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Abstract
The future apparent horizon of a black hole develops large stress energy due to quantum effects,

unless the outgoing modes are in a thermal density matrix at the local Hawking temperature. It

is shown for generic pure states that the deviation from thermality is so small that an infalling

observer will see no drama on their way to the stretched horizon, providing a derivation of black

hole complementarity after the Page time. Atypical pure states, and atypical observers, may of

course see surprises, but that is not surprising.
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I. INTRODUCTION

In the usual analysis of Hawking radiation, the problem is analyzed in either the Hartle-

Hawking vacuum [1] or the Unruh vacuum [2]. The former case is appropriate for eternal

black holes, supported by a thermal flux of radiation from past infinity. The latter case

is not supported by such a flux, and better models the evaporation of a black hole formed

in a dynamical process. Here back-reaction effects are expected to modify the spectrum of

the Hawking radiation after a substantial fraction of the initial mass is lost. Each of these

vacua involve exterior modes entangled with interior modes, as described in [2]. Correlation

functions of local operators outside the black hole horizon may therefore be viewed as ex-

pectation values in a density matrix where at least the outgoing modes in the infinite future

are in a finely tuned thermal density matrix. The most obvious attempt to modify this

situation by placing such modes in their asymptotic vacuum leads to the Boulware vacuum

[3], which produces a singular renormalized stress energy tensor on the future horizon (as

well as the past horizon). This leads to violations of the equivalence principle for infalling

observers.

In the present work our goal is to study in more detail deformations of the Unruh and

Hartle-Hawking vacuum states to test the robustness of the principle of black hole comple-

mentarity [4]. Generic deformations, in particular those toward pure states, lead to time

dependent fluctuations in the radiation. Such fluctuations typically lead to divergent energy

densities for a freely falling observer on either the past horizon, the future horizon, or both.

We begin by establishing that the so-called in-modes may be taken to be in an arbitrary

pure state tensored with either the Hartle-Hawking or Unruh vacua. This provides us

with multi-parameter deformations of these vacua with finite stress energy on the future

horizon. This provides evidence in favor of the black hole complementarity hypothesis, by

giving examples of smooth deformations of the vacuum states. Moreover, each of these in-

modes has a component outgoing at future infinity, caused by scattering off the gravitational

potential. They provide examples of outgoing fluxes which do not lead to firewalls on or

near the horizon.

This situation of course is not satisfactory, because these in-modes may be traced back

to the selection of a non-vacuum state at past infinity. Moreover, we find that any attempt

to treat similar excitations of the out-modes in the Schwarzschild background does indeed
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lead to divergent energies as seen by a freely falling observer near the horizon. Thus, at

first sight, it seems out-modes must be locked into a purely thermal density matrix to avoid

drama for an infalling observer. A finite perturbation at any frequency leads to infinite local

energy densities for infalling observers at the event horizon.

The above discussion refers to a calculation that neglects back-reaction of the emitted

radiation on the geometry. To improve on this situation, we model the effect of back-reaction

using the outgoing Vaidya metric [5]. This provides a fully time-dependent metric when a

null fluid is emitted from a black hole. We still find a freely falling observer sees a UV

divergent energy density as they approach the stretched horizon, even with back-reaction

included.

Lloyd [6] has pointed out that random pure states can lead to effects that mimic aver-

aging over ensembles in statistical mechanics (see also later work by Page [7] where it was

emphasized information does not begin to emerge from a black hole until a time of order

M3, which we refer to as the Page time). In fact, there is a sense in which the convergence

is much more rapid. If a reduced density matrix is constructed by tracing over a Hilbert

subspace of dimension eN the error in the density matrix is of order e−N/2. If one instead

computes fluctuations in a statistical ensemble, the finite size effects are typically much

larger, of order 1/
√
N . We use this observation to show that an infalling observer into a

generic pure state black hole will not see any drama up to the stretched horizon. If the

black hole is projected into an outgoing mode eigenstate the infaller can indeed see mild

drama as they approach the stretched horizon as noted in the previous paragraph, but pro-

jections are either non-generic or impractical. These results provide a derivation of black

hole complementarity for black holes older than the Page time.

It should be emphasized that we take care to use local unitary effective field theory

only outside the stretched horizon, where it has a conventional interpretation. One may

also try to build effective field theory on patches of spacetime inside the horizon, however

the interpretation there is much more problematic. Inside the horizon physical observables

are inherently imprecise, and there is much room to hide highly non-local physics [8]. An

exact fundamental description may predict non-local physics inside the horizon that is not

captured by an approximate local unitary effective field theory in that region. Conversely,

applying local effective field theory across the horizon will predict effects that are not realized

in the fundamental unitary description.
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II. NON-ROTATING BLACK HOLE EVAPORATION IN 3+1 DIMENSIONS:

PROBLEMS AND SOLUTIONS

A. Mode expansions and vacua

In this section we consider a massless conformally coupled scalar field. Issues of

back-reaction will be ignored, and re-examined in the following section. The metric in

Schwarzschild coordinates takes the form

ds2 = −
(

1− 2M

r

)
dt2 +

dr2

1− 2M
r

+ r2dθ2 + r2 sin2 θdφ2 .

In these coordinates, a complete set of modes in the exterior region may be obtained by

separating the equation of motion, and defining the tortoise radial coordinate

r∗ = r + 2M log
( r

2M
− 1
)
.

The angular and time dependence may be handled straightforwardly, and the radial equation

can be mapped into a scattering problem with a step-like potential separating the behavior at

r →∞ from the region r → 2M [9]. This leads to a natural decomposition into independent

modes that we refer to as in-going and out-going [23]:

uin(x) = (4πω)−1/2 e−iωtRin
l (ω; r)Ylm(θ, φ)

uout(x) = (4πω)−1/2 e−iωtRout
l (ω; r)Ylm(θ, φ) (1)

with

Rout
l (ω; r) ∼

r
−1eiωr∗ + Aoutl (ω)r−1e−iωr∗ , r → 2M

Bl(ω)r−1eiωr∗ , r →∞

Rin
l (ω; r) ∼

Bl(ω)r−1e−iωr∗ , r → 2M

r−1e−iωr∗ + Ainl (ω)r−1eiωr∗ , r →∞ .

Scattering off the gravitational field leads to “grey body” factors, so a mode that is purely

outgoing near infinity contains an ingoing component near the horizon, and likewise a mode

that is purely ingoing near the horizon contains an outgoing component near infinity.

The Unruh vacuum is defined by requiring the modes incoming at past null infinity to

be purely positive frequency with respect to t, and while those outgoing from the past
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horizon are positive frequency with respect to the appropriate Kruskal coordinate. This

vacuum corresponds to an evaporating black hole with no incoming flux at past infinity, but

a thermal outgoing flux at future null infinity.

The Hartle-Hawking vacuum is defined in a similar way, except the condition at past null

infinity is replaced by the condition that infalling modes on the future horizon are positive

frequency with respect the appropriate Kruskal coordinate. This corresponds to an eternal

black hole with balancing ingoing and outgoing thermal fluxes at infinity.

It is also worth mentioning the Boulware vacuum where t is used to define positive fre-

quency throughout the exterior region. This vacuum leads to singular quantum corrections

at the horizon.

B. Fluctuations

In the following we will mostly be interested in the Unruh vacuum, which describes an

evaporating black hole. An important set of early results in this direction was developing

an understanding of renormalization in this curved background [10] which led to explicit

computations of the one-loop corrections to 〈φ2〉 and 〈Tµν〉 for a massless scalar field in the

Schwarzschild background, in the Unruh, Hartle-Hawking and Boulware vacua [11]. In both

the Unruh and Hartle-Hawking vacua, these corrections were found to be mild, leading to

the expectation that back-reaction near the horizon should be negligible. We will discuss

these computations in more detail in the following subsection.

For the moment, let us study the behavior of the individual modes (1) near the past and

future horizons. For both the ingoing and outgoing modes, the mode functions are finite as

r → 2M but oscillate more and more rapidly with r as the horizon is approached. Fixed

frequency oscillations appear with respect to the time coordinate t. This is illustrated in

figure 1.

The stress energy tensor for a massless conformally coupled scalar field in a Ricci flat

background is

Tµν =
2

3
∂µφ∂νφ−

1

6
gµν∂ρφ∂

ρφ− 1

3
φ;µνφ+

1

12
gµνφ�φ .

To study the behavior of this quantity near the horizon, we must first contract indices with

some suitably defined basis vectors. Near the future horizon, we choose a velocity 4-vector
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Figure 1: Scalar mode fluctuation near the horizon. Here we set M = 1 and ω = 1.
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Figure 2: The expectation value of an ingoing fluctuation contracted with the velocity of an infalling

timelike geodesic near the future horizon. Here we set M = 1 and ω = 1.

corresponding to a time-like radial ingoing geodesic

uµ =

(
k

1− 2M
r

,−
√
k2 − 1 +

2M

r
, 0, 0

)
, (2)

in a (t, r, θ, φ) basis. The result for an ingoing mode is shown in figure 2. The answer is

finite on the horizon, and independent of time.

If we perform the same computation for an ingoing mode on the past horizon and instead

choose an outgoing radial timelike geodesic, we find a double pole as r → 2M and a divergent
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result. The result is again independent of time.

The outgoing modes produce a stress tensor that is singular on both the past and future

horizons, with rapid oscillations combined with double pole terms as r → 2M. Now the

stretched horizon is placed at a value of r such that the red-shift to infinity is a constant,

such that

ΛUV =
M2

pl

M

1√
1− 2M

r

, (3)

where ΛUV will be the ultraviolet cutoff scale for the stretched horizon theory, which may

be taken to be some energy below the Planck scale. The double pole indicates the infalling

observer sees a large energy density

ρ ∼ T 4 1(
1− 2M

r

)2 = Λ4
UV . (4)

As we will see in the next subsection, if we sum over modes to compute the correct one-

loop contributions to the vacuum expectation values of these quantities, and correctly renor-

malize [10, 11], there are delicate cancellations that remove the future horizon divergence,

in the case of the Unruh vacuum; and for both horizons in the case of the Hartle-Hawking

vacuum. It will then be our goal to model time-dependent pure state corrections to these

results.

C. Correlators

Let us begin by studying the simplest quantity built out of the scalar field that receives

quantum corrections and can become potentially divergent on the horizon 〈φ2〉. As we saw

in the previous subsection, the modes themselves are finite on the horizon, but derivative

operators such as Tµν may become singular. Following [11] we can construct 〈φ2〉 by applying

a point-splitting regularization to the tree-level propagator in the appropriate vacuum state,

then applying a local counter-term subtraction procedure.

For the Unruh vacuum |U〉, this yields

〈
U |φ2|U

〉
=

1

16π2

ˆ ∞
0

dω

ω

[
∞∑
l=0

(2l + 1)
(

coth
πω

κ

∣∣Rout
l (ω; r)

∣∣2 +
∣∣Rin

l (ω; r)
∣∣2)− 4ω2

1− 2M
r

]

− 4M2

48π2r4
(
1− 2M

r

) , (5)
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where κ = 1
4M

is the surface gravity at the horizon. The first term corresponds to the

outgoing modes, the second the ingoing modes, and the last two terms correspond to the

counter-term contributions. The appearance of the coth πω
κ

factor is a consequence of the

thermality of the outgoing modes. In the Hartle-Hawking vacuum, such a factor also appears

in front of the ingoing term.

The sum over angular momenta of the outgoing term yields only a partial cancellation

of the r → 2M pole, while the sum for the ingoing term is finite in this limit. Only after

integrating over frequency is the r → 2M pole canceled. This requires a delicate exact

cancellation between the counter-terms and the thermal outgoing modes.

It is worth noting any finite excitation of the Unruh vacuum by ingoing modes preserves

the finiteness of 〈φ2〉. Thus there is an easily accessible collection of modifications of the

Unruh vacuum obtained by tensoring in essentially arbitrary infalling pure states that leads

to finite stress energy near the horizon.

However to have a successful theory of the stretched horizon, this is necessary, but not

sufficient. If the Unruh vacuum is to be replaced by a pure state built out of stretched

horizon modes, and exterior modes, and the Hawking radiation is to be produced by unitary

evolution, then the stretched horizon must also be capable of emitting outgoing modes in a

manner that deviates from exact thermality. We turn to this question in the next subsection

and examine whether back-reaction ameliorates the problem.

D. Outgoing Vaidya metric

In the above we have seen that a single classical outgoing mode of definite frequency

induces an infinite stress energy on the global horizon after taking into account the effects

of renormalization. Let us now see if this divergence survives if we also include gravitational

back-reaction. This kind of problem has been studied extensively in the literature, for

example in the study of neutrino emission during stellar core collapse [12, 13] in the limit

of spherical symmetry. The emission of massless matter, in a so-called null fluid, may be

studied analytically using the outgoing Vaidya metric [5]

ds2 = −
(

1− 2M(u)

r

)
du2 − 2dudr + r2dΩ2 ,
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Figure 3: The Penrose diagram for the outgoing Vaidya metric. The lower dashed line shows the

apparent horizon below the global horizon. The upper dot-dashed line indicates where the metric

is geodesically incomplete, and may be patched onto a variety of interior solutions. The dotted

timelike line shows the position of the stretched horizon.

with stress energy tensor

T µν = − 1

4πr2

dM

du
kµkν ,

where kµ is a null-vector directed radially outward, normalized as in [13]. Some properties

of the solution are illustrated in figure 3.

An infalling observer will measure an energy density in her reference frame

ρin = T µνUµUν ,

where Uµ is the velocity 4-vector of the infalling observer. This is obtained by solving

the equation for a timelike geodesic in these coordinates. For a purely radial motion, the

components of the velocity are

Uµ =

(
du

dτ
,
dr

dτ
,
dθ

dτ
,
dφ

dτ

)
=

 1

V +
√
V 2 + 1− 2M(u)

r

, V, 0, 0

 .

9



The energy density of the infaller is then [13]

ρin = − 1

4πr2

dM

du

1(
V +

√
V 2 + 1− 2M(u)

r

)2 . (6)

To model the process of interest to us, let us consider the solution corresponding to the

emission of energy M2
pl/M over a time M/M2

pl measured at infinity. Inserting these values

into (6), and taking V < 0 corresponding to an infalling observer, we find that near the

apparent horizon the energy density becomes

ρin =
1

4π

M8
pl

M4

V 2

(1− 2M(u)
r

)2
. (7)

Using formula (3) this expression may be rewritten

ρin =
V 2

4π
Λ4
UV . (8)

This shows that the UV-divergence persists when the gravitational back-reaction due to

the outflow of energy is taken into account. This provides strong evidence that even with

back-reaction included, any time dependence of the outgoing radiation will lead an infaller

to effectively see a firewall as they approach the stretched horizon.

E. Near-horizon observables

We saw in the previous subsections, that while we are free to modify the infalling modes at

will, delicate cancellations are needed with the outgoing modes to yield a finite renormalized

〈φ2〉 at the horizon. Obtaining finite stress energy involves even further cancellations. As

we saw in section II B even a single outgoing mode generates singular contributions to the

stress energy.

To formulate these issues more sharply, let us consider a freely falling infalling observer,

who is capable of measuring with a UV cutoff ΛUV . We model the stretched horizon theory

by a surface that emits quanta of energy M2
pl/M every M units of time t. If the infaller

falls in after a finite fraction of the black hole lifetime M3, the infaller crosses a substantial

fraction of the outgoing Hawking radiation, of order
(

M
Mpl

)2

particles. Since a freely falling

observer will hit the singularity in proper time less than of order M , the infaller sees M
Mpl

outgoing modes per unit Planck time. Therefore a freely falling observer cannot resolve
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individual Hawking modes, and her local operators will involve linear combinations of at

leastM/Mpl outgoing modes. If the infaller makes one local measurement every time 1/ΛUV

in her rest frame, then the subspace of the Hilbert space accessible in her lifetime M will

have dimension nin = eM/ΛUV � eM/Mpl .

Let us denote the subspace of the Hilbert space corresponding to this outgoing radiation

A, and the subspace corresponding to the stretched horizon degrees of freedom B. The rest

of the outgoing radiation we denote by the Hilbert subspace C. According to the postulates

of black hole complementarity, the combined Hilbert space A×B×C undergoes local unitary

evolution, mapping a pure state to a pure state. We expect the dimension of A will have an

upper bound of order nin while the dimension of B and C will be of order eM
2/M2

pl , assuming

we are not too close to the endpoint of evaporation [24]. As time passes the dimensions of

these Hilbert subspaces will shift, but the combined dimension will remain constant.

We wish to compute the expectation value of the stress energy tensor seen by an infalling

observer in a generic pure state emitted after scrambling on the stretched horizon. As we have

seen above, the infalling modes may be placed in an arbitrary pure state, leading to finite

corrections to the expectation value. We therefore focus our attention on the contribution

due to the outgoing modes.

Now fluctuations in the stress energy tensor can only become large in the limit that

r → 2M(u), which follows from the r → 2M divergent terms in (5) as shown in [11]. The

modes relevant for determining whether the infaller sees a large effect are those emitted

within δu ∼M(u), so even though these modes free stream from the stretched horizon, they

were in relatively recent causal contact with the stretched horizon degrees of freedom. This

implies in this period of time the A × B subsystem evolves unitarily on its own, so that

δSA = −δSB and δEA = −δEB. Thus, the effective temperatures of these systems are the

same
1

T
=
∂SA
∂EA

=
∂SB
∂EB

.

However, to within small corrections in the temperature, one can consider a time period just

before the emission of A from the stretched horizon, and likewise argue that

1

T
=
∂SC
∂EC

=
∂SB
∂EB

.

Thus all subsystems are at the same effective temperature T = M2
pl/M(u) to within negligible

corrections, so the evolution on A×B × C may be treated in an adiabatic approximation.
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In quantum field theory, local operators are constructed to model the action of real

detectors, and likewise local operators may be used to prepare initial states of interest. The

resulting correlators of the local fields may be interpreted as probability amplitudes and used

to predict the outcomes of experiments. As is typical in quantum mechanics, the outcome of

a particular measurement is determined probabilistically, which effectively leads to a version

of averaging that mimics the averaging in statistical mechanics [6]. One of the key points of

that work is that expectation values in a random pure state converge much more rapidly than

the ensemble averages used in ordinary statistical mechanics. It was found that fluctuations

in an expectation value are typically suppressed by a factor 1/
√
n where n is the dimension

of the Hilbert subspace that is averaged over in selecting a random pure state. This comes

from the integrating over a shell in the space Cn. This is to be contrasted with the usual

suppression of fluctuation from ensemble averages which are of the order 1/
√
N where N is

the number of degrees of freedom in the system averaged over (typically n ∼ eN).

Unfortunately it is difficult to make these ideas precise in a completely general context.

For example a pure state which is an eigenstate of some particular operator that commutes

with the Hamiltonian will remain in that eigenstate for all time, and any effective measure-

ments that commute with this operator will only produce that eigenvalue. This makes the

definition of a complex pure state a rather basis dependent question.

However we can make these statements rather more precise in the context of measure-

ments of the evaporation of a black hole. The natural basis for an observer far from the

black hole is indeed the outgoing modes discussed above. However such modes are highly

unnatural from the viewpoint of a freely falling observer near the horizon.

Applying this to the case at hand, any operator corresponding to the detector of a freely

infalling observer will average over the subspace B×C. Since the operator is local, it will not

probe the subspaces B and C. One may therefore compute the expectation value by tracing

over the Hilbert subspaces B and C to produce the reduced density matrix ρA. At late

times, the modes A will be maximally entangled with the earlier radiation C [14]. By the

arguments of [6] this density matrix will agree with the canonical ensemble at temperature

T up to corrections of order e−SC/2.

Let us briefly review this computation in more detail [6]. Let us assume we have a pure

state on a product Hilbert space A × C described by the density matrix ρAC with total
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energy E. Defining

ρA = TrCρAC =
∑
i

p(Ei)ρEi
.

Here Ei are the energy eigenvalues of the subspace A, i labels the energy eigenstates, p(Ei)

is the probability of occupation of energy eigenstate Ei and ρEi
is a density matrix on the

subspace of A corresponding to eigenstates with energy Ei. Computing this for a typical

pure state, one finds

ρA =
1

n

∑
i

eSA(Ei)+SC(E−Ei)ρEi

(
1±O

(
1

eSC(E−Ei)/2

))
,

where we have assumed SC � SA, and defined n as the total dimension of the Hilbert space

A × C. The exponential may be approximated using SC(E − Ei) ≈ SC(E) − Ei/T , using

1/T = ∂SC/∂E, leading to the canonical ensemble expression, up to small corrections

ρA =
1

N

∑
i

e−Ei/T+SA(Ei)ρEi

(
1±O

(
1

eSC(E)/2

))
,

with N = eSC(E)/n.

This density matrix may then be used to estimate

〈Tµν〉UµUν ∼ e−SC/2(
1− 2M(u)

r

)2 , (9)

as r → 2M(u) by viewing the correction as a classical contribution to the emitted energy

in the outgoing Vaidya solution (7). While this still becomes singular very close to the

global horizon, this is safely behind the stretched horizon, and in that region we do not

trust conventional effective field theory. We conclude an infalling observer sees no drama in

their approach to the stretched horizon for a generic pure state.

F. EPR paradox in the black hole setting

The above argument suggests that the infalling observer sees smooth stress energy all

the way up to the stretched horizon, beyond which it is difficult to make model-independent

statements. However we run into an apparent paradox if we suppose that an external

observer far from the black hole projects it onto an eigenstate of the outgoing modes. In

this case, the model of section IID should provide an accurate estimate of the stress energy,

and we expect the infalling observer to see a firewall.
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The resolution is very similar to that of the original EPR paradox. Suppose the infalling

observer is initially spacelike separated from the outside observer. His measurements are

unaffected by the outside observer’s measurements. But nevertheless the measurements can

be correlated via the nonlocality of ordinary quantum mechanics. Effectively the density

matrix ρA corresponds to a trace over macroscopic superpositions of the states of the outside

observer. Only in a generic superposition is the correlator 〈Tµν〉UµUν finite.

A measurement in the state projected by the outside observer 〈TµνOM2〉UµU ν is expected

to be large, where the operator OM2 represents the measurement of the outside observer on
M2

M2
pl
Hawking particles. However the unnaturally large value for this correlator only appears

as a puzzle to the outside observer if he is able to accelerate away from the black hole and

compare notes with the distant observer. It has no local significance to the infaller, except

in the atypical situation when the black hole is prepared in such an eigenstate from the

beginning. However here we may rely on the fact that the likelihood of such an eigenstate

of of order e−M
2/M2

pl .

Another variant on this process involves an observer who stays outside the black hole

for a long time to precisely measure its state, and then falls in. Perhaps not surprisingly,

such an observer can predict the emission of non-thermal Hawking particles and choose to

fall into the horizon to measure them. Such an observer will similarly see a large effect

of order (8) near the stretched horizon. However the practicality of these measurements

seems unlikely. Such an observer would need energy and entropy with which to store all

this data, comparable to those of the black hole he is reconstructing. This process would

be well-approximated by the collision of two black holes of similar mass. In such a collision,

Planck-scale curvatures are not produced in the vicinity of the apparent horizon(s), but

there is nevertheless a substantial fraction of the initial Bondi energy radiated in terms of

gravitational radiation. It is interesting to note that gravitational effects show a tendency

to smooth out would be curvature/stress energy singularities. We conclude that just as

atypical pure states can give surprising answers, we may also have atypical observers who

are surprised by their measurements.

Finally, one can try to imagine a single Hawking particle plays the role of the observer, to

parallel the arguments of [15], who instead conclude a firewall exists at the horizon. Related

arguments have been made in [16, 17] in the context of the fuzzball scenario. The arguments

made in these works have already been rebutted in [18] and in the present work extend and
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strengthen this approach. In the case of a single Hawking particle the “observer” only has

access to a 1-dimensional subspace of the Hilbert space, so once again it is appropriate to

trace over the other subspaces. For an infalling Hawking particle, we reproduce (9) with

the velocity Uµ replaced by a normalized null vector. For an outgoing Hawking particle we

get a negligible result. We conclude therefore that neither Hawking particles, nor infalling

observers see drama near the stretched horizon of a black hole in a generic pure state.

However it is possible to choose a special pure state, or even a special observer where this

conclusion does not hold.

III. DISCUSSION

To extend these considerations to an observer falling across the horizon, one would need

to account for the fact that the mapping from the fundamental unitary description to the

effective description is no longer local. The rules of unitary and locality in the bulk must

then be given up. Some early work which found that local effective field theory does not

predict its own demise when horizons are present appeared in [19, 20]. Rather we expect local

unitary effective field theories [25] are capable of approximately describing the measurements

that may be carried out by an infalling observer. However these will disagree with the exact

answers of a unitary nonlocal holographic description of the same measurements [8]. Related

ideas have been considered more recently in the context of the firewall scenario using a

quantum computational model in [21]. Evidence for such a scenario has been provided using

the AdS/CFT framework in [22]. This scenario has a chance of working, because the finite

lifetime of an infalling observer limits the measurement operations that may be carried out,

thus the effective field theory in a region inside the horizon need not give exact answers.

From the viewpoint of evolution of the stretched horizon theory, an infalling observer’s

degrees of freedom evolve for a time of order the scrambling time, before being reemitted in

the Hawking radiation. The scrambling time, measured at infinity, thus provides a time-scale

at which the evolution of these degrees of freedom qualitatively changes. It is tempting to

match this delay time with the proper time that the infaller takes to hit the singularity. We

hope to return to this question using more specific models of the stretched horizon theory

in future work, though progress has already been made [8, 22].
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