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We examine the observational viability of a class of f(R) gravity cosmological models. Particular
attention is devoted to constraints from the recent observational determination of the redshift of the
cosmological deceleration-acceleration transition. Making use of the fact that the Ricci scalar is a
function of redshift z in these models, R = R(z), and so is f(z), we use cosmography to relate a f(z)
test function evaluated at higher z to late-time cosmographic bounds. First, we consider a model
independent procedure to build up a numerical f(z) by requiring that at z = 0 the corresponding
cosmological model reduces to standard ΛCDM. We then infer late-time observational constraints
on f(z) in terms of bounds on the Taylor expansion cosmographic coefficients. In doing so we
parameterize possible departures from the standard ΛCDM model in terms of a two-parameter
logarithmic correction. The physical meaning of the two parameters is also discussed in terms of the
post Newtonian approximation. Second, we provide numerical estimates of the cosmographic series
terms by using Type Ia supernova apparent magnitude data and Hubble parameter measurements.
Finally, we use these estimates to bound the two parameters of the logarithmic correction. We find
that the deceleration parameter in our model changes sign at a redshift consistent with what is
observed.

PACS numbers: 04.50.+h, 04.20.Ex, 04.20.Cv, 98.80.Jr

I. INTRODUCTION

The inclusion of a cosmological constant Λ in Einstein’s
equations is arguably the simplest way to produce accel-
erated cosmological expansion. The corresponding cos-
mological model, namely the ΛCDM model [1], predicts
a currently accelerating cosmological expansion and is
in fairly good agreement with current observations [2].1

However, the ΛCDM model has some puzzling features
[4]. The first puzzle is that both matter and Λ energy
densities are comparable in order of magnitude today.
The second puzzle is the huge difference between the
observed Λ and the corresponding quantum field the-
ory naively-computed value. Perhaps these puzzles mean
that the standard ΛCDM model is only a limiting case
of more complete, and less puzzling, cosmological model.
In such a model the role played by Λ in the ΛCDM model
might be generalized to another, more complex but still
unknown, substance, often dubbed (dynamical) dark en-
ergy [5].

The cosmological constant can be considered to be a
fluid with equation of state pΛ = −ρΛ relating the time-
independent energy density ρΛ and pressure pΛ. A fluid

1 In this model, the current cosmological energy budget is domi-
nated by Λ, with cold dark matter (CDM) in second place, and
baryons a distant third. The ΛCDM model assumes the simplest
form of CDM, which might be in conflict with some observations
on structure formation [3].

with equation of state pX = ωXρX relating the X-fluid
energy density ρX and pressure pX is a very simple (but
incomplete [6]) model of dynamical dark energy density.
The φCDM model [7], where dynamical dark energy den-
sity is modeled by a scalar field φ with potential energy
density V (φ) is a complete and consistent model. Many
models have followed this one during the last quarter
century, and an evolving dark energy fluid may be re-
sponsible for the late time acceleration, if the correspond-
ing equation of state parameter, ω, is within the interval
−1 < ω ≃ −0.75, for redshift z ≪ 1 [8]. However, none
of them has managed to satisfactorily clarify the physical
origin of dark energy, thus a definite explanation of the
accelerated cosmological expansion remains elusive.
A major shortcoming of the dark energy paradigm is

the lack of more fundamental first principles (less phe-
nomenological), motivation for dark energy [9]. Another
possibility, is to, instead, ascribe the observed acceler-
ating cosmological expansion to modified gravity, a gen-
eralization of general relativity [10]. This is the under-
lying philosophy of modified theories of gravity, which
extend general relativity by adding further curvature in-
variants to the Einstein-Hilbert action [11]. Much dis-
cussed extensions of standard cosmology arise when the
Ricci scalar is replaced by an analytic function of curva-
ture, f(R) [12]. Here the action is

A =

∫

d4x
√
−g [f(R) + Lm] , (1)

where Lm is the matter Lagrangian, involving generally
both baryons and cold dark matter and g is the deter-
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minant of the metric tensor. By varying the action with
respect to the metric tensor gµν , one infers the field equa-
tions

Rµνf
′

(R)− 1

2
f(R)gµν − (∇µ∇ν − gµν∇α∇α)f

′

(R)

= 8πTµν . (2)

Here a prime denotes a derivative with respect to R, Rµν

is the Ricci tensor, Tµν is the standard energy-momentum
tensor and we have set the Newtonian gravitational con-
stant and the speed of light to unity G = c = 1. Dark
energy can therefore be considered to be a geometrical
fluid that adds to the conventional stress-energy tensor,
if one want to interpret this equation in the context of
general relativity [13]. In doing so, the task of determin-
ing the dark energy equation of state is replaced by trying
to understand which f(R) better fits current data. It has
been argued that viable candidates of f(R) are those that
reduce to the ΛCDM model at z ≪ 1 [14]. This guar-
antees fairly good agreement with present observations,
permitting us to ease the experimental problems associ-
ated with wrong choices of f(R).
In the ΛCDM model, and in dynamical dark energy

models, the dark energy density has only recently come
to dominate the cosmological energy budget and so accel-
erate the cosmological expansion. Earlier on dark matter
dominated, resulting in decelerating cosmological expan-
sion. Recent cosmological measurements have lead to the
first believable estimate of the decelerating-accelerating
transition redshift zda, [15], of order 0.75. Thus there is
now some observational support for the dark energy idea
at redshifts approaching unity. Therefore it is of interest
to see whether such data are also consistent with f(R)
gravity models. In this work we determine observation-
ally viable f(R) models by assuming the cosmological
principle and using cosmography to constrain parameters
[16]. From the Taylor series expansion of the scale factor
a(t), cosmography can be used to numerically bound late
time measurable quantities, e.g., the acceleration param-
eter, the jerk parameter, the snap, and so forth, [17]. Pos-
sible departures from the standard ΛCDM model could
be determined through the use of cosmography, which
represents a tool to pick the most viable class of f(R)
models [18]. To this end, cosmography allows us to relate
the expanded quantities of interest, i.e. the Hubble rate,
luminosity distances, magnitudes, and so forth, in terms
of observables [19]. In this paper, we show that a particu-
lar Hubble rate, derived from a viable class of f(R) mod-
els, predicts a transition from decelerated to accelerated
cosmological expansion at a transition redshift which is
in fairly good agreement with the cosmographic series.
This is an extension of the standard ΛCDM model with
a logarithmic term that mimics the effect of the dark
energy as a smoothly varying function of the redshift z.
The corresponding acceleration parameter changes sign
around z ∼ 0.75, in agreement with the recent measure-
ment [15]. We also rewrite f(R) as a function of z, as
a series in the scale factor, i.e. a ≡ (1 + z)−1. This

allows us to describe the curvature dark energy fluid in
terms of the more practical redshift variable. In turn,
we determine observational bounds on the cosmographic
series and on the expanded f(R), by combining the most
recent Union 2.1 supernova apparent magnitude compi-
lation [20] and Hubble rate measurements in the interval
z ∈ [0, 2.8] [15, 21], through the use of Monte Carlo anal-
yses using the the Metropolis algorithm [22]. We obtain
our fits by using ROOT [23] and BAT [24].
Our paper is structured as follows: In Sec. II we set the

initial conditions on cosmological observables, through
the use of cosmography. These initial conditions are use-
ful when determining constraints on f(z) at low redshift.
In Sec. III we relate these initial conditions to the mod-
ified Friedmann equations. In Sec. IV we describe the
corresponding cosmological model, inferred from numer-
ically solving the modified Friedmann equations, with the
numerical bounds inferred from cosmography. Further-
more, we describe the obtained transition redshift and
we discuss the numerical results by comparing our model
to ΛCDM. In Sec. V model parameters are computed by
using supernovae apparent magnitude and Hubble pa-
rameter measurements. In Sec. VI we provide a physical
interpretation of the free parameters of the model, relat-
ing them to derivatives of the Ricci scalar at the present
time. Finally, Sec. VII is devoted to our conclusions.

II. COSMOGRAPHY AND f(R) GRAVITY

In this section we relate f(R) gravity to the cosmo-
graphic series of observables [25]. Cosmography provides
a way of determining constraints on f(R) and its deriva-
tives at small redshift by using the fact that the Ricci
scalar is a function of the redshift z. In so doing one
obtains the corresponding f(z) function in terms of the
cosmographic series. This procedure allows for an eval-
uation of the f(z) derivatives at z = 0 through obser-
vational bounds, and constitutes a scheme where general
relativity represents a limiting case of a more general
theory [26]. Higher order curvature terms are therefore
reinterpreted as a curvature dark energy fluid, respon-
sible for possible departures from the standard ΛCDM
model.
We start by expanding the scale factor a(t) in a Taylor

series around the present time t0,

a(t)− 1 =
∞
∑

k=1

1

k!

dka

dtk

∣

∣

∣

t=t0
(t− t0)

k. (3)

The leading cosmographic series terms—the Hubble, de-
celeration, and jerk parameters—are

H(t) =
1

a

da

dt
, (4a)

q(t) = − 1

aH2

d2a

dt2
, (4b)

j(t) =
1

aH3

d3a

dt3
. (4c)
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We can use such quantities to study the kinematics of the
universe [27], without postulating a cosmological model.
In this sense, cosmography is a model-independent tech-
nique that may be able to establish whether a given cos-
mological model is favored or not with respect to other
cosmological models.
On the other hand, this kinematical cosmographic se-

ries approach has more parameters that must be con-
strained by data than do the simplest cosmological mod-
els. To simplify the problem, we assume that space cur-
vature is zero.2 We also assume the validity of the cos-
mological principle. These few assumptions simplify the
problem and allow us to use kinematical cosmography
as a model-independent tool to determine which of the
various f(R) models are compatible with current obser-
vations. With more and better-quality near-future data,
[30], it should be possible to also constrain space curva-
ture.
The cosmographic series terms we include in our anal-

yses are the Hubble rateH , the acceleration parameter q,
and the variation of acceleration j. Although additional
coefficients may be added in the cosmographic analysis,
the amount and the quality of current data requires that
we limit ourselves to these three terms. These terms are
sufficient to allow us to determine how the universe is
currently speeding up and how the acceleration varies
as the universe expands. The physical meaning of each
term is as follows. The Hubble rate is the first derivative
with respect to the cosmic time of the logarithm of the
scale factor a. The acceleration parameter q indicates
how much the universe is currently accelerating. Taking
space curvature to vanish, a currently accelerating uni-
verse has −1 ≤ q0 ≤ 0 (where q0 is the value of q at
the present time), the limit q0 = −1 represents a perfect
de Sitter universe totally dominated by a cosmological
constant, and q(zda) = 0 corresponds to the transition
redshift between accelerating and decelerating expansion
zda [31, 32]. In turn, its variation j should be positive
today, so that q changes sign as the universe expands.
For the ΛCDM model, the jerk parameter j0 = 1 at all
times [33].
Expanding the luminosity distance3 dL in a Taylor se-

ries in redshift z,

dL =
∞
∑

n=1

1

n!

dndL
dzn

∣

∣

∣

z=0
zn , (5)

and truncating to second order in z, yields

dL ≈ z
H0

[

1 + z
2 (1− q0) +

z2

6 (3q
2
0 + q0 − j0 − 1)

]

. (6)

2 In the ΛCDM model, where the dark energy density is time in-
dependent, cosmic microwave background anisotropy measure-
ments indicate the spatial curvature is at most very small [28].
However, if the dark energy density varies with time, the obser-
vational bounds on space curvature are not so restrictive [29].

3 The luminosity distance dL =
√

L/(4πl) where L is the absolute
luminosity and l the apparent luminosity of the source.

This provides a way to compare dL to the observable
cosmographic series. Indeed, one can fit the luminosity
distance to cosmological data, and determine bounds on
the cosmographic series, without postulating a cosmolog-
ical model to define dL.
Measuring the cosmographic parameters through the

use of Eq. (6) has the disadvantage that the coefficients
depend on combinations of H0, q0 and j0. Indeed, we
measure the ratios (1−q0)/H0 and (3q20+q0−j0−1)/H0,
and not H0, q0 and j0 independently. As a consequence
of this the cosmographic coefficients degenerate and the
corresponding errors can be large. The degeneracy can
be alleviated by first measuring H0 alone. One tech-
nique we adopt in this work consists of fitting z ≤ 0.36
data by assuming the first-order luminosity distance term
dL = z/H0. We then perform numerical fits using Eq. (6)
with the obtained H0 and determine the corresponding
q0 and j0. This prescription may alleviate, in principle,
the degeneracy of q0 and j0 in terms of H0. In the fol-
lowing sections, we perform a number of cosmological
tests, allowing all the parameters to vary freely, by fixing
H0 by using Planck data, and by fixing H0 through the
technique discussed above.
By using the definition of redshift in terms of the scale

factor we have

d log(1 + z)

dt
= −H(z) , (7)

and we can rewrite the Ricci scalar R as a function of z,

R = 6H [(1 + z) Hz − 2H ] , (8)

where Hz is the derivative of H with respect to z. It is
straightforward to express the present epoch values of R
and its derivatives in terms of H0 and derivatives. We
have

R0 =6H0 (Hz0 − 2H0) , (9a)

Rz0 =6H2
z0 −H0(3Hz0 −H2z0), (9b)

where Hz0 and H2z0 are the first and second z derivative
of H evaluated at the present time. Since

q = − 1

H2

dH

dt
− 1 , (10a)

j =
1

H3

d2H

dt2
− 3q − 2 , (10b)

we have

dH

dt
=−H2(1 + q) , (11a)

d2H

dt2
=H3(j + 3q + 2) . (11b)

Using Eq. (7), we can rewrite Eqs. (11) in terms of the
cosmographic series terms only, obtaining

Hz0 = H0(1 + q0) , (12a)

H2z0 = H0(j0 − q20) . (12b)
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Then, using Eqs. (9) and (12), we can express R and its
derivatives as functions ofH0, q0, and j0. This represents
the first prescription for rewriting the f(z) derivatives in
terms of cosmographic parameters.

III. MODIFIED FRIEDMANN EQUATIONS IN

f(R) GRAVITY

We now discuss how the cosmological Friedmann equa-
tions for general relativity are modified in f(R) gravity
and how these modifications can be viewed as “dark en-
ergy” contributions to the Friedmann equations of gen-
eral relativity. In addition, we describe how the deriva-
tives of f(z) can be related to the cosmographic series.
In the case of pressureless matter (pm = 0), the modi-

fied Friedmann equations in f(R) gravity are

H2 =
1

3

[

ρcurv +
ρm

f ′(R)

]

, (13a)

2Ḣ + 3H2 = −pcurv , (13b)

with nonrelativistic matter density ρm ∝ a−3. Here the
overdot denotes a time derivative and the prime repre-
sents a derivative with respect to the curvature R. The
curvature corrections can be used to describe a dark en-
ergy fluid, responsible for the current cosmological accel-
eration. These are the energy density

ρcurv =
1

f ′(R)

{

1

2
[f(R)−Rf ′(R)] − 3HṘf ′′(R)

}

,

(14)
and the pressure obeying the equation of state pcurv =
ωcurvρcurv with equation of state parameter

ωcurv = −1 +
R̈f ′′(R) + Ṙ[Ṙf ′′′(R)−Hf ′′(R)]

[f(R)−Rf ′(R)] /2− 3HṘf ′′(R)
. (15)

It is convenient for our purposes to work in terms of
f(z), i.e. f(R) as a function of redshift z. Since R =
R(z), we have

f ′(R) =R−1
z fz , (16a)

f ′′(R) = (f2zRz − fzR2z)R−3
z , (16b)

f ′′′(R) =
f3z
R3

z

− fz R3z + 3f2z R2z

R4
z

+
3fz R2

2z

R5
z

, (16c)

which relate f(R) to f(z) and derivatives. To evaluate
the derivatives of f(R) in terms of the Hubble rate, we
make use of the following identities

Ṙ =− (1 + z)HRz , (17a)

R̈ =(1 + z)H
[

HRz + (1 + z)(HzRz +HR2z)
]

. (17b)

We consider f(R) gravity models which are consistent
with the Solar System tests [34]. Thus the gravitational

constant does not depart from its observed value. Keep-
ing in mind such prescriptions, we fix the initial condi-
tions on f(z) and its derivatives, by relating f(z) and
f ′(z) to the cosmographic series through

f0 =2H2
0 (q0 − 2), (18a)

fz0 =6H2
0 (j0 − q0 − 2). (18b)

These relations will be useful for cosmographic tests once
suitable priors are fixed. Next we discuss how to achieve
a deceleration-acceleration transition in the context of
f(R) gravity.

IV. f(R) GRAVITY AND THE COSMOLOGICAL

DECELERATION-ACCELERATION

TRANSITION

Ideally, we would like to integrate the modified Fried-
mann equations (13) while taking into account Eqs. (12)
and (18). However, we cannot solve Eqs. (13) along
with Eqs. (14) and (15) directly, due to their complex-
ity. We therefore assume a parameterized cosmological
model, which can depart from ΛCDM at both low and
high redshift. In particular, we find that a useful ansatz
is a logarithmic correction associated to the dark energy
term,

H(z) = H0

√

Ωm(1 + z)3 + log(α+ βz) , (19)

where α and β are constants. In order to get H = H0

at z = 0, we require α = exp(1 − Ωm), and to account
for Eqs. (18) we assume β ∈ [0.01, 0.1]. In so doing,
we fix both α and β in terms of mass and cosmographic
coefficients. This prescription allows us to numerically
reconstruct f(z) in terms of cosmological data. More-
over, we will see later that these requirements for α and
β are compatible within 1σ errors with our observational
results.
The ansatz for an f(z) which results in the above H(z)

expression is

f(z) = f̃0 +
1

1 + z
+ f̃1(1 + z)σ1 + f̃2(1 + z)σ2 . (20)

This reproduces fairly well the numerical Friedmann
equations up to z ≤ 2, and permits us to quantify the
effects of f(R) gravity on H . We find a good agreement,
with negligible departures from z ≪ 1 to z ∼ 2, for the
parameter values f̃0 ∼ −10, f̃1 ∼ 7, f̃2 ∼ −3.7, σ1 = 1
and σ2 = 2. These results are consistent with the cosmo-
graphic ranges of f0 and fz0.
As discussed above, in general relativistic dark en-

ergy cosmological models the universe switches from an
earlier matter-dominated decelerating cosmological ex-
pansion to a later dark-energy dominated accelerating
cosmological expansion. Recent improved cosmological
data have now allowed for the first believable estimate
of this deceleration-acceleration transition redshift, zda,
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[15] (for more recent developments see Ref [35]). We can
test models by comparing theoretical predictions of the
deceleration-acceleration transition redshift with obser-
vational data. The transition redshift, whose expression
is formally given by

zda =
( 1

H

dH

dz

)−1∣
∣

∣

z=zda
− 1 , (21)

can be obtained by assuming q = 0, corresponding to
ä = 0.

In the ΛCDM model the acceleration parameter is

qΛ =
3Ωm(1 + z)3

2 + 2Ωmz[3 + z(3 + z)]
, (22)

and the corresponding transition redshift is

zda,Λ =

[

2
(1− Ωm)

Ωm

]1/3

− 1 . (23)

In the model we study,

qf(R) = −1 +
(1 + z)

[

3Ωm(1 + z)2 + β/(α+ βz)
]

2 [Ωm(1 + z)3 + ln(α+ βz)]
,

(24)
and, in a first-order approximation around z = 0, the
transition redshift is

zda,f(R) = (25)

β exp(Ωm − 1)− 2 + 3Ωm

[3 + 2β exp(Ωm − 1)] [β exp(Ωm − 1)− 2 + 3Ωm]
.

In the following section we observationally constrain
zda,f(R) and compare its value with that from Eq. (23).

V. OBSERVATIONAL CONSTRAINTS ON

CURVATURE DARK ENERGY

PARAMETERIZATION

In this section we use observational data to constrain
the curvature dark energy parametrization discussed in
the previous section. The observational data we use are
type Ia supernova (SNIa) apparent magnitude versus red-
shift measurements and measurements of the Hubble pa-
rameter as a function of redshift. These data are shown
in Fig. 1.

FIG. 1: Observational data with 1 σ error bars and model
predictions. Top panel show SNIa apparent magnitude data,
bottom show H(z) data (in the bottom panel H is given in
units of km s−1 Mpc−1). The red lines represent the best-fit
(from the joint SNIa and H(z) analysis) model prediction; the
width represents the 1 σ uncertainty.

The SNIa data we use are from the Union 2.1 compi-
lation [20] of 580 supernovae up to redshift z = 1.414;
in our analyses here we account only for statistical un-
certainties. In order to get SNIa data cosmological con-
straints we adopt the Monte Carlo technique based on
the Metropolis algorithm [22], which reduces dependence
on initial statistics. The likelihood function

L(p) ∝ exp
[

−χ2(p)/2
]

, (26)

is maximized, and χ2 is therefore minimized. Here the
free parameters are p = (H0, q0, j0) and (H0,Ωm, α, β)
for the cosmographic parametrization and for the cur-
vature dark energy model respectively. The χ2 function
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is

χ2
SN (p) =

580
∑

k=1

[

µth
D,k(p) − µobs

D,k

]2

σ2
k

, (27)

where the apparent magnitude

µD.k = 25 + 5 log10

(

dL,k

1Mpc

)

(28)

for the kth supernova. For cosmographic fits we use the
expanded version of dL, whereas for fitting our model we
employ H of Eq. (19).
The second data set we use are measurements of the

Hubble parameter as a function of redshift z, H(z), [21].
For our analyses we use the 28 H(z) measurements given
in Table 1 of Ref. [15], with a highest redshift measure-
ment at z = 2.3. In this case

χ2
H(p) =

28
∑

l=1

(Hth,l(p)−Hobs,l)
2

σ2
H,l(p)

. (29)

In order to get interesting results we make a number of
assumptions. First, we assume space curvature vanishes

FIG. 2: Two-dimensional marginalized constraint contour
plots and one-dimensional marginalized probability density
distribution functions for parameters of the cosmographic se-
ries computed using the Metropolis algorithm and Union 2.1
SNIa data. The above contours correspond to allowing all
cosmographic parameters to vary. H0 values are in the units
of km s−1Mpc−1.

(ΩK = 0) and ignore radiation. We also assume top hat
priors for the parameters, listed in Table I. These are flat
priors, non-zero inside and vanishing outside the listed
range.

TABLE I: Priors imposed for the initial conditions on f(z)
parameters. The numerical values for f0 and fz0 are in units
of H0 = 100 kms−1 Mpc−1.

Cosmological priors

0.5 < h < 0.9

0.001 < Ωmh2 < 0.09

−6 < f0 < −1

−3 < fz0 < 0

−4 < q0 < −0.1

−5 < j0 < 5

In order to determine more restrictive constraints on
the cosmographic parametrization, in this case we also
perform analyses with a fixed value of H0. More pre-
cisely the first value we use was determined from the
Planck data [28], i.e., H0 = 67.11 km s−1 Mpc−1. The
second H0 value we use is that derived by fitting the

FIG. 3: Two-dimensional marginalized constraint contour
plots and one-dimensional marginalized probability density
distribution functions for the cosmographic parameters com-
puted using the Metropolis algorithm and H(z) data. The
above contours correspond to allowing all cosmographic pa-
rameters to vary. H0 values are in the units of km s−1Mpc−1.
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FIG. 4: Two-dimensional marginalized constraint contour
plots and one-dimensional marginalized probability density
distribution functions for free parameters H0,Ωm, α and β of
our model computed using the Metropolis algorithm. The
three set of panels, from top to bottom, correspond to the
results using: 1) the Union 2.1 SNIa data (top panels); 2)
the H(z) measurement compilation (middle panels); and, 3)
a combined analysis using both the Union 2.1 SNIa data and
the H(z) measurement compilations (bottom panels). H0 val-
ues are in the units of km s−1Mpc−1.

low redshift, z ≤ 0.36, Union 2.1 supernova apparent
magnitude data to the first order luminosity distance,
dL = z/H0, resulting in H0 = 69.96+1.12

−1.16 km s−1Mpc−1.
Both these values are consistent with other recent esti-
mates. For instance, from a median statistics analysis of
553 H0 measurements Ref. [36] (for related work and re-
sults see Refs. [37, 38]) findH0 = 68±2.8 km s−1 Mpc−1.
In our analysis here we ignore the small uncertainties in
H0.

To derive constraints on the parameters of our model,
standard procedures with no priors were used. In partic-
ular, we consider three tests. The first uses supernovae,
the second is with H(z) measurements, and the third
combines supernovae measurements with H(z) data (by
minimizing χ2

tot = χ2
SN + χ2

H).

Supposing the validity of the null hypothesis for each
fit, we report the corresponding p-values—the probabil-
ity that a result obtained by a single fit is observed—
representing a qualitative measure of the likelihood for
a certain outcome. Our results were obtained by using
the publicly available code ROOT [23] and the bayesian
toolkit BAT [24].

Figures 2 and 3 show the resulting two-dimensional
constraint contours and corresponding one-dimensional
probability density distribution function for the model
parameters. In the contour plots, different colours in-
dicate the 68%, 95% and 99% confidence level regions.
From these figures we see that the cosmological param-
eters of the cosmographic parametrization and of the
model we consider are quite tightly constrained by the
68% confidence level contours.

We summarize our numerical results in Tables II and
III. Our outcomes seem to favor values of the Hubble
constant consistent with other estimates [36–38]. The
Planck priors on H0 lead to rather low p values (low
goodness of fit) whereas our prior on H0, derived from
fitting supernovae in the redshift range z ∈ [0, 0.36], leads
to higher p, statistically favored, best fits.

Our numerical outcomes show that smaller
Hubble parameters lead to badly constrained cos-
mographic coefficients. In particular, both the
acceleration and jerk parameters do not rely on
expected confidence intervals. This result is not
due to numerical convergence issues, but more
likely it is consequence of two independent causes.
The first concerns the problem of degeneracy be-
tween H0 and the other cosmographic terms. In-
deed, any cosmographic series degenerates with
the Hubble rate today as one can notice by look-
ing at Eq. (6). Thus, a low estimate of H0 may
influence negatively the whole cosmographic anal-
ysis, as also confirmed in [39]. In our work, this
issue has been alleviated by using the first or-
der expansion dL ∼ z/H0, for fixing the Hubble
rate today. The second problem is possibly re-
lated to the small number of measurements of
the H(z) data set, which does not permit one
to definitively fix accurate bounds on the cosmo-
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TABLE II: Best fit value and 1σ error bars for each parameter of the cosmographic parametrization. We perform a no prior
fit, in which all the cosmographic series is free to vary, a fit with H0 fixed to the Planck value, and a fit with H0 fixed by using
the first order luminosity distance dL = z/H0 with the Union 2.1 SNIa data for z ≤ 0.36, for the SNIa data in the second to
fourth columns, and for the H(z) data in the last three columns. H0 values are in units of km s−1 Mpc−1.

fit SNIa, free SNIa, Planck H0 SNIa, our H0 H(z), free H(z), Planck H0 H(z), our H0

p value 0.6899 0.2381 0.6896 0.0691 0.0268 0.1206

H0 69.97+0.42
−0.41

67.11 fixed 69.96 fixed 66.38+2.36
−1.04

67.11 fixed 69.96 fixed

q0 −0.5422+0.0718
−0.0826

−0.0732+0.0538
−0.0529

−0.5319+0.0520
−0.0465

−2.9412+0.0922
−0.0426

−6.8930+0.1628
−0.0749

−2.9213+0.2688
−0.2589

j0 0.5768+0.4478
−0.3528

−0.8957+0.1948
−0.1828

0.5112+0.2831
−0.3035

−0.955+0.228
−0.175

0.1249+1.6899
−0.8318

−3.9040+3.4030
−2.2510

TABLE III: Best fit value and 1σ error bars for each parameter of our model. We perform a fit by using SNIa data with no
priors imposed a priori (column two), using H(z) data only (column three), and by using the combined SNIa and H(z) data
together (column four). For these three fits, the parameters H0,Ωm, α and β are free to vary. The transition redshifts have
been evaluated by means of Eq. (25), and errors are estimated through standard logarithmic propagation. In so doing, we used
the estimated values of Ωm and β along with the condition α = exp(1− Ωm). H0 values are in units of km s−1 Mpc−1.

fit SNIa, free H(z), free Combined

p value 0.6919 0.9604 0.6885

H0 68.07+3.33
−2.20

68.49+3.39
−2.50

67.94+2.20
−1.82

Ωm 0.2142+0.0386
−0.0413

0.2718+0.0335
−0.0326

0.2316+0.0391
−0.0391

α 2.3011+0.1648
−0.1690

1.9660+0.2307
−0.1991

2.339+0.1879
−0.1853

β 0.7599+0.6429
−0.4712

0.2846+0.7734
−0.5372

0.6101+0.4388
−0.4351

zda 0.8596+0.2886
−0.2722

0.6320+0.1605
−0.1403

0.7679+0.1831
−0.1829

graphic parameters today. This problem hardly
affects our numerical analysis, estimating numer-
ical bounds outer than expected best fit values.
Such numerical intervals are ruled out by compar-
ing the corresponding p-values to those inferred
from the other analyses. Hence, the reconstruc-
tion of our f(R) solution would not be affected by
badly constrained cosmographic results. For the
sake of completeness, a feasible landscape to alle-
viate such problems is to fix H0 through combined
sets of independent data. In so doing, one may
quantify any numerical departures on the cosmo-
graphic series. This will be object of future works
to determine cosmographic f(R) reconstructions.
In addition, we find that the inferred limits on f0 and

fz0, used in Sec. II for numerically solving the modified
Friedmann equations, are compatible with our experi-
mental results. In Table III we also list constraints on
α and β which are in agreement with theoretical pre-
dictions. In Fig. 4 we plot the acceleration parameter q
using the best-fit parameter value reported in the fourth
column of Table III. The acceleration parameter changes
sign at a transition redshift around zda ∼ 0.8. This is in
agreement with the transition redshift measured in Ref.
[15].
In order to infer numerical values for the transition red-

shift, we use Eq. (25) and the estimated value of Ωm and
β. The obtained transition redshifts are listed in the last

line of Table III. These are in the range zda ∈ [0.57, 0.97].
We determine errors on zda by standard logarithmic er-
ror propagation. These results are not incompatible with
the observed value [15].
These results on zda are also compatible with the

ΛCDM model prediction, i.e. Eq. (23), which leads to
a transition redshift within the interval zda,Λ ∈ [0.67, 1].
In addition, we conclude that our transition redshifts are
compatible with the priors of Table I. Future and more
accurate zda measurements will improve the accuracy
and will permit us to better distinguish any significant
deviation from the ΛCDM model.

VI. A POSSIBLE PHYSICAL

INTERPRETATION OF CURVATURE DARK

ENERGY

In Sec. IV we showed that extensions of Einstein’s
gravity, in particular f(R) gravity, may lead to loga-
rithmic corrections to the conventional Hubble param-
eter and, in particular, a dark energy term of the form
ΩDE = ln(α+βz). Here we discuss the physical meaning
of such a correction, interpreting α and β, i.e. the free
parameters which enter Eq. (19), in terms of f(R).
To this end we first note that one can expand f(R) in

terms of the Ricci scalar evaluated at the present epoch,
R0. This expansion turns out to be compatible with
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FIG. 5: Acceleration parameter as a function of redshift, Eq.
(24), for our model, using best-fit parameter values from the
combined SNIa and H(z) data analysis reported in the last
column of Table III. The acceleration parameter changes sign
at a transition redshift zda ∼ 0.8. More accurate results for
the transition redshift are reported in Table III.

current cosmographic requirements, as shown in Secs. II
and III. We also assume that the gravitational constant
G is time independent now. In addition, at R = R0 the
second derivative of f(R) should be negligibly small, so
that the Solar System constraints are satisfied (see for
example [40]). Thus, in the Taylor expansion of f(R)

f(R) = f(R0) + f ′(R0) (R−R0) +

+
1

2
f ′′(R0) (R−R0)

2
+

+
1

6
f ′′′(R0) (R−R0)

3
+ . . . , (30)

the above mentioned constraints require

f ′(R0) = 1 , (31a)

f ′′(R0) = 0 , (31b)

allowing for the observational viability of the model at
the present epoch. Using [41]

f ′′′(R) =
f3z
R3

z

− fz R3z + 3f2z R2z

R4
z

+
3fz R2

2z

R5
z

, (32)

with

R3z0

6
=3H2

2z0+

Hz0 (−3H2z0 + 4H3z0) +H0(−H3z0 +H4z0) ,
(33)

and Eq. (14), ρcurv0 = [f(R0)−R0] /2, we have

f0 = 6H2
0 (1 − Ωm) +R0 . (34)

As a consequence of the aforementioned constraints,
using Eq. (32) we can express α and β in terms of f0 and

f
′′′

0 , showing that these two parameters depend on f(R)

and its derivatives with respect to R, around R = R0.
One relation between α and β in terms of f0 is

β = αΩm
f0 − 3H2

0 (1 − 2Ωm)

3H2
0

+ logα
f0 + 6H2

0 (1 + Ωm)

3H2
0

. (35)

Analogously, one may infer another relation between α
and β in terms of the third derivatives, by using Eq.
(32), α = α (f0, f

′′′(R0)); the explicit form is not impor-
tant for our purposes. Since the physical significance of
the leading term in the Taylor expansion of f(R) is well
established [42], the above relations allow for an under-
standing of the physical significance of α and β.
For our purposes, the zero order f0 term corresponds

to an initial value cosmological constant (1 − Ωm). This
means that the coincidence problem can be reinterpreted
in f(R) gravity as the choice of initial conditions for the
corresponding curvature dark energy term. Moreover, by
taking into account the parameterized post-Newtonian
(PPN) approximation, up to the second order in f(R),
and considering the first two parameters of the Eddington
parametrization, β(PPN) and γ(PPN), we can write [43]

βPPN
R − 1 =

f ′(R)f ′′(R)

8f ′(R) + 12f ′′(R)2
dγPPN

R

dR , (36)

and

γPPN
R − 1 = − f ′′(R)2

f ′(R) + 2f ′′(R)2
. (37)

Solar system constraints on βPPN and γPPN are not vi-
olated because we assume f ′′(R0) = 0, and so general
relativity, i.e. β(PPN) = γ(PPN) = 1, is locally valid.
As a consequence, it seems that gravitational correc-

tions due to f(R) gravity become significant at the third
order of the expansion. In other words, curvature dark
energy, inferred from f(R) and compatible with current
cosmographic bounds, gives contributions at the third or-
der of f(R) expansions. Rephrasing it, the corresponding
cosmological model reduces to ΛCDM when corrections
only up to second order are included.

VII. CONCLUSION

We have numerically analyzed a class of f (R) grav-
ity models which reduce to ΛCDM at z ≃ 0. Deviations
emerge at third order in the f(R) Taylor expansion. As
present epoch constraints we adopt the cosmographic se-
ries, i.e. the series of measurable coefficients derived by
expanding the luminosity distance and comparing it with
data. We therefore inferred cosmographic bounds on the
test function f(z) which reproduces the observed low red-
shift cosmological behavior.
Since cosmography allows for a determination of model

independent constraints on f(z) and derivatives, we used
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a Taylor expansion of f(z) in terms of a(t) = 1/(1 + z),
which fairly well approximates the Friedmann equations
in the range z ≤ 2. We found good agreement, with
small departures at z ≪ 1 and z ∼ 2, for the range of
parameters f̃0 ∼ −10, f̃1 ∼ 7, f̃2 ∼ −3.7, σ1 = 1 and
σ2 = 2, which are compatible with the initial conditions
defined by cosmography.
Such departures lead to possible logarithmic correc-

tions of the conventional Hubble rate, showing an evolv-
ing dark energy term different from the cosmological con-
stant. We demonstrated that this model has a transition
redshift in a range compatible with measurements [15].
To this end, cosmological constraints on the model were
determined using a Monte Carlo approach based on the
Metropolis algorithm. Our model passes all the cosmo-
logical tests, showing that the obtained curvature dark
energy is compatible with observations. We implemented
different priors on the fitting parameters, and in partic-
ular, we fixed H0 to the Planck value first and then to a
numerical value obtained by fitting the first-order lumi-
nosity distance dL to the supernova data in the interval
z ∈ [0, 0.36]. In general, results seem to indicate slightly
less negative acceleration parameters with non-conclusive
results on the variation of acceleration, namely the jerk

parameter.

Using these results we provided a self consistent expla-
nation of the free parameters of the model, showing that
they could be related to the terms of the Taylor series of
f(R). In doing so, by comparing our results with PPN
approximations, we found that α and β could be related
to third-order PPN parameters. Future investigations
will be devoted to better constraining the logarithmic
correction due to f(R).
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(2013); S. Thakur and A. A. Sen, arXiv.1305.6447 [astro-
ph.CO]; E. L. D. Perico, J. A. S. Lima, S. Basilakos, and
J. Solà Phys. Rev. D 88, 063531 (2013); S. Crandall and
B. Ratra, arXiv: 1311.0840 [astro-ph.CO]; A. Pavlov, O.
Farooq, and B. Ratra, arXiv:1312.5285 [astro-ph.CO].

[9] C. Rubano and P. Scudellaro, Gen. Rel. Grav. 34, 1931
(2001); N. Straumann, Mod. Phys. Lett. A 21, 1083

(2006); E. V. Linder, arXiv:1009.1411 [gr-qc].
[10] A. V. Astashenok and S. D. Odintsov, Phys. Lett. B 718,

1194 (2013); K. Bamba, S. Nojiri, and S. D. Odintsov,
Proc. 7th Math. Phys. Meet., Belgrade, Serbia (2012).

[11] S. Nojiri, and S. D. Odinstov, arXiv:0807.0685 [hep-th];
also see R. P. Woodard, arXiv:1401.0254 [astro-ph.CO].

[12] e.g., A. A. Starobinsky, JETP Lett. 86, 157 (2007); G.
J. Olmo, Phys. Rev. D 72, 083505 (2005); S. Tsujikawa,
Phys. Rev. D 77, 023507 (2008); G. Cognola, et. al.,
Phys. Rev. D 79, 044001, (2009).

[13] S. Capozziello and M. De Laurentis, Phys. Rept. 509,
167 (2011).

[14] A. Aviles, A. Bravetti, S. Capozziello, and O. Luongo,
Phys. Rev. D 87, 044012 (2013).

[15] O. Farooq and B. Ratra, Astrophys. J. Lett. 766, L7
(2013); C.-J. Wu, C. Ma, T.-J. Zhang, Astrop. Jour. 753,
97, (2012).

[16] M. Visser, Gen. Rel. Grav. 37, 1541 (2005); S. Wein-
berg, Cosmology, Oxford Univ. Press, Oxford (2008); C.
Cattoen and M. Visser, Phys. Rev. D 78, 063501 (2008).

[17] M. Visser, Class. Quant. Grav. 21, 2603 (2004); S.
Capozziello and V. Salzano, Adv. Astron. 2009, 217420
(2009).

[18] M. Demianski, E. Piedipalumbo, C. Rubano, and P.
Scudellaro, Mon. Not. Roy. Astr. Soc. 426, 1396 (2012);
M. Arabsalmani and V. Sahni, Phys. Rev. D 83, 043501
(2011).

[19] A. R. Neben and M. S. Turner, Astrophys. J. 769,
133, (2013); A. Aviles, C. Gruber, O. Luongo, and H.
Quevedo, arXiv:1301.4044 [gr-qc]; M. Visser and C. Cat-
toen, Class. Quant. Grav. 24, 5985 (2007).

[20] N. Suzuki, et al. (The Supernova Cosmology Project),
Astrophys. J. 746, 85 (2012).



11

[21] J. Simon, L. Verde, and R. Jimenez, Phys. Rev. D 71,
123001 (2005); D. Stern, et al., J. Cosmol. Astropart.
Phys. 1002, 008 (2010); M. Moresco, et al., J. Cosmol.
Astropart. Phys. 1208, 006 (2012); C. Blake, et al., Mon.
Not. Roy. Astr. Soc. 425, 405 (2012); C. H. Chuang and
Y. Wang, Mon. Not. Roy. Astr. Soc. 426, 226 (2012);
C. Zhang, et al., arXiv:1207.4541 [astro-ph.CO]; N. G.
Busca, et al., Astron. Astrophys. 552, A96 (2013).

[22] N. Metropolis, et al., J. Chem. Phys. 21, 1087 (1953);
H. Müller-Krumbhaar and K. Binder, J. Stat. Phys. 8, 1
(1973).

[23] http://root.cern.ch/drupal/
[24] https://www.mppmu.mpg.de/bat/
[25] A. Aviles, C. Gruber, O. Luongo, and H. Quevedo, Phys.

Rev. D 86, 123516 (2012).
[26] S. Capozziello, M. de Laurentis, and V. Faraoni, Open

Astron. J. 3, 49 (2009).
[27] e.g., R. D. Blandford, et al., arXiv:astro-ph/0408279; A.

R. Neben and M. S. Turner, Astrophys. J. 769, 133
(2013). Z.-X. Zhai, et al., Phys. Lett. B 727, 8 (2013).

[28] P. A. R, Ade, et al., arXiv:1303.5076 [astro.ph.CO]; for
an early indication see S. Podariu, et al., Astrophys. J.
559, 9, (2001).

[29] A. Pavlov, S. Westmoreland, K. Saaidi, and B. Ratra,
Phys. Rev. D 88, 123513 (2013); O. Farooq, D. Mania,
and B. Ratra, arXiv.1308.0834 [astro.ph.CO], and refer-
ences therein.

[30] e.g., S. Podariu, P. Nugent, and B. Ratra, Astrophys
J. 553, 39 (2001); L. Samushia, et al., Mon. Not. Roy.
Astron. Soc. 410, 1993 (2011); B. Sartoris, S. Borgani,
P. Rosati, and J. Weller, Mon. Not. Roy. Astron. Soc.
423, 2503 (2012); T. Basse, O. E. Bjaelde, S. Hannestad,
and Y. Y. Y. Wong, arXiv:1205.0548 [astro-ph.CO]; A
Pavlov, L. Samushia, and B. Ratra, Astrophys J. 760,
19 (2012); S. A. Appleby and E. Linder, Phys. Rev. D.
87, 023532 (2013); M. Arabsalmani, V. Sahni, and T. D.
Saini, Phys. Rev . D. 87, 083001 (2013).

[31] J. V. Cunha, Phys. Rev. D 79, 047301 (2009); J. V.
Cunha, Mon. Not. Roy. Astron. Soc. 390, 210 (2008).

[32] M. J. Mortonson, W. Hu, and D. Huterer, Phys. Rev. D,
80, 067301 (2009); F. Y. Wang and Z. G. Dai, Mon. Not.
Roy. Astron. Soc., 368, 371 (2006).

[33] V. Sahni, T.D. Saini, A. A. Starobinsky, and U. Alam

JETP Lett. 77, 201 (2003); O. Luongo, Mod. Phys. Lett.
A 26, 20, 1459, (2011); O. Luongo, Mod. Phys. Lett. A
28, 1350080 (2013).

[34] S. Capozziello, V. F. Cardone, and V. Salzano, Phys.
Rev. D 78, 063504 (2008).

[35] M. J. Zhang, et al., Phys. Rev. D 88, 063534 (2013);
Z.-X. Zhai, et al., Phys. Lett. B 727, 8 (2013); O. Fa-
rooq, S. Crandall, and B. Ratra, Phys. Lett. B 726,
72 (2013); O. Akarsu, T. Dereli, S. Kumar, and L.
Xu, Eur. Phys. J. Plus 129, 22 (2014); V. Poitras,
arXiv:1307.6172 [astro-ph.CO]; J. Lu, et al., Int. J. Mod.
Phys. D, 22, 1350059 (2013); L. P. Chimento and M.
G. Richarte, Eur. Phy. J. C 73, 2497 (2013); Q. Gao
and Y. Gong, arXiv:1308.5627 [astro-ph.CO]; C. Gruber
and O. Luongo, arXiv:1309.3215 [gr-qc]; K. Bamba et al.,
arXiv:1309.6413 [hep-th]; V.C. Busti, R. F. L. Holanda,
and C. Clarkson, J. Cosmol. Astropart. Phys. 1311, 020
(2013); P. C. Ferreira, D. Pavón, and J. C. Carvalho,
Phys Rev. D 88, 083503 (2013).

[36] G. Chen and B. Ratra, Publ. Astron. Soc. Pacific 123,
1127 (2011).

[37] J. R. Gott, M. S. Vogeley, S. Podariu, and B. Ratra,
Astrophys J. 549, 1 (2001); G. Chen, J. R. Gott, and
B. Ratra, Publ. Astron. Soc. Pacific 115, 1269 (2003);
E. Calabrese, M. Archidiacono, A. Melchiorri, and B.
Ratra, Phy Rev D 86, 043520 (2012).

[38] M.Colless, F. Beutler, and C Blake, arXiv:1211.2570
[astro-ph.CO]; G. Hinshaw, et al., Astrophys. J. Supp.
208, 19 (2013); P. A. R, Ade, et al., arXiv:1303.5076
[astro.ph.CO]; G. Efstathiou, arXiv:1311.3461 [astro-
ph.CO].

[39] J.-Q. Xia, V. Vitagliano, S. Liberati, and M. Viel, Phys.
Rev. D, 85, 043520, (2012).

[40] S. Capozziello, V. F. Cardone, and A. Troisi, Phys. Rev.
D, 71, 043503 (2005).

[41] M. Bouhmadi-Lopez, S. Capozziello, and V. F. Cardone,
Phys. Rev. D 82, 103526 (2010).

[42] K. Bamba, S. Capozziello, S. Nojiri, and S. D. Odintsov,
Astrophys. Space Sci. 342, 155 (2012).

[43] S. Capozziello and A. Troisi, Phys. Rev. D, 72, 044022,
(2005).


