.1)

where g is the universal degeneracy [1] of the interface 1 , t and t′ are the moduli of the theories
on either side of the interface, and K is the Kähler function on moduli space.

The right-hand side of the above equation is a known quantity in Kähler geometry; it
is the so-called Calabi diastatic function [2]. It can be defined on any Kähler manifold (this
requires showing that the analytic continuation of K(z, z̄) to independent z and z̄ makes
sense, which is done in [2]). A nice feature of the combination (1.1) is that the Kähler-Weyl
dependence of K(z, z̄) cancels out. Furthermore, it agrees with the geodesic distance at small
separations, but has the property that it is preserved under restriction to a submanifold.

Equation (1.1) gives a world-sheet definition of the diastatic function that can be used
away from the geometric, large volume limit. It is a natural extension of the well-known
formula that relates the (quantum) Kähler potential to the norm of a canonical Ramond-
Ramond (RR) ground state in the sigma model, [3, 4]

RR〈0̄|0〉RR = e−K(t,t̄) . (1.2)

Recently, [5, 6] the norm of this RR ground state has been related to the partition function
of N = (2, 2) gauge theories on the (squashed) two-sphere, which can be computed exactly
using the technique of localization [7, 8]. This is a new way to compute world-sheet instanton
corrections to the Kähler potential, and to extract Gromov-Witten invariants, without the
need to identify and solve a classical geometric mirror problem.

Similarly, through equation (1.1) one may relate quantum corrections to Calabi’s diastasis
function to the partition function on the (squashed) two-sphere in the presence of certain
N = 2 supersymmetric domain walls. Localization techniques for the computation of the
latter have been developed recently in [9, 10]. They could be used to extract the relevant
“open-string” Gromov-Witten invariants, which are notoriously hard to compute by other
means.

We were actually led to this formula while studying the following broader question: how to
define alternative metric(s) on spaces of conformal field theories [11] ? One promising proposal

1When the interface is viewed as an operator between the initial and deformed theory, then g is the image
of the identity projected to the identity of the other theory, see Section 4 for more details.
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[12] is to define the distance between CFT1 and CFT2 as

d(1, 2) = minS
√

log g , (1.3)

where S is an appropriate set of interfaces which separate the two conformal theories. An
appealing feature of such a definition is that d reduces to the Zamolodchikov metric whenever
CFT1 can be obtained from CFT2 by a small variation of continuous moduli. In the special
case of N = (2, 2) models this follows immediately from (1.1), but the proof is more general
[12] and does not require the use of supersymmetry. Another appealing feature of the above
definition is that CFT1 and CFT2 need not belong to the same moduli space, or even have
the same central charge. In particular, equation (1.1) extends the definition of the diastatic
function to pairs of sigma models separated by an N = 2 interface, even when these sigma
models belong to different moduli spaces.

Despite its intuitive appeal, the proposal (1.3) does not automatically obey the axioms for
a proper distance. In particular, conformal interfaces may have negative entropy, and Calabi’s
diastasis need not always obey, as we will show, the triangle inequality. Ideas for bypassing
these obstructions, by restricting the set S of allowed interfaces, will be discussed elsewhere
[12]. Here we concentrate on proving formula (1.1), which is interesting in its own right as a
new entry in the “worldsheet versus target-space geometry” dictionary.

The paper is organized as follows: in section 2 we prove formula (1.1) in the simplest
case of N = (2, 2) sigma model whose target space is the two-dimensional torus. We give
both an algebraic and a geometric derivation of g for any moduli deformations, and show
that it reduces to (1.1) when either the Kähler or the complex structure are held fixed. In
section 3 we extend the geometric derivation to arbitrary Calabi-Yau n-folds with n > 1.
This uses the well-known “folding trick”, to map the interfaces to branes in a product Calabi-
Yau manifold. Section 4 presents an algebraic derivation of this result, which only relies on
the N = 2 supersymmetry of the interface. This shows that interface entropy provides a
natural extension of Calabi’s diastasis in the non-geometric regime, and even when the two
worldsheet theories do not belong to the same moduli space. Finally, in section 5 we show
that Calabi’s diastasis function does not obey the triangle inequality in spaces with positive
sectional curvature, and may hence fail one of the key tests for a proper distance. We conclude
the section with some remarks.

2 The two-dimensional torus CFT

The simplest Calabi-Yau manifold is the two-dimensional torus, T 2 = R2/(Z×Z). As a warm
up, we shall first derive the formula (1.1) in this special case.

We parametrize the torus by (x, y) ∈ (0, 1] × (0, 1]. The Kähler and complex structure
moduli, τ = τ1 + iτ2 and ρ = ρ1 + iρ2, are related to the flat metric, G, and antisymmetric
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Neveu-Schwarz field, B, as follows:2

G =
τ2

ρ2

(
1 ρ1

ρ1 |ρ|2

)
, B =

(
0 τ1

−τ1 0

)
. (2.1)

In terms of the complex coordinate z = x+ ρy one has

ds2 =
τ2

ρ2
dzdz̄ ⇐⇒ k =

i

2

τ2

ρ2
dz ∧ dz̄ = τ2 dx ∧ dy , (2.2)

where k is the real Kähler form. It is complexified by the addition of the Neveu-Schwarz
2-form, ω = B + ik with B = τ1 dx ∧ dy. The holomorphic (1, 0) form is Ω = dz, up to an
irrelevant multiplicative constant.

The moduli space of N = (2, 2) superconformal theories with target space T 2 consists of
two copies of the symmetric coset M = SL(2,Z)\SL(2,R)/SO(2). One copy parametrizes
the complex structure modulus, and the other the Kähler modulus. T-duality exchanges τ
and ρ, so that the full moduli space is (M×M)/Z2. The metric on this moduli space derives
from the Kähler potential

K = KK(τ, τ̄) +KC(ρ, ρ̄) , (2.3)

where KK and KC are given by

KK = −log

(∫
M
k

)
= −log τ2 , KC = −log

(∫
M

i

2
Ω ∧ Ω̄

)
= −log ρ2 . (2.4)

The SL(2,R) transformations of τ and ρ act as Kähler-Weyl transformations on the Kähler
potential, K → K+f+ f̄ where f is a holomorphic function of τ and ρ. Such transformations
leave the metric invariant, as expected.

2.1 Algebraic derivation

Consider now two conformal theories with moduli (τ, ρ) and (τ ′, ρ′). We will be interested in
a special conformal interface between these two theories – the “deformed identity” interface
introduced and discussed in [13–16]. This is the deformation of the trivial defect (the “no
interface”) as the moduli of the second CFT vary continuously from (τ, ρ) to (τ ′, ρ′).

In general, such an interface could depend on the specific deformation path, as well as
on (open-string) moduli. However, we expect the deformed identity to only depend on the
homotopy class of the deformation path, and its g-function to be independent of open-string
moduli. In the case at hand this will be manifest from the explicit expression for g. We will
argue below that this holds more generally. Thus log g is a well-defined function of pairs of
points on the covering space of moduli space, i.e. on two copies of the upper-half complex
plane.

2Later, we will refer to the complex structure moduli collectively as t, and to the Kähler moduli as u. But
for the 2-torus we use the more canonical notation, ρ and τ .
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Both the trivial interface, and its deformations, preserve the U(1)4 symmetry of the
toroidal theory. Such symmetry-preserving interfaces were analyzed recently in [16], where it
was shown that their g-function can be written as

log g =
1

2
log det(Λ22) , with Λ =

(
Λ11 Λ12

Λ21 Λ22

)
(2.5)

the SO(2, 2) matrix that relates the even self-dual Lorentzian charge lattices of the two theo-
ries. Written in 2× 2-block form, this matrix obeys Λt

(
0 1

1 0

)
Λ =

(
0 1

1 0

)
.

One can give an explicit formula for the matrix Λ corresponding to the deformed identity
by using the expression for the charge lattice of toroidal models in terms of the metric G and
Kalb-Ramond field B [17]. The answer is 3

Λ = V ′V −1 with V =

(
ê ê(B +G)

ê ê(B −G)

)
, (2.6)

where ê is the vielbein that satisfies 2 êt ê = G−1, and there is a similar expression for V ′.
Inserting these formulae and (2.1) in equation (2.5) leads to the following expression for the
g-function of the deformed identity:

gd.i. =

[
(τ − τ̄ ′)(τ ′ − τ̄)

(τ − τ̄)(τ ′ − τ̄ ′) +
(ρ− ρ̄ ′)(ρ′ − ρ̄)

(ρ− ρ̄)(ρ′ − ρ̄ ′) − 1

]1/2

. (2.7)

As anticipated earlier, this is a well-defined function of τ ′, ρ′ as these range over the (simply-
connected) covering space of the CFT moduli space. Note that gd.i. is invariant under a
simultaneous SL(2,Z) transformation of the primed and unprimed moduli, but not under a
transformation of only one of the two CFTs.

2.2 Geometric derivation

The expression (2.7) can be derived more directly, in a way that will generalize to any large
volume Calabi-Yau n-fold. The starting point is the folding trick, which maps an interface
between σ-models with target spaces M and M ′ to a boundary of the σ-model with target
spaceM×M ′ [13, 18, 19]. When the two σ-models are identical there exists a trivial interface
across which all the fields are continuous – the “no interface”. This is mapped after folding
to the diagonally-embedded middle-dimensional D-brane: M →M ×M given by x→ (x, x).
Now as one of the σ-models is deformed, this diagonal brane is also deformed to a new brane,
∆f , which we describe (at least locally) as the graph of a function f from M to M ′. Put
differently, ∆f is given by the embedding x→ (x, f(x)) ∈M ×M ′.

We may determine f by minimizing the g-function of the brane – this is the condition of
conformal invariance. In the large volume limit, the g-function is the appropriately normalized

3More general U(1)4 symmetric interfaces are given by Λ = V ′Λ̂V −1 where Λ̂ is an element of O(2, 2,Q).
These have g =

√
l.c.m.× |Λ22| where l.c.m. is the least common multiple of the matrix elements of Λ̂ [16].
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Dirac-Born-Infeld action (see e.g. [20]):

g '
∫
M det1/2(G−B + f∗G′ + f∗B′)√

2d V ol(M) V ol(M ′)
. (2.8)

Here f∗ denotes the pullback from M ′ to M , and we note that folding flips the sign of B
thereby complex-conjugating the Kähler form of the folded σ-model. In the toroidal case at
hand this amounts to trading (τ, ρ) for (−τ̄ , ρ). Note also the normalization of the DBI action
by the volume factors in (2.8). This can be fixed by requiring that g = 1 for the trivial (or
identity) interface. 4

For toroidal theories, the identity defect is a diagonally-embedded planar D2-brane. As
one of the two tori is deformed this D2-brane follows suit, i.e. it is still given by the planar
diagonal embedding x = x′ and y = y′ where (x, y) and (x′, y′) are the canonically-normalized
flat coordinates of the two tori. One thus finds

gd.i. =
1√

4τ2τ ′2
det1/2(G+G′ −B +B′) , (2.9)

which after inserting (2.1) and doing some simple algebra leads to the result (2.7) for the
g-function of the deformed identity. Note that the two, geometric and algebraic, derivations
of g give the same result, because the DBI approximation (2.8) is in this case exact.

2.3 Supersymmetry and diastasis

Expression (2.7) simplifies considerably if ρ = ρ′, i.e. if one keeps the complex structure fixed
and only deforms the Kähler modulus of the torus. The folded interface is in this case the
holomorphic brane z = z′, and

2 log gd.i.

∣∣∣
ρ=ρ′

= −log(τ − τ̄)− log(τ ′ − τ̄ ′) + log(τ − τ̄ ′) + log(τ ′ − τ̄) , (2.10)

which is precisely Calabi’s diastasis function for the potential (2.4).

The same conclusion holds if one only deforms the complex structure, ρ, keeping the
Kähler modulus, τ , fixed. The g function of such branes is given again by Calabi’s diastasis,

2 log gd.i.

∣∣∣
τ=τ ′

= −log(ρ− ρ̄)− log(ρ′ − ρ̄′) + log(ρ− ρ̄′) + log(ρ′ − ρ̄) . (2.11)

This is of course expected by mirror symmetry. For later use, it is nevertheless interesting to
understand how supersymmetry is preserved in this case.

To this end, we consider the 2-form Ω̄∧Ω′ = dz̄ ∧ dz′. The D-brane corresponding to the
folded interface obeys trivially

Im(eiθ dz̄ ∧ dz′)
∣∣∣
∆f

= Im[eiθ (ρ′ − ρ̄)dx ∧ dy]
∣∣∣
∆f

= 0 , (2.12)

4In string theory, the g-function of a D-brane wrapping some dimensions of the compact space is the mass
of the corresponding point-particle in the Einstein frame.
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where −θ is the phase of the complex number (ρ ′ − ρ̄). Furthermore, since τ = τ ′, the
restriction of the two Kähler forms on the D-brane is the same,

(k − k′)
∣∣∣
∆f

= 0 . (2.13)

Finally the following two top-forms are equal to the volume form of the doubled torus, up to
an irrelevant multiplicative constant:

(dz̄ ∧ dz′) ∧ (dz ∧ dz̄ ′) = C(k − k′)2 . (2.14)

The set of conditions (2.12)-(2.14) define special lagrangian submanifolds, which preserve
N = 2 supersymmetries in any Calabi-Yau space.

In conclusion, interfaces between theories which differ only in complex structure, or in
Kähler form, preserve half of the bulk supersymmetries, and their entropy is the diastasis
function. Note that if one varies both τ and ρ, then (2.7) is not any more related to the
diastasis function. 5 Nevertheless, these two functions do coincide for small deformations at
quadratic order. This is actually a general fact:

√
log g of the deformed-identity can be shown

to reduce to the Zamolodchikov distance for all infinitesimal marginal deformations of a 2d
conformal theory, whether they preserve supersymmetry or not [12].

3 Large volume Calabi-Yau σ-models

It is straightforward to extend the geometric arguments of the previous subsection to any
Calabi-Yau sigma model in the large volume limit. The product of two Calabi-Yau n-folds,
M ×M ′, is also a Calabi-Yau manifold of complex dimension 2n. Its Kähler form is k + k′,
and its holomorphic (2n, 0) form Ω ∧ Ω′. Like all Calabi-Yau manifolds, M ×M ′ has two
types of supersymmetric submanifolds [21–24] : the special Lagrangians (A-type), and the
holomorphic submanifolds (B-type). As we will see, these correspond to interfaces between
theories with the same complex, respectively Kähler, structures.

3.1 Kähler structure deformation

Consider the trivial interface between two identical σ-models, which after folding becomes
the diagonal brane M → M ×M given by x → (x, x). This is a holomorphic brane since in
complex coordinates we can write z → (z, z). Let us now deform one of the theories from M

to M ′. If M and M ′ have the same complex structure, the above brane will stay holomorphic
and, in general, there will be no other nearby holomorphic branes.6 The g-function of this

5The reader may here object that any planar brane in a four-torus is half-BPS, and this would continue to
be true for the direct product of any two tori. The unbroken supersymmetries mix however in this case the
fields of the two tensored CFTs, so they are not local symmetries after unfolding.

6If the moduli space is not simply connected, this brane will generally depend on the homotopy class of the
path from M to M ′, and so will its g function. We have already seen an example of this phenomenon in the
case of the torus, as τ → τ + 1 (for one of the arguments) does not leave the diastasis invariant. Nevertheless,
the diastasis is indeed invariant under small deformations of the path in the same homotopy class. This is
because the holomorphic brane comes back to itself when transported around a homotopically trivial path.
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deformed identity is proportional, in the large volume limit, to the Dirac-Born-Infeld action

ghol '
2−n|

∫
M (−ω̄ + ω′)n|

|
∫
M k n|1/2 |

∫
M (k′)n|1/2 , (3.1)

where ω and ω′ are the complexified Kähler forms of M and M ′, and we recall that folding
transforms ω := B+ ik to −ω̄. As explained in the previous section, the normalization factor
can be fixed by requiring that ghol = 1 for the identity, namely when ω = ω′.

Taking the logarithm of (3.1), and using the fact that K(u, ū) ' −log(
∫
M kn) gives

precisely Calabi’s diastasis

2 log (ghol) ' K(u, ū) +K(u′, ū ′)−K(u, ū ′)−K(u′, ū) , (3.2)

where u denotes collectively the Kähler moduli, and we have defined the analytic extension
of K(u, ū) to independent u and ū as follows

K(u′, ū) ' − log

∫
M

[−ω̄(ū) + ω(u′)]n + n log 2 . (3.3)

We expect this last formula to make sense in any open neighborhood of a generic point on
the Kähler cone. That the analytic continuation of K(u, ū) makes sense (and is unique) is a
crucial input in the original work of Calabi.

This proves the equation (1.1) for interfaces separating theories with the same complex
structure but different Kähler forms, in the large volume limit.

3.2 Complex structure deformation

What is the the mirror statement to (3.2)? If M and M ′ have the same Kähler form but
different complex structures, then the deformed identity interface does not correspond to a
holomorphic submanifold. We will now show that it corresponds to a special Lagrangian (sLag)
brane calibrated not by the holomorphic (2n, 0) form, but by the appropriately-normalized
mixed 2n-form ϕ = in Ω̄ ∧ Ω′.

The existence of this extra calibrating form, in addition to the holomorphic volume form,
is due to the fact that M ×M ′ is “more special” as it has SU(n)2 ⊂ SU(2n) holonomy. One
may in particular complex conjugate one of the two manifolds in the product, which gives also
a new symplectic form s = i(k − k′), different from the standard Kähler form k + k′. Clearly,
both ϕ and s are closed forms, and they satisfy, up to normalization, the top-form condition

2−2nϕ ∧ ϕ̄ =
1

(2n)!
s2n = d(volume) . (3.4)

They can thus be used to construct a new class of sLag submanifolds, 7 different from those
constructed with the standard Kähler and holomorphic volume forms.

7This observation has been exploited, for instance, in the context of N = (2, 0) σ-models in [25].
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It is easy to see that the brane ∆id corresponding to the trivial interface belongs to this
new class. The necessary and sufficient conditions (see e.g. [26]),

s
∣∣∣
∆id

= 0 and Imϕ
∣∣∣
∆id

= 0 , (3.5)

are trivialy satisfied in this case. The sLag conditions can still be imposed if we deform the
complex structure of M ′ without changing its Kähler form (so that k = k′). The Lagrangian
requirement for the submanifold ∆f ⊂M ×M ′ now reads

k = f∗k , (3.6)

which says that f preserves the Kähler form – it is a “symplectomorphism”. Many such maps
indeed exist, and they can be specified locally by a single function F (Rez,Rez′) which defines
a canonical transformation. This function can then be determined by the (volume-minimizing)
calibration condition

Im(eiθ ϕ)
∣∣∣
∆f

= Im(eiθin Ω̄ ∧ f∗Ω′) = 0 (3.7)

for some constant phase θ. This gives an equation for the function f , which can be always
solved at least in a local patch. In the toroidal theory of the previous section, f is the map
(x′, y′) = (x, y) as the reader can easily verify.

It has been actually shown [27] that for compact manifolds the moduli space of a sLag
submanifold has dimension equal to its first Betti number. By continuity this should be in
our case the first Betti number of ∆id, which is isomorphic to the Calabi-Yau manifold M .
Since b1(M) vanishes for complex dimension n > 1, the sLag submanifold ∆f is unique in all
cases with the exception of the two-torus.8

The g-function of this sLag D-brane is given by its volume, which by the sLag condition
is the integral of the calibrating form

g sLag =
|
∫
M Ω̄ ∧ f∗Ω′|

(|
∫
M Ω ∧ Ω̄| |

∫
M Ω′ ∧ Ω̄′|)1/2

. (3.8)

The normalization was once again fixed so as to ensure that g = 1 for the trivial interface.
Notice that we do not need here the Dirac-Born-Infeld action, because the B-field on the
D-brane is zero. This is because we have assumed that the two σ-models have the same
complexified Kähler moduli, i.e. k = k′ and B = B′. Since folding flips the sign of B in one
of the models, the net field on the sLag brane vanishes.

Expression (3.8) is again suggestive of an exponentiated diastasis function for the Kähler
potential in complex structure moduli space. We denote complex moduli by t. The analytic
extension of K(t, t̄) = − log

∫
M Ω(t) ∧ Ω̄(t̄) suggested by (3.8) is

K(t′, t̄) = − log

∫
M
f∗Ω(t′) ∧ Ω̄(t̄) , (3.9)

8For the 2-torus the sLag D2-brane has b1 = 2. Its two geometric moduli, which determine the brane’s
position on the doubled torus, get complexified by the Wilson lines along the two non-contractible cycles.
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with f defined by the calibration condition (3.7). Notice that this condition only depends
on t′ and t̄, so the function f does not introduce any implicit dependence on the conjugate
variables, t̄′ and t, as claimed. 9 With this analytic extension one has

2 log (g sLag) = K(t, t̄) +K(t′, t̄ ′)−K(t, t̄ ′)−K(t′, t̄) , (3.10)

which proves the advertised identity (1.1) for interfaces between theories with the same Kähler
structure but different complex structures.

4 Superconformal N = (2, 2) σ-models

We turn next to an algebraic derivation of the basic formula (1.1), which only relies on the
N = 2 superconformal symmetry of the interface. To this end, we view an interface between
two theories, CFT and CFT′, as a formal operator mapping the states on the circle of CFT
to those of CFT′. This has been explained for instance in [13, 14]. Folding converts this
operator to a boundary state of the tensor-product theory CFT ⊗ CFT′, where here the bar
denotes the parity-conjugate theory. We use the same symbol, ∆f , for the operator, for the
corresponding brane, and for its boundary state. Our discussion parallels the analysis ofN = 2

superconformal boundaries by Ooguri et al [23], and we will therefore adopt the conventions
of these authors.

Every interface operator contains a term g |0〉〈0′|+· · · , where |0〉 is the normalized ground
state of theory CFT, and |0′〉 the normalized ground state of theory CFT′. The coefficient
of this term is, by definition, the g-function of the interface. Since we will be working with
non-normalized ground states, we write more generally

g =
〈0|qH ∆f q

H′ |0′〉
〈0|qH |0〉 12 〈0′|qH′ |0′〉 12

, (4.1)

where H and H ′ are the Hamiltonians in the closed-string channel. This expression does not
depend on the evolution time log q, so one can take q → 0 and replace the ground states by
any other states with non-vanishing vacuum components.

4.1 Type-A and type-B boundaries

We are interested in interfaces that preserve a N = 2 superconformal algebra, and which
can be continuously deformed to the identity operator. Since folding converts these operators
to boundary states, we first recall some well-known facts about supersymmetry-preserving
boundaries in N = (2, 2) superconformal theories.

9One may of course complex-conjugate (3.7) and express the calibrating map f , equivalently, in terms only
of the independent variables t̄′ and t.
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Supersymmetric branes come in two varieties, type-A and type-B. The boundary states
of type-A branes obey the following conditions: 10

(G+
L − iG−R) |A〉〉 = (G−L − iG+

R) |A〉〉 = (JL − JR) |A〉〉 = 0 ,

and eiαφ |A〉〉 = eiαφ0 |A〉〉 , (4.2)

where G±L and G±R are the complex left- and right-moving supercurrents, JL and JR are the
R-symmetry currents, and φ =

∫
(JL− JR) = φL + φR. Likewise, the B-type boundaries obey

the conditions

(G+
L − iG+

R) |B〉〉 = (G−L − iG−R) |B〉〉 = (JL + JR) |B〉〉 = 0 ,

and eiαφ̃ |B〉〉 = eiαφ̃0 |B〉〉 , (4.3)

where φ̃ =
∫

(JL + JR) = φL − φR. The above conditions imply that type-A branes couple
only to the (c, c) and (a, a) fields, while type-B branes couple to (c, a) and (a, c) fields. Here
c and a denote chiral and antichiral primaries of the N = 2 superconformal algebra, (c, c) is
a field that is chiral with respect to both the left and the right algebra etc.

Another consequence of the above conditions, which will be important for our purposes
here, has to do with spectral flow. The two spectral-flow operators are eicφ/6 and eicφ̃/6, with
c the central charge of the CFT. It follows then from (4.2) and (4.3) that

〈〈A|0〉 = e−icφ0/6 〈〈A|0〉RR and 〈〈B|0̃〉 = e−icφ̃0/6 〈〈B|0̃〉RR , (4.4)

where |0〉RR and |0̃〉RR are the canonical Ramond-Ramond ground states, obtained from the
Neveu-Schwarz vacuum by spectral flow. 11

These statements have a nice geometric interpretation in the large volume limit [23]. The
boundary states |A〉〉 correspond to D-branes wrapping Lagrangian submanifolds, γ, of the
Calabi-Yau n-fold, while the states |B〉〉 correspond to (p-dimensional) holomorphic subman-
ifolds γ̃. The overlaps with the NS vacuum are the g-factors of the corresponding D-branes,
whereas the overlaps with the appropriately-normalized, canonical RR ground states give the
D-brane charges

〈〈A|0〉RR =

∫
γ

Ω and 〈〈B|0̃〉RR =

∫
γ̃

1

p!
ωp . (4.5)

10These are the conditions in the closed-string channel, in which the reality conditions for fermions involve
the exchange of left and right movers. In the open-string channel one has JL = −JR and G+

L = G−R for the
type-A boundaries, JL = JR and G+

L = G+
R for the type-B boundaries.

11Readers not familiar with N = 2 should compare these facts to the analogous statements for boundary
states of a free-boson theory. There, the Dirichlet condition couples only to the closed-string momentum
modes, and the coupling has equal strength for all states that differ only in momentum. This is necessary in
order to produce the localizing δ-function of the Dirichlet brane. Likewise, a Neumann condition couples only
to winding modes, and the coupling depends on winding number through a phase factor. In the context of
N = (2, 2) theories, type-A and type-B branes are, respectively Dirichlet and Neumann conditions for the field
φ, and the two spectral-flow operators inject, respectively, momentum and winding.
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In the context of string theory compactified on a Calabi-Yau 3-fold, the equations (4.4) are
the BPS mass formulae for the corresponding supersymmetric black holes.

The above disk amplitudes have also an interpretation in terms of topological twists. To
compute the first amplitude for example, one puts A-type boundary conditions at the end
of a semi-infinite cigar, where the curved region at the tip of the cigar is B-twisted. Due to
the topological twist, the identity operator sitting at the end point of the cigar becomes a
RR-ground state at the end of the cigar. This is the canonical RR ground state, corresponding
to the holomorphic 3-form on a Calabi-Yau manifold.

4.2 Diastasis as entropy of A-type interfaces

The discussion of supersymmetric boundaries can be adapted easily to N=2 superconformal
interfaces [28]. These are of A-type or of B-type depending on which combination of su-
perconformal generators they intertwine. Explicitly, in terms of the interface operators one
has

[G+
L − iG−R, ∆f,A] = [G−L − iG+

R, ∆f,A] = [JL − JR, ∆f,A] = 0 ,

[G+
L − iG+

R, ∆f,B] = [G−L − iG−R, ∆f,B] = [JL + JR, ∆f,B] = 0 . (4.6)

Likewise, the intertwining of spectral-flow operators reads

eiαφ ∆f,A e
−iαφ = eiαφ0 ∆f,A , or eiαφ̃ ∆f,B e

−iαφ̃ = eiαφ̃0 ∆f,B , (4.7)

where φ and φ̃ are the fields defined earlier, and φ0, φ̃0 are constant phases. These equations
are the unfolded versions of equations (4.2) and (4.3) for the tensor-product theory. To be
precise, since folding converts the interfaces to boundaries of the product theory CFT⊗CFT′,
the generators that enter in (4.2) and (4.3) are the sums of the generators for the individual
theories, but with theory CFT parity-transformed. 12

Combining equations (4.1) and (4.7) leads to the following alternative expression for the
square of the g function of type-A interfaces:

g2
A =

RR〈0̄|qH ∆f,A q
H′ |0′〉RR × RR〈0̄′|qH

′
∆†f,A q

H |0〉RR

RR〈0̄|qH |0〉RR × RR〈0̄′|qH′ |0′〉RR
, (4.8)

where |0〉RR is the canonical Ramond-Ramond ground state obtained by acting with the
spectral-flow operator eicφ/6 on the Neveu-Schwarz vacuum, and |0̄〉RR is the conjugate ground
state. There is a similar expression for type-B interfaces, with |0〉RR replaced by the twisted
canonical Ramond ground state, |0̃〉RR, obtained with the spectral-flow operator eicφ̃/6. Taking

12The tensor-product theory has also superconformal branes that do not involve this parity operation.
From the geometric point of view, this is because the target manifold is more special than Calabi-Yau. The
corresponding interfaces are not continuously-connected to the identity, and will not concern us here.
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the logarithm of (4.8) gives an expression reminiscent of the diastasis function of the previous
section,

2 log(gA) = K(t, t̄) +K(t′, t̄′)− log( RR〈0̄|∆f,A|0′〉RR)− log( RR〈0̄′|∆†f,A|0〉RR) . (4.9)

We used here the fact [4] (see also [3]) that the canonical Ramond ground state, which has
holomorphic dependence on the complex structure moduli, has norm

log ( RR〈0̄|0〉RR) = −K(t, t̄) . (4.10)

There are analogous expressions for type-B interfaces withK(t, t̄) replaced by K(u, ū), the
Kähler potential on the moduli space of Kähler structures.

To show that (4.9) is Calabi’s diastasis we interpret the expression log( RR〈0̄|∆f,A|0′〉RR)

at large volume. For this, we note that |0〉RR becomes the holomorphic three-form for the
geometry corresponding to the unprimed theory, whereas RR〈0̄| corresponds to the anti-
holomorphic three-form for the primed theory. The expression then becomes, in the folded
picture, the RR-charge of an A-type brane with respect to the canonical RR ground state.
The relevant A-brane is the deformed diagonal brane described before. Hence, we can employ
(4.5) to conclude that at large volume

RR〈0̄|∆f,A|0′〉RR =

∫
M

Ω̄′ ∧ f∗Ω . (4.11)

This is precisely the analytic continuation of the Kähler potential appearing in Calabi’s dias-
tasis function. Note that relation (4.11) was computed at large volume. However, the relevant
disk one-point functions do not depend on Kähler moduli, hence the above relation can be
extrapolated to all length scales.

4.3 Quantum diastasis function

We will now prove that for any B-twistable theory the left hand side of (4.11) depends holomor-
phically on t′ and antiholomorphically on t, in some open region of moduli space. The proof
does not rely on a geometrical interpretation, and also goes through practically unchanged for
B-type interfaces in A-twistable theories. This shows that

RR〈0̄|∆f,A|0′〉RR ≡ e−K(t′,t̄) , and RR〈¯̃0|∆f,B|0̃′〉RR ≡ e−K(u′,ū) (4.12)

define the analytic extensions of the quantum Kähler potentials to independent holomorphic
and anti-holomorphic moduli.

To establish this holomorphicity property, recall that N=2 supersymmetric conformal the-
ories can be marginally perturbed by suitable descendants of fields from the chiral (c, c) sector,
or the twisted chiral (a, c) sector. The two are interchanged by mirror symmetry, and we focus
here on chiral perturbations, which geometrically correspond to complex structure deforma-
tions. On the level of the action, and on a worldsheet with boundaries, the perturbation
reads

S → S + ∆S(ti) + ∆S(t̄i), (4.13)
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|0′〉RRRR〈0̄| ∆f

Σ′

Cint C′

Figure 1. Schematic representation of the amplitude (4.12) that defines the analytic extension of
the Kähler potential to independent holomorphic and antiholomorphic moduli.

where
∆S =

∑
i

ti

∫
Q+
LQ

+
Rφi + ∆Sb , ∆S =

∑
i

t̄i

∫
Q−RQ

−
L φ̄i + ∆Sb , (4.14)

and
∆Sb + ∆Sb = −2i

∮
C
ds(tiφi − t̄iφ̄i) . (4.15)

The addition of this boundary term is necessary in order to preserve A-type supersymmetry
[29], assuming this was the unbroken supersymmetry in the unperturbed theory. The super-
charges Q±L , Q

±
R are obtained by contour integration of the supersymmetry currents G±L , G

±
R,

and they satisfy the standard N = 2 algebra

{Q+
L , Q

−
L} = 2(H + P ), {Q+

R, Q
−
R} = 2(H − P ) , (4.16)

where H and P are translation operators in Euclidean time and space.
We are interested in perturbations that are restricted to only part of the worldsheet.

The resulting interface then connects an unperturbed initial theory to another theory on the
same moduli space. If the perturbation is from the (c, c) sector, the interface will be A-type,
i.e. it preserves the same supersymmetry as A-type branes. Thus the fusion between (c, c)

deformation interfaces and A-type branes is protected by supersymmetry, in agreement with
the fact that A-type branes remain supersymmetric under (c, c) perturbations [30]. Viewed
as an operator, the A-interface acts naturally on elements of the (c, c) ring, in the same way
that A-branes couple to (c, c) fields.

Recall from the discussion in section 3 that complex structure interfaces were related
after folding to special Lagrangian branes. The deformation of the original diagonal brane
was determined by a map f : M →M ′, which ensured that the deformed brane is still special
Lagrangian, hence supersymmetric. In the conformal theory, the role of f is played by the
boundary perturbation (4.15), which adjusts to the bulk perturbation continuously as long as
there are no relevant operators at the interface. After a finite perturbation, on the other hand,
the O.P.E. of the perturbing field with the boundary may stop being regular, thereby inducing
a renormalization-group flow to some lower-g interface. When a space-time interpretation of
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D-branes in terms of BPS states is available, this means that we hit a line of marginal stability.

From now on, we assume that relevant boundary operators do not appear, which should
be true in open regions around generic points of moduli space. We would like to show that

∂

∂t̄i
′
[
RR〈0̄|∆f |0′〉RR

]
= 0 , (4.17)

so that the amplitude has holomorphic dependence on the primed moduli. Our analysis follows
[29]. The amplitude under consideration is drawn in Figure 1. We model the RR ground state
|0′〉RR by a semi-infinite cigar in a B-twisted topological theory. Since the operator insertion
at the tip of the cigar is the identity, the state appearing at the boundary of the cigar is the
canonical RR ground state. Similarly, we create the state RR〈0̄| by inserting the identity at
the tip of a semi-infinite cigar with an anti-topological B-twist. The two cigars are connected
by a flat cylinder, on which we locate the interface ∆f that separates the perturbed (green)
region from the unperturbed (blue) region.

We can now prove (4.17) in two steps. First, we use the results of [4] to conclude that the
canonical RR ground state has holomorphic dependence on the moduli,

∂

∂t̄′i
|0′〉RR = 0 . (4.18)

Hence, all we need to do is to consider the ti perturbation on a flat region Σ′ between the
interface and the boundary of the semi-infinite cigar, see Figure 1. Taking the derivative in
(4.17) then amounts to inserting in the amplitude

∆Si =

∫
Σ′
Q−RQ

−
L φ̄i + 2i

∮
Cint

φ̄i . (4.19)

Using the supersymmetry algebra, we can rewrite this insertion as

∆Si =

∫
Σ′

(Q−R − iQ+
L )(Q−L + iQ+

R)φ̄i + 2i

∮
C′
φ̄i , (4.20)

where C′ is the boundary of the cigar on the right. The above rewriting follows from the
supersymmetry algebra and the fact that φ̄i is a anti-chiral field. Together these imply that

(Q−R − iQ+
L )(Q−L + iQ+

R)φ̄i = (Q−R − iQ+
L )Q−L φ̄i = (Q−RQ

−
L − 2iH)φ̄i , (4.21)

where H is the generator of translations perpendicular to the interface.
Proving equation (4.17) is therefore equivalent to proving that

RR〈0̄|∆f

[∫
Σ′

(Q−R − iQ+
L )(Q−L + iQ+

R)φ̄i + 2i

∮
C′
φ̄i

]
|0′〉RR = 0 . (4.22)

The second piece vanishes, since otherwise the amplitude would violate the selection rules for
R-charge. As for the bulk piece, we use that Q−R − iQ+

L intertwines the interface operator ∆f .
By contour deformation, we can thus let it act on the bra state RR〈0̄|, which is annihilated
since it is a ground state. Here, we have used that Σ′ is flat, hence all contours can be deformed
freely. This concludes the proof of (4.17).
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5 On the triangle inequality

We conclude this letter with a remark on whether Calabi’s diastasis function defines a distance.
Although Calabi did not comment on this in [2], the name he chose suggests that he knew
it did not. Since his motivation was to study isometric embeddings of Kähler manifolds, this
question was not central to his work anyway. If, on the other hand, the proposal (1.3) for
a distance between conformal field theories [12] makes sense, it should do so for Calabi-Yau
manifolds, for which we have proven equation (1.1). The question, therefore, is whether the
square-root of the diastasis function defines a distance in the special case of Calabi-Yau moduli
spaces.

Actually, the complex structure moduli space of a Calabi-Yau n-fold can be embedded
isometrically in a higher-dimensional projective space. This is because the Kähler potential
K = − log(

∫
M Ω ∧ Ω̄) can be interpreted as the Fubini-Study potential

K = − log ηαβΠαΠ̄β (5.1)

restricted to the embedding

t→ Πα ≡
∫

Σα

Ω , (5.2)

where Σα is a basis for Hn(M,Z), and ηαβ is the intersection form (antisymmetric for n =

2k+1). As a first step, we may thus like to check whether the square root of Calabi’s diastatic
function on projective space is a distance.

The answer actually depends on the signature of the metric. It is true in the hyperbolic
case (signature −+ + + . . .), which includes the complex structure and Kähler moduli spaces
on T 2. To see why, take a coordinate patch z0 = 1 and choose, without loss of generality, the
third point at ~z = 0. If the other two points are at ~z1 and ~z2 we have

d2
i3 = − log(1− |~zi|2) i = 1, 2;

d2
12 = log

|1− ~z1 · z̄2|2
(1− |~z1|2)(1− |~z2|2)

= log |1− ~z1 · z̄2|2 + d2
13 + d2

23. (5.3)

To check the triangle inequality, we need to check that

(d13 + d23)2 ≥ d2
12 ⇐⇒ 2d13d23 ≥ 2 log |1− ~z1 · z̄2|. (5.4)

The worst case is when z1 = x and z2 = −x are antialigned, so it is sufficient to check that

| log(1− x2)| ≥ log(1 + x2). (5.5)

This inequality is indeed true for all values of x.

The same analysis for the elliptic case (signature + + + . . .) shows that the triangle
inequality fails. Take for instance the three points z1 = z, z2 = 1 and z3 = 0 on CP 1 for
which one finds

d2
13(0, z) = log(1 + |z|2) , d2

12 = log
2(1 + |z|2)

|1 + z|2 , d2
23 = log 2 . (5.6)
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Since d13 diverges as z →∞, while d12 and d23 approach
√

log 2, the triangle inequality cannot
possibly be valid. What about the projective spaces relevant for Calabi-Yau moduli spaces?
For general signature (n,m) this contains the elliptic case as a submanifold, so it cannot hold
everywhere. Thus the actual embedding is important.

While one could study this, it is simpler to test the claim locally by constructing the
expansion for the diastatic function from the intrinsic geometric data of the moduli space. In
Kähler normal coordinates, we have

K(t, t̄) =
∑
α

|tα|2 − 1

4
Rαβ̄γδ̄t

αt̄β̄tγ t̄δ̄ + . . . (5.7)

so the Calabi diastasis function is

d2(t1, t2) = |t1 − t2|2 −
1

4
Rαβ̄γδ̄(t

α
1 t
γ
1 − tα2 tγ2)(t̄β̄1 t̄

δ̄
1 − t̄β̄2 t̄δ̄2) + . . . (5.8)

Setting t3 = 0, the triangle inequality at this order becomes

|t1|+ |t2| − |t1 − t2| ≥ −
1

8
Rαβ̄γδ̄

[
1

|t1 − t2|
(tα1 t

γ
1 − tα2 tγ2)(t̄β̄1 t̄

δ̄
1 − t̄β̄2 t̄δ̄2)

− 1

|t1|
tα1 t

γ
1 t̄
β̄
1 t̄
δ̄
1 −

1

|t2|
tα2 t

γ
2 t̄
β̄
2 t̄
δ̄
2

]
. (5.9)

For the special choice t1 = x and t2 = −x, one finds Rxx̄xx̄ < 0, namely the sectional curvature
in the plane xx̄ must be negative. This confirms the previous computation, and shows that
there is a local condition.

Since Kähler manifolds can have either sign of sectional curvature, we see that in general
the diastatic function does not satisfy the triangle inequality. For a Calabi-Yau moduli space,
in particular, the sectional curvature is known to be positive near a conifold point [31]. Thus,
if the supersymmetric interfaces minimize the entropy, the proposal (1.3) violates the triangle
inequality. We hope to return to this problem in the future [12].
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