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We constrain the parameters of a self-interacting massive dark matter scalar particle in a con-
densate using the kinematics of the eight brightest dwarf spheroidal satellites of the Milky Way.
For the case of a repulsive self-interaction the condensate develops a mass density profile with a
characteristic scale radius that is closely related to the fundamental parameters of the theory. We
find that the velocity dispersion of dwarf spheroidal galaxies suggests a scale radius of the order
of 1 kpc, in tension with previous results found using the rotational curve of low-surface-brightness
and dwarf galaxies. The new value is however favored marginally by the constraints coming from
the number of relativistic species at Big-Bang nucleosynthesis. We discuss the implications of our
findings for the particle dark matter model and argue that, while a single classical coherent state
can correctly describe the dark matter in dwarf spheroidal galaxies, it cannot play, in general, a
relevant role for the description of dark matter in bigger objects.

PACS numbers: 95.35.+d, 98.62.-g, 98.56.-p, 98.56.Wm

I. INTRODUCTION

The nature of dark matter (DM) remains an open ques-
tion. At the fundamental level, DM is expected to be
described in terms of a quantum field theory. At the
effective level, however, a description in terms of clas-
sical particles is usually considered, see e.g. the large
literature on N-body simulations [1]. Most current ef-
forts are focused on detecting a weakly interacting mas-
sive particle (WIMP), both by direct [2] and indirect [3]
searches. In the case of WIMPs its present-day abun-
dance is fixed at the time when DM decoupled from the
thermal plasma. If the interaction of DM lies at the weak
scale, with a mass of the particle in the range of 100 GeV
(as expected from the supersymmetric extensions to the
standard model), the energy density of these particles co-
incides “miraculously” with the observed one [4]. How-
ever, alternatives exist and deserve careful scrutiny, ei-
ther to constrain the associated parameter space, and
thus phenomenology, or to dismiss them as viable candi-
dates.

One such proposal considers that the abundance of DM
is fixed by an asymmetry between the number densities
of particles and antiparticles [5], similarly to the baryons
and leptons in the universe. If the particle interactions in
the early universe are strong enough to guarantee ther-
mal equilibrium, and DM is further composed of a spin-0
quantum field, the zero mode could have developed a
Bose-Einstein condensate where a description in terms
of a classical field would be warranted. Classical coher-
ent states can also emerge non-thermally, no asymmetry
required, by means of the vacuum misalignment mecha-
nism [6]. Similar ideas have been considered previously in
the literature under many different names, such as scalar
field [7], BEC [8], Q-ball [9], fuzzy [10], boson [11], or
even fluid [12], DM; see also Refs. [13–22] for details.

A natural realization of this scenario can be provided
by the axion [14]. Originally introduced to solve the
charge-parity violation problem in QCD [23], the axion

was soon recognized as a promising candidate for DM.
In this case the size of the condensate is so small [24]
that, most probably, DM halos made of axion-balls could
not be distinguished from the ones simulated with N-
body codes by means of galactic dynamics and/or lens-
ing observations [25]. Another possibility is that with
an appropriate choice of the parameters in the model
(see the next two paragraphs for details), it could be
possible to develop single structures with the size of a
galaxy [8, 11, 15–22].

For practical purposes we will restrict our attention
to the case of a massive, self-interacting, complex scalar
field with an internal U(1) global symmetry satisfying
the Klein-Gordon equation

2φ− (mc/~)2φ− 2λ|φ|2φ = 0 . (1)

Here the box denotes the d’Alembertian operator in four
dimensions, with m the mass of the scalar particle and
λ a dimenssionless self-interaction term. As long as the
interaction between bosons is repulsive, λ > 0, a univer-
sal mass density profile for the static, spherically sym-
metric, regular, asymptotically flat, self-gravitating equi-
librium scalar field configurations emerges in the weak
field, Thomas-Fermi regime [8, 16–18, 26] of the Einstein-
Klein-Gordon system with the following analytic form:

ρ(r) =

 ρc
sin(πr/rmax)

(πr/rmax)
for r < rmax

0 for r ≥ rmax

. (2)

In the effective description above there are two free pa-
rameters: first, the size of the gravitating objects,

rmax ≡
√
π2Λ

2

(
~
mc

)
= 48.93

(
λ1/4

m[eV/c2]

)2

kpc , (3)

a parameter that, as manifest from the equation, depends
directly on the bare constants of the theory in the com-
bination m/λ1/4; second, the value of the mass density
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at the center of the configuration, ρc ≡ πmQ/(4r3
max), a

quantity that in principle can vary from galaxy to galaxy.
Here Q is the total charge in the system, that in this
case coincides with the total number of particles, and for
convenience we have defined the dimensionless constant
Λ ≡ λm2

Planck/4πm
2.

The mass density profile in Eq. (2) describes only the
diluted configurations of a scalar field in a regime of weak
gravity; in terms of particle numbers that translates into
(see e.g. Eq. (25) in Ref. [15])

Λ−1/2 �
(

m

mPlanck

)2

Q� Λ1/2 . (4)

The inequalities in Eq. (4) demand Λ� 1; that is guar-
anteed if the combination m/λ1/4 for the mass and self-
interaction terms of the scalar boson is well below the
Planck scale. It is precisely the very large value ex-
pected for the constant Λ what makes possible to blow
up the Compton wavelength of the scalar particle, ~/mc,
up to galactic scales, see Eq. (3) above. Only con-
figurations with masses M = mQ in the range from
M � λ−1/2mPlanck up to M � λ1/2m3

Planck/m
2 can be

described by the expression in Eq. (2). Then, in order to
have an halo model for objects of at least M ∼ 108M�
(M ∼ 1012M�) we need a scalar DM particle with
m/λ1/4 < 70 keV/c2 (m/λ1/4 < 0.7 keV/c2).

The density profile in Eq. (2) was derived under the
assumption that all the DM particles are in a conden-
sate, while in a more realistic situation probably only
a fraction of them would be represented by the coher-
ent classical state. (That seems indeed necessary in or-
der to explain the flattened rotation curves in large spi-
rals, where observations suggest ρ ∼ 1/r2 at large radii.)
Unfortunately, there is not yet a satisfactory description
that includes this effect (see Ref. [27] for a proposal in
this direction). Nevertheless, this halo model can still
be deemed appropriate to test the self-interacting scalar
field DM scenario if we carefully choose observations that
are sensitive only to the mass contained up to a radius
smaller or comparable to rmax, where the condensate is
expected to dominate the distribution of DM. One should
then look at the profile in Eq. (2) not necessarily as a DM
halo model for the whole galaxy, but for the core of the
self-gravitating object only.

The dwarf spheroidal (dSph) satellites of the Milky
Way are probably the most promising objects to test
DM models as far as structure formation is concerned.
These old, pressure-supported systems are the smallest
and least luminous known galaxies, and there is strong
evidence that they are DM dominated at all radii, with
mass-to-light ratios as large as [28]

M/LV ∼ 101−2[M/LV ]� . (5)

The dynamics of these objects, for instance, could allow
us to determine whether DM halos are cored or cuspy:
since the concentration of baryons in these galaxies is
so low, effects such as the adiabatic contraction and/or

supernova feedback cannot alter significantly the shape of
the original halo. Current data do not yet conclusively
discriminate between cuspy and cored profiles [29–32],
however, the next generation of sky surveys (DES, Gaia,
LSST, etc) is expected to shed new light on this question.

In this paper we use the kinematics of the eight clas-
sical dSph satellites of the Milky Way to determine
whether a self-interacting scalar particle in a condensate
is able to reproduce the galaxies’ internal dynamics and,
if so, under what conditions on the theory input parame-
ters. In this respect, our study extends previous analyses
carried out for the generalized Hernquist [29] and Burk-
ert [30] profiles to the DM halo model in Eq. (2). It is
important to note, however, that the purpose of this pa-
per is not to compare the profile in Eq. (2) with other
halo models in the literature, but, rather, to use dSph
dynamics to test the self-consistency of the scalar field
dark matter scenario.

We find that the eight classical dSphs indicate a scale
radius of the order

rmax ∼ 1 kpc , i.e. m/λ1/4 ∼ 7 eV/c2 , (6)

a value in tension with previous results found using
the rotation curves of low-surface-brightness (LSB) and
dwarf galaxies [8, 16, 18, 19]; see also Refs. [21, 22] for
bigger galaxies. Our findings strongly disfavor a self-
interacting condensate DM halo model or, if one hypothe-
sizes that the condensate describes only the core of galax-
ies, they indicate that the relevance of the coherent state
to describe DM in larger galaxies is, at best, negligible.

II. THE JEANS EQUATION

Dwarf spheroidal galaxies are simple, old systems com-
posed of a DM halo and of a stellar population. Rota-
tion in these galaxies is negligible, and the stellar compo-
nent is supported against gravity by its random motion.
Therefore the observation that can be used to test DM
models is not rotation curves but, rather, the line-of-sight
velocity dispersions.

Walker et al [29, 33, 34] reported updated empirical ve-
locity dispersion profiles for the eight “classical” dSphs
of the Milky Way: Carina, Draco, Fornax, Leo I, LeoII,
Sculptor, Sextans, and Ursa Minor; see Figure 1 for de-
tails. Following standard parametric analysis [29, 30] (see
Ref. [31] for a different approach), we consider that the
stellar component in each individual galaxy is in dynami-
cal equilibrium and that it traces the underlying DM dis-
tribution. Assuming, further, spherical symmetry, Jeans’
equation relates the mass profile of the DM halo,

M(r) =
Mmax

π

[
sin

(
πr

rmax

)
− πr

rmax
cos

(
πr

rmax

)]
, (7)

where

Mmax = M(rmax) = (4/π)ρcr
3
max , (8)
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FIG. 1: Empirical, projected velocity dispersion profiles for the classical eight dSph satellites of the Milky Way as reported in
Refs. [29, 33, 34]. Solid lines denote the best fits for the halo model in Eq. (2) when rmax = 1 kpc (red), rmax = 2 kpc (black),
and rmax = 6 kpc (blue).

to the first moment of the stellar distribution function,

1

ν

d

dr

(
ν〈v2

r〉
)

+ 2
β〈v2

r〉
r

= −GM
r2

. (9)

Above, ν(r), 〈v2
r(r)〉, and β(r) = 1 − 〈v2

θ〉/〈v2
r〉 are the

three-dimensional density, radial velocity dispersion, and
orbital anisotropy, respectively, of the stellar component.
The parameter β quantifies the degree of radial stellar
anisotropy: if all orbits are circular 〈v2

r〉 = 0, and then
β =∞; if the orbits are isotropic 〈v2

r〉 = 〈v2
θ〉, and β = 0;

finally, if all orbits are perfectly radial, 〈v2
θ〉 = 0, then

β = 1. There is no preference a priori for either radially,
β > 0, or tangentially, β < 0, biased systems; however,
configurations with β ∼ 1 are disfavored due to the very
particular initial conditions they seem to require.

In the simplest scenario with constant orbital
anisotropy, β(r) = const, the (observed) projection of
the velocity dispersion along the line-of-sight, σ2

los(R),
relates the mass profile, M(r), to the (observed) stellar
density, I(R), through [35]

σ2
los =

2G

I(R)

∫ ∞
R

dr′ν(r′)M(r′)(r′)2β−2F (β,R, r′) .

(10)

Here

F (β,R, r′) ≡
∫ r′

R

dr

(
1− βR

2

r2

)
r−2β+1

√
r2 −R2

, (11)

and R is the projected radius. We adopt a Plummer
profile for the stellar density,

I(R) =
L

πr2
half

1

[1 + (R/r)2)]2
, (12)

where L is the total luminosity of the object and rhalf

(the only single shape parameter) the half-light radius.
The values of these two quantities for each of the eight
classical dSphs are listed in Table I of Ref. [29]. Under
the assumption of spherical symmetry the correspond-
ing three-dimensional stellar density associated with the
Plummer profile takes the form

ν(r) =
3L

4πr3
half

1

[1 + (r/rhalf)2]5/2
. (13)

We have corroborated that our findings in this paper are
not very sensitive to the profile of the stellar component,
and similar results are also obtained using a Sersic [36]
or a King profile [37].
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FIG. 2: Two-dimensional posterior distributions of Fornax, Sculptor, and Draco using the BEC halo model in Eq. (2). The
histograms correspond to the marginalized posterior distributions of each parameter. The dashed lines and red contours
represent the 1σ confidence interval. Solid lines indicates the maximum likelihood point.

A. Maximum Likelihood and Monte Carlo analysis

In order to fit the observations we have three free pa-
rameters per galaxy: two associated with the halo model,
the scale radius rmax and the total mass Mmax, and
one associated with the stellar component, the orbital
anisotropy β. Since the scale radius is a constant in the
theory one could perform a combined analysis for the
eight galaxies keeping this quantity fixed. For the pur-
pose of this paper, however, this procedure is not war-
ranted; instead we estimate rmax for each galaxy, and
we then compare the values obtained for the different
galaxies. We will also contrast our results against previ-
ous constraints arising from the study of the rotational
curves of LSB and dwarf galaxies. As we show below,
this analysis is sufficient to uncover strong tension be-
tween model and observations at different scales.

In order to proceed we perform a Maximum
Likelihood−Markov chain Monte Carlo analysis (we use
the emcee code, described in Ref. [38]) to explore the
parameter space and estimate the values of rmax, Mmax

and β for each individual galaxy, together with their cor-
responding uncertainties. For each galaxy we define the
likelihood function

L =

N∏
i=1

exp

[
− 1

2

(σobs
los (Ri)−σlos(Ri))

2

Var[σobs
los (Ri)]

]
√

2πVar[σobs
los (Ri)]

. (14)

Here σobs
los (Ri) is the observed line-of-sight velocity disper-

sion at projected radius Ri, σlos(Ri) is given in Eq. (10),
Var[σobs

los (Ri)] is the square of the error associated with
the observed value of the velocity dispersion at Ri, and
i is a label for the data bins that runs from 1 to the to-
tal number of bins N . To account for the uncertainties
on rhalf we marginalize over this parameter by sampling
it, at each step of the Monte Carlo, from a normal dis-
tribution with a standard deviation equal to its actual

uncertainty.
For the three free parameters we adopt uniform log-

priors in the following ranges:

−2.5 < ln (rmax [kpc]) < 2.5 , (15a)

−7 < ln
(
Mmax [109M�]

)
< 7 , (15b)

−3 < − ln (1− β) < 3 . (15c)

For each galaxy we run 50 chains simultaneously, starting
at random values within the prior range, and allow each
chain to run for 1,000 steps, from which we eliminate the
first 100 steps that correspond to a “burn-in” period.

III. RESULTS

Our results are shown in Figure 2 where, for three
of the galaxies with more data points, Fornax, Sculptor
and Draco, we plot the one- and two-dimensional pos-
terior distributions of the parameters rmax, Mmax, and
β. As we can note the posterior distributions are almost
symmetric with respect to the maximum likelihood point
(solid lines). The dashed lines and red ellipses indicate
the 1σ (68.2% CL) confidence interval of the different pa-
rameters. Some degeneracy between the scale radius and
the total mass, and the anisotropy, is evident; however,
in all cases the chains converge to a small region of the
parameter space.

The values of rmax, Mmax and β for all the galaxies in
the sample, together with their corresponding uncertain-
ties, are listed in Table I. We have corroborated that sim-
ilar results are also obtained when using a Sersic (King)
stellar distribution. In particular, for rmax we obtain a
difference of ∼ 0.5 kpc (∼ 0.2kpc) in the central value,
but the error remains of the same magnitude with re-
spect to that in the Plummer case.

We conclude that the preferred value of the scale radius
inferred from the dynamics of the eight dSphs lies around
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Object rmax[kpc] Mmax[108M�] − ln(1− β)
Fornax 1.4+0.1

−0.1 1.1+0.9
−0.9 0.2+0.1

−0.1

Sculptor 1.0+0.1
−0.1 1.1+0.3

−0.2 0.3+0.2
−0.2

Carina 1.1+0.3
−0.3 0.8+0.6

−0.3 0.6+0.3
−0.3

Draco 1.7+0.4
−0.3 5.9+4.1

−2.7 1.8+0.7
−0.8

Leo I 1.0+0.4
−0.2 1.7+1.4

−0.7 0.9+0.7
−0.5

Leo II 0.6+0.3
−0.2 0.5+0.7

−0.3 1.6+0.9
−0.9

Sextans 0.7+0.4
−0.3 0.2+0.2

−0.1 −0.4+0.4
−0.7

Ursa Minor 0.9+0.4
−0.3 0.9+0.9

−0.4 0.1+0.3
−0.3

TABLE I: Estimate of the parameters rmax, Mmax, and β for
the classical dSphs in the Milky Way.

rmax ∼ 1 kpc, i.e. m/λ1/4 ∼ 7 eV/c2; this value is indeed
contained within the 3σ (99.7% CL) confidence interval of
each galaxy. Moreover, we can exclude at more than 5σ
(99.9% CL) values of rmax & 5 kpc. As we will discuss
next in Section IV, this implies a strong conflict with
previous constraints on this parameter of the theory.

At this point we would like to stress that, besides
the statistical evidence for small values of the parame-
ter rmax, there are also physical arguments that support
this conclusion, which we can draw by looking at the be-
havior of the best fit parameters (minimum chi-square)
of the anisotropy, β, and total mass, Mmax, for a fixed
value rmax of the size of the condensate:

(i) Density profiles with scale radii larger than 2 kpc
imply values of the anisotropy parameter β & 0.5; see
Figure 3. For a scalar field DM model there is no known
connection between the anisotropy in the stellar distribu-
tion and the halo, so that dSphs could in principle be de-
scribed as equilibrium systems even with such large val-
ues of the orbital anisotropy. (It is unclear to us whether
large values of the stellar anisotropy would necessarily
develop a radial instability for these halo models.) How-
ever, although these configurations cannot be excluded
a priori, they imply an unnatural preference for radial
orbits.

(ii) As the value of the scale radius increases, the total
mass required to fit the data grows drastically, reaching
values as large as Mmax & 1010M� in some cases when
rmax & 6 kpc; see Figure 4. This value is an order of
magnitude larger than what inferred by previous analy-
sis [29, 30, 33, 39]. An upper limit to the mass of these
objects stems from the requirement that the dynamical
friction decay time not be larger than the age of the uni-
verse [35, 40], although there are no model independent
limits on the total mass of these galaxies.

Finally, it is also interesting to note that observations
suggest a decline in the velocity dispersion profiles at
large projected radii [29, 41], whereas the predicted pro-
files for large values of the scale radius grow at large radii.
Even though for some galaxies the fit is not drastically
worsen for large values of rmax, if we inspect the overall
radial dependence we can see that large scale radii fail in
describing the outer regions for all galaxies, see the blue
lines in Figure 1.
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FIG. 3: Preferred orbital anisotropy for the best fits as a
function of the scale radius. The lines at β = 0.5 and β = −1
correspond to 〈v2r〉 = 2〈v2θ〉 and 〈v2θ〉 = 2〈v2r〉, respectively.

From the above considerations the preference of a scale
radius in the range rmax ∼ 0.5 − 2 kpc (green band in
Figures 3 and 4) is solid. A common value of rmax larger
than 5 kpc is clearly disfavored by the dynamics of dSphs.
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FIG. 4: Total mass for the best fits as a function of the scale
radius. The line at M = 3× 109M� corresponds to the virial
mass of Draco (the most massive object in the sample) ob-
tained from a NFW profile consistent with the observations in
the velocity dispersions [33, 39]. The line at M = 1×1010M�
comes from an upper limit to the mass of this same galaxy as
required from the dynamical friction decay time to be larger
than one Hubble time [35, 40].

IV. DISCUSSION AND CONCLUSIONS

The viability of the halo model in Eq. (2) has been
studied in several papers mainly employing rotational
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curves of galaxies from different surveys, out of which
only the most DM dominated objects have been se-
lected [8, 16, 18, 19]; see also Ref. [20] for a different
approach. These studies all point to a scale radius that
varies from galaxy to galaxy and ranges from 3 kpc up to
15 kpc (light red band in Figures 3 and 4), with only
isolated instances requiring values outside this range,
e.g. M81dw, where rmax ∼ 1 kpc [8], and UGC5005,
where rmax ∼ 24.65 kpc [18]. However, these papers
also report mean values in the narrow range rmax ∼
5.5 − 7 kpc [16, 18] (red band in Figures 3 and 4), sug-
gesting the existence of a self-interacting scalar parti-
cle with m/λ1/4 ∼ 2.6 − 2.9 eV/c2. Such findings have
led to the conclusion that the halo model in Eq. (2)
can describe accurately the dynamics of DM dominated
galaxies. The case of Milky Way-like systems, or giant
ellipticals, remains to be studied in detail mainly be-
cause the dynamical interaction between the condensate
and baryons is not well understood there (see however
Ref. [21], where a set of three high-surface-brightness
spirals have been recently considered, e.g. ESO215G39,
where rmax ∼ 50 kpc, and Ref. [22], where values of the
scale radius in the range rmax = 5.6 − 98.2 kpc are re-
ported for a subsample of galaxies in the THINGS sur-
vey). Note that, contrary to other proposals in the litera-
ture, the halo model in Eq. (2) is not expected to describe
galaxy clusters.

The values reported in previous studies are strongly
disfavored by our findings in the present analysis, where
we show that the dynamics of the smallest and least lu-
minous galaxies is clearly in conflict, along several lines,
with such large scale radii. One could argue that the pro-
file in Eq. (2) is not appropriate to describe the galaxies
in Refs. [8, 16, 18, 19, 21, 22] (where in some cases the
luminous matter extends up to 10 kpc), and suggest that
a more elaborated halo model where the condensate rep-
resents only the core of the galaxy would be necessary
in order to understand the dynamics of these systems.
However, it is important to note that a condensate with
a scale radius of the order of 1 kpc does not provide the
core expected for those galaxies used in previous analysis.

Interestingly, the new value of rmax ∼ 1 kpc is fa-
vored by cosmological observations. A homogeneous and
isotropic distribution of matter satisfying the Eq. (1) has
two different regimes depending on the actual value of
the charge density, q = Q/a3; see e.g. Ref. [15]. Here a
is the scale factor and Q the number of particles per unit
volume today, a = 1. When the charge density is high,
q � m3c3/(λ~3), the energy density and pressure of the
scalar field dilute with the cosmological expansion like
dark radiation, ρ = 3λ1/3Q4/3c~/(4a4) and p = (1/3)ρ,
whereas at low densities, when q � m3c3/(λ~3), like
cold DM, ρ = Qmc2/a3 and p = 0. From the condition
that the transition from dark radiation to DM, fixed at
q ∼ m3c3/(λ~3), has to occur before the time of equality,
when ρ ∼ 5 × 1013 eV cm−3, we obtain rmax < 80 kpc,
i.e. m/λ1/4 > 0.8 eV/c

2
. However, the number of ex-

tra relativistic species at Big-Bang nucleosynthesis places

tighter constraints on the parameters of the theory. For
a scalar field, this quantity, defined as the number of ex-
tra relativistic neutrino degrees of freedom at Big-Bang
nucleosynthesis, takes the form

∆Neff = 57.83×
(
Ωdmh

2
)4/3( λ1/4

m[eV/c2]

)4/3

, (16)

see e.g. Eq. (67) in Ref. [16]. (Note that
there is an extra factor of 1/2 in our expression
for ∆Neff with respect to that in Ref. [16]; this
might come from the two helicities of the neu-
trino.) Using the latest cosmological data provided by
PLANCK+WP+highL [42], Ωdmh

2 = 0.1142 ± 0.0035
at 1σ CL, and PLANCK+WP+highL+(D/H)p [43],
∆Neff = 0.23± 0.28, also at 1σ CL, we obtain

rmax . 3 kpc , i.e. m/λ1/4 & 4 eV/c2 , (17)

Note that this result excludes marginally previous values
of rmax & 5.5 kpc arising from the study of the rotational
curves of LSB and dwarf galaxies [8, 16, 18, 19].

The analysis in this paper applies only for the case
of a self-interacting scalar particle with λ > 0; how-
ever, similar results are expected when λ ≤ 0. Up to
our knowledge, there is no analytic expression for the
mass density profile of the halo model when the self-
interaction term is less than or equal to zero, but e.g.
in the case of λ = 0, the characteristic size and mass
of the equilibrium configurations are found to be [44] of
order R ∼ Q−1/2(mPlanck/m)(~/mc), and M ∼ Qm, re-
spectively. One can fix the number of particles, Q, and
mass parameter, m, in order to describe the dynamics of
dSphs, implying R ∼ 1 kpc and M ∼ 108M�, see for in-
stance Ref. [20] for the case of Ursa Minor, but then con-
figurations heavier than 108M� would be smaller than
1 kpc, whereas those larger than 1 kpc would result in
halos lighter than 108M�.

In summary, if we dismiss previous constraints, a sce-
nario where the DM galactic halos are described by a
single condensate is consistent with the data from the
smallest and most DM dominated nearby galactic sys-
tems; nonetheless, these single objects alone will not be
consistent with the description of bigger galaxies.
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N.W. Evans and G. Gilmore, “A universal mass profile
for dwarf spheroidal galaxies,” Astrophys. J. 704 1274-
1287 (2009) [arXiv:0906.0341[astro-ph.CO]]; Erratum-
ibid. 710 886-890 (2010)

[30] P. Salucci, M.I. Wilkinson, M.G. Walker, G.F. Gilmore,
E.K. Grebel, A. Koch, C.F. Martins and R.F.G. Wyse,
“Dwarf spheroidal galaxy kinematics and spiral galaxy
scaling laws,” Mon. Not. Roy. Astron. Soc., 420 2034-
2041 (2011) [arXiv:1111.1165[astro-ph.CO]]

[31] J.R. Jardel and K. Gebhardt, “Variations in a universal
dark matter profile for dwarf spheroidals,” Astrophys. J.
775 L30 (2013)

[32] O. Valenzuela, G. Rhee, A. Klypin, F. Governato,
G. Stinson, T. R. Quinn and J. Wadsley, “Is there ev-
idence for flat cores in the halos of dwarf galaxies?: the
case of ngc 3109 and ngc 6822,” Astrophys. J. 657, 773
(2007) [astro-ph/0509644].

[33] M.G. Walker, M. Mateo, E.W. Olszewski, O.Y. Gnedin,
X. Wang, B. Sen and M. Woodroofe, “Velocity dispersion
profiles of seven dwarf spheroidal galaxies,” Astrophys. J.
667 L53-L56 (2007) [arXiv:0708.0010[astro-ph]]

[34] M. Mateo, E.W. Olszewski and M.G. Walker, “The ve-
locity dispersion profile of the remote dwarf spheroidal
galaxy Leo I: A tidal hit and run?,” Astro-
phys. J. 675 201-233 (2008) [arXiv:0708.1327[astro-
ph]]; M.G. Walker, M. Mateo and E.W. Olszewski,
“Stellar velocities in the Carina, Fornax, Sculptor,
and Sextans dSph galaxies: Data from the Magel-
lan/MMFS Survey,” Astrophys. J. 137 3100-3108 (2009)
[arXiv:0708.1327[astro-ph]]

[35] J. Binney and S. Tremaine, Galactic Dynamics, Prince-
ton University Press, 2 edition (January 27, 2008) 904pp

[36] J.L. Sersic, “Atlas de galaxias australes,” Cordoba, Ar-
gentina: Observatorio Astronomico (1968)

[37] I. King, “The structure of star clusters. I. an empirical
density law,” Astron. J. 67 471 (1962)

[38] D. Foreman-Mackey, D.W. Hogg, D. Lang and J. Good-
man, “emcee: The MCMC Hammer,” Publications of the
Astronomical Society of the Pacific 125 306-312 (2013)
[arXiv:1202.3665[astro-ph.IM]]

[39] J.R. Jardel, K. Gebhardt, M.H. Fabricius, N. Drory
and M.J. Williams, “Measuring dark matter pro-
files non-parametrically in dwarf spheroidals: An ap-
plication to Draco,” Astrophys. J. 763 91 (2013)
[arXiv:1211.5376[astro-ph.CO]]

[40] O. Gerhard and D.N. Spergel, “Dwarf spheroidal galaxies
and the mass of the neutrino,” Astrophys. J. 389 L9-L11
(1992)

[41] E.L. Lokas, J. Klimentowski, S. Kazantzidis and
L. Mayer, “The anatomy of Leo I: How tidal tails af-
fect the kinematics,” Mon. Not. Roy. Astron. Soc., 390
625-634 (2008) [arXiv:0804.0204[astro-ph]]; E.L. Lokas,
“The mass and velocity anisotropy of the Carina, For-
nax, Sculptor and Sextans dwarf spheroidal galaxies,”
Mon. Not. Roy. Astron. Soc., 394 L102-L106 (2009)
[arXiv:0901.0715[astro-ph.GA]]

[42] P.A.R. Ade et al. [Planck Collaboration], “Planck
2013 results. XVI. Cosmological parameters,”
[arXiv:1303.5076[astro-ph.CO]]

[43] R. Cooke, M. Pettini, R. A. Jorgenson, M. T. Murphy
and C. C. Steidel, “Precision measures of the primor-
dial abundance of deuterium,” [arXiv:1308.3240[astro-
ph.CO]]

[44] R. Ruffini and S. Bonazzola, “Systems of self-gravitating
particles in general relativity and the concept of an equa-
tion of state,” Phys. Rev. 187 1767-1783 (1969)


