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We derive a holographic relation for the dS static patch with the dual field theory defined

on the observer horizon. The starting point is the duality of higher-spin theory on AdS4

and the O(N) vector model. We build on a similar analytic continuation as used recently

to obtain a realization of dS/CFT, and adapt it to the static patch. The resulting duality

relates higher-spin theory on the dS4 static patch to a cut-off CFT on the cylinder R×S2.

The construction permits a derivation of the finite thermodynamic entropy associated to the

horizon of the static patch from the dual field theory. As a further brick we recover the

spectrum of quasinormal frequencies from the correlation functions of the boundary theory.

In the last part we incorporate the dS/dS correspondence as an independent proposal for

holography on dS and show that a concrete realization can be obtained by similar reasoning.

I. INTRODUCTION

The AdS/CFT correspondence [1] has stimulated remarkable progress in the understanding

of gauge theories. Moreover, it provides a means to study quantum aspects of gravity with

asymptotically-anti de-Sitter (AdS) boundary conditions in terms of the dual conformal field the-

ory (CFT). However, our universe is likely not asymptotically AdS. It would therefore be desirable

to have a holographic definition of (quantum) gravity in terms of a dual boundary theory also on

the physically more directly relevant de Sitter (dS) space. There has indeed been a proposal for

a dS/CFT correspondence [2], which exploits the conformal properties of dS to establish a dual

CFT description on the spacelike conformal boundary at future/past infinity I±. With the explicit

realization obtained in [3] this proposal has recently been lifted to a very concrete level. However,

with the dual CFT defined at I± these dS/CFT correspondences are formulated in terms of dS

meta observables, accessible only to an unphysical meta observer [4].

Restricting to only the region accessible to a physical observer crucially complicates things.

There is no notion of a conformal boundary and we instead only have the horizon and the observer
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worldline as distinguished places. Moreover, this region is symmetric only under a subgroup of the

dS isometries. Nevertheless, understanding quantum gravity on the region accessible to a single

observer arguably is the most interesting question to pose. We will therefore aim to explicitly

realize holography in that setting. Motivation for the existence of a holographic description comes

in the first place from the Bekenstein bound, which certainly suggests that there is a holographic

description also for gravity on the dS static patch. The screen may in principle be anywhere.

For the flat slicing of dS the conformal boundary is a preferred place since the full dS isometry

group nicely acts on it. With that option unavailable for the static patch the possibility of a dual

quantum mechanics description on the observer worldline has been investigated in [5]. However,

the covariant construction of holographic screens in generic spacetimes [6] suggests that the screen

is at the horizon.

In this note we aim to make this discussion more precise. Similarly to [3] we shall start from

AdS/CFT dualities involving higher-spin theories [7, 8] in the bulk, which may be seen as tensionless

limits of string theory. More precisely, the bulk theory is the parity-invariant minimal bosonic

version of Vasiliev gravity, with massless symmetric tensor fields of all even spins. We will exploit

that there is a nice analytic continuation from AdS to dS for that theory [9]. This will allow us

to derive from the well-understood Giombi-Klebanov-Polyakov-Yin AdS/CFT duality [10, 11] by

a double Wick rotation a dual description for higher-spin gravity on the static patch of dS4. The

dual theory will be defined on the observer horizon and will be a cut-off version of the Sp(N)

CFT3 of anticommuting scalars [12], which was obtained as dual theory at I+ in [3]. Without

the geometric bells and whistles which are at the heart of the more conventional (A)dS/CFT

dualities, establishing an analog of the bulk-boundary dictionary is a bit more subtle. Building on

the discussion of horizon holography in [13] we will work out in detail how such a dictionary can be

realized for the static patch of dS and present some first applications. We then turn to the dS/dS

correspondence proposed in [14, 15], where the dual theories are similarly defined at a horizon. It

provides an independent approach to dS holography and we will adapt our construction to also

obtain a concrete realization.

The outline is as follows. In Sec. II we discuss an analytic continuation relating the dS static

patch to an inner shell of Euclidean AdS. In Sec. III we build on the role of the AdS radial coordinate

as an energy scale in the dual CFT to analytically continue a cut-off version of AdS/CFT to a

holographic relation for the static patch. This will first be restricted to an inner region before

we recover the entire static patch in III B. The static-patch entropy will be derived from the dual

theory in III C. We then study the duality more explicitly for bulk scalar fields in Sec. IV. The
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realization of dS/dS correspondences will be derived in Sec. V and we conclude in Sec. VI.

II. THE dS STATIC PATCH AS PART OF AdS

After reviewing the analytic continuation from dS to AdS as used in [3], we will in this section

derive a similar relation of the dS static patch to an inner shell of AdS. We start off from the

well-known fact that dSd+1 of signature (−,+ · · ·+) and Euclidean AdS can both be defined as

hyperboloids in (d+ 2)-dimensional flat space with metric η = diag(−1, 1, .., 1) by

dSd+1 : −X2
0 +

d+1∑
i=1

X2
i = H2 , AdSd+1 : −X2

0 +
d+1∑
i=1

X2
i = −L2 . (1)

Correspondingly, their symmetry groups SO(1, d+ 1) coincide. The defining equations are related

by H = ı̇L and this can be exploited to relate their coordinatizations as follows. The usual Poincaré

coordinates can be introduced on AdSd+1 by solving (1) in terms of

X0/1 =
u

2

(
1 +

1

u2
(~x2 ± L2)

)
, Xi =

Lxi−1

u
, ∀i = 2, .., d+ 1 , (2)

which results in the line element ds2 = L2u−2
(
du2 + d~x2

)
. The coordinates cover all of Euclidean

AdS and u = 0 corresponds to almost all of the conformal boundary. The flat slicing of Lorentzian

dS space, which covers half of the hyperboloid, can now be obtained by the analytic continuation

used in [3],

L = ı̇H , u = ı̇η . (3)

That results in X0/1 → ı̇X0/1, such that their roles are exchanged and we are dealing with a

double Wick rotation in the ambient space. The resulting line element ds2 = H2η−2
(
− dη2 + d~x2

)
corresponds to the flat slicing of dSd+1 where u has become the time coordinate. Building on that

simple geometric identification along with the analytic continuation from AdS to dS for Vasiliev’s

higher-spin theory via (3), a concrete realization of dS/CFT has been derived in [3].

We will now discuss a similar relation of the dS static patch to an inner shell of Euclidean AdS.

To this end we turn to a different global coordinatization of Euclidean AdS. This is obtained by

solving (1) in terms of

X0 =
√
L2 + r2 cosh τ , X1 =

√
L2 + r2 sinh τ , Xi = rzi ∀i = 2, .., d+ 1 , (4)

where the zi parametrize the sphere Sd−1, i.e.
∑

i z
2
i = 1. Euclidean AdSd+1 as the interior of a

unit ball Bd+1 is covered by these coordinates as follows. Sections of fixed time correspond to fixed
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latitude. The north/south poles correspond to t= ±∞. The axis through them is r = 0 and the

surface of the ball with the two poles removed corresponds to r = ∞. Intermediate r interpolate

between these two extremes. The boundary at r=∞ therefore is a cylinder R×Sd−1. Adding the

two points corresponding to t= ±∞ completes the boundary to Sd−1. The resulting line element

takes the form

ds2 =
(
L2 + r2

)
dτ2 +

1

1 + r2/L2
dr2 + r2dΩ2

d−1 . (5)

The rescaling of the time coordinate as compared to the standard form of that metric is just

for technical convenience. The parametrizations (2) and (4) can be combined to derive the coor-

dinate transformation connecting them. We then straightforwardly find that the transformation

corresponding to (3) with X0/1 → ı̇X0/1 =: X̃1/0 is in the coordinates (4) realized by simply setting

H = ı̇L . (6)

With that analytic continuation the coordinatization of Euclidean AdS (4) becomes the dS

parametrization

X̃0 =
√
H2 − r2 sinh τ , X̃1 =

√
H2 − r2 cosh τ , Xi = rzi ∀i = 2, .., d+ 1 . (7)

The resulting line element is – up to a rescaling of the time coordinate – that of the usual static-

patch metric and reads

ds2 = −
(
H2 − r2

)
dτ2 +

1

1− r2/H2
dr2 + r2dΩ2

d−1 . (8)

For r∈ [0, H) (7) parametrizes the static patch of dS which is thus related to the inner shell

r ∈ [0, L) of Euclidean AdS, as illustrated in Fig. 1. The transformation (6) then directly realizes

the transformation discussed above in (3) and used in [3]. It is obtained by simply transforming

coordinates on both sides of that identification. The relation of the dS static patch to only the

inner shell of AdS reflects the fact that of the SO(1, d+ 1) isometries of dSd+1 only an SO(d)×R

subgroup, corresponding to the symmetries of Sd−1 and the timelike Killing field, preserves the

horizon. Likewise, restricting to the inner shell of AdS also breaks the radial isometries. The

parametrization (7) can also be continued to r >H, where r becomes timelike and t spacelike.

The roles of X0 and X1 are simply switched then, again by a double Wick rotation in the ambient

space. Only for r=H, corresponding to the horizon of the static patch, the transformation becomes

singular. The extension including r >H relates almost all of the dS Poincaré patch to global AdS.

For definiteness we choose the expanding patch, such that the conformal boundary of AdS is

mapped to the spacelike conformal boundary of dS at I+. The boundary arising if a finite cut-off

is imposed on r is timelike/spacelike so long as the cut-off is below/above the radius of curvature H.
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FIG. 1. The static patch of global dS and the extension to r >H covering the expanding Poincaré patch

are shown on the left hand side. The solid red and dashed blue curves correspond to constant r and τ ,

respectively. Note the exchange of timelike and spacelike character for these curves when extending to

r >H. On the right hand side is a section of constant τ , i.e. of constant latitude, through Euclidean AdS

realized as the interior of a unit ball with coordinates (5). Thanks to the Killing vector field ∂τ the sections

are all equivalent. The analytic continuation (6) identifies the inner green and outer yellow regions with the

left and upper triangles of dS as shown on the left hand side, respectively.

III. STATIC PATCH HOLOGRAPHY FROM AdS/CFT

Building on the higher-spin realization of dS/CFT via analytic continuation of AdS/CFT in [3]

and the identification of the static patch as part of AdS we will now attempt to realize static patch

holography. This will strongly build on the role of the AdS radial coordinate as an energy scale

in the dual CFT. Since many of the arguments do not depend on the spacetime dimension we will

mostly keep it general and only specialize to (A)dS4 for certain points.

A. From cut-off AdS/CFT to cut-off dS/CFT

In AdS/CFT cutting off the infrared part of the bulk geometry corresponds to a UV modification

of the dual CFT and realizes a high-energy cut-off [16, 17]. In the semi-classical limit the values of

on-shell bulk fields at fixed radial position can then be interpreted as running couplings in the dual

CFT, and the bulk field equations were related to RG equations of the boundary theory in [18].

Recently, more systematic approaches to a holographic realization of the Wilsonian renormalization

group have been discussed in [19, 20]. These discussions employed AdS in Poincaré coordinates.

To fix notation and set the stage, we now discuss the analog in the coordinates (4), (5).
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We recall that AdS is conformally compact and choose a function f = 1/r, defining the boundary

via ∂M := {p∈M| f(p) = 0}. The rescaled metric g := f2g then induces a representative of the

boundary conformal structure on the conformal boundary. For explicitness we consider a bulk

Klein-Gordon field φ of mass m2 = − ∆+∆−L
−2 with ∆± = d/2 ± ν in the following, but we

expect similar results for fields of higher spin. The asymptotic expansion of solutions is φ =

f∆−ϕ−+ f∆+ϕ+ and we choose the standard quantization where the boundary-dominant part ϕ−

is interpreted as source for the dual operator. The AdS/CFT prescription then reads

Z[ϕ−] :=

∫
Dφ
∣∣
φ→f∆−ϕ−

eS =

〈
exp

{∫
ddx
√
g∞ ϕ−(x)O(x)

}〉
CFT

. (9)

On the right hand side g∞ denotes the representative of the boundary conformal structure as

explained above. We then introduce a fixed value rκ := κ for the radial coordinate and split the

path integral into the parts corresponding to r ≤ rκ and r ≥ rκ

ΨIR[φκ] :=

∫ φ(rκ)=f∆−φκ
Dφ
∣∣
r≤rκ e

S+Sκ , ΨUV[ϕ−, φκ] :=

∫ φ→f∆−ϕ−

φ(rκ)=f∆−φκ

Dφ
∣∣
r≥rκ e

S−Sκ . (10)

Sκ =Sκ[φκ] is an arbitrary boundary action at r= rκ, which just introduces a multiplicative renor-

malization of both objects since it is fixed by the boundary condition at rκ and can be pulled out of

the path integral. We have normalized the boundary condition at rκ such that we can conveniently

take the limit κ→∞. The full path integral becomes

Z[ϕ−] =

∫
Dφκ ΨIR[φκ] ΨUV[ϕ−, φκ] . (11)

Following [19, 20] the generating function for correlators in the CFT with a cut-off at an energy

scale Λκ is then identified with ΨIR by

ΨIR[φκ] =

〈
exp

{∫
ddx
√
gκ φκO

}〉
CFT,Λκ

. (12)

Since (12) restricts the bulk theory to a part of AdS, the SO(1, d+ 1) bulk isometries are broken

to those preserving the radial cut-off, R×SO(d). In the dual theory that corresponds to the

breaking of conformal invariance by the UV cut-off. The analog in Poincaré coordinates preserves

the boundary Euclidean symmetries SO(d)nRd, and we recover the fact that while the conformal

symmetries of the cylinder and the plane agree, their isometries do not. The metric on the right

hand side would naturally be that induced by g at r = rκ. However, since the boost symmetries

mixing the time and spatial directions are broken anyway, we can also use gκ,ττ = (L2 + f−2)−1gττ

and gκ,ij = f2gij to extract the CFT metric. Asymptotically that becomes equivalent to g and we

recover the usual induced conformal structure. For finite κ this keeps the time component of the



7

boundary metric normalized and ensures that, similarly to the prescription in Poincaré coordinates,

changes in κ have a purely field-theoretic interpretation1.

Analytic continuation to dS

Combining the above discussions with the arguments used in [3] we can now derive a holographic

description for the static patch with radial cut-off as follows. We start in the same way from the

GKPY duality relating the O(N) CFT3 to the minimal version of Vasiliev’s higher-spin theory

on AdS4. However, for the bulk AdS we employ the coordinates (4),(5), such that the dual CFT

at r→∞ is defined on the cylinder. We then use the same analytic continuation, which in our

coordinates is realized by (6), but apply it to the cut-off AdS/CFT prescription (12) with κ<L.

That transforms the cut-off AdS bulk geometry to the corresponding part of the dS static patch

with r < κ, while the Euclidean CFT3 on the cylinder is Wick-rotated to Lorentzian signature. For

the scalar discussed above it also switches the sign of the mass, in agreement with [9]. Following [3]

we note that, since N ∝ (ΛGN)−1 in the GKPY duality, this should on the CFT side be combined

with N → −N . A little more formally we obtain

ΨdS
IR[φκ] := ΨIR[φκ]

∣∣∣
L=ı̇H

=

〈
exp

{∫
ddx
√
gκ φκO

}〉
CFT,Λκ,τ→ı̇τ,N→−N

. (13)

This results in a duality of higher-spin gravity on a part of the dS static patch and a cut-off version

of the Sp(N) CFT3 of [3] on the Lorentzian-signature cylinder. Since we have restricted to κ smaller

than the radius of curvature the bulk coordinates are regular on both, the dS and AdS sides of the

analytic continuation. The cylinder as boundary geometry arises straightforwardly from the bulk

and we have a dual description for the static patch with a radial cut-off. Note that this derivation

is valid for the cut-off arbitrarily close to the horizon. While the proposal is rather straightforward

to implement from the bulk perspective, its interpretation on the CFT side poses some non-trivial

questions. In the AdS/CFT picture the radial direction is understood to be encoded in the CFT

as RG flow and thus has a clear interpretation. In the usual dS/CFT setting on the other hand,

the time direction itself has to emerge in a non-trivial way from the CFT. It is not quite clear

therefore, how cutting off e.g. the upper yellow-shaded triangle of the dS geometry in Fig. 1 to

arrive at the static patch is reflected in the CFT at I+. A related issue is that the Sp(N) CFT

becomes non-unitary when Wick-rotated to Lorentzian signature. While such a continuation is not

desired in [3], this is what happens with the cut-off version of the theory in (13). How a UV cut-off

1 Alternatively, we can take as induced geometrical data on the boundary that appropriate for a non-relativistic

theory, i.e. a spatial metric along with an orthogonal timelike one-form, as discussed in [21].
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can restore unitarity has been investigated in [22], and one could hope for a similar mechanism to

be realized here.

B. Holography for the static patch

We now want to obtain a duality defined on the entire dS static patch. To this end we have

to consider the analytic continuation of the cut-off AdS/CFT duality (12) to a cut-off static-patch

holography (13) in the limit where κ approaches the radius of curvature. There are no particular

complications arising for the AdS bulk theory with cut-off at r=L and it simply corresponds

to the O(N) CFT3 on the cylinder with a particular value for the UV cut-off. We could thus

perform calculations on both sides of the AdS/CFT correspondence and then define the dS static

patch/cut-off CFT picture by analytic continuation. As discussed above, for κ<L there is also no

problem in the analytic continuation of the bulk↔boundary dictionary itself from (12) to (13), to

obtain a duality which is intrinsically defined on the dS static patch.

However, for the holographic dictionary intrinsically on the static patch the limit κ → H is

non-trivial, due to the infinite red-shift factor in the bulk metric at the horizon. As a result,

only the Sd−1 part of the boundary cylinder R × Sd−1 arises naturally from the bulk geometry

in position space: sending r to H with the other coordinates fixed reduces the bulk geometry by

two dimensions, as can be seen in Fig. 1(a) from the fact that the constant-τ surfaces meet at a

point on the horizon. That challenges the interpretation of φ|r=H as a source in the dual CFT and

obscures the boundary geometry. It is therefore convenient for the formulation of a holographic

dictionary for the entire static patch to exploit the existence of a timelike Killing field and employ

the Fourier transform, following [13]. For notational convenience we change the radial coordinate

to r=H sech z
H such that the horizon r→H corresponds to z→ 0. As we shall verify in Sec. IV,

the asymptotic form of the bulk field as z → 0 is given by

φ(τ, z, x) =

∫
dω√
2π

e−ı̇ωτ
(
ϕ+
ω (z, x)z ı̇ω + ϕ−ω (z, x)z−ı̇ω

)
, (14)

where ϕ±ω have regular power series expansions in z. These correspond to the presence of left-

and right-moving modes near the horizon2, and we have to adapt the Dirichlet boundary condi-

tion accordingly. The situation is actually similar to a scalar field on AdS with mass below the

Breitenlohner-Freedman stability bound, see App. A of [23], and we derive admissible boundary

2 The Fourier modes in (14) become rapidly oscillating as the horizon is approached and the Fourier transform

becomes singular, since the timelike Killing field degenerates.
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conditions from the demand that we have to find a well-defined symplectic structure. We focus on

the standard Klein-Gordon product defined from the canonical symplectic current jµ = ı̇φ1 ∂
↔
µ φ2,

noting that other choices may be of interest as well [24]. The flux through a surface of constant r

approaching the horizon is given by

F =

∫
r→H−

ddx
√
−gindn

µjµ =

∫
Sd−1

∫
dω 2ωHd−1

(
ϕ+

1,ωϕ
+
2,−ω − ϕ

−
1,ωϕ

−
2,−ω

)
, (15)

where n =
√
grr∂r is the unit normal vector field and the volume form in the integration over Sd−1

is implicit. Note that the vanishing volume form is compensated by the radial derivative combined

with the oscillatory behavior of φ, yielding a finite result. Conservation then demands F = 0 and

we thus find that the natural way to impose boundary conditions is on the oscillatory parts of the

Fourier modes at the horizon. Admissible boundary conditions for quantum fluctuations are for

example given by demanding for all ω > 0

(i) δϕ+
ω = δϕ−−ω = 0 or (ii) δϕ−ω = δϕ+

−ω = 0 . (16)

How the entire bulk field can be reconstructed once the boundary values are fixed has been studied

in [13]. We note that, with the horizon at z = 0, (i)/(ii) correspond to outgoing/ingoing boundary

conditions, respectively. The situation is similar to AdS fields close to the Breitenlohner-Freedman

bound, where two quantization prescriptions are available and either the boundary-dominant or

sub-dominant component is identified as source for the dual operator [25]3. More general mixed

boundary conditions are possible in both cases. As a book-keeping device we may shift ω → ω(1±ı̇ε)

with ε→ 0+ understood. The boundary condition (16) then fixes the non-normalizable modes, and

it is natural to identify the corresponding boundary values as sources for gauge-invariant operators

O±ω of the dual theory. The dictionary (13) thus becomes

ΨdS
IR[ϕ±ω , ϕ

∓
−ω] =

〈
exp

{
ı̇

∫
Sd−1

∫
ω≥0

dω
(
ϕ±ωO−ω + ϕ∓−ωOω

)}〉
CFT,Λκ

, (17)

where the upper choice of signs in ϕ±/ϕ∓ corresponds to imposing the boundary condition (i) and

the lower choice to imposing (ii). We have just split {Oω, ω ∈R} into {(O−ω,Oω), ω≥ 0} and re-

assigned the sources. Since we have identified the Fourier modes individually with dual operators

building on the fact that the Fourier transform becomes singular on the horizon, transforming

back to position space in the dual theory could be delicate. The most conservative picture would

be to understand the dual theory on Sd−1, with a family of operators labeled by ω that encodes

3 In fact, with a radial cut-off on AdS Neumann and Dirichlet modes are normalizable independently of the mass.
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the bulk time evolution. However, the discussion of Sec. III A, which was valid for the cut-off

arbitrarily close to the horizon, strongly suggests that this data organizes into a cut-off CFT on

the cylinder. The boundary geometry just arises differently from the bulk: the Sd−1 directly arises

as holographic screen, while the R factor naturally arises in Fourier space. The identification of the

Dirichlet boundary condition to be imposed in (13) with those resulting from (15) seems non-trivial

and deserves further investigation. We will leave that for the future and for the time being note

that (17) naturally realizes a concise holographic dictionary intrinsically on the dS static patch.

C. The static patch entropy

Associated to the cosmological horizon for the static-patch observer on dS is a finite thermo-

dynamic entropy [26]. Much like for the general case of black holes the microscopic origin of that

entropy has remained elusive, in particular whether it is related to a counting of microstates in a

quantum-gravitational description. The dual description of higher-spin gravity on the static patch

in terms of a cut-off CFT on the horizon provides a handle to gain some insight. More concretely,

we can derive the number of bulk degrees of freedom by counting those of the dual theory.

The identifications (13), (17) relate the static patch of dS with an optional radial cut-off to a

dual QFT on the boundary. Being defined on S2 this boundary theory naturally has an IR cut-off.

Moreover, it is the analytic continuation of a boundary theory on AdS where the bulk has a radial

cut-off. The boundary theory therefore also has a cut-off in the UV, and we expect a finite number

of degrees of freedom. To make this more precise we start with the cut-off AdS/CFT picture (12)

and repeat the analysis of [16] for the higher-spin theory in the bulk AdS4 and the O(N) CFT3 on

the R×S2 boundary. A convenient way to implement the UV cut-off corresponding to the bulk

IR cut-off r≤ rκ in the boundary theory is by introducing a minimal length and discretizing the

boundary geometry, to obtain a lattice. Defining a dimensionless parameter by rκ =: Lδ−1, such

that δ→ 0 corresponds to full AdS, the S2 is then naturally composed of O(δ−2) cells, with each

boundary field having one degree of freedom per cell. The overall coefficient depends on the specific

realization of the UV cut-off and shall not bother us. The vector-like boundary theories we are

dealing with only have O(N) degrees of freedom, as compared to O(N2) in the usual Yang-Mills

theories. We thus find the total number n of degrees of freedom in the boundary theory n∝Nδ−2.

A more geometric meaning can be given to the bulk radial cut-off by noting that the surface area

of the cut-off AdS is Aκ∝ r2
κ = L2δ−2. We thus find n∝NAκL−2. As noted in Sec. III A we have

N ∝ (ΛGN)−1 in the GKPY duality, where GN and Λ are Newton’s and the cosmological constant
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in the bulk, respectively. Combining that with L∝Λ−1/2 in the four-dimensional bulk theory, we

arrive at

n ∝ Aκ
GN

. (18)

This is the number of degrees of freedom for the cut-off CFT in the AdS/CFT picture (12). With

the GKPY duality we have thus obtained that the higher-spin bulk theory on AdS respects a

holographic bound of the form discussed in [27].

The analytic continuation in (13) does not change the number of degrees of freedom of the

boundary theories, and we can thus transfer this result to our static-patch/cut-off-CFT duality:

the dual description of the static patch also has n∝Aκ/GN degrees of freedom. Deriving the

corresponding entropy is particularly simple for the boundary theory with anticommuting scalars.

In a Fock-space representation the occupancy of each degree of freedom is at most one, such that

the dimension of the Hilbert space H is 2n. For the entropy we thus find

S = log dimH ∝ Aκ
GN

. (19)

For the specific case that we holographically describe the entire static patch the cut-off is at rκ =H

and Aκ = 4πH2. Up to the undetermined overall coefficient (19) then reproduces the horizon

entropy. Note that as H→∞, where flat space is recovered, also n→∞ and we correctly find an

infinite entropy.

IV. SCALAR FIELDS EXPLICITLY

In this part we specialize to a free bulk scalar field and explicitly verify the transformation

from cut-off AdS/CFT to (cut-off) static-patch holography for the two-point functions of the dual

operators. We will be particularly interested in the entire static patch as bulk geometry, for which

we recover the quasinormal frequencies from the dual theory on the horizon. Although the scalar

of Vasiliev’s minimal higher-spin theory has m2L2 = −2 and d = 3 we will keep the mass and

spacetime dimension general. We also find it convenient to work with an action reproducing the

scalar field equations, although that may not be available for the full higher-spin theory. For

Euclidean AdS with the metric (5) we start from

SAdS = −1

2

∫
dd+1x

√
g
(
gµν∂µφ∂νφ− µ2L−2φ2 + V [φ]

)
, (20)

such that the usual parametrization of the mass translates to µ2 = ∆+∆−. Performing the analytic

continuation to dS via (6) we note that the mass term switches the sign. That realizes the analytic
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continuation in the higher-spin theory [9] and leaves ∆± unchanged. This is in fact also necessary

to make sense of the boundary conditions in (13) for all values of the radial cut-off. The resulting

dS action reads

SdS = −1

2
ı̇

∫
dd+1x

√
−g
(
gµν∂µφ∂νφ+ µ2H−2φ2 + V [φ]

)
, (21)

where the metric is that of (8). To have a positive mass on dS admissible ν are thus restricted to

0≤ ν≤ d/2 and we end up in the complementary series on dS4. For holographic applications the

bulk actions (20), (21) have to be renormalized in the usual way by adding counterterms at the

conformal boundaries to render the combination finite on shell. In the following we will simply drop

contact terms in the correlators without explicitly constructing the counterterms. For notational

convenience we introduce λ which is defined by λ = L on AdS and λ = ı̇H on dS. The Klein-Gordon

equation on (A)dS resulting from (20), (21) then reads

(� + µ2λ−2)φ = 0 , � = r1−d∂r(1 + r2/λ2)rd−1∂r +
∂2
τ

λ2 + r2
+ r−2 4Sd−1 . (22)

To exploit the symmetries for its solution we employ in both cases the Fourier ansatz

φ= e−ı̇ωτ Y~̀(Ωd−1)χ`(r) , (23)

with the spherical harmonics satisfying 4Sd−1Y~̀ = −`(`+d−2)Y~̀. With χ` = (1−u)∆+/2u`/2h(u),

where u= 1/(1+λ2/r2), the Klein-Gordon equation then translates to a hypergeometric differential

equation for h. The origin of AdS corresponds to u= 0 approached from above and the position of

the static-patch observer on dS to u= 0 approached from below. The solution which is normalizable

at r= 0 is thus in both cases given by

χ`(r, ω) = Cκu
`/2(1− u)∆+/2

2F1

(
δ+, δ−;

d

2
+ `;u

)
, δ± =

1

2
(∆+ + `± ı̇ω) . (24)

Note that χ` is real for appropriately chosen Cκ and χ`(r, ω) = χ`(r,−ω). Furthermore, since the

definitions of u on dS and AdS are related by (6) so are the solutions.

A. Two-point functions in cut-off (A)dS/CFT

As discussed in [28] it is convenient to employ for the split path integral (11) a subtraction

scheme where the boundary action Sκ in (10) coincides with the UV counterterms at the conformal

4 A snapshot review and references can be found in [23]. The fundamental series corresponds to imaginary ν, and

such fields on AdS were also discussed briefly in [23].
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boundary in the limit κ →∞, i.e. Sκ = − 1
2

∫
r=κ λ

−1∆−φ
2 + . . . . This ensures that ΨIR becomes

the partition function of the full theory as κ→∞. In the semi-classical limit the inner part of the

bulk path integral reduces to ΨIR = eSIR , where

SIR = −1

2

∫
r=κ

ddx
√
gind φ

√
grr∂rφ + Sκ . (25)

The volume form becomes imaginary for dS and reproduces the overall factor ı̇ in (21). The

constant Cκ in (24) has to be chosen appropriately to satisfy the boundary condition at rκ, e.g.

for the Dirichlet boundary condition normalized as in (10) it follows from χ`|r=κ = f∆− . The bulk

solution with the boundary condition φ|r=κ = f∆−φκ then reads

φ =
∑
~̀

∫
dω√
2π

e−ı̇ωτ φ̃
κ,~̀

(ω)Y~̀(Ω)χ`(r, ω) , (26)

where φ̃
κ,~̀

(ω) are the Fourier modes of φκ on R×Sd−1. Inserting (26) into (25) we arrive at

SIR =
1

2

∑
~̀

∫
r=κ

dω φ̃
κ,~̀

(ω)Gκ,`(ω)φ̃
κ,~̀

(−ω) , (27)

where Gκ,`(ω) = rd−1
√

1 + r2/λ2χ`(r, ω)
[√
λ2 + r2∂rχ`(r, ω)+∆−χ`(r, ω)

]
. The cut-off CFT two-

point functions are then obtained from the Fourier transforms of (12) and (13). Similarly to the

transformation from (20) to (21) via (6), the dS version picks up a factor ı̇, which we absorb in

cλ = eı̇ arg λ. We then arrive at

Ψ
(A)dS
IR [φ̃

κ,~̀
] =

〈
exp

{
− cλ

∑
~̀

∫
dω φ̃

κ,~̀
(ω)Õ~̀(−ω)

}〉
CFT,Λκ

, (28)

which yields
〈
Õ~̀

1
(ω1)Õ~̀

2
(ω2)

〉
CFT,Λκ

= δ~̀
1
~̀
2
δ(ω1 + ω2) c−2

λ Gκ,`1(ω1). Evaluating Gκ,`(ω) at r=κ

using standard identities for hypergeometric functions as found e.g. in [29] and dropping contact

terms results in

Gκ,`(ω) = 2C2
κ λ

d−1 u`+d/2κ (1− uκ)νX(δ+, δ−,
d

2
+ `, uκ) , (29)

where uκ = 1/(1 +λ2/κ2) and X(a, b, c, x) = c−1(c−a)(c−b)2F1(a, b, c+1, x)2F1(a, b, c, x). We have

thus obtained the two-point functions of the dual cut-off CFTs on dS and AdS, with the choice

of the constant Cκ encoding the choice of boundary condition on the cut-off surface. The parallel

calculations leading to (29) establish their relation by the analytic continuation (6). As compared

to [3] the continuation does not just affect the overall normalization, reflecting the fact that the bulk

radial cut-offs have different but apparently still related interpretations in the boundary theories

on AdS and dS. The two-point function (29) obtained from AdS with λ=L has no poles for real
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ω, as expected for the Euclidean boundary theory. The same applies for dS with κ>H, where the

cut-off surface is spacelike and the boundary theory Euclidean. For smaller κ and λ = ı̇H the poles

appear for real ω, as expected for the Lorentzian boundary theory on the dS static patch. The

analytic continuation L → ı̇H then yields the ı̇ε-prescription corresponding to the Wick rotation

on the right hand side of (13).

−∞ ∞0 1AdSstatic patch dS

origin/
north polehorizon horizon

conformal
boundary

u

FIG. 2. The ranges of u corresponding to the different parts of (A)dS. The colors for the dS parts correspond

to those in Fig. 1(a). To avoid the branch points of the hypergeometric function the analytic continuation

from λ = L to λ = ı̇H should proceed through finite non-zero values, e.g. via λ = (1− t)L+ ı̇tH.

To complete the discussion we now consider the limit κ→∞. The cut-off surface then ap-

proaches I+ on dS and correspondingly the conformal boundary of AdS, such that Ψ
(A)dS
IR becomes

the full path integral. On AdS as well as on dS κ→∞ corresponds to uκ → 1, see Fig. 2, and the

asymptotic expansions coincide. With limκ→∞Cκ = Γ(δ+)Γ(δ−)/(λ∆−c2ν
λ Γ(ν)Γ(d/2 + `)) we find

lim
κ→∞

Gκ,`(ω) = 2λ2ν−1c−2ν
λ

Γ(1− ν)Γ(δ+)Γ(δ−)

Γ(ν)Γ(δ+ − ν)Γ(δ− − ν)
. (30)

The dependence on κ has dropped out and the effect of the analytic continuation (6) is now

restricted to the overall normalization, in accordance with the discussion of [3]. As a CFT two-

point function (30) should be conformally covariant, restricting its form to a power of the invariant

distance of the two points on the cylinder. Transforming back to position space for (A)dS2 we indeed

find 〈O(0)O(t, x)〉 ∝
(
sinh τ

2

)−2∆+ . The poles and zeros in (30) also encode the (anti-)quasinormal

frequencies of dSd+1, ±ı̇ω= 2n + ` + ∆±, which have been calculated in [30]. That they can be

recovered from the dual CFT at I+ in the dS/CFT proposal of [2] has been emphasized already

in [31]. A quantization prescription based on the quasinormal modes can be found in [24].

B. Static patch holography and quasinormal frequencies

We now specialize to the entire static patch which is recovered for κ→H−. The boundary

data corresponding to sources for dual operators was naturally identified in Fourier space and we

calculate the two-point functions using the dictionary (17). Note first of all that the asymptotic

expansion of the radial mode (24) around the horizon at u→−∞ confirms (14), which we used

to derive the dictionary. To actually calculate the left hand side of (17) in the saddle point
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approximation we have to evaluate ΨdS
IR[ϕ±ω , ϕ

∓
−ω] = eS

dS
IR . Evaluating the action (21) on shell with

the expansion (14) yields

SdS
IR,κ→H− = −Hd−1

∫
Sd−1

∫
ω≥0

dω
1

2
ı̇
[
φ̃(ω)z∂zφ̃(−ω)− φ̃(−ω)z∂zφ̃(ω)

]
z=0︸ ︷︷ ︸

=ω(ϕ+
ωϕ

+
−ω−ϕ

−
ωϕ
−
−ω)

. (31)

For fixed ω > 0 and the boundary condition (i) in (16) the functions ϕ+
ω and ϕ+

−ω evaluated at

z= 0 thus constitute a pair of source and expectation value for the dual operator O−ω, while ϕ−−ω

and ϕ−ω are source and expectation value for Oω, respectively. For the alternative quantization

with the boundary condition (ii) the analogous statement applies with ϕ+ and ϕ− exchanged. For

the two-point functions we then find
〈
O
ω1,~̀1
O
ω2,~̀2

〉
= −δ~̀

1
~̀
2
δ(ω1 + ω2)Gω1,`1 , where

G
(i)
ω,` =

δ

δϕ−−ω

δ

δϕ+
ω
e
SdS

IR,κ→H− = 2ωHd−1 δϕ
−
ω

δϕ+
ω
, G

(ii)
ω,` = −2ωHd−1 δϕ

+
ω

δϕ−ω
. (32)

They are therefore almost reciprocal to each other. The precise forms are most conveniently derived

from the asymptotic expansion of the full bulk solution around z = 0. To implement the boundary

condition on the horizon we have to fix C
(i)
κ = C

(ii)
κ |ω→−ω = H ı̇ωΓ(δ−)Γ(δ−−ν)

ı̇`Γ(−ı̇ω)Γ(d/2+`)
in (24), and the bulk

field is then again given by (26). From the expansion of (24) with u = − csch2(z/H) we then find

G
(i)
ω,` = G

(ii)
−ω,` = −2ı̇Hd+2ı̇ω−1 Γ(1 + ı̇ω)

Γ(−ı̇ω)

Γ(δ−)Γ(δ− − ν)

Γ(δ+)Γ(δ+ − ν)
. (33)

The boundary condition on AdS corresponding to the choice of Cκ is not directly Dirichlet, but since

the bulk solution is fixed uniquely the two can be related. With the choices naturally appearing

at the horizon, Cκ = C
(i)/(ii)
κ , we could have obtained (33) up to contact terms also from the

near-horizon limit of (29). The frequency dependence of the right hand side of (33) in particular

encodes the dSd+1 quasinormal frequencies: we find poles and zeros for

ı̇ω = ∆± + `+ 2n and −ı̇ω = ∆± + `+ 2n , (34)

respectively, where n∈N. These are precisely the (anti-)quasinormal frequencies arising for scalar

perturbations as found in [30]. Since they are naturally associated to the static patch of dSd+1

it is desirable to recover them from a dual description which is intrinsically defined on the static

patch. Previously they have been recovered from a putative quantum mechanics on the observer

worldline in [3], and here we find them encoded directly on the horizon of the static patch as the

natural place to define the dual theory.
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V. INCORPORATING THE dS/dS CORRESPONDENCE

In this section we come back to a seemingly disconnected proposal for a holographic description

of dS: building on the complementary holographic interpretation of Randall-Sundrum setups [32]

and warped geometries where dSd+1 is sliced by dSd, a dual description for dSd+1 gravity in terms

of cut-off CFTs on dSd was proposed in [14, 15]. The discussion of static-patch holography above

can nicely be adapted to this dS/dS correspondence, and then similarly allows to lift it to a concrete

level. We can thus incorporate the dS/dS correspondence into a coherent picture of dS holography

via cut-off AdS/CFT. In the first part of the section we derive a relation of the dS/dS geometry

to a part of AdS, similarly to the discussion of Sec. II. Building on that identification we can then

realize analytic continuations from AdS/CFT to dS/dS correspondences.

R→+π
2
H-R→−π

2
H�

I+

I−

(a)

R→+∞-R→−∞�

(b)

FIG. 3. The left hand side shows the slicing of dSd+1 by dSd hypersurfaces. On the horizontal axis is

the polar angle on Sd and the boundaries correspond to the north and south pole. The red solid and blue

dashed curves correspond to constant R and global dSd time, respectively. The right hand side similarly

shows the slicing of AdSd+1 by AdSd hypersurfaces. The green shaded regions are identified by the analytic

continuation (37). Note that, with a cut-off on R, also on the AdSd+1 side only an Sd−1 of the Sd conformal

boundary is covered.

The geometries for the dS/dS correspondence are obtained from the fact that, with a parametriza-

tion xi of dSd as hyperboloid with radius of curvature h in R1,d, one obtains a parametrization of

dSd+1 via

Xk =
H

h
cos

R

H
xk , ∀k = 0, .., d , Xd+1 = H sin

R

H
. (35)

From −x2
0 +

∑d
i=1 x

2
i = h2 we find that these coordinates cover some part of dSd+1 with radius

of curvature H as in (1). The part which is covered comprises all of the spatial Sd factor for
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X0 = 0 and shrinks to an Sd−1 subspace at I±, see Fig. 3(a). To actually fix the geometry we have

yet to specify which part of dSd the slices cover. We may choose global dSd slices, for which the

above discussion applies, or restrict e.g. to the expanding Poincaré patch as illustrated for dSd+1

in Fig. 1(a). That choice covers the Z2 quotient of dSd relevant for the ‘elliptic interpretation’

going back to [33]. A third option is to choose only the static patches of the dSd slices, and we

will refer to the corresponding dS/dS geometries as global, elliptic and static dS/dS. Our focus for

deriving dS/dS correspondences will be on the elliptic and static dS/dS geometries, for which a

correspondingly smaller part of dSd+1 is covered. More precisely, the Poincaré coordinates cover

only the part x0 > x1 of the slices. Via (35) this implies also X0 > X1, and the elliptic dS/dS

geometry thus is a part of the Poincaré patch of dSd+1 illustrated in Fig. 1(a). We can therefore

employ the analytic continuations used in [3] and similarly to the construction in Sec. III restrict

to the region appropriate for the dS/dS geometry. The same applies for static dS/dS. In that case

the bulk geometry is manifestly static and the coordinates indeed cover the dSd+1 static patch.

The resulting line element in any case reads

ds2
d+1 = dR2 +

H2

h2
cos2 R

H
ds2

dSd
. (36)

To obtain an analytic continuation to an AdS geometry we employ the Wick rotations discussed in

Sec. II and apply it to the slices, e.g. the analog of (3) for the slices of elliptic dS/dS, or similarly

(6) for static-patch slices. We then perform in (35) the analytic continuation

H → ı̇L , h→ ı̇l , . . . (37)

where the dots denote the possible further transformations to complete h → ı̇l to an analytic

continuation of the dSd slices to AdSd. The parametrization (35) becomes

Xk =
L

l
cosh

R

L
xk , ∀k = 0, .., d , Xd+1 = L sinh

R

L
, (38)

and since −X2
0 +

∑
iX

2
i = −L2 we find a parametrization of a part of AdSd+1. The line element

becomes

ds2
d+1 = dR2 +

L2

l2
cosh2 R

L
ds2

AdSd
, (39)

and that geometry is illustrated in Fig. 3(b). The complete AdSd+1 corresponds to R∈R. The

analytic continuation (37) relates the dSd slicing of dSd+1 to an inner part of the AdSd slicing of

AdSd+1, where the radial coordinate is restricted to |R| ≤ πL/2. For elliptic dS/dS the analytic

continuation yields complete AdSd slices, while for static dS/dS it introduces a cut-off not only on

the AdSd+1 radial coordinate R but also on the radial coordinate of the AdSd slices.
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We have thus obtained for the elliptic and static dS/dS geometries a geometric identification

with a part of AdS, and can proceed to implement a similar analytic continuation of the AdS/CFT

dictionary as we have done for the static patch in (13). For static dS/dS the spatial cut-off on the

AdSd slices of the corresponding AdSd+1 geometry calls for a separate treatment, and we therefore

start with a discussion of elliptic dS/dS. In the AdS/CFT picture the conformal boundary of AdSd+1

comprises two copies of AdSd joined at their conformal boundaries, as illustrated in Fig. 3(b).

The bulk theory is thus dual to a pair of CFTs on AdS. One may study them with transparent

boundary conditions or identify them by considering AdSd+1/Z2, with the slices at ±R identified,

as in [23, 34]. Each choice leads to a distinct AdS/CFT duality, and we keep that general in the

following. Introducing a radial cut-off |R| ≤πκ/2 =:Rκ on AdS would again be interpreted as a

UV cut-off in the dual CFTs, and the analog of the cut-off AdS/CFT duality (12) then reads

ΨIR[φ+
κ , φ

−
κ ] =

〈
exp

{∫
AdSd

(
φ+
κ O+ + φ−κ O−

)}〉
CFT,Λκ

. (40)

The inner part of the bulk path integral ΨIR is defined analogously to (10), with the boundary

conditions φ(±Rκ) = f∆−φ±κ on the two components of the boundary and f = l/L sech(R/L). On

the right hand side O± denotes the corresponding dual operators of the CFTs at ±Rκ, where the

rescaled bulk metric g := f2g naturally induces AdSd metrics. The starting point to obtain concrete

dS/dS correspondences is Vasiliev’s minimal higher-spin gravity on that AdSd+1 bulk geometry

with d= 3, which is then dual to the O(N) vector model on the two copies of AdSd constituting

the conformal boundary. With κ≤L the cut-off version of that duality (40), which corresponds to

introducing a symmetric UV cut-off in both CFTs, provides a holographic relation defined on a part

of the green shaded region in Fig. 3(b). We can thus apply the analytic continuation (37), which

realizes the transformation from AdS to dS used in [3] just adapted to our choice of coordinates,

resulting in

Ψ
dS/dS
IR [φ+

κ , φ
−
κ ] := ΨIR[φ+

κ , φ
−
κ ]
∣∣∣
(37)

=

〈
exp

{
ı̇

∫
dSd

(
φ+
κ O+ + φ−κ O−

)}〉
CFT,Λκ,N→−N

. (41)

The bulk geometry is transformed to the dSd slicing of dSd+1 and the CFT metrics accordingly to

dSd. We have thus obtained a duality of higher-spin theory on the dS/dS bulk geometry to a pair

of dual cut-off CFTs on dSd, again with the continuation from O(N) to Sp(N). The dS/dS duality

(41) is similar to the static-patch duality (13): both involve higher-spin theory in the bulk and

cut-off versions of the Sp(N) CFT3 on the boundary. The different bulk geometries are reflected in

the fact that the boundary theories are defined on different spaces as well – on a cylinder in (13)

as compared to two copies of dSd in (41) – and with different cut-off implementations.
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In the AdS/CFT duality (40) we had intentionally left the choice of boundary conditions for the

CFTs on AdSd unspecified. For each choice of CFT boundary conditions or Z2 identification on

the AdS side the analytic continuation yields a corresponding dS/dS duality (41). The limit where

the entire bulk geometry is recovered calls for a special treatment, analogously to the discussion

for the static patch in Sec. III B. In that context the boundary conditions (16) appearing naturally

at the horizon may be of interest. We expect something similar to appear for dS/dS, in particular

also for the bulk metric. As the horizon boundary conditions are not pure Dirichlet, the boundary

cut-off CFTs would naturally be coupled to dynamical gravity, as anticipated in [14, 15]. We leave

more detailed investigations for the future and note that the picture nicely agrees with the general

discussions of dS/dS so far. It substantiates the discussion by providing a concrete example and

also a new perspective on the expected features.

We have seen that one and the same field theory, formulated on different background geometries

and with different cut-offs, can be dual to different regions of dS. Detailed discussions were given

for the static-patch holography and for elliptic dS/dS, and related dualities for other patches of

dS can be obtained by similar analytic continuation. It would be particularly interesting to study

in more detail the static dS/dS slicing, where the pair of dual cut-off CFTs in the corresponding

AdS/CFT picture is defined with a spatial cut-off on AdSd in addition to the UV cut-off. Since the

bulk geometry is static in that case, this setting allows for a direct comparison to the static-patch

holography of Sec. III.

VI. DISCUSSION & OUTLOOK

We have argued that the dynamics of minimal higher-spin gravity on the dS4 static patch, op-

tionally with a radial cut-off, is encoded in a cut-off version of the Sp(N) CFT3 of anticommuting

scalars on the Lorentzian-signature cylinder. The discussion was based on a relation of the dS static

patch to an inner shell of AdS via double Wick rotation and a corresponding analytic continuation

in the dynamics of the bulk and boundary theories. As discussed in Sec. III B the limit where the

dS bulk geometry becomes the entire static patch has to be taken carefully. The spatial part of the

boundary cylinder straightforwardly arises as a holographic screen, while the time direction only

arises naturally in Fourier space. The proposed duality allowed us to transfer lessons learnt from

AdS/CFT to the description of (quantum) gravity on the static patch. With the concrete dual

description in terms of a cut-off CFT on the cylinder we have derived the number of degrees of

freedom on the dS static patch from the dual theory. It is finite and respects a holographic bound,
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and the corresponding entropy reproduces the functional form of the thermodynamic horizon en-

tropy. To make the discussion more explicit we have then studied the two-point functions of the

boundary theories on cut-off dS and AdS. We found them related by the expected analytic contin-

uation, which, reflecting the different but related cut-off interpretations in the boundary theories,

did not solely affect their normalization. For the entire static patch as bulk geometry we have

recovered the spectrum of quasinormal frequencies from the correlators of the boundary theory on

the horizon, and as a limiting case we have also recovered the proposal of [3]. Although the explicit

discussion was limited to free bulk scalars we expect the established analytic continuation from

AdS to dS to extend to perturbatively interacting fields. We have then derived a similar relation

of the geometries underlying the dS/dS correspondence to an inner part of AdS, which allows to

similarly provide an explicit realization. It also results in a coherent picture of dS holography

identifying the various incarnations as different forms of cut-off AdS/CFT.

There are also open questions which we think would be interesting to study in the future.

As discussed in Sec. IV B the boundary conditions arising naturally on the horizon of the static

patch can be translated to AdS, and the two settings are then connected by analytic continuation.

However, it would be of interest to find an independent interpretation of these boundary conditions

intrinsically on AdS. In that context alternative interpretations of the AdS Dirichlet problem may

be relevant: since a boundary condition at fixed rκ uniquely determines the bulk solution, one may

identify a localized source for the cut-off CFT at rκ with a non-local source for the dual operator in

the full CFT, or vice versa. A possibly related issue discussed briefly at the end of Sec. III A is the

unitarity of the boundary theory and the question whether it is indeed restored by the mandatory

cut-off. As an extension of the discussion here it would certainly be of interest to include fields

of higher spin, in particular a dynamical bulk metric. To this end it would be desirable to have

a characterization of the spacetimes where the above construction can be carried out, as available

e.g. for AdS/CFT in the form of asymptotically-AdS spaces. It may also be possible to obtain

further concrete examples by applying the discussion to other AdS/CFT dualities. We note in that

context that on the group-theoretic level a similar analytic continuation as from SO(N) to Sp(N)

is also available for SU(N) [35]. The crucial point will certainly be the extension of the analytic

continuation from AdS to dS to the actual bulk dynamics, apart from which the discussion was

pretty general already. That may be possible for other variants of higher-spin theory, as relevant

e.g. for the minimal-model holography [36].
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