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Abstract

We propose an approach to quantum theory based on the energetic causal sets,
introduced in [1]. Fundamental processes are causal sets whose events carry momen-
tum and energy, which are transmitted along causal links and conserved at each event.
Fundamentally there are amplitudes for such causal processes, but no space-time. An
embedding of the causal processes in an emergent space-time arises only at the semiclas-
sical level. Hence, fundamentally there are no commutation relations, no uncertainty
principle and, indeed, no ~. All that remains of quantum theory is the relationship
between the absolute value squared of complex amplitudes and probabilities. Con-
sequently, we find that neither locality, nor non locality, are primary concepts, only
causality exists at the fundamental level.
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1 Introduction

Relativistic quantum mechanics is sometimes taken to be just a sub case of quantum me-
chanics, with the same postulates - and consequently the same resulting foundational issues
- as its non-relativistic versions. In particular, the standard formulations of quantum field
theory have all the usual furniture of quantum theory including non-commutative operator
algebras and their Hilbert space representatives.

Here we propose here a novel foundation for relativistic quantum theory in which oper-
ators play no role. We posit that at the fundamental level there is only causality, energy
and momentum, while space-time is not part of the fundamental description of nature. Con-
sequently, there are no operator algebras because there is nothing for the momentum and
energy to fail to commute with. The part of quantum theory that we do need to postulate
is the superposition principle, as well as the interpretation of the probability as square of
complex amplitudes of individual processes. Space-time emerges only in the classical limit,
as does the quantum theories of free and interacting relativistic particles moving in that
space-time.

In this paper, we are concerned with calculating the probabilities for total processes, in
which a set of incoming particles, specified by their energy-momenta (below we will use mo-
menta to refer to energy-momenta unless otherwise specified) and perhaps other quantum
numbers, are converted to a set of outgoing particles with specified momenta. As in conven-
tional quantum theory we assume (see the precise formulation below) that these probabilities
are the square of amplitudes. These amplitudes are complex numbers, and we assume that
the amplitude for the total processes is gotten by summing up amplitudes for elementary
processes by means of which the transition may occur. Apart from that we assume no other
ingredients of quantum theory: no space-time variables, hence no uncertainty relations or
commutation relations and no Hilbert space of states. Indeed ~ is not mentioned in the
formulation of the theory and arises only when and if space-time coordinates emerge at a
classical level. Rather than being fundamental, ~ is an artifact of convention and appears
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only if we insist on measuring positions in units of length rather than in units of inverse
momenta.

The processes that we posit as fundamental have two kinds of structures. The first is
causal structure: we assume an ontology of discrete events related by causal relations. Each
process is a causal set which expresses a relational view of fundamental physics in which
the identity of an event is defined by its causal relations to other events. This approach is
in line with the causal set program [2], and see [3] for a review. However we propose an
addition to the causal set: we do not stick to a purely relational description and ascribe to
each event intrinsic energy and momenta. These are transmitted by the causal links and
have conservation laws at each event. A causal set so decorated may be called an energetic

causal set. The theory we discuss here can be called quantum energetic causal sets.

Adding an intrinsic quantity such as momenta to an otherwise purely relational causal
set may be motivated in three ways:

1. It can be argued that the world cannot be purely defined by relationships. Relationships
must relate something. If elements in a relational set don’t have labels, or an associated
quantity, there will be no way of specifying which events are related. The events that
make up the world must have an intrinsic quantity that allows them to be related to
each other.

2. The formulation of relative locality [4, 5] teaches us that momentum and energy are
the fundamental observables of dynamics. Space-time is a conventional construction,
defined operationally, as Einstein taught us, by sending and receiving quanta that carry
energy and momenta.

3. A major issue with the causal set program is getting space-time to emerge from a
causal set. This problem is solved by the construction of energetic causal sets, as we
show below.

Another issue that is addressed in this formulation is non-locality. Since space-time is
emergent, at the fundamental level there is neither locality nor non-locality, just causality.

Before closing this section we may note that some examples of quantum energetic causal
sets are provided by quantum causal histories[6]. Here there is a Hilbert space associated
with the causal propagation of free particles, H. In the case of a relativistic theory that
is the Hilbert space of free relativistic particles, spanned by momentum eigenstates. An
interaction may be described by an evolution operator, which is a completely positive map,
defined on the product of Hilbert spaces of the incoming particle, so physical states are
functionals ψ(p) of the mass shell. In this case there automatically are position operators
defined by x̂a = ~

ı
∂

∂pa
.

However two points need to be emphasized.
First, in quantum causal histories one does not sum over causal structures as one does

here. So the two constructions are different and the position operators just mentioned are
not directly related to the embedding coordinates za of events to be define below.
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Second, this does not imply that every quantum energetic causal set, as defined below,
comes from such a construction with a fundamental Hilbert space. Nor does it mean that
the Hilbert spaces need be taken as fundamental, even in the cases where they may occur.
We leave this question open to be resolved by future work.

This paper is the second in a series investigating subjects related to causality and irre-
versibility in fundamental physics. Energetic causal sets were introduced in the first paper [1];
this paper revisits some of the results presented there in the context of quantum dynamics,
rather than the deterministic dynamics introduced earlier. In a related paper[7], we show
that a class of spin foam models recently proposed by Wieland[8] can be understood to be
energetic causal sets. Irreversibility does not play a large role in the quantum theory we
derive here since we interpret it as an effective theory (although see Section 4) but is the
focus of the first, and will be that of a later paper in this series [9]. The work in this series
is also related to the program set out in [10, 11].

2 Basic principles

We wish to study an isolated process S which is specified by a list of input particles with
energy-momentum pin, I

a and outgoing particles with energy-momenta qout, I
a . These energy-

momenta live on a d−dimensional momentum space P, which is endowed with a metric hab

and connection Γbc
a . In the spirit of relative locality the geometry of M can be assumed to

be general, but in this paper when we need to be specific we will assume it is Minkowskian.
The whole quantum process specified by just the incoming and outgoing particles and

momenta will be called the total process. We will posit the usual probability rule for quantum
mechanics specified by the following postulates:

• Corresponding to a given total process there are an infinite number of elementary
processes.

• An elementary process is a labeled causal set whose events are elementary events. Each
elementary event converts a set of incoming particles into a set of outgoing particles;
all particles are labeled by momentum that live in P. pIaK is the momenta incoming
to event I from event K and qLaI is the momenta outgoing from event I to event L.

• The dynamics is specified by proscribing to each elementary event, I, a complex am-
plitude, AI .

• The amplitude for an elementary process, A[P ], is the product of amplitudes at each
event.

A[P ] =
∏

I

AI (1)

• The amplitude for a total process labeled by incoming and outgoing particles and their
momenta is the sum of the amplitudes for the elementary processes that have those
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incoming and outgoing particles.

A[pin, I
a ; qout, I

a ] =
∑

P

A[P ] (2)

• The probability for the total processes is the absolute value squared of the total am-
plitude

P[pin, I
a ; qout, I

a ] =
∣

∣A[pin, I
a ; qout, I

a ]
∣

∣

2
(3)

• It follows from the definition of probability that the amplitudes must be chosen subject
to the constraint that the probabilities are normalized so that

∑

q
out, I
a

P[pin, I
a ; qout, I

a ] =
∑

q
in, I
a

P[pin, I
a ; qout, I

a ] = 1 (4)

These postulates together with the rule that assigns amplitudes to events completely
specifies the theory.

At this level there are no space-time variables, hence no commutation relations, hence no
uncertainty relations. There is indeed no ~, so it would be impossible to write commutation
relations or uncertainty relations. There is no Hilbert space of states.

The momenta are subject to three sets of constraints.

1. Conservation laws:
PI

a =
∑

K

pIaK −
∑

L

qLaI = 0 (5)

where the sum over K is over all events I is connected to in the past and the sum over
L is over all events I is connected to in the future.

2. No redshifts
RK

aI = pKaI − qKaI = 0 (6)

3. Energy momentum relations for relativistic particles

CI
K =

1

2
ηabpIaKp

I
bK +m2 = 0, C̃I

K =
1

2
ηabqIaKq

I
bK +m2 = 0 (7)

3 The emergence of space-time

3.1 Introduction of path integrals

To see how space-time emerges from these principles we write the amplitude for an elementary
process A[P ] as a path integral,

A[P ] =

∫

∏

IJ

dpIJa dq
IJ
a δ(CIJ

a )δ(RJ
I )

∏

I

δ(PI
a)

∏

I

AI (8)
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where the delta functions impose the constraints. Note that we integrate over all the internal
momenta leaving the incoming and outgoing momenta fixed.

We next introduce three sets of lagrange multipliers to exponentiate the three constraints
constraints.

A[P ] = N [C]

∫

∏

IJ

dpIJa dq
IJ
a dN J

I dÑ
J
I

∏

I

dZa
I e

ıS0

(9)

where the dimensionless action is

S0 =
∑

I

Za
IP

I
a +

∑

(I,K)

(XaI
K RK

aI +NK
I CI

K + ÑK
I C̃I

K) + Sint (10)

where the sum over (I,K) is over all connected pairs of events. There are three kinds of
lagrange multipliers, Za

I associated with each event, XaK
I and the N I

K and Ñ I
K are associated

with each connected pair of events. Note that the Za
I and the XaK

I have dimensions of inverse
momenta.

The interaction action, Sint is given by

Sint = −ı ln
∏

I

AI (11)

Note that the normalization constant N [C] depends on the causal structure.

3.2 The emergence of space-time

We can now show that the Za
I play the role of emergent space-time coordinates of the events.

To see this we consider the stationary phase approximation to the path integral. We will
first discuss the case that the particles are all massless, so that the constraints (7) imply the
momenta are null vectors in momentum space, P.

Let us assume that the products Z · p in the action (10) are large compared to unity so
that we can evaluate the integrals in (9) in the stationary phase approximation. We then
seek the critical points of S0. We will see that this leads to the emergence of space-time.

The variation of the action by the lagrange multipliers gives the constraints. But we have
new equations satisfied by the lagrange multipliers coming from the variation of the action
by the momenta.

δS0

δpIaK
= Za

I +XaK
I +N paIK = 0 (12)

δS0

δqKaI
= −Za

K −XaK
I + Ñ qaKI = 0 (13)

Adding these two equations and using RK
I = 0 we find

Za
I − Za

K = paIK (ÑK
I +NK

I ) (14)
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This has a simple physical interpretation. The lagrange multiplier Za
I can now be interpreted

as the space-time coordinate of the event I-expressed in units of inverse homenta. Za
I −Z

a
K is

then a space-time interval between event K and event I. It is a light-like interval proportional
to the momentum paIK connecting K to I. The constant of proportionality involves the
lagrange multipliers Ñ +N which is consistent with the fact that the affine parameter along
a null ray is arbitrary.

We may note that equations (14) will not always have simultaneous solutions. There
are one equation to be solved for every causal link, but only one Za

I for each event. In the
cases where the equations can always be solved it means that there are a consistent choice of
embeddings Za

I of the events in a flat space-time such that the causal links are represented
by null intervals proportional to the energy-momentum they carry. In these cases, we can
say that space-time has emerged, as there was no space-time and no locating the events in
space-time in the original description. It is interesting to note that the emergent space-time
inherits the metric ηab from momentum space.

The lagrange multipliers Za
I start off as just arbitrary variables with no physical meaning

other than reinforcing the constraint. In the stationary phase approximation in which the
action is an extremum under all variations, the Za

I become coordinates embedding the events
in Minkowski spacetime-where the metric of space-time comes from momentum space. Apart
from the classical limit which is defined by the stationary phase approximation, the notion
of space-time has no meaning.

It is desirable to measure the space-time coordinates in units of length. To do this we
must introduce a constant ~ with units of action so that

zaI = ~Za
I (15)

has dimensions of length. Note that ~ has no fundamental meaning, it is purely conventional
and arises from a nostalgic desire to measure space-time coordinates in units of length.

In the case that the particles are massive the intervals Za
I − Za

K between the event’s
coordinates defined by eq. (14) are timeline rather than null, but the picture is similar.

3.3 The emergence of relativistic particle dynamics from chain of

events

We can consider the example of a chain of events EI , I = 1, N , which each have a single
incoming and single outgoing momenta, denoted simply by pIa and qaI . Alternatively, we
can regard these as a chain of interactions at which all but one incoming and one outgoing
momenta are negligible.

We can solve the R constraints to find

pIa = qIa (16)

We then have for the exponentiated PI
a constraints,

S0 =
∑

I

Za
IP

I
a +MIC

I (17)
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where
MI = Ñ I−1

I +N I
I+1 (18)

The first term can be expanded,
∑

I

Za
IP

I
a =

∑

I

Za
I (p

I
a − pI−1

I ) ≈
∑

I

Za
I ṗ

I
a∆t (19)

where ∆t is a small interval and pIα − pI−1
a ≈ ṗa(t)∆t

If we take the limit of ∆t → 0 so that
∑

I ∆t →
∫

dt so that the chain goes over in the
limit to a curve. In this limit the pIa can be replaced by the continuous functions pa(t). We
will also replace the discrete Za

I by continuous variables za(t) so that the action becomes

Sfree =

∫

dt

(

pa(t)ż
a(t)−

1

2
n(t)(p2I +m2)

)

(20)

where n = MI

∆t
remains finite as both ∆t and MI are taken to zero. (20) is the action for a

free relativistic particle.
Note that this form is invariant under reparameterizations

t→ t′ = f(t), dt′ = ḟdt, n(t) → n′(t′) =
n(t)

ḟ
(21)

n(t) is a lagrange multiplier that gives the energy-momentum relation as a constraint, p2 +
m2 = 0

The za(t) are then lagrange multipliers that enforce the equation of motion for a free
particle

ṗa(t) = 0 (22)

while the variation by pa(t) gives the relation between the velocity and momenta

ża = n(t)pa (23)

where the lagrange multiplier is arbitrary reflecting the reparameterization invariance.
Next we consider a network of long chains connected together by intersections of three

or more chains. We continue to label these intersections by I and the chains that connect
them by (I, J). Taking again the limit of S0 for each chain we have

S0 → Srel =
∑

I,J

S
free
I,J +

∑

I

zaIP
I
a , (24)

where the conservation law PI
a is a function of the momenta at the endpoints of the paths

that meet at the intersection point I.
Srel given by (24) is the action for a process in which a set of free relativistic particles

interact at intersections where the conservation laws PI
a are satisfied. Note that the equations

of motion for the pa(s) at the end points enforce the locality of the interactions by equating
zaI , the coordinate of the I’th intersection with the coordinate of the endpoint of the path
that meet there, za(s = 1) or za(s = 0).
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4 Conclusions

This is the second of a series of papers focused on studying the role of irreversibility in
fundamental physics [1, 7, 9]. Here we presented a novel approach to quantum theory based
on energetic causal sets introduced in the first work.

The quantum theory we obtain, which we call quantum energetic causal sets, requires
only a reduced set of the usual postulates of quantum mechanics. This is possible because
our theory takes energy-momentum, instead of space-time, as fundamental. We only obtain
space-time and its geometry as emergent properties of the semi-classical limit. This is in
accord with the lesson Einstein taught us: the concepts of simultaneity and locality are
constructed from primary observations of energy and momentum. This is also the main
result of relative locality: the primary geometry is the geometry of energy-momentum space.
This way, energy-momentum and causality are the only fundamental intrinsic properties of
quantum histories. Taking energy-momentum as fundamental has the additional advantage
that if space-time is emergent then so is locality. Fundamentally there is neither locality nor
non-locality, just causality.

The quantum theory we obtain has, at the fundamental level, no non-commutativity, no
uncertainty relations, and no ~. These all emerge with space-time. The only postulate we
require of the quantum theory is the amplitude law.

We close with some comments on open questions.

• As we mentioned in the introduction, there are examples of quantum energetic causal
sets where the amplitudes can be defined by choices of Hilbert spaces and operators
assigned to the causal links and events[6]. But this does not conflict with our assertion
that these are a set of quantum theories in which space-time and associated notions,
including the canonical commutation relations, the uncertainty principle and the value
of ~ are emergent rather than fundamental.

• It will be interesting to understand whether a Hilbert space formulation of quantum
theory can always be reconstructed for every quantum energetic causal set or, if not,
when that can be done.

• Spinors can be incorporated naturally in the construction of an energetic causal set
as shown in [1, 7]. There is also no obstacle to adding other intrinsic labels such
as discrete spin values to the intrinsic momenta. Whether its possible to derive the
spectrum of angular momentum or any other observable from the postulates used here
is an important research question, but one beyond the scope of this paper.

• It is important to remember that the stationary phase condition is a necessary but not
sufficient condition for a history in a path integral to dominate the classical limit of
a quantum process. In ordinary quantum mechanics, and potentially in our case as
well, there can be many stationary points, but only one may dominate the integral.
To understand this in more detail will require more work that is beyond the scope of
this paper.
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• In future work we wish to investigate the hypothesis that the irreversible processes
of the energetic causal set in [1] which are absent here, in the partial formulation of
quantum mechanics, might play a role in the origin of the superposition of processes.
This would explain the complex numbers in quantum mechanics amplitudes, and would
allows us to reconstruct quantum theory from more natural postulates.
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