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We derive precise standard model predictions for the dilepton invariant mass and the τ energy
distributions in inclusive B → Xcτ ν̄ decay. We include Λ2

QCD/m
2
b and αs corrections using the

1S short-distance mass scheme, and estimate shape function effects near maximal τ energy. These
results can improve the sensitivity of b → cτ ν̄ related observables to beyond standard model physics.

I. INTRODUCTION

Recently, B decays mediated by b → cτ ν̄ transitions
have received renewed attention due to improved mea-
surements of the B̄ → Dτν̄ and B̄ → D∗τ ν̄ decay
rates [1], consistent with earlier published [2, 3] and pre-
liminary [4] results. Considering the ratios (ℓ = e, µ)

R(X) =
B(B → Xτν̄)

B(B → Xℓν̄)
, (1)

the combination of the BaBar results

R(D∗) = 0.332± 0.030 , R(D) = 0.440± 0.072 , (2)

gives a more than 3σ deviation [1] from the standard
model (SM), which could indicate new physics that cou-
ples non-universally to leptons, due to mτ ≫ me,µ. The
isospin-constrained fit for the branching ratios yields [1]

B(B̄ → D∗τ ν̄) + B(B̄ → Dτν̄) = (2.78± 0.25)% . (3)

(This average applies for B− decay [1]; recall the lifetime
difference of B± and B0.)
A recent update of the SM prediction for R(Xc), the

ratio for inclusive decay rates, yields [5]

R(Xc) = 0.223± 0.005 , (4)

which, combined with the world average, B(B− →
Xceν̄) = (10.92± 0.16)% [6, 7], yields [5]

B(B− → Xcτ ν̄) = (2.42± 0.06)% . (5)

This prediction is rather precise, thus the inclusive mea-
surement can provide information complementary to
those from the exclusive modes.
The results in Eq. (3) are in some tension with the LEP

average of the rate of an admixture of b-flavored hadrons
to decay to τ leptons [8]

B(b → Xτ+ν) = (2.41± 0.23)% . (6)

This rate has not been measured since the LEP exper-
iments. Neither are theoretical predictions available for
B → Xτν̄ decay distributions using a well-defined short-
distance quark mass scheme. Such predictions are neces-
sary to provide the best theoretical inputs for future ex-
perimental measurements. Measuring the inclusive rate

should be possible using the existing B factory data, and
especially using the future Belle II data set [9].
In the future, the uncertainties of the individual B̄ →

D(∗)τ ν̄ branching ratios are expected to be reduced to
about 2% by Belle II [10], while the uncertainties of the
ratios in Eq. (2) may become even smaller. Clearly, both
inclusive and exclusive measurements should be pursued.

II. THE OPE RESULTS

Inclusive semileptonic B decay rates can be computed
model independently in an operator product expansion
(OPE) in terms of local heavy-quark operators (for a re-
view, see Ref. [11]). The leading order reproduces the
free-quark decay result, and perturbative and nonpertur-
bative corrections can be systematically incorporated.
The triple differential distribution has been derived,

including the leading nonperturbative corrections of or-
der Λ2

QCD/m
2
b , in Refs. [12–14]. We use the dimensionless

kinematic variables

q̂2 =
q2

m2
b

, v · q̂ =
v · q
mb

, y =
2Eτ

mb
, (7)

where q = pτ + pν is the dilepton momentum, v is the
four-momentum of the B meson [(1,~0) in the B rest-
frame], and Eτ = v · pτ is the τ energy measured in the
B-meson restframe. The mass parameters are defined as

ρτ =
m2

τ

m2
b

, xτ =
m2

τ

q2
=

ρτ
q̂2

, ρ =
m2

c

m2
b

. (8)

It is convenient to define

y± =
1

2

(
y ±

√
y2 − 4ρτ

)
. (9)

Then y+y− = ρτ , and {y+, y−} → {y, 0} as mτ → 0.
The triple differential decay rate in the B restframe is

1

Γ0

dΓ

dq̂2 dy dv · q̂
= 24 θ

[
(2v · q̂ − y+)y+ − q̂2

]
θ
[
q̂2 − (2v · q̂ − y−)y−

]

×
{
2(q̂2 − ρτ )Ŵ1 +

[
y(2v · q̂ − y)− q̂2 + ρτ

]
Ŵ2

+ 2
[
q̂2(y − v · q̂)− ρτv · q̂

]
Ŵ3

+ ρτ (q̂
2 − ρτ ) Ŵ4 + 2ρτ (2v · q̂ − y) Ŵ5

}
, (10)
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where

Γ0 =
|Vcb|2 G2

F m5
b

192π3
, (11)

is the tree-level free-quark decay rate. The Ŵi are the
structure functions of the hadronic tensor [12, 15], which
in the local OPE to Λ2

QCD/m
2
b contain δ, δ′, and δ′′ func-

tions of (1 + q̂2 − 2v · q̂ − ρ).
In the literature, only the Eτ spectrum and the total

decay rate have been computed including Λ2
QCD/m

2
b cor-

rections [12–14] (as well as the τ polarization [12]). These
corrections reduce the B → Xcτ ν̄ rate by about 7–8%,
where about 90% of this reduction is due to the terms
proportional to λ2.
In this paper, we also derive the order Λ2

QCD/m
2
b cor-

rections for the q2 spectrum, as it is expected to be useful
for the experimental analysis [9]. While the perturbative
corrections were known in the literature in the pole mass
scheme, only the total rate was calculated in a short-
distance mass scheme in the past. We present results for
the first time for the q2 and Eτ spectra in a well-defined
short-distance mass scheme. In addition, with pay spe-
cial attention to the uncertainties in the endpoint regions
of these spectra, where the local OPE breaks down.

A. Phase space limits

A complication in the massive lepton case is the ap-
pearance of the second θ function in Eq. (10), which sets
a nontrivial lower limit on q̂2 (which in the mτ → 0 limit
reduces to q̂2 > 0). Solving the θ functions for the limits
on y for fixed q̂2 and v · q̂, we have

q̂− + xτ q̂+ ≤ y ≤ q̂+ + xτ q̂− , (12)

where

q̂± = v · q̂ ±
√
(v · q̂)2 − q̂2 . (13)

Substituting the parton level result for v·q̂ = (1+q̂2−ρ)/2
then gives partonic phase space in the q̂2−y plane at tree
level. The limits on q̂2 for fixed y are

y−

(
1− ρ

1− y−

)
≤ q̂2 ≤ y+

(
1− ρ

1− y+

)
. (14)

This is shown in Fig. 1, where we used ρ = (1.3/4.7)2

and ρτ = (1.777/4.7)2 for illustration. The solid (orange)
boundary comes from the first θ function in Eq. (10), and
the dashed (blue) boundary comes from the second one.
Note that the limits for y are determined by the dif-

ferent θ functions for values of q2 above and below

q̂20 =
√
ρτ

(
1− ρ

1−√
ρτ

)
. (15)

A similar situation occurs in the calculation of the O(αs)
correction to dΓ/dy dq̂2 [16], but was not encountered in
calculating O(Λ2

QCD/m
2
b) corrections before.
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FIG. 1. The b → cτ ν̄ Dalitz plot for free quark decay. The
solid (orange) boundary comes from the first θ function in
Eq. (10), the dashed (blue) boundary from the second one.

Beyond tree level, the lower limit of the dq̂2 integration
and the lower limit of dy integration for q̂2 < q̂20 (blue
dashed curve) gets replaced by q̂2 > ρτ and y > 2

√
ρτ ,

which is shown by the dotted (green) lines.

Integrating over q̂2, the limits of the y spectrum are

2
√
ρτ < y < 1 + ρτ − ρ . (16)

Integrating over y, the overall limits of the q̂2 spectrum
are

ρτ < q̂2 < (1−√
ρ)2 . (17)

The above are the partonic phase space limits relevant
to the OPE result. For the hadronic phase space limits,
mb is replaced by mB and ρ is replaced by m2

D/m2
B.

B. The q2 spectrum

Since the hadronic structure functions Ŵi are functions
of q̂2 and v̂ ·q only, it is easiest to first integrate the triple
differential spectrum in Eq. (10) over the lepton energy
with the limits given in Eq. (12). Doing so, we obtain for
the double differential spectrum

1

Γ0

dΓ

dq̂2 dv · q̂ = 96 (1− xτ )
2
√
(v · q̂)2 − q̂2 (18)

×
{
q̂2 Ŵ1 +

1

3

[
(v · q̂)2 − q̂2

]
(1 + 2xτ ) Ŵ2

+
ρτ
2

(
Ŵ2 + q̂2Ŵ4 + 2v · q̂Ŵ5

)}
.
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Substituting the OPE results for the Ŵi, we obtain for
the q2 spectrum

1

Γ0

dΓ

dq̂2
= 2(1− xτ )

2
√
P 2 − 4ρ

{(
1 +

λ1 + 15λ2

2m2
b

)

×
[
3q̂2P (1 + xτ ) + (P 2 − 4ρ)(1 + 2xτ )

]
(19)

+
6λ2

m2
b

[
(P − 2)(1 + 2xτ ) + q̂2(4 + 5xτ )

+ q̂2
2(2q̂2+P−2)(2 + xτ ) + 3q̂2P (1 + xτ )

P 2 − 4ρ

]}
,

where we defined P = 1− q̂2+ρ, and we have suppressed
the θ functions expressing the q̂2 limits given in Eq. (17).
Integrating over q̂2 we reproduce the total rate given in
Ref. [12].
As we will see in Sec. III below, the order Λ2

QCD/m
2
b

corrections reduce the B → Xcτ ν̄ rate mainly at higher
values of q̂2, dominated by the terms proportional to λ2.
Near maximal q̂2, the λ2 terms behave as (q̂2max−q̂2)−1/2,
and the differential rate becomes negative. This indicates
a breakdown of the OPE; in this region of phase space,
the hadronic final state is constrained to be in the res-
onance region, and the OPE cannot describe the spec-
trum point-by-point. Thus, integration over some region
of ∆q̂2 is necessary near maximal q̂2 to obtain a reliable
result. The form of Eq. (19) makes it clear that this effect
is not related to the b quark distribution function in the
B meson, the so-called shape function (which is neither
relevant for the high q2 region in B → Xuℓν̄ [17]). Note
also that the difference of the upper limit of q2 at lowest
order in the OPE and at the hadronic level is suppressed
by Λ2

QCD.

C. The τ energy spectrum

To obtain the Eτ spectrum, we substitute the OPE
results for the Ŵi in the triple differential rate in Eq. (10).
The integration over v · q̂ is performed using the δ(n)(1+

q̂2 − 2v · q̂ − ρ) contained in the Ŵi. Next, we integrate
over q̂2 with the integration limits in Eq. (14). At leading
order we obtain

1

Γ0

dΓ

dy
= 2

√
y2 − 4ρτ θ(y − 2ρτ ) θ(1 −R) (1−R)2 (20)

×
[
yρ

1−R

R
+ (1 + 2R)(y − 2ρτ )(2− y)

]
,

where

R =
ρ

(1 − y+)(1− y−)
=

ρ

1− y + ρτ
, (21)

and for the Λ2
QCD/m

2
b corrections we reproduce the re-

sults in Refs. [12–14]. The two θ functions in Eq. (20)
correspond to the limits on y in Eq. (16).
As for large values of q̂2, the OPE also breaks down

for large values of y. Contrary to the endpoint of the

q2 spectrum, the Eτ endpoint does differ by an amount
of order ΛQCD between the partonic and hadronic phase

space limits. If one treatsmc ∼ O(
√

mb ΛQCD), or equiv-
alently ρ ∼ ΛQCD/mb, then the problematic terms in the
OPE that are enhanced near the endpoint can be re-
summed, replacing the usual OPE by an expansion in
terms of nonlocal light-cone operators, whose matrix ele-
ments yield nonperturbative B-meson distribution func-
tions (shape functions). [Such effects would formally be
subleading if one treats m2

c/m
2
b ∼ O(1).] At the lowest

order description of the endpoint region,O[(ΛQCD/mb)
0],

a single shape function appears. This is well-known for
B → Xℓν decays [18–21]. When carried out appropri-
ately, the shape function OPE can be rendered valid away
from the endpoint region as well, such that it smoothly
recovers the local OPE result [22, 23]. For b → c tran-
sitions, this is possible if the OPE is directly performed
for the lepton energy spectrum [22]. Following Ref. [22]
and including the τ mass, we obtain at leading order

1

Γ0

dΓ

dy
= 2

√
y2 − 4ρτ

∫
dω̂ mb F (mbω̂ +mB −mb)

× θ(y − 2ρτ )θ(1 −Rω) (1 −Rω)
2
{
yρ

1−Rω

Rω

+ (1 + 2Rω)
[
y − ω̂y− − 2ρτ

]
(2− y − ω̂)

}
.

(22)

where

Rω =
ρ

(1 − y+ − ω̂)(1− y−)
, (23)

and the leading shape function, F (k), in Eq. (22) is de-
fined with the same conventions as in Refs. [23, 24].
For B → Xcτν, the endpoint region of the lepton en-

ergy spectrum is given by 1−y+ ∼ ΛQCD/mb. The result

in Eq. (22) arises from replacing 1 − y+ → 1 − y+ − k̂+
in the local OPE. (Some overall factors that arise from
the leptonic phase space are unaffected.) For small y+,
corresponding to small Eτ , one can expand

mbF (mbω̂ +mB −mb) = δ(ω̂) + . . . , (24)

which recovers the leading-order result in Eq. (20). In
principle, all Λ2

QCD/m
2
b corrections in the local OPE at

small y+ can be recovered from the shape function ex-
pansion, which would require to carry it out to the same
higher order [23].

D. The 1S mass scheme and perturbative

corrections

It is well known that the pole mass of a heavy quark is
not well defined beyond perturbation theory. This man-
ifests itself, for example, in poorly behaved perturbation
series. In this paper, we use the 1S mass scheme [25–27].
Including both the c quark and τ lepton mass effects, the
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corrections to free-quark decay for the total rate were
computed to O(αs) [28], O(α2

sβ0) [29], and O(α2
s) [30].

The O(αs) result [28] was already used in the numerical
prediction for the rate 20 years ago [12], and the O(α2

sβ0)
result [29] could be used to show that the perturbation
series in the 1S scheme, 1 − 0.070ǫ − 0.016ǫ2BLM [26],
is much better behaved than that in the pole scheme,
1−0.097ǫ−0.064ǫ2BLM. (Here powers of ǫ = 1 indicate the
order in the 1S expansion, and ǫ2BLM corresponds to the
lowest order term proportional to β0 = 11 − 2nf/3, the
first coefficient in the QCD β function.) This improve-
ment in the perturbation series is essential to obtain the
precise predictions in Eqs. (4) and (5).
The O(αs) correction to dΓ/dq̂2 was calculated analyt-

ically in Ref. [31], while the corrections to the lepton en-
ergy spectrum can be obtained by integrating d2Γ/dy dq̂2

calculated in Ref. [16]. In particular, the fractional cor-
rection at order αs to both dΓ/dq̂2 and dΓ/dy are re-
markably independent of q̂2 and y, and so have very lit-
tle effect on the shape of the spectra except very close to
their endpoints.

III. NUMERICAL RESULTS

Hereafter we revert to dimensionful kinematic vari-
ables, Eτ and q2 (i.e., no longer rescale them by powers
of mb). The phase space limits for the q̂2 and y distri-
butions are given in Eqs. (17) and (16). Restoring the
dimensions of the variables,

mτ < Eτ <
m2

b −m2
c +m2

τ

2mb
,

m2
τ < q2 < (mb −mc)

2 . (25)

One can immediately see, writing

mb,c = mB,D − Λ̄ +O(Λ2
QCD/m

2
b,c) , (26)

that the difference of the upper limit of q2 at lowest or-
der in the OPE, (mb − mc)

2, and at the hadronic level,
(mB −mD)2, is suppressed by Λ2

QCD. However, the lep-

ton energy endpoint does receive an O(ΛQCD) correction,
although only about 100MeV (it is ∼ 300MeV for B →
Xueν̄). As explained above, treating m2

c/(mbΛQCD) ∼
O(1) or m2

c/m
2
b ∼ O(1) affects whether the shape func-

tion is formally relevant to describe the Eτ endpoint re-
gion. We use Eq. (22) to determine beyond which value of
Eτ the shape function becomes important and the local
OPE result cannot be trusted anymore. A more detailed
analysis for B → Xuτν will be given elsewhere [32].
The numerical inputs we use are summarized in Ta-

ble I. For the leading order shape function, we use the
fit result from Ref. [33], and for consistency we also take
the central value for m1S

b from there, which is consistent
with the fit results in the 1S scheme in Refs. [7, 34], with
a conservative error of ±50MeV.
In the 1SEXP scheme in Ref. [34], one relates mb −mc

using HQET to a linear combination of the spin averaged

hadron mass difference, mB − mD, λ1, and dimension-
6 HQET matrix elements. This removes the leading
renormalon from mpole

c as well. Then writing mc =
m1S

b −δmbc, and treating δmbc = mb−mc as an indepen-
dent parameter is practical, as it is well constrained by
measured B → Xcℓν̄ spectra, and is the dominant source
of formally O(λ1/m

2
c) corrections [34]. (Note that the

B → Xcℓν̄ data imply that the correlation of these terms
with other contributions is very significant.) Numeri-
cally, we use the average of the fit results in Refs. [7, 34]
and use their difference of 20MeV as a conservative er-
ror. For λ1 we use −0.3GeV2 as central value and vary it
by 25%, which covers the values obtained in Refs. [7, 34]
and also the somewhat lower value implied by the re-
sult we use for the leading shape function. The value of
λ2 = 0.12GeV2 is known very well from the mB∗ −mB

mass splitting. We also vary it by 25%. The variations
for λ1 and λ2 can be viewed as an uncertainty estimate to
account for the higher-order perturbative corrections to
their OPE coefficients (as well as the omitted Λ3

QCD/m
3
b

corrections).

Figure 2 shows the predictions for dΓ/dq2 (left) and
dΓ/dEτ (right) in the 1S mass scheme for the b quark.
The dotted (green) curves show the free-quark decay
result, the dashed (blue) curves include O(αs) correc-
tions, and the solid (orange) curves include both αs and
Λ2
QCD/m

2
b corrections. The Λ2

QCD/m
2
b corrections are

negligible at low values of q̂2 and y, while their effects
become important for larger values. For dΓ/dq2, they
drive the spectrum negative near the endpoint, where the
OPE breaks down, as already discussed above. The pecu-
liar shape of dΓ/dEτ including the O(Λ2

QCD/m
2
b) terms

is due to the fact that near the endpoint both the λ1

and λ2 terms are large, and the λ1 term changes sign.
For dΓ/dEτ the dot-dashed (dark red) curve combines
the O(αs, Λ

2
QCD/m

2
b) corrections with tree-level leading

shape function result in Eq. (22) (appropriately avoiding
any double-counting of Λ2

QCD/m
2
b corrections). The the-

oretical uncertainty of dΓ/dEτ becomes clearly large for
Eτ

>∼ 2.3GeV, where the result including shape function
effects starts to differ noticeably from the local OPE re-
sult. On the other hand, for Eτ

<∼ 2.2GeV the local OPE
provides a reliable prediction for the spectrum.

Figure 3 shows the various sources of uncertainties in
the results in Fig. 2 from varying the parameters as men-
tioned above and summarized in Table I. The variations

parameter central value variation ∆Γtotal

m1S
b 4.71GeV ±50MeV ±5.3%

δmbc 3.40GeV ±20MeV ±4.4%

λ1 −0.30GeV2
±25% ±0.2%

λ2 0.12GeV2
±25% ±2.0%

αs 0.218 +0.065
−0.040 ±1.1%

TABLE I. Central values of input parameters, their variations,
and the resulting uncertainties in the total rate prediction.
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FIG. 2. The OPE predictions for the dΓ/dq2 (left) and dΓ/dEτ (right) in B → Xcτ ν̄. The dotted (green) curves show the
free-quark decay result, the dashed (blue) curves include O(αs) corrections, and the solid (orange) curves include both αs and
Λ2

QCD/m
2
b corrections. For dΓ/dEτ the dot-dashed (dark red) curve combines O(αs, Λ

2
QCD/m

2
b) with the leading-order shape

function result.

0

3 4 5 6 7 8 9 10 11 12

0.02

0.04

0.06

0.08

−0.02

−0.04

−0.06

−0.08

q2 [GeV2]

∆
d
Γ
/
d
q
2
/
(d

Γ
/
d
q
2
)

mb ± 50MeV

δmb c ± 20MeV

(1±0.25)λ1

(1±0.25)λ2

µ = {2mb,mb/2}

0

2

0.02

0.04

0.06

0.08

1.8 2.2 2.4 2.6

−0.02

−0.04

−0.06

−0.08

Eτ [GeV]

∆
d
Γ
/
d
E

τ
/
(d

Γ
/
d
E

τ
)

mb ± 50MeV

δmb c ± 20MeV

(1±0.25)λ1

(1±0.25)λ2

µ = {2mb,mb/2}

+SF

FIG. 3. The fractional uncertainties in the OPE predictions for dΓ/dq2 (left) and dΓ/dEτ (right). The solid blue curves show
the effect of the variation of m1S

b by ±50MeV (keeping δmbc fixed), the dashed light blue curves show the variation of δmbc by
±20MeV, the solid green curves show the µ variation between mb/2 and 2mb, and the solid red (dotted light orange) curves
show the variation of the coefficient of λ2 (λ1) by ±25%. The dot-dashed (dark red) curve shows the relative correction from
including the leading shape function.

from mb keeping δmbc fixed (solid blue curves) and δmbc

(dashed light blue curves) dominate at low and high val-
ues, respectively. Varying the renormalization scale, µ,
betweenmb/2 and 2mb is shown by the solid green curves,
and varying the coefficients of λ2 and λ1 are shown by
the solid red and dotted light orange curves, respec-
tively. The resulting uncertainties in the total rate from
each of these parameter variations are given in Table I.
For dΓ/dEτ we also show the relative corrections due to
shape function effects (dark red dot-dashed curve).

Since the largest parts of the uncertainties cancel in the
ratio in Eq. (4), yielding a precise SM prediction of the
total B → Xcτ ν̄ rate in Eq. (5), and the spectra cannot
be calculated reliably point-by-point near the endpoints
of either dΓ/dq2 or dΓ/dEτ , in Fig. 4 we show the inte-

grated rates above a cut normalized to the total rate,

Γ̂(q2cut) =
1

Γ

∫

q2
cut

dΓ

dq2
, Γ̃(Ecut) =

1

Γ

∫

Ecut

dΓ

dEτ
, (27)

at different orders in the OPE. The O(αs) corrections
have a negligible effect on these distributions since they
do not affect the shape of the spectra. The yellow band
shows the total uncertainty obtained by adding all un-
certainties in quadrature. To obtain the individual un-
certainties we apply the same variations in both numera-
tor and denominator and take the larger of the up/down
variations as the uncertainty. In these normalized event
fractions, the mb and µ variations mostly cancel. The
total uncertainty essentially comes from δmbc and λ2 for

Γ̂(q2), and from δmbc and λ1,2 for Γ̃(Eτ ). For Γ̂(q2cut)
the relative uncertainties in the OPE result become very
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FIG. 4. The OPE predictions for the fraction of events above a certain cut in dΓ/dq2 (left) and dΓ/dEτ (right) in B → Xcτ ν̄.
The meaning of the curves is the same as in Fig. 2. The shaded band shows the total uncertainties in the full result.

large beyond q2cut
>∼ 10GeV2, which is as expected. For

Γ̃(Ecut) the dot-dashed (dark red) curve shows the effect
of including the leading shape function. One can also see
here that the local OPE result starts to become unreli-
able beyond Ecut

>∼ 2.3GeV.

IV. SUMMARY AND CONCLUSIONS

We calculated the inclusive B → Xcτν decay distri-
butions in τ energy and dilepton invariant mass. Our
results for the Λ2

QCD/m
2
b corrections to dΓ/dq2 are new.

We derived predictions for the spectra using the 1S short-
distance mass scheme, incorporating the O(Λ2

QCD/m
2
b)

and O(αs) corrections. We also studied the effects of the
shape function on the τ energy endpoint region. The
rates can be predicted precisely if one makes no cuts in
the regions q2 >∼ 9GeV2 and Eτ

>∼ 2.2GeV.

Recent measurements of the B̄ → Dτν̄ and B̄ → D∗τ ν̄
decay rates indicate possible deviations from the stan-

dard model. The BaBar and Belle measurements of these
exclusive modes are consistent with one another, but are
in some tension with LEP measurements of the inclusive
B → Xcτ ν̄ rate. This makes a new measurement of the
inclusive B → Xcτ ν̄ decay rate particularly timely, es-
pecially since no results are available from the e+e− B
factories, and measurements may be possible using the
existing data sets. Given the current tensions, measur-
ing B → Xcτ ν̄ will also be important with Belle II data.
Since it might only be possible to measure the inclu-

sive rate in limited regions of phase space, precise theory
predictions for differential distributions are required, and
the calculations presented here should help to improve
the experimental sensitivities.
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