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We present a method for calculating the maximum elastic quadrupolar deformations of relativistic
stars, generalizing the previous Newtonian, Cowling approximation integral given by [G. Ushomirsky
et al., Mon. Not. R. Astron. Soc. 319, 902 (2000)]. (We also present a method for Newtonian
gravity with no Cowling approximation.) We apply these methods to the m = 2 quadrupoles most
relevant for gravitational radiation in three cases: crustal deformations, deformations of crystalline
cores of hadron–quark hybrid stars, and deformations of entirely crystalline color superconducting
quark stars. In all cases, we find suppressions of the quadrupole due to relativity compared to the
Newtonian Cowling approximation, particularly for compact stars. For the crust these suppressions
are up to a factor of ∼ 6, for hybrid stars they are up to ∼ 4, and for solid quark stars they are at
most ∼ 2, with slight enhancements instead for low mass stars. We also explore ranges of masses
and equations of state more than in previous work, and find that for some parameters the maximum
quadrupoles can still be very large. Even with the relativistic suppressions, we find that 1.4M⊙

stars can sustain crustal quadrupoles of a few × 1039 g cm2 for the SLy equation of state, or close
to 1040 g cm2 for equations of state that produce less compact stars. Solid quark stars of 1.4M⊙

can sustain quadrupoles of around 1044 g cm2. Hybrid stars typically do not have solid cores at
1.4M⊙, but the most massive ones (∼ 2M⊙) can sustain quadrupoles of a few × 1041 g cm2 for
typical microphysical parameters and a few× 1042 g cm2 for extreme ones. All of these quadrupoles
assume a breaking strain of 10−1 and can be divided by 1045 g cm2 to yield the fiducial “ellipticities”
quoted elsewhere.

PACS numbers: 04.30.Db, 04.40.Dg, 97.60.Jd

I. INTRODUCTION

Shortly after the discovery of pulsars and the realiza-
tion that they are rotating neutron stars, deformations of
rotating neutron stars were proposed as sources of con-
tinuous gravitational radiation [1–4]; see [5] for an early
review. Searches for such radiation are an ongoing con-
cern of the LIGO and Virgo gravitational wave detec-
tors [6–8]; see [9–11] for recent reviews. It is thus of great
interest to know the maximum quadrupolar deformation
that a neutron star could sustain, in order to motivate
further searches and help interpret upper limits or de-
tections. In the case of elastic (as opposed to magnetic)
deformations, the main factor influencing the answer is
whether the neutron star contains particles more exotic
than neutrons [9, 12]. However, the structure of the star
also plays an important role.

While there are relativistic calculations of the
quadrupole deformations due to magnetic fields
(e.g., [13–17]), all the computations involving elastic
deformations have used Newtonian gravity. Moreover,
all but two of these computations have used the integral
expression obtained in the Cowling approximation
(i.e., neglecting the self-gravity of the perturbation)
by Ushomirsky, Cutler, and Bildsten (UCB) [18]; see
[12, 19–21]. Haskell, Jones, and Andersson (HJA) [22]
dropped the Cowling approximation using a somewhat
different formalism than UCB’s; there is a further
application of their results in [23].

We improve these treatments by generalizing the UCB

integral to relativistic gravity with no Cowling approx-
imation. We also provide a similar generalization for
the Newtonian no-Cowling case, as a warm-up. In ad-
dition to providing a simpler formalism for performing
computations than the more general Newtonian gravity
treatment in HJA, the integrals we obtain allow us to
verify that a maximal uniform strain continues to yield
the maximum quadrupole deformation in the Newtonian
and relativistic no-Cowling cases. (UCB showed this to
be true for an arbitrary equation of state in the Newto-
nian Cowling approximation case; we are able to verify
that it is true in the more general cases for each back-
ground stellar model we consider.)

We then apply our calculation to the standard case of
quadrupoles supported by shearing the lattice of nuclei
in the crust, as well as the cases where the quadrupole
is supported by the hadron–quark mixed phase lattice
in the core, or a crystalline color superconducting phase
throughout a solid strange quark star. For the crustal
quadrupoles, we calculate the shear modulus following
HJA, using the equation of state (EOS) and composi-
tion results of Douchin and Haensel [24] and the effective
shear modulus calculated by Ogata and Ichimaru [25].
(There are recent improvements to the Ogata and Ichi-
maru result [26–28], but these only reduce their shear
modulus by < 10%.) For the hadron–quark mixed phase,
we use our recent calculations of the EOS and shear
modulus [29] for a variety of parameters. (We also con-
sider the range of surface tensions for which the mixed
phase is favored.) For crystalline quark matter, we use
the shear modulus calculated by Mannarelli, Rajagopal,
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and Sharma [30], and the EOS given by Kurkela, Ro-
matschke, and Vuorinen [31].

In all cases, we use a breaking strain of 0.1, compara-
ble to that calculated by Horowitz and Kadau [32] using
molecular dynamics simulations. (Hoffman and Heyl [33]
have recently obtained very similar values over more of
parameter space.) This result is directly applicable to
the crustal lattice, at least for the outer crust, above
neutron drip (though see Chugunov and Horowitz [34]
for caveats). We also feel justified in applying it to the
inner crust, as well as to the mixed phase and crystalline
quark matter, since the primary source of the high break-
ing strain appears to be the system’s large pressure. But
one can apply our results to any breaking strain using the
linear scaling of the maximum quadrupole with breaking
strain.

In our general relativistic calculation, we use the rel-
ativistic theory of elasticity given by Carter and Quin-
tana [35] and placed in a more modern guise by Karlovini
and Samuelsson [36]. However, all we need from it is
the relativistic form of the elastic stress-energy tensor,
which can be obtained by simple covariance arguments,
as noted by Schumaker and Thorne [37]. We also use the
standard Thorne and Campolattaro [38] Regge-Wheeler
gauge [39] formalism for perturbations of static relativis-
tic stars, following Hinderer’s recent calculation [40] of
the quadrupole moment of a tidally deformed relativistic
star (first discussed in Flanagan and Hinderer [41]), and
the classic calculation by Ipser [42].

Even though we are interested in the gravitational ra-
diation emitted by rotating stars, it is sufficient for us
to calculate the static quadrupole deformation. As dis-
cussed by Ipser [42], and then proved for more general sit-
uations by Thorne [43], this static quadrupole (obtained
from the asymptotic form of the metric) can be inserted
into the quadrupole formula to obtain the emitted grav-
itational radiation in the fully relativistic, slow-motion
limit. [This approximation has uncontrolled remainders
of order (ω/ωK)2, where ω and ωK are the star’s an-
gular velocity and its maximum—i.e., Kepler—angular
velocity, respectively. This ratio is . 10−2 for the pul-
sars for which LIGO has been able to beat the spin-down
limit [6].]

We shall generally show the gravitational constant G
and speed of light c explicitly, though we shall take
G = c = 1 in most of Sec. III, only restoring them in our
final expressions. The relativistic calculation was aided
by use of the computer algebra systemMaple and the as-
sociated tensor manipulation packageGRTensorII [44].
We used Mathematica 7 to perform numerical compu-
tations.

The paper is structured as follows: In Sec. II, we
review UCB’s formalism and extend it by introducing
a Green function to compute the maximum Newtonian
quadrupole deformation without making the Cowling ap-
proximation. In Sec. III, we further generalize to the
fully relativistic case, and compare the various approx-
imations for the maximum quadrupole. In Sec. IV,

we show the maximum quadrupoles for three different
cases: first crustal quadrupoles, then hadron–quark hy-
brid quadrupoles, and finally solid strange quark star
quadrupoles. We also describe the modifications to our
formalism needed to treat solid strange quark stars. We
discuss all these results in Sec. V, and summarize and
conclude in Sec. VI. In the Appendix, we show that the
mixed phase is favored by global energy arguments even
for surface tensions large enough that it is disfavored by
local energy arguments.

II. NEWTONIAN CALCULATION OF THE

MAXIMUM QUADRUPOLE

We first demonstrate how to compute the maximum
Newtonian quadrupole without making the Cowling ap-
proximation. This provides a warm-up before we tackle
the full relativistic case, and also allows us to verify some
of the statements made by UCB and HJA. We use the
basic formalism of UCB, modeling the star as nonrotat-
ing, with the stress-energy tensor of a perfect fluid plus
shear terms, and treating the shear contributions as a
first-order perturbation of hydrostatic equilibrium. This
perturbative treatment should be quite a good approx-
imation: The maximum shear stress to energy density
ratio we consider in the crustal and hybrid star cases is
. 0.05% (and the maximum shear stress to pressure ratio
is . 0.3%). (Here we have taken the shear stress to be
µσ̄max, which is good up to factors of order unity.) And
even in the case of solid strange quark stars, the maxi-
mum shear stress to energy density ratio is still only at
most ∼ 0.2%. [We have already discussed the effects of
rotation in the relativistic case, above; UCB note at the
beginning of their Sec. 4 that rotation also only modifies
the perturbative Newtonian results for the static defor-
mations we and they consider at the O([ω/ωK ]2) level.]
It is convenient to start by writing the quadrupole mo-

ment in terms of the surface value of the perturbation to
the star’s Newtonian potential. We start from UCB’s
definition of

Q22 :=

∫ ∞

0

δρ(r)r4dr (1)

[where the (Eulerian) density perturbation δρ and all
similar perturbed quantities have only an l = m =
2 spherical harmonic component]. [Note that this
quadrupole moment differs by an overall constant from
the one defined by Thorne [43]—e.g., his Eq. (5.27a).]
We then recall that the perturbed Poisson equation for
the l = 2 part of the perturbed gravitational potential is

(△2δΦ)(r) :=
1

r2
[r2δΦ′(r)]′ − 6

r2
δΦ(r) = 4πGδρ (2)

(△2 is the l = 2 radial part of the Laplacian), with
boundary conditions of

δΦ(0) = 0, RδΦ′(R) = −3δΦ(R), (3)
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where R is the radial coordinate of the star’s surface.
[See, e.g., Eqs. (2.15) and (2.16) in [45]—their Φ22 is our
δΦ. Note also that the primes denote derivatives with
respect to r. Additionally, we shall continue to be incon-
sistent with our inclusion of the functional dependence
of quantities—e.g., δρ depends upon r, even though we
do not always indicate this explicitly. We will eventually
stop displaying δΦ’s explicit functional dependence on r,
for instance.] If we now substitute Eq. (2) into Eq. (1)
and integrate by parts using the boundary conditions (3),
we obtain

Q22 = − 5R3

4πG
δΦ(R). (4)

This sort of expression is more commonly seen in the
relativistic case, where it is necessary to obtain the
quadrupole in this manner by looking at the perturba-
tion’s asymptotic behavior—see the discussion in Sec. III.
We now wish to obtain an equation for δΦ in terms of

the shear stresses. We follow UCB in decomposing the
perturbed stress tensor as [see their Eqs. (59) and (61)]

δτab = −δpYlmgab + trrYlm(r̂ar̂b − eab/2) + tr⊥fab

+ tΛ(Λab + Ylmeab/2).
(5)

Here δp is the (Eulerian) pressure perturbation; Ylm is
a spherical harmonic; r̂a is the radial unit vector; trr,
tr⊥, and tΛ are the components of the shear stresses; and
gab denotes the metric of flat, 3-dimensional Euclidean
space. (Following UCB, we will generally write out l and
m explicitly, even though we only consider l = m = 2
here.) Also [Eqs. (40) in UCB],

eab := gab − r̂ar̂b, (6a)

fab := 2rr̂(a∇b)Ylm/β, (6b)

β :=
√

l(l + 1) =
√
6, (6c)

Λab := r2∇a∇bYlm/β
2 + fab/β. (6d)

(We have corrected the dropped factor of β−1 multiplying
fab in UCB’s definition of Λab—this was also noticed by
HJA.) We also have

tab = 2µσab, (7)

where µ is the shear modulus and σab is the strain ten-
sor. (This is a factor-of-2 correction to the expression in
UCB, as noted in [12].) Now, a convenient expression can
be obtained from the perturbed equation of hydrostatic
equilibrium

∇aδτab = δρg(r)r̂b + ρ∇bδΦ (8)

(∇a denotes the flat-space covariant derivative), by sub-
stituting for δρ using the Poisson equation (2) and pro-
jecting along r̂b, yielding

△2δΦ

4πG
+

ρ

g(r)
δΦ′ =

r̂b∇aδτab
g(r)

=
1

g(r)

[

−δp′ + t′rr +
3

r
trr −

β

r
tr⊥

]

.

(9)

We then project Eq. (8) along ∇bYlm to express δp in
terms of the shear stresses trr, tr⊥, and tΛ, along with ρ
and δΦ, giving

δp = −ρδΦ− trr
2

+
r

β
t′r⊥ +

3

β
tr⊥ +

(

1

β2
− 1

2

)

tΛ. (10)

Substituting this into Eq. (9), we thus obtain

△2δΦ− 4πG

g(r)
ρ′δΦ =

4πG

g(r)

[

3

2
t′rr −

4

β
t′r⊥ − r

β
t′′r⊥

−
(

1

β2
− 1

2

)

t′Λ +
3

r
trr −

β

r
tr⊥

]

.

(11)

We now wish to obtain an integral expression for Q22

that generalizes UCB’s Eq. (64) to the case where we do
not make the Cowling approximation. We shall do this
by obtaining the Green function for the left-hand side of
Eq. (11) and then integrating by parts. We will be able
to discard all of the boundary terms, since the stresses
vanish at the star’s surface (we assume that the shear
modulus vanishes there) and the integrand vanishes at
the star’s center. We can obtain the Green function using
the standard Sturm-Liouville expression in terms of the
solutions of the homogeneous equation [e.g., Eq. (10.103)
in Arfken and Weber [46] ]. We obtain the appropriate
solution to the homogeneous equation numerically for a
given background stellar model (EOS and mass). The
equation for the Green function is [multiplying the left-
hand side of Eq. (11) by r2 to improve its regularity]

(LNG)(r, r̄) := ∂

∂r

[

r2
∂

∂r
G(r, r̄)

]

−
[

6 +
4πGr2

g(r)
ρ′
]

G(r, r̄)

= δ(r − r̄)
(12)

[δ(r− r̄) is the Dirac delta function], with boundary con-
ditions (at the star’s center and surface) of

G(0, r̄) = 0, R∂1G(R, r̄) = −3G(R, r̄), (13)

where ∂1 denotes a partial derivative taken with respect
to the first “slot” of the function.

If we then write [using Eq. (4), the factor of r2 from
the Green function equation (12), and the prefactor on
the right-hand side of Eq. (11)]

GN (r) := −5R3r2G(R, r)/g(r), (14)

we have
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QN
22 =

∫ R

0

GN (r)

[

3

2
t′rr −

4

β
t′r⊥ − r

β
t′′r⊥ −

(

1

β2
− 1

2

)

t′Λ +
3

r
trr −

β

r
tr⊥

]

dr

= −
∫ R

0

{[

3

2
G′

N (r)− 3

r
GN (r)

]

trr +

[

r

β
G′′

N (r) − 2

β
G′

N (r) +
β

r
GN (r)

]

tr⊥ +

(

1

2
− 1

β2

)

G′
N (r)tΛ

}

dr.

(15)

We have freely integrated by parts in obtaining the sec-
ond expression, noting that the boundary terms are zero
since GN (r) vanishes sufficiently rapidly as r → 0 and
the stresses are zero at the surface of the star (since we
assume that the shear modulus vanishes at the star’s sur-
face).1 This reduces to UCB’s Eq. (64) if we take the
Cowling approximation

GN (r) → r4/g(r), (16)

corresponding to dropping the second term on the left-
hand side of Eq. (11).
To obtain an analogue of the expression for the maxi-

mum quadrupole given in Eq. (5) of Owen [12], we note
that UCB’s argument about maximum uniform strain
leading to the maximum quadrupole still holds here for
the stars we consider, since the coefficients of the stress
components in the integrand are all uniformly positive.
(We have checked this numerically for each background
stellar model we consider.) The strain tensor components
are

σrr = (32π/15)1/2σ̄max, (17a)

σr⊥ = (3/2)1/2σrr, (17b)

σΛ = 3σrr (17c)

in the case where the star is maximally (and uniformly)
strained—see Eqs. (67) in UCB. The breaking strain σ̄max

is given by the von Mises expression,

σabσ
ab = 2σ̄2

max. (18)

It thus corresponds to assuming that the lattice yields
when it has stored a certain maximum energy density.
We then have

|Qmax,N
22 |
σ̄max

=

√

32π

15

∫ R

0

µ(r) [rG′′
N (r) + 3G′

N (r)] dr.

(19)

1 We shall treat the case where the stresses do not vanish at the
surface of the star when we consider solid strange quark stars in
Sec. IVC. Also, note that HJA claim that UCB’s expression does
not include distributional contributions due to sudden changes
in the shear modulus. This is not the case—these are included
due to UCB’s integration by parts (cf. the definition of the dis-
tributional derivative). All that the UCB derivation requires is,
e.g., that the shear modulus vanish outside of the crust, not that
it do so continuously.

This reduces to Eq. (5) in Owen [12] if we use the Cowling
approximation (16).
Note that there is no direct contribution from ρ′ to G′′

N
in the no-Cowling case, despite what one might expect
from Eq. (12): Writing Ḡ(r) := G(R, r) for notational
simplicity, the ρ′ contribution from

Ḡ′′(r) = (2/r)Ḡ′(r) + [6/r2 + 4πGρ′(r)/g(r)]Ḡ(r) (20)

is exactly canceled by one from

g′′(r) = 6Gm(r)/r4 − 8πGρ(r)/r + 4πGρ′(r) (21)

in

G′′
N (r) = −5R3r2[Ḡ′′(r)/g(r) − Ḡ(r)g′′(r)/{g(r)}2

+ {terms with no ρ′}]. (22)

However, there is a direct contribution from ρ′ toG′′
N (via

g′′) if we make the Cowling approximation [Eq. (16)]. We
shall see that this leads to a significant difference in the
resulting contributions to the quadrupole moment from
regions of the star surrounding a sudden change in den-
sity (e.g., near the crust-core interface, which will be rel-
evant for the quadrupoles supported by crustal elasticity
considered by UCB and others).
Numerically, we compute GN using the standard ex-

pression for the Green function in terms of the two in-
dependent solutions to the homogeneous equation [see,
e.g., Eq. (10.103) in Arfken and Weber [46] ]. Since we
are solely interested in the Green function evaluated at
the star’s surface, we can eliminate one of the homoge-
neous solutions using the boundary conditions there, and
only consider the homogeneous solution that is regular
at the origin, which we call F . In terms of F , the Green
function is given by

G(R, r) = − F (r)

3RF (R) +R2F ′(R)
. (23)

We thus solve LNF = 0 [with the operator LN given by
Eq. (12)] with the boundary conditions F (r0) = 1 and
F ′(r0) = 2/r0, where r0 is the small inner radius used
in the solution of the OV equations, as discussed at the
end of Sec. III. [These boundary conditions come from
regularity at the origin, which implies that F (r) = O(r2)
there.]
Our Green function method for obtaining the max-

imum quadrupole numerically may seem more compli-
cated than existing methods because it introduces extra
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steps. However this method is ideal for showing that
maximum stress gives the maximum quadrupole and for
seeing how much stresses at different radii contribute to
the total quadrupole. It also appears to be the simplest
way of dealing with any potential distributional contri-
butions from the derivatives of the shear modulus, since
they are automatically taken care of by the integration
by parts.

III. GENERAL RELATIVISTIC CALCULATION

OF THE MAXIMUM QUADRUPOLE

Here we compute the maximum quadrupole moment in
general relativity, using the Regge-Wheeler gauge [39] rel-
ativistic stellar perturbation theory developed by Thorne
and Campolattaro [38], as in the similar calculation of the
tidal Love number of a relativistic star by Hinderer [40].
We start by writing down the line element corresponding
to a static, even-parity, l = 2 first-order perturbation of
a static, spherical, relativistic star in the Regge-Wheeler
gauge [cf. Eq. (14) in Hinderer [40] ]:

ds2 = −[1 +H0(r)Ylm]f(r)dt2 + [1 +H2(r)Ylm]h(r)dr2

+ [1 +K(r)Ylm]r2(dθ2 + sin2 θdφ2).

(24)

Here we have used the notation of Wald [47] for the back-
ground, so that f and h are the standard Schwarzschild
functions for the unperturbed star, with f = e2φ, where

φ′(r) =
m(r) + 4πr3p

r[r − 2m(r)]
, (25)

with φ(R) = log(1− 2M/R)/2, and

h(r) =

[

1− 2m(r)

r

]−1

. (26)

In these expressions,

m(r) := 4π

∫ r

0

ρ(r̄)r̄2dr̄. (27)

Also, recall that we write our spherical harmonics in
terms of l andm, following UCB, even though we special-
ized to l = m = 2, and that we are now taking G = c = 1.
The metric perturbation is determined by H0, H2, and

K, which here are sourced by the perturbation to the
star’s stress-energy tensor. The appropriate stress-energy
tensor can be obtained directly from the standard New-
tonian expression (5) by simple covariance arguments,
as in Schumaker and Thorne [37], or from the detailed
relativistic elasticity theory of Carter and Quintana [35]
[see their Eq. (6.19); this is also given in Eq. (128) of
Karlovini and Samuelsson [36] ]. All we really need for
our purposes is to note that the shear contribution is
tracefree with respect to the background metric, so that

we can use the obvious covariant generalization of the
decomposition given by UCB,2 yielding

δTab = [δρt̂a t̂b + δp(gab + t̂at̂b)− trr(r̂ar̂b − qab/2)]Ylm

− tr⊥fab − tΛ(Λ̃ab + h1/2Ylmqab/2),

(28)

with the full stress-energy tensor given by

Ta
b = ρt̂at̂

b + p(δa
b + t̂at̂

b) + δTa
b. (29)

Here, indices now run over all four spacetime dimen-
sions and gab denotes the background (spacetime) met-
ric (which we use to raise and lower indices). Addition-
ally, we have introduced the background temporal and
radial unit vectors t̂a and r̂a; qab is the induced met-
ric on the unit 2-sphere; fab := 2rr̂(a∇b)Ylm/β; and

Λ̃ab := r2h1/2∇a∇bYlm/β
2 + fab/β. Here r̂a and ∇a

now have their curved-space meanings.
Our Λ̃ab differs from the Newtonian Λab [from UCB,

given in our Eq. (6d)] due to the insertion of h1/2. This

insertion is necessary for Λ̃ab to be transverse and orthog-
onal to fab (with respect to the background spacetime
metric). The same logic leads to the introduction of the
factor of h1/2 multiplying qab in the tΛ term in Eq. (28);
it is there so that the tΛ term is orthogonal to the trr
term. We have used UCB’s convention for the relative
sign between the perfect fluid and shear portions of the
stress-energy tensor, though we have reversed the overall
sign. (However, we used the UCB convention proper in
Sec. II.) The factor of h1/2 in the coefficient of tΛ leads
to a factor of h−1 in the strain σΛ that corresponds to
the von Mises breaking strain (18). We thus replace the
Newtonian Eq. (17c) with

σΛ = 3σrr/h, (30)

leaving Eqs. (17a) and (17b) unchanged.
One can now obtain an equation for H0 from the per-

turbed Einstein equations, as in Ipser [42]. (The other
two metric functions, H2 and K, can be expressed in
terms of H0; these expressions are given by Ipser.) The
concordance for notation is ν = 2φ, eν = f , λ = 2ψ,
eλ = h, ρ1 = −δρ, p1 = −δp, P2 = trr, Q1 = h1/2tr⊥/β,
and S = h1/2tΛ/β

2. Additionally, Ipser’s H0 is the
negative of ours. The relevant result is given in Ipser’s

2 Of course, this assumes that it is possible to obtain any sym-
metric tracefree tensor from the detailed relativistic expression,
but—as would be expected (and can easily be seen from the
expressions)—this is indeed the case, at least if one only works
to first order in the perturbation, as we do here. Also, it is
instructive to note that we do not need to know the specifics
of the matter displacements that generate the quadrupoles we
consider, only that there is a tracefree contribution to the star’s
stress-energy tensor whose maximum value is given by the ma-
terial’s shear modulus and von Mises breaking strain.
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Eqs. (27)–(28), and is (in our notation)

H ′′
0 +

(

2

r
+ φ′ − ψ′

)

H ′
0 + P(r)H0 = 8πh1/2S(r), (31)

where

P(r) := 2φ′′ + 2φ′
(

3

r
− φ′ − ψ′

)

+
2ψ′

r
− β2

r2
h (32)

and

S(r) := h1/2(δρ+ δp− trr) + 2

{

(3− rφ′)
tr⊥
β

+ r
t′r⊥
β

+ [r2φ′′ + rφ′(5− rφ′) + rψ′ − β2h/2 + 1]
tΛ
β2

+ r2φ′
t′Λ
β2

}

=: h1/2(δρ+ δp) + S[t](r).

(33)

Here we have defined ψ := (1/2) logh and written S[t] for
the contributions from shear stresses. (The “=:” notation
implies that the quantity being defined is on the right-
hand side of the equality.)
We now wish to eliminate δρ and δp in favor of the

shear stresses, as in the Newtonian calculation. We use
the same projections of stress-energy conservation as in
the Newtonian case (projecting onto the quantities de-
fined by the background spacetime, for simplicity) along
with the Oppenheimer-Volkov (OV) equations, giving

δρ+ δp =
1

φ′

[

−H
′
0

2
(ρ+ p)− δp′ + t′rr +

(

3

r
+ φ′

)

trr

− β

r
h1/2tr⊥

]

(34)

and

δp = −H0

2
(ρ+ p)− trr

2
+

1

βh1/2
[(3 + rφ′)tr⊥ + rt′r⊥]

+ h1/2
(

1

β2
− 1

2

)

tΛ.

(35)

Using the second expression to substitute for δp′ in the
first, we have

δρ+ δp =
1

φ′

{

H0

2
(ρ′ + p′) +

[

3

r
+ φ′

]

trr +
3

2
t′rr

− 1

βh1/2

[(

β2h

r
+ φ′ + rφ′′ − ψ′[3 + rφ′]

)

tr⊥

+ (4 + r[φ′ − ψ′])t′r⊥ + rt′′r⊥

]

+

(

1

2
− 1

β2

)

× h1/2(ψ′tΛ + t′Λ)

}

=:
H0

2φ′
(ρ′ + p′) +

S[δρ,δp](r)

φ′
.

(36)

The equation for H0 thus becomes

(LGRH0)(r) := H ′′
0 +

(

2

r
+ φ′ − ψ′

)

H ′
0

+

[

P(r)− 4πh
ρ′ + p′

φ′

]

H0

= 8πh1/2[h1/2S[δρ,δp](r)/φ
′ + S[t](r)].

(37)

[P(r) and S[t](r) are given in Eqs. (32) and (33), respec-
tively.] As expected, this reduces to Eq. (11) in the New-
tonian limit [where we have H0 → 2δΦ and φ′ → g(r)].
We now want to write the equation for H0 in Sturm-

Liouville form in order to obtain its Green function easily.
To do this, we note that the appropriate “integrating
factor” (for the first two terms) is r2(f/h)1/2, which gives

[r2(f/h)1/2H ′
0]

′ + r2(f/h)1/2
[

P(r) − 4πh
ρ′ + p′

φ′

]

H0

= 8πr2f1/2[h1/2S[δρ,δp](r)/φ
′ + S[t](r)]. (38)

We also need the boundary conditions, which are given
by matching H0 onto a vacuum solution at the surface of
the star. The vacuum solution that is regular at infinity
is given by Eq. (20) in Hinderer [40] with c2 = 0, viz.,

H0(R) = c1

[(

2

C − 1

) C2/2 + 3C − 3

1− C

+
6

C

(

1− 1

C

)

log (1− C)
]

,

(39)

where we have evaluated this at the star’s surface (r = R)
and defined the star’s compactness

C := 2GM/Rc2 (40)

(now returning to showing factors of G and c explic-
itly). We require that H0 and H ′

0 be continuous at the
star’s surface. The value of c1 obtained from this match-
ing of the internal and external solutions gives us the
quadrupole moment. If we use the quadrupole moment
amplitude that reduces to the UCB integral [given in our
Eq. (1)] in the Newtonian limit, we have

Q22 =
G2

c4
M3c1
π

. (41)

[This expression comes from inserting a pure l = m = 2
density perturbation into Eq. (2) in Hinderer [40], con-
tracting the free indices with unit position vectors, per-
forming the angular integral, for which the expressions
in Thorne [43] are useful, and noting that the result is
(8π/15)Y22 times our Eq. (1). The given result then fol-
lows immediately from Hinderer’s Eqs. (7), (9), and (22);
we reverse the overall sign since we have reversed the
UCB sign convention for the stress-energy tensor.]
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We then have a Green function for Q22 of

GGR(R, r) =

(

2GM

c2

)3 (

1− 2GM

Rc2

)−1

× U(r)
c2R2[U ′(R)H0(R)− U(R)H ′

0(R)]

(42)

(including the overall factor of 8πG/c4 that multiplies
the source). Here U is given by LGRU = 0 [LGR is given
in Eq. (37)], with boundary conditions U(r0) = 1 and
U ′(r0) = 2/r0. [Compare Eq. (10.103) in Arfken and
Weber [46], as well as our Newtonian version above.] Ad-
ditionally, H0(R) and H

′
0(R) are given by the boundary

conditions (39) with c1 → 1. [One obtains this expres-
sion by first computing the Green function for H0(R)
following Arfken and Weber, then dividing through by
the quantity in brackets in Eq. (39) to obtain c1, and
finally using Eq. (41) to obtain Q22. We have also noted
that 1/f → h→ 1/(1− 2GM/Rc2) at the star’s surface.]
We thus define, for notational simplicity, two relativistic
generalizations of GN (r): One,

GGR(r) :=
r2(fh)1/2GGR(R, r)

φ′
, (43)

for the contributions from S[δρ,δp], and one,

ḠGR(r) := r2f1/2GGR(R, r), (44)

for the contributions from S[t].
With these definitions, the integral expression for the

quadrupole in terms of the stresses and the structure of
the background star is

Q22 =

∫ R

0

[

GGR(r)S[δρ,δp](r) + ḠGR(r)S[t](r)
]

dr

=

∫ R

0

(Crrtrr + Ct⊥tr⊥ + CΛtΛ)dr,
(45)

where

Crr :=
(

3

r
+ φ′

)

GGR(r) −
3

2
G′

GR(r)− h1/2ḠGR(r),

(46a)

Cr⊥ := −βh
1/2

r
GGR(r) +

2 + r(φ′ + ψ′)

βh1/2
G′

GR(r)

− r

βh1/2
G′′

GR(r) +
4− 2rφ′

β
ḠGR(r) − 2

r

β
Ḡ′

GR(r),

(46b)

CΛ :=

(

1

β2
− 1

2

)

h1/2G′
GR(r)

+
2rφ′(3− rφ′) + 2rψ′ − β2h+ 2

β2
ḠGR(r)

− 2r2φ′

β2
Ḡ′

GR(r),

(46c)

and we have integrated by parts twice to obtain the sec-
ond equality in Eq. (45), using the same argument as in
our Newtonian calculation.

We now look at the maximum quadrupole. This is
still given by the uniformly maximally strained case: We
have checked numerically that the coefficients of the three
stress terms are always negative for all the background
stars we consider. We thus have a maximum quadrupole
given by inserting Eqs. (7), (17a), (17b), and (30) into
Eq. (45), yielding

|Qmax,GR
22 |
σ̄max

=

√

32π

15

∫ R

0

µ(r)

{[

6

r
(h1/2 − 1)− 2φ′

]

GGR(r)+
[

3− r

h1/2
(φ′ + ψ′)

]

G′
GR(r)+

r

h1/2
G′′

GR(r)+Qstress

}

dr,

(47)
where

Qstress := 2

[

rφ′(rφ′ − 3)− rψ′ − 1

h
+ rφ′ + h1/2 + 1

]

ḠGR(r) + 2r

(

rφ′

h
+ 1

)

Ḡ′
GR(r) (48)

is the contribution from the stresses’ own gravity. We
have split it off both for ease of notation and because it is
negligible except for the most massive and compact stars,
as illustrated below. The contributions from the density
and pressure perturbations are so much larger due to the
factor of 1/φ′ present in GGR [cf. Eqs. (43) and (44)]. It
is easy to see that Eq. (47) reduces to Eq. (19) in the

Newtonian limit, where h → 1, and we can neglect the
contributions involving φ′, ψ′, and Qstress.

We now show how the relations between the different
maximal-strain Q22 Green functions [given by the inte-
grands in Eqs. (19) and (47) without the factors of µ (but
with the overall prefactor)] vary with EOS, as well as with
the mass of the star for a given EOS. This gives an indica-
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FIG. 1: The Q22 integrands (without the factor of µσ̄max) for
the SLy EOS and an 0.500M⊙ star with a compactness of
0.12.
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FIG. 2: The Q22 integrands (without the factor of µσ̄max) for
the SLy EOS and a 1.40M⊙ star with a compactness of 0.35.

tion of how much difference the various approximations
make in different situations. We start with the unified
SLy EOS [24], obtained by Haensel and Potekhin [48]
(using the table provided by the Ioffe group [49] at [50]),
which is a standard choice for making predictions about
crustal quadrupoles (e.g., in Horowitz [21], HJA, and
our Sec. IVA). Here we illustrate the changes in the
Green functions with mass for stars with masses ranging
from 0.5M⊙ to the EOS’s maximum mass of 2.05M⊙;
see Figs. 1, 2, and 3. (All three Green functions agree
extremely closely for stars around the EOS’s minimum
mass of 0.094M⊙, so we do not show this case, particu-
larly because such low-mass neutron stars are of unclear
astrophysical relevance.) These stars’ compactnesses [de-
fined in Eq. (40)] range from 0.12 to 0.6. Note that Fig. 3
has a different vertical scale than the other two plots, due
to the suppression of the quadrupole for massive, com-
pact stars (discussed below).

We illustrate the ratios of the various Q22 Green func-
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FIG. 3: The Q22 integrands (without the factor of µσ̄max)
for the SLy EOS and a maximum mass, 2.05M⊙ star, with a
compactness of 0.60.
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FIG. 4: Ratios of the Q22 integrands with the Newtonian
Cowling approximation integrand for the Hy1 EOS and a
maximum mass, 2.06M⊙ star, with a compactness of 0.49.
Note that the top and bottom plots have completely separate
vertical axis scalings.

tions to the Newtonian Cowling approximation one for
the maximum mass (2.05M⊙) hybrid star using the Hy1
EOS (see Table I in [29]) in Fig. 4.3 We see the overesti-
mate of the Newtonian no Cowling approximation calcu-
lation for perturbations in the core, particularly com-

3 As discussed in [29], for our low-density EOS, we use the same
combination of the Baym, Pethick, and Sutherland (BPS) [51]
EOS for nB < 0.001 fm−3 and the Negele and Vautherin [52]
EOS for 0.001 fm−3 < nB < 0.08 fm−3 used by Lattimer and
Prakash [53] (nB is the baryon number density). These were
obtained from the table provided by Kurkela et al. [54] at [55].
Bulk quantities of hybrid stars such as the mass and quadrupole
moment (from core deformations) do not depend much on the
precise choice of low-density EOS.
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pared with the general relativistic (GR) version, and
also see the overestimate of the Newtonian Cowling ap-
proximation version for crustal perturbations. (We do
not make some sort of similar plot for the solid strange
quark star case, since the expressions for the maximum
quadrupole in this case end up being rather different than
the integrated-by-parts ones presented in the previous
sections, as we shall see in Sec. IVC.)
In all these cases, we compute the stellar background

fully relativistically, using the OV equations and iden-
tifying the OV equations’ Schwarzschild radial coordi-
nate with the Newtonian radial coordinate when neces-
sary. We have used the enthalpy form of the OV equa-
tions given by Lindblom [56] and implemented the inner
boundary condition by taking the star to have an in-
ner core of radius r0 = 100 cm, whose mass is given by
(4/3)πr30ǫ0, where ǫ0 is the energy density correspond-
ing to the central enthalpy that parametrizes the solu-
tion. (The spike near the origin seen in the bottom
plot in Fig. 4 is due to this implementation of the in-
ner boundary condition and has a negligible effect on the
computed maximum quadrupoles.) In all cases, we have
used Mathematica 7’s default methods to solve the dif-
ferential equations, find roots, etc. We have computed as
many derivatives as possible analytically, to aid numeri-
cal accuracy, e.g., using the OV equations to substitute
for derivatives of the pressure, and also using the Green
function equations to express second derivatives of the
Green functions in terms of the functions themselves and
their first derivatives.

IV. RESULTS

A. Maximum Q22 for crustal deformations

Here we consider the maximum quadrupoles from elas-
tic deformations of a nonaccreted crust in three possi-
ble situations, following HJA. In particular, we use the
SLy EOS (as do Horowitz [21] and HJA, though they
do not refer to it by that name) and impose two com-
parison crustal thicknesses to ascertain how much this
affects the maximum quadrupole. Here we use the same
rough model for the crust’s shear modulus used by HJA.
We also consider the more detailed model for the shear
modulus obtained using the crustal composition provided
by Douchin and Haensel [24] (also used by Horowitz [21]
and HJA). Here the crust’s thickness is fixed to the value
given in that work. In this case, we also consider a dif-
ferent high-density EOS that yields much less compact
stars with larger crusts.
Specifically, the two comparison crustal thicknesses are

given by taking the base of the crust to occur at densi-
ties of 2.1×1014 g cm−3 (thick crust, for comparison with
UCB) or 1.6×1014 g cm−3 (thin crust, following a sugges-
tion by Haensel [57]), while Douchin and Haensel place
the bottom of the crust at a density of 1.28×1014 g cm−3.
For the two comparison cases, we take the shear modulus

to be 1016 cm2 s−2 times the star’s density (in g cm−3).
As illustrated in HJA’s Fig. 2, this is an underestimate
of < 50%, except at the very extremes of the density
range considered.4 We plot the quadrupole moment
and ellipticity for these two cases for masses between
∼ 1.2M⊙ (around the minimum observed neutron star
mass—see [58]) and the SLy EOS’s maximum mass of
2.05M⊙ in Fig. 5.

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
M (solar masses)

10
-7

10
-6

10
-5

ε fid

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
M (solar masses)

10
38

10
39

10
40

Q
22

 (
g 

cm
2 )

Newt. Cowling (thick)
Newt. no Cowling (thick)
GR (total, thick)
Newt. Cowling (thin)
Newt. no Cowling (thin)
GR (total, thin)

FIG. 5: The Newtonian Cowling, Newtonian no Cowling, and
full relativistic (including stress contributions) values for the
maximum quadrupole deformations (and fiducial ellipticity)
due to crustal stresses versus mass for two choices of crustal
thickness. These are computed using the SLy EOS with the
rough HJA recipe for the shear modulus and a breaking strain
of 0.1.

In addition to the quadrupole moments, we also show
the fiducial ellipticity ǫfid =

√

8π/15Q22/Izz [e.g., Eq. (2)
of [12] ]. Here Izz is the star’s principal moment of inertia,
for which we use the fiducial value of Izz = 1038 kg m2 =
1045 g cm2 used in the LIGO/Virgo papers rather than
the true value for a given mass and EOS, which can be
greater by a factor of a few. We do this for easy compar-
ison with the observational papers, since they frequently
quote results in terms of this fiducial ellipticity instead
of the quadrupole moment, which is the quantity truly
measured.
Nota bene (N.B.): We present these fiducial ellipticities

only for comparison with LIGO/Virgo results, not to give
any indication of the size of the deformation. While the
true ellipticity gives a measure of the size of the deforma-
tion in the Newtonian case (up to ambiguities from the
fact that the true density distribution is nonuniform),
it does not do so in any obvious way in the relativistic
case. Nevertheless, the relativistic shape of the star’s sur-
face can be obtained from its quadrupole deformation, as

4 Note that Fig. 3 in HJA is not in agreement with their Fig. 2.
When we reproduce those figures, we find that the ratio µ/ρ is
considerably closer to 1016 cm2 s−2 over all the density range
than the trace shown in HJA’s Fig. 3, so their approximation is
better than it would appear from that figure.
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shown in [59]. However, if one wished to know, for in-
stance, how much the star is deformed as a function of
radius, one would need to calculate this using a detailed
relativistic theory of elasticity to relate the stresses to
the matter displacements, as in Penner et al. [60].
In the more detailed case, we use the HJA version

of the Ogata and Ichimaru [25] shear modulus, com-
bined with the Douchin and Haensel [24] results for the
crust’s composition. This is [correcting a typo in HJA’s
Eq. (20)],

µeff = 0.1194

(

4π

3

)1/3 (
1−Xn

A
nb

)4/3

(Ze)2, (49)

where Xn is the fraction of neutrons outside of nuclei, A
and Z are the atomic and proton number of the nuclei,
respectively, nb is the baryon number density, and e is
the fundamental charge.
Since HJA’s study, there have been a few improve-

ments to the Ogata and Ichimaru result: Horowitz and
Hughto [26] have computed the effects of charge screen-
ing, finding a ∼ 7% reduction in the shear modulus.
Baiko [28] has also considered a relativistic model for
the electron polarizability and arrived at similar conclu-
sions. Indeed, Baiko’s results suggest that screening will
yield an even smaller correction in the innermost portion
of the crust, where the shear modulus is the largest, and
the electrons are the most relativistic, with a relativity
parameter over an order of magnitude larger than the
largest Baiko considers. (However, the ion charge num-
bers are also almost always somewhat greater than the
largest Baiko considers, particularly at the very inner-
most portion of the crust, which will tend to increase the
effect.)
Baiko [27] has also recently computed quantum cor-

rections, and finds that they reduce the shear modulus
by up to ∼ 18% in some regimes. However, in our case,
the reduction will be much smaller, based on the scal-
ing of ρ1/6/(ZA2/3) given near the end of Baiko’s Sec. 6.
Even though our densities are over an order of magnitude
greater, the nuclei we consider are also over an order of
magnitude more massive than the 12C composition Baiko
considers, so the quantum mechanical effects end up be-
ing reduced by about an order of magnitude from the
number Baiko quotes. We thus use the same Ogata and
Ichimaru result used by HJA, noting that the resulting
quadrupoles might be reduced by less than 10% due to
charge screening and quantum effects—an error which
is small compared to other uncertainties, such as crust
thickness and the composition of dense matter. Indeed,
there is a factor of ∼ 2 uncertainty in the shear modulus
due to angle averaging (even disregarding whether the
implicit assumption of a polycrystalline structure for the
crust is warranted): As shown by Hill [61], the Voigt av-
erage used by Ogata and Ichimaru is an upper bound on
the true shear modulus of a polycrystal. A lower bound
is given by the Reuss average (also discussed in Hill [61]),
for which the prefactor in Eq. 49 would be 0.05106.

Note that there would be even further corrections to
the shear modulus due to pasta phases (see [62]), but
such phases are not present in the Douchin and Haensel
model [24]. We also note that the Douchin and Haensel
results only include the very innermost portion of the
outer crust. However, this lack of coverage has a negli-
gible effect on the final results for the quadrupoles, since
the neglected region has at most half the radial extent of
the inner crust and the shear modulus in this region is
orders of magnitude below its maximum value at the bot-
tom of the inner crust. We have checked this explicitly
using the detailed calculations of the outer crust compo-
sition due to Rüster, Hempel, and Schaffner-Bielich [63],
available at [64].

We plot the maximum quadrupole and ellipticity in
the three approximations for the detailed shear modulus
model in Fig. 6. Here we show these for the SLy EOS
proper, and also for a high-density EOS that yields much
less compact stars (and a crust that is∼ 2 times as thick),
and thus larger maximum quadrupoles. For the latter
EOS, we have chosen (for simplicity) the LKR1 hybrid
EOS from [29]—the maximum compactnesses for the two
EOSs are 0.60 (SLy) and 0.43 (LKR1). (We show the
much larger quadrupoles that could be supported by the
mixed phase in the core for the LKR1 EOS in Fig. 9, but
here just show the crustal quadrupoles using the Douchin
and Haensel model for the crust.)
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FIG. 6: The Newtonian Cowling, Newtonian no Cowling, and
full relativistic (including stress contributions) values for the
maximum quadrupole deformations (and fiducial ellipticity)
due to crustal stresses versus mass, for the SLy EOS with the
detailed Douchin and Haensel + Ogata and Ichimaru model
for the shear modulus and a breaking strain of 0.1, plus the
crustal quadrupoles for the LKR1 EOS with the same crustal
model.

In all of these crustal results, in addition to the ex-
pected relativistic suppression of the quadrupole (which
becomes quite dramatic for compact, high-mass stars),
we also find that the Newtonian Cowling approximation
slightly overestimates the quadrupole (by ∼ 25–50%), as
observed by HJA (though they found the overestimate to
be considerably greater, around a factor of at least a few).
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This overestimate is due to the cancellation of contribu-
tions from ρ′ when one drops the Cowling approximation
(see the discussion at the end of Sec. II). The overall
decrease in the maximum crustal quadrupole with mass
is due primarily to the fact that the crust thins by a fac-
tor of ∼ 4 (SLy) or ∼ 2 (LKR1) in going from a 1M⊙

star to the maximum mass star, though the quadrupole
itself receives even further suppressions with mass due to
relativistic effects and an increased gravitational field.

B. Maximum Q22 for hybrid stars
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FIG. 7: The Newtonian Cowling, Newtonian no Cowling, and
full relativistic (including stress contributions) values for the
maximum quadrupole deformations (and fiducial ellipticity)
of hybrid stars versus mass, using the Hy1 EOS with a surface
tension of σ = 80 MeV fm−2 and a breaking strain of 0.1.

Here we display the maximum quadrupole deforma-
tions as a function of stellar mass for each of the hybrid
EOS parameter sets considered in [29]. (N.B.: Most of
the results from [29] we use or refer to here were corrected
in the erratum to that paper.) We start by showing these
values calculated in the various approximations using the
Hy1 EOS (with a surface tension of σ = 80 MeV fm−2;
see Table I in [29]) in Fig. 7, and then restrict our at-
tention to the relativistic results. (The relation between
the results of the different approximations is roughly the
same for all the hybrid EOSs we consider.) Here the
maximum quadrupoles increase with mass, since the vol-
ume of mixed phase increases with mass, and this is more
than enough to offset the suppressions due to relativity
and the increased gravitational field.
We also show how the maximum relativistic

quadrupole varies with the surface tension for the Hy1
EOS in Fig. 8. The slightly larger quadrupoles for lower
surface tensions at low masses are expected, due to a
slightly larger shear modulus at low pressures for lower
surface tensions—see Fig. 10 in [29]. In fact, despite dif-
ferences of close to an order of magnitude in the high-
pressure shear modulus for the Hy1 EOS in going from a
surface tension of 20 MeV fm−2 to one of 80 MeV fm−2
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FIG. 8: The full relativistic maximum quadrupole deforma-
tions (and fiducial ellipticity) of hybrid stars versus mass,
using the Hy1 EOS with various surface tensions σ and a
breaking strain of 0.1.

(see Fig. 10 in [29]), the differences in the resulting maxi-
mum quadrupoles are at most a factor of a few (for large
masses). This is not unexpected: These quantities are
dominated by the portions of the mixed phase further
out in the star, where the shear moduli have a much
weaker dependence on the surface tension. (Addition-
ally, the fact that larger surface tensions lead to smaller
shear moduli at low pressures helps to minimize the ef-
fect, though the maximum quadrupoles still increase with
increasing surface tension for high masses, as expected.)
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FIG. 9: The full relativistic maximum quadrupole deforma-
tions (and fiducial ellipticity) of hybrid stars versus mass, us-
ing the EOSs from Table I in [29], all with a surface tension
of σ = 80 MeV fm−2 and a breaking strain of 0.1.

Finally, we show the maximum quadrupoles for dif-
ferent hybrid EOSs in Fig. 9. (Note that these curves
start somewhat above the minimum masses for which
the mixed phase is present, since we are mostly inter-
ested in the significantly larger maximum quadrupoles
possible for larger masses.) The considerable differences
are due primarily to the substantial variations in the ex-
tent of the mixed phase in stable stars with EOS param-
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eters as well as the EOS dependence of the stars’ com-
pactnesses (see Table I in [29]), not to variations in the
magnitude of the shear modulus for a given quark mat-
ter fraction (compared in Fig. 12 in [29]). In particular,
the LKR1 EOS produces stars with a very large region
of mixed phase—up to 72.5% of the star’s radius—and
a (relatively) small maximum compactness—only 0.433.
(Note that our quadrupole curve for the LKR1 EOS ends
slightly short of the EOS’s maximum mass of 1.955M⊙,
only going to 1.948M⊙, due to problems with the nu-
merics.)

N.B.: These maximum quadrupoles may all be overly
optimistic. First, as was discussed in Sec. IVA, the av-
eraging used to obtain the effective shear modulus only
gives an upper bound on the true shear modulus of a
polycrystal. (We do not quote results for the Reuss
lower bound here, since it is only straightforward to ob-
tain for the three-dimensional droplet phases. However,
we shall note that preliminary investigations, using the
Reuss bound for the droplet phases, and the Voigt bound
for the rest, give reductions in the maximum quadrupoles
of up to ∼ 5 for lower masses.)

Second, the relatively large value we have chosen
for the surface tension also increases the maximum
quadrupoles, while recent calculations place the surface
tension on the low side (∼ 10–30 MeV fm−2)—see [65]
for the latest results. Nevertheless, as we show in the
Appendix, the mixed phase is nevertheless favored by
global energy arguments even for these large surface ten-
sions. The maximum quadrupoles are also affected by
the method of EOS interpolation and the lattice contri-
butions to the EOS, as is illustrated in the Appendix,
though the largest change is only ∼ 40% (at least for
the LKR1 and Hy1′ EOSs, the two EOSs that yield the
largest quadrupoles).

Note that LIGO’s current upper limits on fiducial el-
lipticity in the most interesting cases (the Crab pulsar,
PSR J0537–6910, and Cas A) [6, 7] are ∼ 10−4, corre-
sponding to a quadrupole moment of ∼ 1041 g cm2. The
first hybrid star estimate by Owen [12] was an order of
magnitude lower. Thus our new results here show that
current LIGO upper limits are interesting not only for
quark stars but also for hybrid stars, at least high-mass
ones. Indeed, the most extreme case we consider, the
LKR1 EOS with high surface tensions, gives maximum
quadrupoles of a few× 1042 g cm2, which are above and
therefore relevant to the limits set by Virgo for the Vela
pulsar [8].

C. Maximum Q22 for crystalline color

superconducting quark stars

Here we consider stars made of crystalline color su-
perconducting quark matter, for which the shear mod-
ulus has been estimated by Mannarelli, Rajagopal, and

Sharma [30].5 [See Eq. (1) in Haskell et al. [23] for the ex-
pression in cgs units.] Such stars have also been treated
(with varying degrees of sophistication) by Haskell et

al. [23], Lin [19], and Knippel and Sedrakian [20]. How-
ever, only Lin considers the case of a solid quark star, as
we will do here, and does so using quite a rough model.
(The others consider crystalline color superconducting
cores in hybrid stars.)
Since strange quark stars have a nonzero surface

density—and solid quark stars have a nonzero surface
shear modulus, with the standard density-independent
treatment of the superconducting gap—we have to make
some changes to our previously obtained expressions in
order to treat them.
First, the outer boundary condition changes. The po-

tential (in the Newtonian case) and metric perturbation
(in the GR case) are no longer continuous at the star’s
surface, due to the presence of ρ′ in both equations [see
Eqs. (12) and (38)]. As discussed in Hinderer et al. [66]
(following Damour and Nagar [67]), one can obtain the
distributional contribution to the boundary conditions
[Eqs. (13) and (39)] using the usual procedure of integrat-
ing the defining differential equation over [R − ǫ, R + ǫ]
and taking the limit ǫ ց 0. In the Newtonian case, this
gives [defining ρ− as the density immediately inside the
star’s surface and R− to mean evaluation at R− ǫ in the
limit ǫց 0]

δΦ′(R−) =

[

4πG

g(R)
ρ− − 3

R

]

δΦ(R), (50)

and in the GR case, we have (with G = 1)

H ′
0(R

−) = H ′
0,old(R) +

4πh

φ′(R)
ρ−H0(R), (51)

where H ′
0,old(R) is computed using Eq. (39). We

thus make the replacement 3RF (R) → [3 −
4πGρ−R/g(R)]RF (R) in the expression for the New-
tonian Green function [Eq. (23)], and the replacement
H ′

0(R) → H ′
0,old(R)+4πhρ−H0(R)/φ

′(R) in the GR case

[Eq. (42)]. These changes in the boundary conditions in-
crease the maximum quadrupole by a factor of . 2 in
the example case considered below; the largest effect is
for the least massive stars considered.
Second, we would have to keep the boundary terms at

the outer boundary when integrating by parts to obtain
the expressions for the maximum quadrupole, since the
shear modulus no longer vanishes at the star’s surface.
However, since here the shear modulus is smooth, it is
numerically preferable not to perform any integration by
parts, thus avoiding potential problems with large can-
cellations between the surface and integrated terms. In

5 This estimate is not angle averaged, but Mannarelli, Rajagopal,
and Sharma’s calculation has relatively large uncontrolled re-
mainders, so we do not worry about the effects of angle averaging
here.
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this case, the expressions for the quadrupole assuming
the UCB maximum uniform strain are [cf. Eqs. (19) and
(47)]

|QUCB strain,N
22 |
σ̄max

=

√

32π

15

∫ R

0

GN (r)[rµ′′(r)− µ′(r)]dr

(52)
and

|QUCB strain, GR
22 |

σ̄max
=

√

32π

15

∫ R

0

[

GGR(r)IUCB
[δρ,δp](r)

+ ḠGR(r)IUCB
[t] (r)

]

dr,

(53)

where

IUCB
[δρ,δp](r) :=

[

6

r
(h1/2 − 1)− 2φ′ +

rφ′′ + φ′(1− rψ′)− ψ′

h1/2

]

µ(r) +

[

2 + r(φ′ − ψ′)

h1/2
− 3

]

µ′(r) +
rµ′′(r)

h1/2
, (54a)

IUCB
[t] (r) := 2

{

rφ′[r(φ′ + 2ψ′)− 5]− rψ′ − r2φ′′ − 1

h
+ rφ′ + h1/2

}

µ(r) − 2r

(

rφ′

h
+ 1

)

µ′(r). (54b)

However, these expressions will not actually yield the
maximum quadrupole in this case, due to an important
difference between the cases where the shear modulus
vanishes at the star’s surface and those where it does
not. It is simplest to see this in the Newtonian case for a
star with a constant shear modulus: Since the UCB max-
imum strain expression (52) only depends upon deriva-
tives of the shear modulus, it predicts a zero maximum
quadrupole, which seems absurd. One can, however,
make a small adjustment to the form of the maximum
strain one considers to yield a nonzero quadrupole in this
case. This modification will also yield considerably larger
maxima in the realistic case we consider, as well, where
the shear modulus is close to constant—it decreases by
less than a factor of 2 in going from the star’s center to
its surface in the example case we consider below.
Specifically, in the case of a slowly varying shear mod-

ulus, with µ(r) ≫ |rµ′(r)|, |r2µ′′(r)|, appropriate for
strange quark stars, we want the terms involving µ it-
self to be largest. The appropriate choice for the strain
in this case is most readily apparent from inspection of
the Newtonian expression for the maximum quadrupole
in terms of the stress tensor components, Eq. (15). We
want the maximum contribution from the undifferenti-
ated terms, which implies that we want trr and −tr⊥

to be as large as possible. For tΛ, we note that since
µ′(r) < 0, we also want −tΛ to be as large as possible.
Realizing that we can freely change the sign of any of the
σ• that give maximum uniform strain [given for the New-
tonian case in Eqs. (17); cf. Eq. (65) in UCB], we thus
reverse the sign of σr⊥ and σΛ. [The same logic holds for
the more involved GR case, as well, where the appropri-
ate expression for σΛ will be the negative of Eq. (30).]
The resulting expressions for the putative maximum

quadrupole in this case are thus

|Qmod. strain,N
22 |
σ̄max

=

√

32π

15

∫ R

0

GN (r)

[

12

r
µ(r) + 5µ′(r)

+ rµ′′(r)

]

dr

(55)

and

|Qmod. strain, GR
22 |

σ̄max
=

√

32π

15

∫ R

0

[

GGR(r)Imod
[δρ,δp](r)

+ ḠGR(r)Imod
[t] (r)

]

dr,

(56)

where

Imod
[δρ,δp](r) :=

[

6

r
(h1/2 + 1) + 2φ′ +

rφ′′ + φ′(1− rψ′)− ψ′

h1/2

]

µ(r) +

[

2 + r(φ′ − ψ′)

h1/2
+ 3

]

µ′(r) +
rµ′′(r)

h1/2
, (57a)

Imod
[t] (r) := −2

{

rφ′[5− r(φ′ + 2ψ′)] + rψ′ + r2φ′′ + 1

h
− rφ′ + h1/2

}

µ(r) − 2r

(

rφ′

h
+ 1

)

µ′(r). (57b)

In principle, these merely give a lower bound on the max- imum quadrupole, unlike the case in which the shear
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modulus vanishes below the surface, where there is a firm
argument that maximum uniform strain maximizes the
quadrupole. However, even if they do not give the abso-
lute maximum, they should be quite close for cases like
the one we consider here, where the shear modulus varies
quite slowly.
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FIG. 10: The Newtonian Cowling, Newtonian no Cowling,
and full relativistic (including stress contributions) values for
the quadrupole deformations (and fiducial ellipticity) of max-
imally strained strange quark stars versus mass, using the
EOS discussed in the text with a breaking strain of 0.1. We
show these both for the standard UCB uniform maximum
strain, and our modification that yields significantly larger
quadrupoles in this case.

Applying these expressions to a specific case, we use
the strange quark matter EOS calculated by Kurkela, Ro-
matschke, and Vuorinen (KRV) [31], generating an EOS
for the parameter values of interest using the Mathe-

matica notebooks available at [68]. The relevant pa-
rameters are the values of the MS renormalization point,
ΛMS, and the strange quark mass, ms, both at a scale of
2 GeV, along with the coefficient in the relation between
the renormalization scale and the quark chemical poten-
tial, X , the color superconductivity gap parameter, ∆
(taken to be independent of density),6 and the minimal
quark chemical potential at which strange quark matter

6 Note that ∆ enters the KRV EOS through a color flavor locked
(CFL) pressure term. This is not quite appropriate for the crys-
talline color superconducting phase we consider here, since it
assumes that all the quarks pair, while only some of them pair in
the crystalline phase. However, as discussed in Sec. VI B of [69],
the condensation energy of the crystalline phases is easily 1/3
to 1/2 that of the CFL phase with zero strange quark mass,
which is the pressure contribution used by KRV. We have thus
not altered this term in our calculations, since the contribution
is already approximate, in that it assumes a density-independent
gap parameter. Moreover, we only consider a fairly low value of
∆, while Knippel and Sedrakian [20] suggest that the crystalline
phase might be favored up to ∆ = 100 MeV. Our EOS may thus
simply correspond to a slightly larger value of ∆, which would in-
crease the maximum quadrupole, since the shear modulus scales
as ∆2.

exists, µq,min. We consider the EOS obtained by choosing
ΛMS = 355 MeV, ms = 70 MeV, X = 4, ∆ = 10 MeV,
and µq,min = 280 MeV. This parameter set yields a max-
imum mass of 2.45M⊙, with a maximum compactness of
0.467.

These parameter choices were generally inspired by
those considered at [68], though with a smaller value of
∆, to place us well within the crystalline superconducting
regime. However, as Knippel and Sedrakian [20] suggest,
the crystalline phase could still be favored for consider-
ably larger ∆s, up to ∼ 100MeV, for the low-temperature
case relevant for neutron stars. We thus note that in-
creasing ∆ decreases the maximum mass, and increases
the maximum quadrupole, though the latter is increased
by considerably less than the näıve scaling of ∆2 one
would expect from the scaling of the shear modulus, likely
due to the increased compactness of the stars with larger
∆s: For ∆ = 100 MeV, we have a maximum mass and
compactness of 2.12M⊙ and 0.508, respectively, and a
maximum quadrupole of ∼ 3.5×1045 g cm2 for a 1.4M⊙

star,∼ 20 times that for ∆ = 10 MeV. However, one must
bear in mind that our perturbative treatment starts to
become questionable with such large gap parameters, for
which the maximum shear stresses are more than 10%
of the background’s energy density. The uncontrolled re-
mainders in the Mannarelli, Rajagopal, and Sharma [30]
calculation of the shear modulus also increase as the gap
parameter increases.

We show the quadrupole for a maximally uniformly
strained star in the three approximations (Newtonian
Cowling, Newtonian no Cowling, and GR) for both the
UCB and modified maximum strain choices for this EOS
in Fig. 10. Here we have used a breaking strain of 0.1,
by the same high pressure argument as in the mixed
phase case. (While the very outermost portions of the
star are at low pressure, the parts that are at a lower
pressure than the crustal case for which the 0.1 break-
ing strain was calculated make negligible contributions
to the quadrupole.)

N.B.: To obtain the EOS used for this figure, we made
some slight modifications to the KRV EoScalc Math-

ematica notebook so that it would output particle num-
ber densities on a denser mesh for low strange quark
chemical potentials. This then gave an EOS table with
better low-pressure coverage than their default settings
produced. We still needed to perform an extrapolation
of the EOS to zero pressure, where we found that a lin-
ear extrapolation of the energy density and quark chem-
ical potential in terms of the pressure using the lowest
two entries of the table provided a good fit. (More in-
volved approaches involving fitting to more points and/or
a quadratic extrapolation produce very similar results.)

Additionally, it is worth pointing out that the applying
the KRV results to compact stars pushes their second-
order perturbative calculation towards the edge of its
domain of validity. However, in our case, the smallest
value of the quantum chromodynamics (QCD) renormal-
ization scale we consider is 1.12 GeV, at which value the
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QCD coupling constant is ∼ 0.45. Thus, the uncontrolled
remainders in the expansion are suppressed by at least
a factor of ∼ 0.1. (While Rajagopal and Shuster [70]
find that perturbative QCD calculations of the color su-
perconducting gap are only reliable at energy scales of
& 105 GeV, the specifics of this calculation are rather
different from the calculation of the EOS we are consid-
ering here, where the gap is taken as an input parame-
ter.) While it is unreasonable to expect this calculation
to be a truly accurate description of strange quark mat-
ter, it is not clear that any of the alternative descriptions
of strange quark matter are a priori guaranteed to be a
better description of the physics, given the very consid-
erable uncertainties associated with this phase of matter.

V. DISCUSSION

Previous studies of the tidal and magnetic deforma-
tions of compact stars have found similar relativistic
suppressions of quadrupole moments with compactness.
In the tidal case, see the Love number computations
in [40, 66, 67, 71, 72]. In the case of magnetic defor-
mations, the expected suppressions are seen in, e.g., [13–
16]. In fact, since the largest compactness considered in
these latter papers is only 0.48 (in [13]), one imagines
that they overestimate the maximum quadrupoles by at
least a factor of a few for more compact stars (for a fixed
magnitude of magnetic field).
As was argued by Damour and Nagar [67] in the tidal

case, all these suppressions are primarily related to the
“no-hair” property of black holes: The largest relativistic
suppression we find comes from the boundary conditions
[through the H0(R) and H ′

0(R) in the Green function’s
denominator—see Eq. (42)], where one matches on to the
external vacuum spacetime. For instance, for the SLy
EOS’s maximum compactness of 0.6, H0(R) and H

′
0(R)

are ∼ 3.5 and ∼ 6 times their Newtonian values [which
can be obtained from the first term of Eq. (21) in Hin-
derer [40] ]. In fact, these ratios go to infinity in the for-
mal black hole limit, where the compactness approaches
unity, as required by the no-hair property, and discussed
by Damour and Nagar [67] (see their Secs. IV C and
VII A, but note that their definition for the compactness
is half of ours). This implies that the stiffness of spheri-
cally symmetric curved vacuum spacetime suppresses the
quadrupole. The quadrupole is also suppressed by a
larger effective gravitational acceleration (given by φ′),
which appears in the denominator of GGR, replacing the
Newtonian g(r) [cf. Eqs. (14) and (43)]. (But recall that
we always compute the background stellar structure rel-
ativistically, so this larger acceleration only affects the
perturbation equations, and not, e.g., the thickness of
the crust for a given mass and EOS, which is the same in
both the Newtonian and relativistic calculations of the
quadrupole.)
Our results imply that nearly all of the Newtonian

computations of quadrupoles due to elastic deformations

of relativistic stars overestimate the quadrupole moment,
often by at least a factor of a few. The only exceptions
we have found are for low-to-mid mass strange quark
stars and for elastic stresses in the cores of neutron stars
around 0.5M⊙. In both of these cases, the Newtonian
Cowling approximation is a slight underestimate for con-
tributions to the quadrupole, though the Newtonian no
Cowling version is still an overestimate. See Fig. 1 for an
illustration in the core case; but note that neutron stars
with such low masses are not known to exist in nature.
The overestimate from performing a Newtonian Cowl-
ing approximation calculation can be ∼ 6 for massive
stars whose quadrupole is being generated by an elastic
deformation near the crust-core interface, as considered
by UCB and others. This is due in part to the sud-
den changes in density at that interface entering directly
through g′′, as discussed at the end of Sec. II.
However, the calculations by Horowitz [21] for crustal

deformations of very low mass stars only receive negli-
gible corrections (of . 5%), since he considers compact-
nesses of ∼ 0.01. In fact, one makes even smaller errors
in using the Cowling approximation to treat these stars,
since the changes in density in the crust (times 4πGr2)
are much smaller than the star’s gravitational field there.
No neutron stars with such low masses have ever been

observed (nor is there a compelling mechanism for form-
ing them). Nevertheless, Horowitz remarks that gravi-
tational wave detection of gravitational waves from elas-
tically deformed neutron stars will, ceteris paribus, be
biased towards low(er) mass neutron stars, if one consid-
ers deformations generated by crustal stresses. This is an
important point, particularly when considering the astro-
nomical interpretation of detections (or even upper lim-
its), and the results we present here make the bias against
high-mass stars even stronger. (This bias also applies to
solid quark stars, though there it is rather weak. It does
not apply to hybrid stars, however, where it is high-mass
stars that can sustain the largest quadrupoles.)
Of course, one must remember that all of these val-

ues are maxima, assuming a maximally strained star,
while there is no reason, a priori, for a given star to be
maximally strained. Moreover, as UCB and HJA note,
these calculations assume that all the strain goes into the
l = m = 2 perturbation, though strain in other modes
(e.g., the l = 2, m = 0 mode due to rotation) can push
the lattice closer to its breaking strain while not increas-
ing the l = m = 2 quadrupole.

VI. CONCLUSIONS AND OUTLOOK

We have presented a method for calculating the maxi-
mum elastic quadrupole deformation of a relativistic star
with a known shear modulus and breaking strain. We
then applied this method to stars whose elastic deforma-
tions are supported by a shear modulus either from the
Coulomb lattice of nuclei in the crust, a hadron–quark
mixed phase in the core, or crystalline superconducting
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strange quark matter throughout the star. (In the last
case, we have made the requisite changes to the method
so that it is valid when the star has a nonzero surface
density and the shear modulus does not vanish at the
star’s surface.) In all but the strange quark case, we
find that the relativistic quadrupole is suppressed, com-
pared with the standard, Newtonian Cowling approxi-
mation calculation of the quadrupole, at least for stars
with masses of & 1M⊙ (corresponding to the observed
masses of neutron stars) and the EOSs we have investi-
gated. These suppressions can be up to ∼ 4 in the hybrid
case, and ∼ 6 in the crustal case. In the strange quark
star case, the Newtonian Cowling approximation calcu-
lation slightly underestimates the quadrupole (by tens of
percent) for low-to-standard mass stars, but is still an
overestimate of ∼ 2 at higher masses.

These suppressions strengthen the Horowitz [21] ar-
gument that searches for gravitational waves from elas-
tically deformed neutron stars supported by crustal
stresses are biased towards lower-mass stars. The same
argument also applies to strange quark stars, though
there the suppressions with increasing mass are less se-
vere (and the maximum quadrupoles are all consider-
ably larger). However, this argument does not apply to
quadrupole deformations of hybrid stars, since the in-
crease in the size of the region of mixed phase with in-
creasing mass dominates the various suppressions.

Our results also imply that many of the previous cal-
culations of elastic quadrupoles (e.g., [18–20, 22, 23])
will need their results revised downwards. (While we
find much larger maximum quadrupoles for solid strange
quark stars than did Lin [19], this is only because we
assume a breaking strain 10 times that assumed by Lin.
If we take the same 10−2 breaking strain as does Lin,
then we find a suppression of a factor of a few, though
this is very likely within the uncertainties of Lin’s calcu-
lation, which assumed a uniform density, incompressible
star with a uniform shear modulus.)

It is instructive to compare our results with the num-
bers quoted in Pitkin’s review [10]. All of these were
obtained by Pitkin using scalings given in the aforemen-
tioned papers, sometimes updating to the Horowitz and
Kadau [32] breaking strain, and provide a good overview
of the standard Newtonian predictions. None of our de-
tailed calculations for maximum crustal quadrupoles ap-
proach the high values Pitkin obtained using UCB’s fit-
ting formula (as corrected by Owen [12]). However, our
very largest hybrid star quadrupoles are an order of mag-
nitude above Pitkin’s quoted maximum, even if one only
assumes a breaking strain of 10−2, as does Pitkin. Ad-
ditionally, our estimates for maximum solid quark star
quadrupoles (∼ 1044 g cm2 for 1.4M⊙ stars) are consid-
erably larger than the ones quoted by Pitkin (based on a
different shear modulus model), even if we reduce them
by an order of magnitude due to scaling the breaking
strain to Pitkin’s 10−2. In fact, they are in the same
range as those Pitkin quotes for a model for crystalline
superconducting hybrid stars (with an optimistic gap pa-

rameter 5 times the one we used for solid quark stars,
leading to a shear modulus ∼ 40 times our shear modu-
lus’s maximum value).

Even with the relativistic suppressions, we obtain max-
imum quadrupole deformations of a few × 1042 g cm2

in the hybrid case for a very stiff hadronic EOS, and
a few × 1041 g cm2 for more realistic cases. In both sit-
uations, the largest maximum quadrupoles are given by
the most massive stars. These values are proportional
to the breaking strain and assume that the Horowitz
and Kadau [32] breaking strain of about 0.1 is appli-
cable to the mixed phase. Such large quadrupole defor-
mations were previously thought only to be possible for
solid quark stars (see [12, 19, 20, 23]), or from crustal de-
formations in the very low-mass neutron stars considered
by Horowitz [21]. These large deformations (correspond-
ing to fiducial ellipticities of a few× 10−3 in the extreme
case, and ∼ 5 × 10−4 in a more realistic case) would be
able to be detected by current LIGO searches for grav-
itational waves from certain known neutron stars [6–8].
(However, we must note that there is no reason to as-
sume that such isolated stars are anywhere near maxi-
mally strained, even neglecting the uncertainties in the
description of their interiors.)

The prospects for crustal quadrupoles are now some-
what less optimistic, and definitely favor lower-mass
stars. However, for a canonical 1.4M⊙ neutron star, we
find that the maximum relativistic crustal quadrupole
is in the range ∼ (1–6) × 1039 g cm2 [corresponding to
fiducial ellipticities of ∼ (1–8)× 10−6], depending on the
model used for the crust and the high-density EOS. (Note
that the fully consistent Douchin and Haensel model with
its associated high-density EOS yields the lowest num-
bers. Additionally, there is the possibility of a further
reduction of up to ∼ 2 due to the angle averaging pro-
cedure used to obtain the shear modulus.) On the high
side, these numbers are consistent with those given pre-
viously for breaking strains of 0.1 by Horowitz [21, 32],7

though they are a factor of ∼ 5 lower than the maximum
Pitkin [10] obtained using scalings of previous results and
the maximum value given by HJA (scaled to this breaking
strain). For stars around 2M⊙, the relativistic suppres-
sions lead to maximum quadrupoles that are nearly an or-
der of magnitude smaller than those for a 1.4M⊙ star in
the compact SLy case: ∼ (1–5)×1038 g cm2 [correspond-
ing to fiducial ellipticities of ∼ (1–6)×10−7]; and even in
the much less compact LKR1 case, there is a suppression
of ∼ 5. Previous Newtonian studies (see Fig. 3 in [21])

7 But recall that the results from Horowitz [21] were obtained us-
ing the SLy EOS and crustal composition results, so they are
the same as our Newtonian Cowling approximation SLy predic-
tions, given in Fig. 6, except ∼ 7% lower, since Horowitz is using
the Horowitz and Hughto [26] result for the shear modulus. In
the fully relativistic case, one requires a thicker crust than pro-
vided by the pure SLy results to obtain values for the maximum
quadrupole comparable to those given by Horowitz.
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had only found suppressions of around a factor of 4, due
to the thinning of the crust and the increase in Newtonian
gravity with increasing mass. It will be interesting to
consider further models for the crustal composition and
EOS in this case, particularly the large suite of crustal
models including the pasta phases recently calculated by
Newton, Gearheart, and Li [73]. (See [74] for order-
of-magnitude estimates of the maximum quadrupole for
these models, illustrating the sensitive dependence on the
slope of the symmetry energy.)

One can also compare these maximum elastic
quadrupoles with those generated by an internal mag-
netic field. Here the values depend, of course, upon
the equation of state, compactness, and—perhaps most
crucially—magnetic field topology, as well as the quan-
tity one chooses to use to measure the magnitude of
the magnetic field. But sticking to order-of-magnitude
numbers, and considering a canonical 1.4M⊙ neutron
star, Frieben and Rezzolla [16] show that a toroidal in-
ternal field of ∼ 1015 G would generate a quadrupole
of ∼ 1039–1040 g cm2, comparable to the maxima we
find for crustal quadrupoles. Similarly, quadrupoles of
∼ 1041–1042 g cm2, around the maxima we find for hy-
brid stars, could come from magnetic fields of ∼ 1016 G,
while the maximum quadrupoles of ∼ 1044 g cm2 we find
for crystalline strange quark stars could also be generated
by magnetic fields of ∼ 1017 G, close to the maximum
allowed field strength. (But note that these magnetic de-
formations are all computed for ordinary, purely hadronic
neutron stars. Additionally, the quoted maximum elas-
tic quadrupoles in the hybrid case are attained only for
more massive stars than the 1.4M⊙ stars for which we are
quoting the magnetic deformation results.) The quoted
values for magnetic quadrupoles come from the fits given
in Sec. 7 of Frieben and Rezzolla [16], except for the final
ones, which are obtained from inspection of their Fig. 5
and Table 3. All these values agree in order of magnitude
with the predictions for the twisted torus topology given
by Ciolfi, Ferrari, and Gualtieri [14], and with many other
studies for various topologies cited in Frieben and Rez-
zolla [16]. But note that very recent calculations by Ciolfi
and Rezzolla [17] show that the magnetic field required to
obtain a given quadrupole deformation with the twisted
torus topology could be reduced by about an order of
magnitude if the toroidal contribution dominates.

One would also like to make relativistic calculations
of the maximum energy that could be stored in an elas-
tic deformation. This would be useful in properly com-
puting the available energy for magnetar flares, for in-
stance. (Using Newtonian scalings, Corsi and Owen [75]
estimated that the hybrid case was especially interesting
compared to existing LIGO upper limits for gravitational
wave emission from such flares.) The basic expressions
(at least in the perfect fluid case) appear to be readily
available in the literature (see, e.g., [76, 77]; [37, 78] give
related results including elasticity). However, one can-
not apply these directly to the crustal and hybrid cases,
even in the Newtonian limit, due to the distributional

nature of the density and pressure perturbations. Specif-
ically, the sudden change in shear modulus at the phase
transitions gives delta functions in the derivatives of the
density and pressure perturbations. Since the energy ex-
pressions involve squares of these derivatives, one would
have to invoke some sort of regularization procedure, or
apply a different method. Developing appropriate ex-
pressions for this case will be the subject of future work.
Returning to the quadrupoles, one might also want

to consider the shape of the deformed star, particularly
in the relativistic case—the ellipticity is already only a
rough indicator of the shape of the deformation in the
Newtonian case—as has now been done in [59]. But the
effects of the star’s magnetic field are surely the most
interesting to consider, from its influence on the lattices
that support elastic deformations, to the changes to the
boundary conditions at the star’s surface from an exter-
nal magnetic field (particularly for magnetars), to the
internal magnetic field’s own contribution to the star’s
deformation. One might also want to consider the lat-
tice’s full elastic modulus tensor in this case, instead of
simply assuming a polycrystalline structure and angle av-
eraging to obtain an effective isotropic shear modulus, as
was done here. (And even if one assumes a polycrys-
talline structure, one could use more involved, sharper
bounds on the shear modulus than the ones considered
here—see [79] for a classic review of such bounds.)
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Appendix: Hadron–quark hybrid stars and the

binding energy argument

As we mentioned in Sec. II C of [29], if the surface ten-
sion is large enough, the mixed phase is not locally fa-
vored energetically (i.e., at a fixed baryon density), com-
pared to the individual pure phases. (This was first noted
by Heiselberg, Pethick, and Staubo [80] and later dis-
cussed by Alford et al. [81].) However, as was also noted
in [29], the entire region of mixed phase can still be fa-
vored due to global energy arguments, especially when
one considers the binding energy of the star (for a fixed
total baryon number): One expects the stars with the
largest binding energy (i.e., smallest gravitational mass)
for a given total baryon number to be favored. In this cal-
culation, we always compare with a purely hadronic star.
One would expect the Maxwell construction case with a
sharp interface between the two phases to produce more
strongly bound stars than the purely hadronic case, given
the local energy results presented in [80, 81]. However, at
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least for the EOSs we consider, the Maxwell construction
stars with total baryon numbers up to the total baryon
number of the corresponding maximum mass hybrid star
only contain hadronic matter.

Specifically, if we compute the gravitational mass of a
hybrid star with a given total baryon number, we find
that this mass is smaller (corresponding to a larger bind-
ing energy) than that of a purely hadronic star con-
structed with the same hadronic EOS parameters as the
hybrid EOS. However, these mass differences are not very
large, only ∼ 0.006M⊙ in the most extreme case (the
most massive stars with the LKR1 EOS), and usually
considerably smaller. One thus might be concerned that
this conclusion could be reversed if one includes the con-
tributions of the lattice to the EOS, viz., the lattice’s en-
ergy density and pressure, and the contributions of the
surface tension to the energy density (through the cell
energy). Nevertheless, we find that this is not the case.

Indeed, we find that the mixed phase is favored by
the binding energy argument for all the EOS parame-
ters we consider, even for a surface tension as large as
σ = 80 MeV fm−2, more than twice as large as the sur-
face tensions favored by recent calculations [65], and large
enough that the mixed phase is not locally energetically
favored. In fact, for these surface tensions, the mixed
phase stars with the additions to the EOS from the blobs
and lattice energy are even more strongly favored by the
binding energy argument than those with no additions.
Of course, as we mentioned in [29], the computations
of the lattice additions to the EOS have some uncer-
tainty, in particular due to our approximate treatment
of charge screening. However, we do not expect this to
change the qualitative results from the binding energy
argument, since that the changes in the binding energy
from including the lattice and blob contributions to the
energy are relatively small (. 10%). Moreover, we expect
that more accurate computations of the cell and lattice
energy would reduce their contributions. Indeed, Chris-
tiansen and Glendenning [82, 83] argue that the mixed
phase should always be favored, and any calculation that
predicts otherwise must be incomplete or using inappli-
cable input parameters.

We now describe the specifics of the binding energy
calculation. We calculate the mass differences by first
computing the total baryon number as a function of mass
for the purely hadronic stars and then using bisection to
locate the hybrid star with the same total baryon num-
ber. However, as noted by Haensel and Prószyński [84],
the standard method of logarithmic interpolation of an
EOS table is insufficiently accurate to allow one to com-
pute the gravitational masses and baryon numbers with
the accuracy we need. One must, instead, use a ther-
modynamically consistent method of interpolation—i.e.,
one for which the first law of thermodynamics is satisfied
exactly. And, indeed, if we use the standard logarith-
mic interpolation, we find that the additions to the EOS
have a much larger effect on the binding energy differ-
ences, and the mixed phase is only favored by the binding

energy argument for higher masses, if at all.

Haensel and Prószyński [84] provide such a thermo-
dynamically consistent method of interpolation in their
Sec. IIc, which we use to perform the binding energy
calculation. There is an alternative expression for the
baryon number density as a function of radius given in
Eq. (6) of Haensel and Potekhin [48] (also obtained us-
ing the first law of thermodynamics), but we find the
Haensel-Prószyński interpolation to be preferable, in our
experiments. Specifically, we have checked that our qual-
itative conclusions remain unchanged if use the EOS out-
put on a finer mesh of baryon number densities (with half
the spacing of the original mesh) and have found that
the results of the Haensel-Prószyński interpolation are
less sensitive to changes in the mesh on which the EOS
table is output than the Haensel-Potekhin version. We
interpret this as indicating that the Haensel-Prószyński
version is more reliable, at least for our situation. (There
is also a more involved thermodynamically consistent in-
terpolation method due to Swesty [85], but we have not
experimented with this.)
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FIG. 11: The full relativistic maximum quadrupole deforma-
tions (and fiducial ellipticity) of hybrid stars versus mass, for
the LKR1 and Hy1′ EOSs from [29], with a surface tension of
σ = 80 MeV fm−2, showing the effects of the different inter-
polation methods and EOS additions. Here, “plain” denotes
no additions, while “full” denotes both blob and lattice addi-
tions. Similarly, “log” and “HaPr” denote the standard log-
arithmic and Haensel-Prószyński interpolation, respectively.
Note that many of the curves end somewhat short of the max-
imum mass, due to difficulties with the numerics.

We show the differences in the final stellar quantities
calculated using the logarithmic and Haensel-Prószyński
interpolation for the case of no EOS additions, as well
as the effects of the EOS additions with the Haensel-
Prószyński interpolation in Table I. (The . 0.5% differ-
ences in the maximum mass due to the different methods
of interpolation are in line with the differences found by
Haensel and Prószyński [84], though they find an increase
in the maximum mass, while we only find decreases.)
Additionally, including the EOS additions and chang-
ing the interpolation also has an effect on the maximum
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σ interpolation EOS additions Mmax Mhybrid

min Rhybrid
max /R Cmax densest

(MeV fm−2) (M⊙) (M⊙) (%) hybrid phase

Hy1
– log none 2.057 1.747 57.7 0.484 Q, d = 1.03
– HaPr none 2.047 1.743 57.6 0.484 Q, d = 1.05
80 HaPr blob + lattice 2.040 1.742 57.4 0.483 Q, d = 1.03

Hy1′
– log none 1.974 1.377 69.0 0.476 H, d = 1.30
– HaPr none 1.963 1.375 69.0 0.476 H, d = 1.24
80 HaPr blob + lattice 1.955 1.375 68.9 0.475 H, d = 1.27

LKR1
– log none 1.955 1.096 72.5 0.433 H, d = 3.00
– HaPr none 1.948 1.098 72.4 0.433 H, d = 3.00
80 HaPr blob + lattice 1.935 1.098 72.3 0.431 H, d = 3.00

generic
– log none 1.986 1.878 44.0 0.500 Q, d = 2.10
– HaPr none 1.974 1.869 43.8 0.500 Q, d = 2.12
80 HaPr blob + lattice 1.971 1.869 43.4 0.499 Q, d = 2.15

generic′
– log none 1.974 1.534 65.9 0.515 Q, d = 1.36
– HaPr none 1.963 1.528 65.9 0.515 Q, d = 1.36
80 HaPr blob + lattice 1.959 1.528 65.8 0.514 Q, d = 1.38

TABLE I: Properties of stable stars constructed with the EOSs from [29] (except for the different Hy1 “flavors”), showing the
effects of the interpolation and the additions to the EOS. In the “interpolation” column, “log” denotes the standard logarithmic
interpolation of the EOS table (used to obtain the values for stellar quantities given in Table I of [29], which we repeat here,
with the small corrections from the erratum), while “HaPr” denotes the Haensel-Prószyński thermodynamically consistent
interpolation. In the “EOS additions” column, “blob + lattice” denotes the case where we have included the blob and lattice
energy densities and lattice pressure in the EOS. The other columns are the same as in Table I of [29]. Explicitly, Mhybrid

min gives
the masses of stars that first contain hybrid matter (using the binding energy argument); Rhybrid

max /R denotes the maximum
radius fraction occupied by hybrid matter (i.e., the radius fraction for the maximum mass star); and Cmax denotes the maximum
compactness (2GM/Rc2) of a star. We also give the composition of the rare phase (“Q” stands for quark and “H” for hadronic)
and the dimension of the lattice at the center of the maximum mass star. (Note that is often necessary to locate the maximum
mass with more than its given accuracy to obtain Rhybrid

max /R, Cmax, and the dimension of the densest hybrid phase to their
given accuracy, as discussed in the erratum to [29].)

quadrupoles (at most ∼ 40%), illustrated in Fig. 11 for
the two EOSs that yield the largest quadrupoles.
The EOS additions and Haensel-Prószyński interpola-

tion both reduce the maximum mass, compared to the
plain logarithmic interpolation results. Thus, EOSs that
already have a low maximum mass (particularly LKR1)
with the logarithmic interpolation and no additions may
no longer be consistent within 1σ with observations of
massive neutron stars when using the Haensel-Prószyński
interpolation and including the additions. Indeed, these
EOSs were designed to be compatible with the Demor-
est et al. observation of a 1.97±0.04M⊙ neutron star [86],
so some of them (again, particularly LKR1) are not com-
patible within 1σ with the very recent observation of a
2.01 ± 0.04M⊙ neutron star by Antoniadis et al. [87],
even with no additions and the logarithmic interpolation.
Nevertheless, all of them are still compatible within 2σ,
even with the additions and Haensel-Prószyński inter-
polation. It is also worth pointing out that the Anto-
niadis et al. measurement is less clean than the Demor-
est et al. measurement, as it relies on some modeling of
white dwarf atmospheres, not just geometrical consider-
ations.

Additionally, one can easily obtain 1σ compatibility
with the Antoniadis et al. measurement with a slight
modification of the EOS parameters. For instance, for
the LKR1 EOS, changing the QCD coupling constant
αs from 0.6 to 0.625 increases the maximum mass to
2.004M⊙ with the logarithmic interpolation and no ad-
ditions and to 1.984M⊙ with the Haensel-Prószyński
interpolation and additions (with a surface tension of
σ = 80 MeV fm−2), while only decreasing the maximum
quadrupoles by . 30% for the largest masses
Finally, we describe exactly how we obtain the lattice

contributions to the EOS. We compute the lattice and
cell energy density [(Ecell+W )/Ω] using Eqs. (2) and (14)
in [29] and the electrostatic pressure contribution by mul-
tiplying that paper’s Eq. (20) by d/3 to account for the
angle-averaged anisotropy (d is the dimension of the lat-
tice). We have also experimented with adding in the
isotropic contribution to the pressure from changing the
cell energy and blob’s charge, given by −(Ecell+2W )/Ω.
We found that this addition does not change the quali-
tative conclusions, and, indeed, makes the mixed phase
even more strongly favored, giving some indication of the
robustness of the calculation.
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