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Abstract

We revisit the computation of logarithmic corrections to black holes with N ≥ 2

supersymmetry. We employ an on-shell method that takes advantage of the symmetries

in the AdS2 × S2 near horizon geometry. For bulk modes interactions are incorporated

through the spectrum of chiral primaries that we derive afresh. The spectrum of boundary

states is computed explicitly by analyzing gauge variations. Elementary heat kernels in 4D

and 2D then give the logarithmic corrections to the black hole entropy. Our computation

represents a streamlined and simplified derivation that agrees with the results recently

found by A. Sen.

1. Introduction

The microscopic understanding of black hole quantum states gives counting formulae

that encode numerous corrections to the standard Bekenstein-Hawking area law. Among

such corrections the logarithmic ones have particular significance because these are inde-

pendently computable from the effective low energy theory in the vicinity of the black

holes [1,2,3]. The logarithmic corrections therefore allow a sensitive check on any proposed

microscopic model. Conversely, in cases where no microsopic model is available the loga-

rithmic corrections provide a robust clue that may lead to the construction of such a model

[4,5].
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The computation of logarithmic corrections from the low energy theory is straight-

forward in principle [6]: determine the quadratic fluctuations around the black hole back-

ground and then compute the resulting functional determinant using standard techniques.

However, in practice these steps can be quite laborious. The theories of interest in string

theory generally have elaborate matter content that results in many distinct contribu-

tions to quantum corrections. Gauge symmetries (including diffeomorphism invariance)

further complicate the situation by introducing ghost sectors that can be quite nontrivial.

The logarithmic corrections to black holes were developed in many recent works including

[7,8,9,10,11].

The goal of this paper is to present a simplified computation of logarithmic corrections

to the black hole entropy. The streamlined procedure we present promotes transparency

and makes it realistic to address more complicated settings. In this paper we limit ourselves

to BPS black holes which have AdS2×S2 near horizon geometry. In this context important

aspects of our strategy are these:

• The Spectrum of Chiral Primaries: a large number of interactions between dif-

ferent fields generally leads to unwieldy matrices at intermediate stages of the

computation. We diagonalize the interactions by first computing the spectrum

of chiral primaries. This spectrum encodes all information about the interactions

that is needed.

In order to highlight the origin of these simplifications in symmetry principles

we give a self-contained derivation of the black hole spectrum. Our method is

indirect but it is efficient and new to this context. Further, our independent

computation of the spectrum identifies several details that have previously been

overlooked.

• Simplified Functional Determinants: we reduce the field content of the 4D theory

to a set of fields on AdS2 and its boundary. The only functional determinants we

need are those for massless scalars and fermions in AdS2. The additional data

that is special to each field we consider is encoded in a discrete sum over masses.

This organization of the computation represents a simplification because it does

not require measures and contours for continuous complex eigenvalues. We also

do not need explicit wave functions.

• Gauge-fixing and Ghosts: we compute quantum corrections by summing over

contributions from physical fields only. The unphysical sector comprising pure

gauge modes, longitudinal modes, and ghosts ultimately cancel in the physical

quantities of interest. We use an on-shell method where these quantities are not

needed in intermediate stages of the computation.

• Boundary Modes: gauge symmetries (including supersymmetry and diffeomor-

phism invariance) give rise to physical modes that localize on the boundary. We



determine the quantum numbers of these modes by analyzing the action of the

relevant symmetry. Their contribution is then computed by treating them as 2D

fields on the S2.

The physical modes that contribute to the one-loop functional determinant are the 4D

bulk modes, the 2D boundary modes, and the 0D zero-modes. Adding the contributions

together our final result for logarithmic corrections to extremal black hole entropy in

theories with N ≥ 2 SUSY becomes

S =
1

4
AH +

1

12
[23− 11(N − 2)− nV + nH ] logAH . (1.1)

This final result agrees perfectly with those reported by A. Sen and collaborators [12,13,2].

Some important special cases of the formula:

• The N = 4 theory. Such theories have nV = nH +1 because one N = 2 vector is

part of the N = 4 supergravity multiplet while each N = 4 matter multiplet is

composed of one N = 2 vector and one N = 2 hyper. In this case the logarithmic

correction vanishes independently of the number of N = 4 matter multiplets.

• The N = 6 theory: nV = 7 and nH = 4 so that the logarithmic correction is

δS = −2 logAH .

• The N = 8 theory: nV = 15 and nH = 10 so δS = −4 logAH .

We evaluate the functional determinants using heat kernel techniques. In 4D the

leading term in the heat kernel is a double pole. These double poles cancel in each N = 2

multiplet by itself. This corresponds to vanishing cosmological constant in 4D and is due

to the degeneracy of bosons and fermions in the on-shell SUSY multiplets.

The simple pole in the heat kernel receives contributions from the 2D boundary modes

that are non-trivial since there is not the same number of bosonic and fermionic symmetries.

It also receives a contribution from mixing between the bulk modes. It is a consistency

check on our computations that the sum of these terms vanish for any theory with at least

N = 4 [14]. For the more general theories we consider the coefficient of the pole in the

heat kernel is non-trivial. This part of our result can be interpreted as the renormalization

of the gravitational coupling constant.

The logarithmic corrections to the black hole entropy are encoded in the constant

term of the heat kernel so contributions from both bulk modes and boundary modes must

be computed with sufficient precision that the constant is determined. Additionally, there

are contributions from zero-modes.

The indirect methods we pursue in this paper stress the origin of particle spectra

in symmetry but at times they leave room for suspicion. In a companion paper we will

present the explicit mode expansions that underpin the physical spectrum [15].



This paper is organized as follows. In section 2 we determine the spectrum of chiral

primaries using an indirect argument that exploits symmetries. We resolve a discrepancy

with results reported in the literature. In section 3 we review the simple heat kernels we

need. We provide a self-contained presentation in order to highlight the complete absence

of advanced techniques. In section 4 we apply the heat kernels to the physical spectrum

determined in section 2. We thus compute the contribution to the heat kernel from all

bulk modes. In section 5 we discuss gauge symmetries and use them to determine the

spectrum of boundary modes. This yields an additional contribution to the heat kernel.

In section 6 we briefly review the correction to the heat kernel due to zero-modes on the

boundary. Finally, in section 7 we add the various contibutions to the heat kernel and we

discuss the relation to trace anomalies. This gives the logarithmic correction to the black

hole entropy (1.1).

2. Classical Modes

The spectrum of the black hole is the set of quantum numbers for fluctuations around

the black hole background. In this section we use symmetry principles to determine the

BPS part of the spectrum.

We consider a 4D theory with (at least) N = 2 SUSY. We further focus on the near

horizon region of black holes that preserve at least some of the supersymmetry. This

geometry always takes the form AdS2×S2. The attractor mechanism ensures that gravity

and the graviphoton are the only fields turned on in the near horizon geometry of the black

hole [16].

Fields in the AdS2 × S2 background are classified by the quantum numbers of the

SL(2) × SU(2) isometries. We are particularly interested in the lowest weight represen-

tations which we denote by (h, j). Here h is the lowest eigenvalue of the L0 generator of

SL(2) and j refers to the SU(2) representation. The (h, j) representation thus has degen-

eracy (2j + 1) from its SU(2) representation and also an infinite tower of states with L0

values h, h + 1, h+ 2, . . .. The BPS spectrum of the black hole is a list of the (h, j) that

are realized by fluctuations in the background.

The massless field content of a general theory with N ≥ 2 SUSY can be decomposed

into a set of N = 2 multiplets:

• A supergravity multiplet.

• N − 2 (massive) gravitino multiplets (because two of the N gravitinos are in the

N = 2 supergravity multiplet).

• nV vector multiplets.

• nH hyper multiplets.



2.1. Determination of BPS Spectra

It is useful to organize the particle content of N = 2 multiplets according to their

helicity content. Suppose that the maximum helicity state in a given N = 2 multiplet is

λ. Upon action with one of the two SUSY generators we then find two states with helicity

λ− 1
2 and, upon action with both of them, we find a single state with helicity λ− 1. This

universal structure gives the helicity content of each N = 2 multiplet:

Supergravity multiplet : λ = ±2,±3

2
× 2,±1 ,

Gravitino multiplet : λ = ±3

2
,±1× 2,±1

2
,

Vector multiplet : λ = ±1,±1

2
× 2, 0× 2 ,

Hyper multiplet : λ = ±1

2
× 2, 0× 4 .

(2.1)

The notation ×2 indicates a multiplicity of 2. In the first three kinds of multiplets we

included the CPT conjugate states with negative helicity as one must in field theory re-

alizations. The hypermultiplet was automatically CPT invariant but we double its field

content anyway. With this convention the hypermultiplet is a “full” hyper with 4 real

scalars and two Weyl spinors.

The field equations for quadratic fluctuations are linear. Moreover, we can introduce

global flavor symmetries unique to each type of N = 2 supermultiplet and this ensures that

there is no mixing between different types of N = 2 supermultiplets. We can therefore con-

sider the supergravity multiplet, the (massive) gravitino multiplets, the vector multiplets,

and the hyper multiplets independently.

The expansion of four-dimensional fields in partial waves on S2 gives an effective 2D

theory on AdS2. The SU(2) representations that appear are determined by the general

rules that govern Kaluza-Klein reduction on homogeneous spaces [17]. In the case of the

coset S2 = SU(2)/U(1) the quantum number under U(1) can be identified with the helicity

λ and the SU(2) representations that appear in the reduction are precisely those where λ

appears in the decomposition of SU(2) with respect to U(1). Thus the allowed angular

momentum quantum numbers for a helicity mode λ are j = |λ|, |λ|+ 1, . . .. Starting from

the helicity content of the fields (2.1) we can therefore present the SU(2) content in terms



of towers:

Supergravity multiplet : j = (k + 2)× 2, (k +
3

2
)× 4, (k + 1)× 2 ,

Gravitino multiplet : j = (k +
3

2
)× 2, (k + 1)× 4, (k +

1

2
)× 2 ,

Vector multiplet : j = (k + 1)× 2, (k +
1

2
)× 4, k × 2 ,

Hyper multiplet : j = (k +
1

2
)× 4, k × 4 ,

(2.2)

with k = 0, 1, . . ..

The BPS spectrum of the black hole amounts to the specification of the value of the

AdS2 energy h for each of these SU(2) multiplets. These energies depend on couplings

between the fields. The simplification captured by the enumeration in (2.2) is that these

couplings respect the partial wave expansion: only fields with the same j can mix.

The actual value of the AdS2 energy h is determined by supersymmetry as follows.

The AdS2 × S2 geometry preserves the supergroup SU(2|1, 1). This supergroup has 8

SUSY charges, the same as the number in N = 2 SUSY in four dimensions. These

generators can be represented in terms of two component spinors QA (A = 1, 2) and their

conjugates. The corresponding charges all have quantum numbers h = 1/2 and j = 1/2.

They transform as doublets of the global SU(2) symmetry acting on the A = 1, 2 index.

We will suppress reference to this global SU(2) in the following in order to avoid confusion

with the SU(2) rotation group. Since SUSY is preserved by the background, fluctuating

fields must organize themselves into supermultiplets after the mixing is taken into account.

Starting from a lowest weight state (h, j) a supermultiplet is obtained by acting with the

supercharges that function as creation operators.

The fields we consider will all be in chiral multiplets of the form

(k, k), 2(k+
1

2
, k − 1

2
), (k+ 1, k − 1) , (2.3)

with the possible values of k = 1
2 , 1,

3
2 , . . .. In the special case where k = 1

2 the SU(2)

quantum number j = −1
2 of the final term in (2.3) should be interpreted as an empty

representation.

The chiral multiplets (2.3) are short multiplets. They are special in two (related)

ways: the lowest weight state has h = j and also the supercharges always act in a manner

that lowers the spin. A generic long representation would have four active supercharges

so that the span of spins in a single multiplet would be two. Such representations are

therefore too large for our purpose.



There is a unique way to organize the fields with SU(2) content (2.2) into chiral

multiplets of the form (2.3). This gives the list of fields

Supergravity multiplet : 2[(k + 2, k + 2) , 2(k +
5

2
, k +

3

2
) , (k + 3, k + 1)] ,

Gravitino multiplet : 2[(k +
3

2
, k +

3

2
) , 2(k + 2, k + 1) , (k +

5

2
, k +

1

2
)] ,

Vector multiplet : 2[(k + 1, k + 1) , 2(k +
3

2
, k +

1

2
) , (k + 2, k)]

Hyper multiplet : 2[(k +
1

2
, k +

1

2
) , 2(k + 1, k) , (k +

3

2
, k − 1

2
)] .

(2.4)

As before k = 0, 1 . . .. This is the complete spectrum of the black hole. In particular the

spectrum is determined entirely by symmetries.

2.2. Explicit Computations

The determination of the on-shell spectrum using symmetry constraints illuminates its

group theory origin. However, the indirect nature of the method may leave some conceptual

unease. It is therefore worthwhile to consider an alternative, the explicit diagonalization

of the action expanded to quadratic order. This approach was carried out over a decade

ago for the case of pure N = 2 SUGRA [18] and for the maximally supersymmetric theory

with N = 8 SUSY [19,20]. Combination of the final tables in these references yields towers

of multiplets that can be compared with our results (2.4) that apply to the slightly more

general case where N = 2 SUGRA is coupled to N − 2 (massive) gravitini multiplets, nV

vector multiplets, and nH hypermultiplets. The results in the references agree precisely

with (2.4) with one exception: all previous works report an additional chiral multiplet. In

our notation the additional states that were reported correspond to the extension of one

of the two supergravity multiplet towers in (2.4) to include the mode k = −1. Thus the

primary states reported in [18,19,20] but absent from our analysis are

(1, 1) , 2(
3

2
,
1

2
), (2, 0) . (2.5)

It is instructive to find the origin of this discrepancy.

As a starting point for this specific purpose it is sufficient to consider 4D Einstein

gravity coupled to a U(1) gauge field

L4 =
1

16πG

[

R(4) − 1

4
FIJF

IJ

]

. (2.6)

We use 4D indices I, J, . . ., AdS2 indices µ, ν, . . ., and S2 indices α, β, . . .. One solution to

this theory is the AdS2 × S2 geometry supported by the magnetic monopole Fαβ = 2ǫαβ.



With this normalization the AdS2 and S2 radii are both “1”. The Freund-Rubin reduction

on S2 is realized by the 4D geometry:

ds2 = gµνdx
µdxν +XdΩ2

2 , (2.7)

where gµν and X are arbitrary functions of the 2D coordinates xµ, µ = 1, 2. The effective

2D Lagrangian becomes

L2 =
1

4G

[

XR(2) + 2− 2

X
+

(∇X)2

2X

]

. (2.8)

The equations of motion are obtained upon variation of L2 by the scalar X

R(2) +
2

X2
+

(∇X)2

2X2
− 1

X
∇2X = 0 , (2.9)

and by the metric gµν

X(R(2)
µν −

1

2
gµνR(2))+

1

2X
[∇µX∇νX− 1

2
gµν(∇X)2]−gµν(1−

1

X
)+gµν∇2X−∇µ∇νX = 0 .

(2.10)

Recall that the Riemann tensor has just a single component in 2D so after contractions

R(2)
µν = 1

2gµνR(2) identically for any 2D geometry, not just for symmetric geometries. The

first term in (2.10) therefore vanishes identically. We write this term temporarily because

it reminds us that (2.10) is the Einstein equation while (2.9) is the equation of motion

for the 2D matter field X . As a check on (2.9) and (2.10) note that the AdS2 geometry

satisfies these equations with R(2) = −2 and X = 1. This corresponds to AdS2 and S2

radii equal to “1”.

The Einstein equation (2.10) decomposes into the trace

∇2X = 2(1− 1

X
) , (2.11)

and (upon use of (2.11)) the traceless equation

(∇µ∇ν − 1

2
gµν∇2)

√
X = 0 . (2.12)

Taking (2.11) in isolation we find that small variations δX around the background X = 1

satisfy a Klein-Gordon equation with m2 = 2. In AdS2 scalar excitations with this mass

have conformal weight h = 2. The excitations described by the Freund-Rubin compacti-

fication (2.7) are spherically symmetric (j=0) so this mode would have quantum numbers

(h, j) = (2, 0). Comparison with (2.5) shows that this is exactly the mode that the explicit

analyses recognize as physical but our indirect analysis does not. We will show that the

discrepancy is due to the constraints expressed by (2.12).



For perspective on the discrepancy recall the elementary counting of degrees of free-

dom. Perturbative 2D gravity is described by the symmetric tensor δgµν = hµν with 3

components. Diffeomorphisms δξhµν = ∂µξν + ∂νξµ impose equivalences that render two

components of hµν redundant. The equations of motion resulting from variations of those

two components further impose two constraints so the net number of degrees of freedom

in pure 2D gravity is -1. This awkward counting is special to 2D where it is indeed well

known for theories such as dilaton gravity (see eg [21]). It implies that the combination of

2D gravity (described by hµν) and a scalar field (in the present context the 2D scalar field

X) will have no degrees of freedom.

There are several known exceptions to this simple type of counting: there may be

important quantum effects (captured by a class of matrix models) or there may be classical

degrees of freedom in less than 2D. In the present context there are indeed 1D boundary

states but they should not be confused with bulk degrees of freedom which is where we

differ from previously reported results.

To make the general discussion on the counting of degrees of freedom more explicit

we fix the gauge gzz = 1, gzt = 0 and so consider the 2D geometry in the form

ds2 = −e2ρdt2 + dz2 , (2.13)

where ρ = ρ(t, z) is an arbitrary function. In this gauge we can represent the background

AdS2 as either just the Poincaré patch (with e2ρ0 = e2z) or global AdS2 (with e2ρ0 =

cosh2 z) or as an AdS2 black hole (with e2ρ0 = sinh2 z). For any of these backgrounds the

zz and zt-components of (2.12) give

(∂2
z − 1)δX = 0 ,

∂z(e
−ρ0∂tδX) = 0 ,

(2.14)

after linearization. The first equation was simplified using (2.11). These equations are

constraints on fluctuations δX . If δX were a propagating field, we would be able to specify

δX and its time derivative ∂tδX for all z at an initial time and then use the equations of

motion to find δX at later times. The constraints (2.14) show that this is impossible: once

we have given δX and ∂tδX for large z, initial conditions are specified for all z. Thus δX

is in fact a boundary degree of freedom.

We have not yet analyzed the equation of motion (2.9) which relates the curvature

R(2) to the scalar field X . The Ricci curvature of (2.13) is

R(2) = −2e−ρ∂2
ze

ρ , (2.15)

so (2.9) can be recast as

2δX = ∇2δX = −1

2
δR(2) = e−ρ0(∂2

z − 1)δρ . (2.16)



This demonstrates that perturbations δρ with ∂2
zδρ = 1 are independent degrees of free-

dom.

In summary, in this subsection we analyzed the spherically symmetric sector of gravity

comprising the 2D metric hµν and the scalar field X encoding the size of the S2. We find

that after taking gauge fixing and constraints into account the bulk theory has no physical

states but two boundary degrees of freedom remain.

2.3. Boundary Modes

The table (2.4) enumerates all bulk modes of the black holes. In addition to these

modes there are boundary modes. The boundary modes are closely associated with gauge

symmetries of the theory. Each component of a gauge symmetry allows the removal of one

component field. Additionally, the equation of motion for the component thus removed

ceases to be dynamical: it becomes a constraint. As discussed in the previous subsection,

constraints limit the dynamics of the theory by restricting the independent initial data. In

the context of AdS2 each constraint gives rise to one boundary mode.

We first consider the supergravity multiplet. The perturbation hIJ of the 4D metric

has 10 components. Diffeomorphisms δξhIJ = ∂IξJ + ∂JξI are generated by the vector

field ξI with 4 components. Thus the graviton has 6 components subject to 4 constraints.

This yields a net of 2 physical degrees of freedom in bulk, as it should. But in addition

the boundary data on the 4 constraints give rise to 4 boundary degrees of freedom. These

boundary degrees of freedom have the quantum numbers of the diffeomorphism generator

ξI . In particular, they have helicity content λ = ±1, 0, 0.

A chiral gravitino ΨI has 6 components after the Rarita-Schwinger constraint γIΨI =

0 is taken into account. After gauge fixing of local supersymmetry (generated by a chiral

spinor with two components) it has 4 components subject to two constraints. This yields

a net of two physical degrees of freedom but also two boundary degrees of freedom.

Finally, the graviphoton AI has four components. The U(1) gauge symmetry removes

one component so three components remain which are subject to one constraint. This

gives two physical components for the graviton in bulk but also a single boundary degree

of freedom.

Proceeding similarly for the (massive) gravitino multiplet and the vector multiplet,

the helicity content of all physical boundary modes becomes

Supergravity multiplet : λ = ±1,±1

2
× 2, 0× 3 ,

Gravitino multiplet : λ = ±1

2
, 0× 2 ,

Vector multiplet : λ = 0 .

(2.17)



The hyper multiplet is not mentioned since it does not have any gauge degrees of freedom

and therefore no boundary states. The helicity content (2.17) in turn determines the SU(2)

content of the boundary modes as

Supergravity multiplet : j = (k + 1)× 2, (k +
1

2
)× 4, k × 3 ,

Gravitino multiplet : j = (k +
1

2
)× 2, k × 2 ,

Vector multiplet : j = k ,

(2.18)

with k = 0, 1, . . ..

Our discussion of boundary states here focuses on gauge invariance. As such it is based

on the off-shell (un-physical) components of the various fields. The on-shell supersymmetry

realized by the fields we consider does not extend a simple way to these off-shell degrees

of freedom. In the absence of further data it is therefore not possible to compute the

conformal weights of these fields from superconformal invariance alone.

Two of the three j = 0 fields in the supergravity multiplet are the δρ and δX dis-

cussed explicitly in the previous subsection. Similar computations for the remaining fields

determine the full spectrum of boundary states [15]. In section 5 we determine spectrum

of boundary states by exploiting symmetries.

3. The Heat Kernel Expansion: Elementary Examples

This section reviews the basics of the heat kernel method [6,22,23]. We introduce

notation and also give elementary evaluations of the key examples that later will be gen-

eralized.

3.1. Functional Determinants and the Heat Kernel

One loop quantum corrections are encoded in Euclidean path integrals taking a Gaus-

sian form which we present schematically as

e−W =

∫

Dφ e−φΛφ =
1√
detΛ

. (3.1)

The kinetic operator generally includes a mass term Λ = −∆ + m2. We suppress the

indices on φ that enumerate components of the field such as those that incorporate Lorentz

structure.

After UV regulation the effective action W becomes

W =
1

2
ln detΛ =

1

2

∑

i

lnλi = −1

2

∫ ∞

ǫ2
ds

D(s)

s
, (3.2)



where {λi} are the eigenvalues of Λ and the heat kernel

D(s) = Tr e−sΛ =
∑

i

e−sλi . (3.3)

We use a notation where the eigenvalues λi are assumed discrete even though in practice

they may be continuous. Also, in cases where the fields are fermionic the determinant in

(3.1) should be in the numerator instead and then the contribution to the effective action

(3.2) will enter with the opposite sign.

The heat kernel terminology arises because it is often useful to express D(s) as

D(s) =

∫

dDx K(x, x; s) , (3.4)

where the Green’s function satisfies the heat equation

(∂s + Λx)K(x, x′; s) = 0 , (3.5)

with the boundary condition K(x, x′; s) = δ(x − x′) at s = 0. The Green’s function can

be expanded on a complete basis as

K(x, x′; s) =
∑

i

e−sλifi(x)f
∗
i (x

′) , (3.6)

where {fi} are the normalized eigenfunctions of Λ with eigenvalues {λi}. Inserting this

expansion in (3.4) and using the normalization condition we do indeed recover (3.3).

As an example, in flat space with D Euclidean dimensions the eigenfunctions of the

kinetic operator are plane waves eikx and the eigenvalues are k2 + m2. The expression

(3.6) becomes a Gaussian integral which upon integration gives the Green’s function

Kflat(x, x
′; s) =

(

1

4πs

)
D

2

e−
1

4s
(x−x′)2−m2s . (3.7)

Inserting this expression in (3.4) we find the heat kernel for a massless scalar field

Dflat(s) =

(

1

4πs

)
D

2

Vol . (3.8)

This expression gives the leading asymptotic behavior for small s (small distance) in any

geometry. A standard approach to curved space examples is to correct the flat space result

(3.8) perturbatively (see eg. [22]). This gives an expansion in small s with coefficients that

are scalars formed from the curvature. For example, for a minimally coupled scalar field

Ks(s) =

(

1

4πs

)
D

2

[

1 +
s

6
R+

s2

360
(5R2 − 2RIJR

IJ + 2RIJKLR
IJKL) + . . .

]

. (3.9)



Similar expansions apply to other fields.

In our computations we will actually not employ the heat equation (3.5) and, related

to that, we will avoid the explicit eigenfunctions. Instead we will compute D(s) directly

from (3.3) by explicit summation over eigenvalues. In the homogeneous spaces we focus

on the corresponding heat kernel density is then given by

K(s) =
1

Vol
D(s) . (3.10)

For a sphere S2 with radius a the volume is simply VolS = 4πa2. For AdS2 the volume

diverges but it can be regulated near the boundary

VolA = 2πa2
∫ ρmax

0

dρ sinh ρ = 2πa2(cosh ρmax − 1) . (3.11)

In the context of AdS/CFT it is often appropriate to remove the cosh ρmax by adding

terms that are intrinsic and local on the boundary. This gives VolA = (−2πa2) for the

renormalized volume of AdS2. We do not use this value since a positive volume makes it

easier to track signs for fermions and bosons. The dependence of the actual (regulated)

volume (3.11) on a cut-off will anyway cancel in physical results so we can effectively take

VolA = +2πa2 when an explicit volume is needed.

Although our strategy is to compute D(s) using the sum (3.3) we will quote results in

terms of K(s) using the relation (3.10). This practice will facilitate comparison with the

literature.

3.2. The Scalar on S2

The heat kernel on the two-sphere S2 is of special importance to us since it will serve

as the building block for all our computations.

The determination of this heat kernel is particularly simple because the eigenvalue

problem of the Laplacian on S2 has been studied by all physics students since their first

course in quantum mechanics. The possible eigenvalues of −∇2 are l(l + 1) with each

value of the orbital angular momentum l = 0, 1, . . . appearing with degeneracy 2l + 1 cor-

responding to the possible azimuthal quantum numbers m = −l, . . . , l. The corresponding

eigenfunctions are the spherical harmonics Ylm. These basic facts immediately give the

heat kernel (density) for a minimally coupled scalar field on S2:

Ks
S(s) =

1

4πa2

∞
∑

k=0

e−sk(k+1)(2k + 1) . (3.12)



We can expand for small s using the Euler-MacLaurin formula in the form simplified for

functions with f (n)(∞) = 0:

∞
∑

k=0

f(k) =

∫ ∞

0

dkf(k) +
1

2
(f(0) + f(∞)) +

∞
∑

n=1

B2n

(2n)!

(

f (2n−1)(∞)− f (2n−1)(0)
)

=

∫ ∞

0

dkf(k) +
1

2
f(0)− 1

12
f ′(0) +

1

720
f ′′′(0) + . . .

(3.13)

The sum (3.12) then gives

Ks
S(s) =

1

4πa2

[
∫ ∞

0

dk e−sk(k+1)(2k + 1) +
1

2
− 1

12
(2− s) +

1

720
(−12s) +O(s2)

]

=
1

4πa2s

(

1 +
1

3
s+

1

15
s2 + . . .

)

.

(3.14)

3.3. The Fermion on S2

Relativistic fermions on S2 transform in the 2j+1 dimensional representations of the

rotation group with half-integral values j = 1
2
, 3
2
, . . .. The square of the Dirac operator is a

scalar so it commutes with the angular momentum operator. Indeed, these operators are

essentially the same (see eg. [24]):

−D2
F = ~J2 +

1

4
. (3.15)

The eigenvalues needed for the heat kernel are thus j(j + 1) + 1
4 = (j + 1

2)
2. Introducing

the integer k = j− 1
2
= 0, 1, . . . we write the analogue of (3.12) for one fermionic degree of

freedom:

Kf
S(s) =

1

4πa2

∞
∑

k=0

e−s(k+1)2(2k + 2) =
1

2πa2

∞
∑

k=0

e−sk2

k . (3.16)

We evaluate this expression using the Euler-MacLaurin formula (3.13):

Kf
S(s) =

1

4πa2

[
∫ ∞

0

dk e−sk2

2k +

(

− 1

12
· 2 + 1

720
(−12s) +O(s2)

)]

=
1

4πa2s

(

1− 1

6
s− 1

60
s2 + . . .

)

.

(3.17)

We employ the convention that the heat kernel for the spinor on the sphere has the same

sign as a scalar. Fermion statistics will of course ultimately change the sign of the con-

tribution to the one loop determinant but we will take this into account manually when

needed.



3.4. Scalars and Fermions on AdS2

The expansion of the heat kernel in curvature invariants has the structure (3.9) for

all fields. The only local distinction between S2 and AdS2 is the sign of the curvature.

Further, by dimensional analysis each power of curvature is accompanied by one power of

the expansion parameter s. Thus we can find the heat kernels on AdS2 from the S2 results

by changing the sign of s. The overall sign of the heat kernel is such that the asymptotics

(3.7) apply for small s.

Applying the s → −s rule to the scalar on S2 (3.14) we find

Ks
A(s) =

1

4πa2s

(

1− 1

3
s+

1

15
s2 + . . .

)

, (3.18)

for the massless scalar on AdS2. The fermion on S2 (3.17) similarly gives

Kf
A(s) = − 1

4πa2s

(

1 +
1

6
s− 1

60
s2 + . . .

)

, (3.19)

for each fermionic degree of freedom on AdS2. We take fermion statistics into account

through the overall sign in (3.19).

The s → −s rule relates the local terms in the heat kernels on S2 and AdS2 but there

are no correspondingly simple continuations of individual eigenvalues and eigenfunctions

[25]. For example, the scalar spectrum on S2 is λS = l(l+ 1) with l = 0, 1, . . .. The scalar

spectrum AdS2 similarly includes a discrete branch for which λA = −m2 = −h(h − 1)

with h = 1, 2, . . .. These highest weight type modes are important as they correspond to

massive on-shell particles (in Lorentzian signature). However, the quantum fluctuations

on AdS2 are encoded in an unrelated continuous branch with λA = p2 + 1
4
with p ∈ R.

These are strictly off-shell modes which correspond to conformal weights h = 1
2 + ip and

“mass” m2 ≤ −1
4
below the Breitenlohner-Freedman bound (for p 6= 0).

The expression (3.3) for a heat kernel as a “sum” over eigenvalues in the case of AdS2
becomes an integral. For a scalar field[26,27]

Ks
A(s) =

1

2πa2

∫ ∞

0

e−(p2+ 1

4
)sp tanhπp dp =

1

4πa2s

(

1− 1

3
s+

1

15
s2 + . . .

)

. (3.20)

The Plancherel measure µ(p) = p tanhπp arises as the eigenvalue space dual of the real

space measure
√−g = sinh ρ on AdS2. This agrees with (3.18) as it should. The leading

term for small s agrees with the flat space result (3.7) both in magnitude and in sign even

though this is not manifest in the prefactor of (3.20) (related to AdS2 volume (3.11)).

3.5. AdS2 × S2

For minimally coupled fields the kinetic operator on the product space is a sum of

kinetic operators on the factors. In this situation the eigenfunctions on the full space are



products of eigenfunctions on each factor space and so the eigenvalues on the product

space are equal to the sum of eigenvalues on each factor. The full Green’s function (3.7)

therefore becomes a product of contributions from each factor and this result descends to

the heat kernel.

The heat kernel of a minimally coupled boson on AdS2 × S2 is thus

Ks
4(s) = Ks

S(s)K
s
A(s) =

1

16π2a4s2

(

1 +
1

45
s2 + . . .

)

, (3.21)

where the individual factors were copied from (3.14) and (3.18). Similarly the heat kernel

of a minimally coupled Dirac fermion on AdS2 × S2 becomes

Kf
4 (s) = 4Kf

S(s)K
f
A(s) = − 1

4π2a4s2

(

1− 11

180
s2 + . . .

)

, (3.22)

where the individual factors were taken from (3.17) and (3.19). The overall factor of 4

counts the number of fermionic degrees of freedom. In our conventions the overall minus

sign came from AdS2 (3.19) but not from the S2 (3.17). This correctly accounts for

statistics on AdS2 × S2.

An important benchmark in the following section will be the heat kernel of a full

hypermultiplet with no couplings taken into account. This is the heat kernel of four scalars

and one Dirac fermion (with four fermionic degrees of freedom), all minimally coupled:

Kmin
4 (s) = 4Ks

4(s) +Kf
4 (s) =

1

4π2a4s2
· 1

12
s2 . (3.23)

In this case the divergences cancel to two leading orders, both of order s−2 and of order s−1.

Thus quantum corrections do not induce a cosmological constant, nor a renormalization

of the Newton constant. The leading nontrivial term in the heat kernel is constant, corre-

sponding to a marginal operator in the action. This order is responsible for the logarithmic

corrections to black hole entropy that we are interested in.

4. Quantum Corrections to N = 2 multiplets

The supergravity fields propagating in the AdS2 × S2 background interact with each

other, in addition to the interaction with the background. This modifies their heat kernels

from the canonical values such as those given in (3.21) and (3.22). In this section we

combine the quantum numbers computed in section 2 with the elementary methods from

section 3 to determine the quantum corrections with interactions taken into account.



4.1. The Hypermultiplet

The classical spectrum in (2.4) gives the eigenvalues of scalars in the hypermultiplet

as four towers with (h, j) = (k+1, k) with k = 0, 1, . . .. From the AdS2 point of view these

are on-shell particles with mass level m2 = h(h−1) = k(k+1) and degeneracy 2k+1 from

an SU(2) quantum number.

The AdS2 heat kernels presented in (3.18) and (3.19) are for massless particles (h = 1)

with unit degeneracy but AdS2 mass and degeneracy due to SU(2) spin j present a minimal

modification

KA(h, j; s) = KA(h = 1, j = 0; s) e−h(h−1)s(2j + 1) . (4.1)

The heat kernel for the four towers with (h, j) = (k + 1, k) therefore becomes

KH,b
4 (s) = 4 ·Ks

A(s) ·
1

4πa2

∞
∑

k=0

e−sk(k+1)(2k + 1)

= 4Ks
A(s) ·Ks

S(s)

=
1

4π2a4s2

(

1 +
1

45
s2 + . . .

)

.

(4.2)

The sum over particles in AdS2 reduced to (3.12) which was evaluated already in (3.14)

where it was interpreted as the heat kernel in S2.

Although in this section we take an AdS2 perspective, the final result (4.2) agrees with

(3.21) for four massless scalars in AdS2 × S2. This is expected because the scalar fields

in hypermultiplets interact only minimally with the background. The absence of scalar

couplings in turn is well known from the fact that the attractor mechanism in the AdS2×S2

background applies to scalars in vector multiplets but not to those in hypermultiplets [16].

The fermions in a hypermultiplet are more complicated because couplings to the

graviphoton background introduces effective masses. For a fermion the dictionary be-

tween conformal weight and spacetime mass is m2 = h(h − 1) + 1
4 = (h − 1

2 )
2 with the

shift of 1
4
the SL(2) analogue of the SU(2) shift in (3.15). The AdS2 heat kernel for the

two towers of hypermultiplet fermions in (2.4) then gives

KH,f
4 (s) = Kf

A(s) ·
1

4πa2

∞
∑

k=0

(

e−sk2

(2k + 2) + e−s(k+1)22k
)

= Kf
A(s) ·

1

2πa2

(

∞
∑

k=0

e−s(k+1)2(2k + 2) + 1

)

= Kf
A(s) ·

1

2πa2s

(

1− 1

6
s− 1

60
s2 + . . .+ s

)

= − 1

4π2a4s2

(

1− 11

180
s2 + . . .+ s(1 +

1

6
s) + . . .

)

.

(4.3)



The second line was obtained by a simple shift of indices and the third line used the

summation formula (3.16)-(3.17). In the final line we used the AdS2 heat kernel (3.19).

We refrained from collecting all terms in the final result in order to stress that the first

set of terms are the “kinematical” (not due to interactions) contributions present even for

non-interacting fermions (as in (3.22)) while the second set of terms can be attributed to

the interactions between the fermions.

The heat kernel for the full hypermultiplet is obtained by the addition of contributions

from bosons (4.1) and fermions (4.3):

KH
4 (s) =

1

4π2a4s2

(

1

12
s2 − (s+

1

6
s2) + . . .

)

=
1

4π2a4

(

−1

s
− 1

12
+ . . .

)

. (4.4)

In the first form we recognize the first term as the canonical (non-interacting) result (3.23)

and so the second one can be attributed to the interactions. In the context of logarithmic

corrections to the area law we focus on the constant term in (4.4). It is amusing that

the role of the interactions for this term is precisely to change the sign of the quantum

corrections. Such an effect could conceivably go unnoticed in some circumstances. Our

result agrees (of course) with that reported by A. Sen [2].

4.2. The Vectormultiplet

For the N = 2 vector multiplet it is well-known that the bosonic degrees of freedom

are sensitive to the interactions: the attractor mechanism determines the horizon values

of the scalar fields in terms of the charges of the vector fields. Thus the excitations of

the scalar fields in vector multiplets acquire a mass in AdS2. This should be contrasted

with the scalar fields in hypermultiplets which remain freely specifiable in the near horizon

region as they are moduli.

The effect of interactions on the heat kernel for the bosons in the vector multiplet are

captured again by the spectrum (2.4) which we take into account using (4.1). This gives

KV,b
4 (s) = 2 ·Ks

A(s) ·
1

4πa2

∞
∑

k=0

(

e−sk(k+1)(2k + 3) + e−s(k+1)(k+2)(2k + 1)
)

= 2 ·Ks
A(s) ·

1

2πa2

(

∞
∑

k=0

e−sk(k+1)(2k + 1) +
1

2

)

= 2 ·Ks
A(s) ·

1

2πa2s

(

1 +
1

3
s+

1

15
s2 + . . .+

1

2
s

)

=
1

4π2a4s2

(

1 +
1

45
s2 + . . .+

1

2
s(1− 1

3
s) + . . .

)

.

(4.5)

The second line was obtained by a simple shift of summation indices and the third line

used the evaluation of (3.12) given in (3.14). The heat kernel for a scalar in AdS2 was

given in (3.18).



According to (2.4) the four fermionic degrees of freedom are, in contrast to the bosons,

minimally coupled. The contribution of the fermions to the heat kernel is therefore cap-

tured by the AdS2 × S2 result (3.22)

KV,f
4 (s) = − 1

4π2a4s2

(

1− 11

180
s2 + . . .

)

. (4.6)

Adding (4.5) and (4.6) we find the result for the N = 2 vector multiplet

KV
4 (s) =

1

4π2a4s2

(

1

12
s2 +

1

2
s(1− 1

3
s)

)

=
1

4π2a4

(

1

2s
− 1

12

)

. (4.7)

Again the “ 1
12s

2” is the benchmark contribution that one gets from four fermions and

four bosons in the AdS2 × S2 background before interactions are taken into account. The

“ 1
2s(1 − 1

3s)” can thus be attributed to the couplings between the bosons in the vector

multiplet, the same interactions that give rise to the attractor mechanism for N = 2 black

holes. The effect of interactions on the constant term in the heat kernel is to flip its sign.

4.3. The Gravitino Multiplet

Combining the spectrum of the fermions in (2.4) with the rule (4.1) we find the heat

kernel

K
3/2,f
4 (s) = 2 ·Kf

A(s) ·
1

4πa2

∞
∑

k=0

(

e−s(k+1)2(2k + 4) + e−s(k+2)2(2k + 2)
)

= 2 ·Kf
A(s) ·

1

2πa2

∞
∑

k=0

e−s(k+1)2(2k + 2)

= 2 ·Kf
A(s) ·

1

2πa2s

(

1− 1

6
s− 1

60
s2 + . . .

)

= − 1

4π2a4s2

(

1− 11

180
s2 + . . .

)

.

(4.8)

The summation is the same as for the minimal fermion (3.17). There are contributions

from interactions in intermediate steps but they ultimately cancel each other.

The quantum numbers of the bosons in (2.4) are shifted relative to free bosons. The

effect of this shift is to remove the leading term in the sum over modes on the sphere,



which is easily taken into account:

K
3/2,b
4 (s) = Ks

A(s) ·
1

4πa2

∞
∑

k=1

e−sk(k+1)(2k + 1)

= Ks
A(s) ·

1

4πa2

(

∞
∑

k=0

e−sk(k+1)(2k + 1)− 1

)

= Ks
A(s) ·

1

4πa2s

(

1 +
1

3
s+

1

15
s2 + . . .− s+ . . .

)

=
1

4π2a4s2

(

1 +
1

45
s2 + . . .− s(1− 1

3
)s+ . . .

)

.

(4.9)

The “−s(1− 1
3
s)” can be attributed to the couplings between components of a vector field

relative to those of scalar degrees of freedom.

Adding (4.8) and (4.9) we find the heat kernel for a complete N = 2 multiplet for a

massive gravitino:

K
3/2
4 =

1

4π2a4s2

(

1

12
s2 − s(1− 1

3
s)

)

=
1

4π2a4

(

−1

s
+

5

12

)

. (4.10)

4.4. The Graviton Multiplet

The quantum numbers (h, j) = (k + 5
2 , k + 3

2 ) from (2.4) give the contribution from

the four fermion degrees of freedom as

Kgrav,f
4 (s) = 4 ·Kf

A(s) ·
1

4πa2

∞
∑

k=0

e−s(k+2)2(2k + 4)

= 4 ·Kf
A(s) ·

1

4πa2

(

∞
∑

k=0

e−s(k+1)2(2k + 2)− 2e−s

)

= 4 ·Kf
A(s) ·

1

4πa2s

(

1− 1

6
s− 1

60
s2 − 2se−s

)

= − 1

4π2a4s2

(

1− 11

180
s2 + . . .− 2s(1− 5

6
s) + . . .

)

.

(4.11)

As in previous cases the “−2s(1− 5
6
s)” can be attributed to the couplings between com-

ponents of a gravitino field relative to those of a free fermion.

Finally, inserting the quantum numbers (2.4) for bosons in the supergravity multiplet



into (4.1) we find

Kgrav,b
4 (s) = Ks

A(s) ·
1

4πa2

∞
∑

k=0

(

e−s(k+2)(k+1)(2k + 5) + e−s(k+3)(k+2)(2k + 3)
)

= Ks
A(s) ·

1

4πa2

(

2
∞
∑

k=0

e−s(k+2)(k+1)(2k + 3)− e−2s

)

= Ks
A(s) ·

1

2πa2

(

∞
∑

k=0

e−s(k+1)(2k + 1)− 1− 1

2
e−2s

)

= Ks
A(s) ·

1

2πa2s

(

1 +
1

3
s+

1

15
s2 + . . .− 3

2
s+ s2 + . . .

)

=
1

4π2a4s2

(

1 +
1

45
s2 + . . .− 3

2
s+

3

2
s2 + . . .

)

(4.12)

Adding (4.11) and (4.12) the complete result for the heat kernel of the N = 2 gravity

multiplet becomes

Kgrav
4 (s) =

1

4π2a4s2

(

1

12
s2 − 3

2
s(1− 1

3
s) + 2s(1 +

1

6
s)

)

=
1

4π2a4s2

(

1

12
s2 + (

1

2
s− 1

6
s2)

)

=
1

4π2a4

(

1

2s
− 1

12

)

.

(4.13)

4.5. Summary

In summary, we have computed the contributions to heat kernels of the N ≥ 2 theory

from physical non-zero modes. The result is

Knzm =
1

4π2a4

(

(
1

2s
− 1

12
) + (N − 2)(−1

s
+

5

12
) + nV (

1

2s
− 1

12
) + nH(−1

s
− 1

12
)

)

(4.14)

The notation “nzm” is a reminder that at this point interactions have been taken into

account but the focus was on non-zero modes. Corrections due to zero-modes will be

considered in the next two sections.

5. Boundary States

As we have stressed, the spectrum (2.4) enumerates physical modes only. In particular,

gauge conditions have been imposed that fix the gauge symmetry. These conditions remove

all unphysical states except that, for each continuous gauge symmetry, a single physical

boundary mode remains. We discussed the mechanism for this in some detail in section 2.

The physical boundary states contribute to the quantum corrections to black holes

just like all other physical states. In this section we compute their contributions to the

heat kernel.



5.1. Localization on the Boundary

A 4D gauge symmetry reduces to a tower of 2D gauge symmetries in AdS2. Each

entry in the tower gives rise to a single mode on the boundary of AdS2. These towers were

presented as a list in (2.18).

The contribution from each entire tower will amount to a field on the S2 that is

localized on AdS2. We need to find the spectrum of these fields on S2. This can be

accomplished by considering the structure of gauge transformations. This introduces gauge

dependence at intermediate stages but our final result is gauge invariant.

In the following we consider the boundary modes for each N = 2 multiplet in turn.

The Vector Multiplet

Modes that are pure gauge from the 4D point of view take the form of a gauge variation

δAI = ∇IΛ , (5.1)

where Λ is the U(1) gauge parameter. Among these modes those that preserve the Lorentz

gauge condition

∇IAI = 0 , (5.2)

are

−∇IδAI = −∇2Λ = 0 , (5.3)

just like a massless scalar from the 4D point of view. From the 2D point of view there is

a tower of fields in AdS2 with masses given by

m2 = k(k + 1) , (5.4)

with k = 0, 1, . . .. Each field is pure gauge so its contribution to physical processes cancels

with the corresponding unphysical mode. This cancellation is imperfect and leaves the

AdS2 zero-mode ∇2
AΛ = 0. We interpret this mode as a physical mode on the AdS2

boundary. As we recombine all 2D fields k = 0, 1, . . . we find a physical scalar field on

S2. The quantum corrections due to these physical states are computed by the scalar

determinant on the sphere (3.14) and gives

KV
bndy =

1

2πa2
· 1

4πa2s

(

1 +
1

3
s

)

=
1

4π2a4

(

1

2s
+

1

6

)

. (5.5)

The overall factor is the volume of AdS2. The sign is the one appropriate for a physical

boson. The simple pole in the parameter s is mild for a 4D field but entirely standard for

a 2D field.

The Gravitino Multiplet



The gauge symmetry of a gravitino is the SUSY variation

δΨI = ∇Iǫ . (5.6)

The SUSY transformation that preserves the Lorentz gauge condition on the gravitino

γIδΨI = 0 , (5.7)

satisfies the Weyl’s equation

γI∇Iǫ = 0 . (5.8)

The physical boundary state that remains is therefore a Weyl fermion on S2. Our previous

computation of the heat kernel for a single fermionic degree of freedom (3.17) then gives

K
(3/2)
bndy = − 1

2πa2
· 1

4πa2s
· 2
(

1− 1

6
s

)

=
1

4π2a4

(

−1

s
+

1

6

)

. (5.9)

An explicit factor of two counted the two components of the Weyl fermion. The overall

minus sign is appropriate for a physical fermion.

The gravitino supermultiplet also includes two vector multiplets. Each realizes a

standard U(1) gauge symmetry and gives rise to a boundary mode that contributes (5.5) to

the heat kernel. The total boundary contribution to the gravitino supermultiplet therefore

becomes

K
(3/2)
bndy =

1

4π2a4
· 1
2
. (5.10)

There is no pole in s because the boundary states in this multiplet fill out a super multiplet

with equal number of fermions and bosons on the boundary.

The Graviton Multiplet

The gauge symmetries of gravity are the 4D diffeomorphisms ξI acting on gravitational

perturbations as

δhIJ = ∇IξJ +∇JξI . (5.11)

The coordinate transformations that preserve the Lorentz (harmonic) gauge condition

∇Ih{IJ} = ∇I(hIJ + hJI − gIJh
K
K) = 0 , (5.12)

satisfy

(gIJ∇2 +RIJ )ξ
J = 0 . (5.13)

The Ricci curvature is Rµν = −gµν on AdS2 and Rαβ = +gαβ on the S2.

The diffeomorphisms ξα generate vector modes on S2 so the angular momentum of

the corresponding boundary modes is restricted to k = 1, 2, . . .. The Ricci curvature gives



a contribution ∆m2 = −1 to the effective mass and the dualization to a scalar field gives

an identical contribution. The spectrum of the two scalar boundary modes with ∇2
Aξ

α = 0

therefore becomes

m2
S = k(k + 1)− 2 , (5.14)

with k = 1, . . .. The mass-shift ∆m2 = −2 is such that the leading AdS2 boundary mode

is massless also on the S2.

The pure gauge modes generated by ξµ decompose into an AdS2 scalar ∇µξ
µ, an AdS2

vector ∇µξν −∇νξµ, and an AdS2 traceless tensor. The AdS2 scalar mixes with the pure

gauge mode from the graviphoton such that all three of these are independent even though

ξµ has only two components. The AdS2 zero-modes of the scalar and the traceless tensor

both give rise to physical boundary states with the spectrum (5.4) of a standard scalar

field on S2. However, the AdS2 vector has zero modes that generates a tower of boundary

modes with the shifted effective mass

m2
S = k(k + 1) + 2 . (5.15)

These three towers all have k = 0, . . .. The leading terms with vanishing angular momen-

tum j = k = 0 are essentially the boundary states denoted δX and δρ in section 2.2 except

that here the gauge is different and the graviphoton is taken into account.

The sum of contributions from all five bosonic boundary modes yields

Kgrav,b
bndy = 2 · 1

4π2a4
· 1
2

(

1

s
− 2

3

)

e2s + 2 · 1

4π2a4
· 1
2

(

1

s
+

1

3

)

+
1

4π2a4
· 1
2

(

1

s
+

1

3

)

e−2s

=
1

4π2a4
· 5
2
(
1

s
+

1

3
) .

(5.16)

Despite the various shifts of masses and angular momentum quantum numbers this is

identical to the heat kernel of five free scalars on the S2.

The N = 2 supersymmetry acts on the two gravitini in the graviton multiplet as

δΨA
I = (δAB∇I −

1

4
F̂ ǫABγI)ǫ

B , (5.17)

where the background graviphoton fieldstrength F̂ = 1
2FJKγJK = ǫαβγ

αβ. This differs

from a generic gravitino (5.6) by the dependence on the graviphoton background. It is

because of this dependence thatN = 2 SUSY is preserved. The field strength contributions

to (5.17) are such that the AdS2 ground state energy (−∇µ∇µ) of the two fermions adds

to ∆m2 = −1. This gives a shift in the effective fermion mass on S2 such that

m2 = (k + 1)2 − 1 . (5.18)



The first term is the standard effective mass (3.15) on S2, sometimes written as j(j+1)+
1
4 = (j+ 1

2 )
2 with j taking half integer values. The tower j = 1

2 ,
3
2 , . . . is parametrized here

by k = 0, 1, . . .. The mass-shift ∆m2 = −1 is such that the leading AdS2 boundary mode

is massless also on the S2.

The heat kernel for a single standard fermion on S2 was given in (3.17). Four fermionic

boundary degrees of freedom with effective mass (5.18) then give

Kgrav,f
bndy = −4 · 1

4π2a4
· 1
2

(

1

s
− 1

6

)

es = − 1

4π2a4

(

2

s
+

5

3

)

. (5.19)

Adding the bosonic contribution (5.16) we have

Kgrav
bndy =

1

4π2a4

(

1

2s
− 5

6

)

, (5.20)

for the complete contribution of boundary states to the heat kernel of the N = 2 super-

gravity multiplet.

Summary

In summary, the contribution to the heat kernel of the N = 2 theory from boundary

modes is

Kbndy =
1

4π2a4

(

(
1

2s
− 5

6
) + (N − 2) · 1

2
+ nV (

1

2s
+

1

6
)

)

. (5.21)

We can add this to the bulk contribution (4.14) and find

Kphys =
1

4π2a4

(

(
1

s
− 11

12
) + (N − 2) · (−1

s
+

11

12
) + nV (

1

s
+

1

12
) + nH(−1

s
− 1

12
)

)

.

(5.22)

As a nontrivial consistency check on (5.22) note that the coefficient of 1/s is the same for

each type of N = 2 multiplet, except that the sign alternates as the spin of the SUSY

multiplet changes. This is precisely the property needed to ensure that these terms cancel

in any theory with N = 4 SUSY, as they should.

Another interesting special case is the pure N = 3 theory which is scale invariant at

this level [28]. The N = 3 matter multiplets have nH = nV = 1 so an arbitrary number of

those can be added without violating scale invariance.

6. Zero-Modes

The boundary states are zero modes from the AdS2 point of view but they are generally

non-trivial on the S2. The true 4D zero-modes are the boundary states that are also zero

modes on the S2. These zero mode contributions require special considerations.



The zero mode content of each multiplet can be read off from the spectrum of boundary

states. The vector multiplet has one bosonic zero-mode from gauge symmetry: the k = 0

entry in (5.4). The gravitino multiplet has two bosonic zero-modes, both from gauge

symmetry. The gravity multiplet also has two bosonic zero-modes: the k = 1 entry in

(5.14). These both have angular momentum j = 1. Finally, the gravity multiplet also has

four fermionic zero-modes, the k = 0 entry in (5.18).

For the zero-modes we cannot use the Euclidean path integral (3.1) (repeated here for

easy reference)

e−W =

∫

Dφ e−φΛφ =
1√
detΛ

, (6.1)

since they correspond to vanishing eigenvalues of the matrix Λ. However, each zero-mode

is just a field in zero dimensions so in this sector the path integral reduces to an ordinary

integral. The scale dependence of N0 zero-modes with scaling dimension ∆ is

e−W =

∫

Dφ0 = Vol[φ0] ∼ ǫ−N0∆ . (6.2)

In contexts where (6.1) applies it is understood that the dependence on physical parameters

is encoded in ratios of integrals of this general form. The scale dependence due to a single

zero-mode is similarly computed from ratios of integrals (6.2) computed at different scales.

The näıve inclusion of N0 zero-modes in the heat kernel (3.3):

D(s) =
∑

i

e−sλi =
∑

λi 6=0

e−sλi +N0 , (6.3)

corresponds to a term W = N0 ln ǫ in the effective action according to (3.2). Thus the

correct zero-mode contribution W ∼ ∆N0 ln ǫ from (6.2) is larger than the näıve result

by a factor of the scaling dimension ∆. After generalization to multiple fields with either

bosonic or fermionic statistics we have

Kzm =
1

8π2a4

∑

i∈B

N0,i(∆i − 1)− 1

8π2a4

∑

i∈F

N0,i(2∆i − 1) , (6.4)

for the correction to the heat kernel K(s) due to zero-modes. Each fermionic zero-mode

counts with double weight because of the leading spin degeneracy in (3.16).

Vector fields have dimension ∆1 = 1 so they were already taken correctly into account

in the näıve heat kernel. Since the zero-modes in the vector and (massive) gravitino

multiplet are all due to vector fields these multiplets do not get corrected. It is only the

supergravity-multiplet that is corrected due to zero-modes.

Disregarding the vector, the bosonic zero-modes in the gravity multiplet are just

k = 1 in (5.14). Each of these two states have angular momentum j = 1 so there are



N b
0 = 2 · (2j + 1) = 6 bosonic zero-modes in the path integral. These fields have scaling

dimension ∆2 = 2. Similarly, (5.18) gives Nf
0 = 4 fermionic zero-modes in the path

integral. They have scaling dimension ∆3/2 = 3
2 . The zero-mode contribution to a general

N = 2 theory simply becomes

Kzm =
1

8π2a4
· (6 · (2− 1)− 4 · (3− 1)) =

1

4π2a4
· (3− 4) =

1

4π2a4
(−1) . (6.5)

6.1. Summary

The sum of contributions to the heat kernel from non-zero modes (4.14), boundary

modes (5.21), and zero modes (6.5) is

Ktot =
1

4π2a4

(

(
1

s
− 23

12
) + (N − 2)(−1

s
+

11

12
) + nV (

1

s
+

1

12
) + nH(−1

s
− 1

12
)

)

. (6.6)

This is the main result of our computations.

7. Logarithmic Corrections to the Black Hole Entropy

In this section we give a brief but self-contained review of the relation between the

heat kernel and the quantum corrections to the black hole entropy.

7.1. The Trace Anomaly

The trace of the energy momentum tensor including quantum corrections can be

divided into a divergent term and a finite (renormalized) term

Tµ
µ,tot = Tµ

µ,div + Tµ
µ,ren . (7.1)

Each of these terms is related to an analogous term in the effective action as

Tµ
µ =

2√−g
gµν

δW

δgµν
. (7.2)

In even dimensions the heat kernel takes the form

D(s) = sing.+D0 +O(s) , (7.3)

where “sing.” indicates terms with poles at s = 0 while D0 is the constant that encodes

the trace anomaly. According to (3.2) the constant D0 corresponds to the logarithmically

divergent term

Wdiv ∼ 1

2
D0 ln ǫ

2 , (7.4)



in the effective action.

In theories with classical scale invariance Tµ
µ,tot = 0 and so

Tµ
µ,ren = −Tµ

µ,div = − 2√−g
gµν

δWdiv

δgµν
=

2

Vol

∂Wdiv

∂ ln ǫ2
=

1

Vol
D0 . (7.5)

We can still use this result for the anomaly in theories without classical scale invariance.

Of course such theories have, in addition, a classical (non-anomalous) contribution to the

trace of the energy momentum tensor. The volume factor is again the regulated volume

exhibited in (3.11).

7.2. The Black Hole Entropy

For extremal black holes the entropy S = −Wren and so the logarithmic dependence

of the entropy is determined by

∂S

∂ lnAH
= −∂Wren

∂ lna2
= −1

2

∫

dDxTµ
µ,ren = −1

2
D0 . (7.6)

The dependence on the physical scale ln a and the UV cut-off scale ǫ has the opposite sign.

The result for the logarithmic correction to the entropy therefore becomes

δS =
1

2
D0 lnAH = 4π2a4K0 lnAH , (7.7)

where K0 is the constant term in the heat kernel density (3.10).

The relation (7.6) between the trace anomaly and the logarithmic correction to the

entropy is interesting and quite general. It is corrected only by the treatment of zero-

modes. Our formula (6.4) for the zero-mode contribution to the heat kernel was constructed

precisely so that the entropy formula (7.7) would be maintained for this contribution as

well.

The constant term in the heat kernel expansion K0 is easily read off from the total

heat kernel (6.6). The relation (7.7) then gives the logarithmic correction so the entropy

δS =
1

12
(23− 11(N − 2)− nV + nH) lnAH . (7.8)

This is the final result advertised in the introduction as (1.1).
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