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Recent work has demonstrated that it is important to constrain the dynamics of cosmological
perturbations, in addition to the evolution of the background, if we want to distinguish among
different models of the dark sector. Especially the anisotropic stress of the (possibly effective) dark
energy fluid has been shown to be an important discriminator between modified gravity and dark
energy models. In this paper we use approximate analytical solutions of the perturbation equations
in the presence of viscosity to study how the anisotropic stress affects the weak lensing and galaxy
power spectrum. We then forecast how sensitive the photometric and spectroscopic Euclid surveys
will be to both the speed of sound and the viscosity of our effective dark energy fluid when using
weak lensing tomography and the galaxy power spectrum. We find that Euclid alone can only
constrain models with very small speed of sound and viscosity, while it will need the help of other
observables in order to give interesting constraints on models with a sound speed close to one. This
conclusion is also supported by the expected Bayes factor between models.
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I. INTRODUCTION

Since its discovery in 1998 by [1, 2], the cause of cos-
mic acceleration has not been understood, despite all the
observational and theoretical efforts in this direction (see
e.g. [3–5] and references therein). Ironically, the best
explanation from the observational point of view, i.e. a
cosmological constant, is very little satisfactory from a
theoretical perspective [6]. Among the many alternative
possible answers, one proposal is to modify the Einstein
equations, either in 4 dimensions, like in scalar-tensor
theories, or in 5D, as e.g. in the Dvali Gabadadze Por-
rati model [7] or even in 6D [8, 9]. All these theories, if
rewritten as “effective dark energy” models (simply by
moving the additional terms modifying Einstein equa-
tions from the geometry side to the matter side of the
equations) exhibit a difference with respect to ordinary
scalar field dark energy (DE): they possess anisotropic
stress.

For this reason, and also because we still do not know
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what dark energy is really made of, in [10] some of us
studied an “effective dark energy” with anisotropic stress.
The latter was modeled as in [11] with the help of a vis-
cosity parameter, in addition to the speed of sound and
equation of state parameters. This parameterization was
used first in [12] in relation with dark energy. A further
work by [13] analyzed the model with data from the cos-
mic microwave background radiation (CMB), large scale
structure and type Ia supernovae, and showed that it
is hard to constrain both c2s and c2v and that future data
would not improve very much their measurement. In [10]
analytical equations describing the cosmological pertur-
bations for this imperfect fluid dark energy were derived,
following the lines of a previous paper [14], where the
same was done for a model with no viscosity. Other re-
cent work on anisotropic stress can be found in [15].

In this paper we will use these analytical expressions
to understand how well the galaxy clustering (GC) and
weak lensing (WL) measurements of the Euclid survey1

[16, 17] will be able to constrain the viscosity of the dark
energy fluid, together with its speed of sound.

The Euclid survey is a recently selected mission of the

1 http://www.euclid-ec.org/
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ESA Cosmic Vision program, whose launch is planned
for 2020. The reason why it is particularly apt to con-
strain imperfect fluid DE (or alternatively modified grav-
ity models) is that it will perform both a photometric
survey to measure WL and a spectroscopic survey to
measure the galaxy power spectrum (and higher order
functions). Both WL and the galaxy power spectrum
are able to constrain not only the expansion history of
the Universe, which depends on the matter density and
the equation of state of DE, but also further observables
like the growth of structure. From these additional ob-
servables it is possible in principle to measure the speed
of sound and the viscosity parameter, and to constrain
the evolution of the perturbations. These are precisely
the distinctive features of such models.
In this work we will not only forecast the total errors

on the model parameters, by using the Fisher matrix
formalism, but also analyze separately the different con-
tributions, taking advantage of our analytical formulae.
This will allow us to understand better which are the as-
pects of the WL and of the galaxy power spectrum that
have the strongest impact.
We will find that the Euclid survey is marginally able

to constrain the viscosity together with the speed of
sound, as errors are of the order of 100%. This is due
to the complexity of the model and to the smallness of
the effects that we wish to detect.
By evaluating the forecasted Bayes’ factor we will find

moreover that there is (strong) evidence in favor of vis-
cous dark energy, as compared to a dark energy model
with the same sound speed but no viscosity, only when
the fiducial viscosity and sound speed are very small (but
not too small) and when both weak lensing and galaxy
clustering are used. In the latter case, decisive evidence
in favor of viscous dark energy can be reached if we re-
duce the maximum viscosity allowed by our flat prior to
be less than ≃ 10−1, otherwise the Occam’s razor effect
of the Bayes factor dominates and disfavours the presence
of non-zero viscosity.
The plan of the paper is the following. In Sec. II

we briefly describe the model and give the basic equa-
tions together with the main formulae found in [10]. We
then analyze the different observables and evaluate ana-
lytically their sensitivity to the speed of sound and the
viscosity parameter, in Sec. III. Sec. IV is devoted to the
Fisher matrix forecasts on the errors for our model from
the Euclid WL and GC surveys. We analyze our results
taking into account the results of the previous section.
We forecast the Bayesian evidence using our computed
Fisher matrices in Sec. V and we finally conclude in Sec.
VI.

II. APPROXIMATE SOLUTIONS AND

GENERAL BEHAVIORS

We start by describing the model we consider: an im-
perfect fluid dark energy with anisotropic stress. In this

section we give the basic equations, defining our nota-
tion and presenting the approximate analytical solution
to the dark energy perturbation evolution found in [10]
(for more details please see the aforementioned paper).

A. Definitions

We consider scalar linear perturbations about a spa-
tially flat Friedmann-Lemaitre-Robertson-Walker Uni-
verse, whose line element is, in conformal Newtonian
gauge,

ds2 = a2
[

−(1 + 2ψ)dτ2 + (1− 2φ)dxidx
i
]

, (1)

where a is the scale factor, τ is the conformal time, xi
are the spatial coordinates and ψ and φ are the metric
perturbations. We take an imperfect fluid dark energy,
with constant equation of state w, speed of sound cs and
with an anisotropic stress component σ. The first order
perturbation equations for this fluid are

δ′ = 3(1 + w)φ′ − V

Ha2
− 3

1

a

(

δp

ρ
− wδ

)

, (2)

V ′ = −(1− 3w)
V

a
+

k2

Ha2
δp

ρ
+ (1 + w)

k2

Ha2
ψ + (3)

− (1 + w)
k2

Ha2
σ,

where δ and V are the density contrast and the velocity
perturbation, δp is the pressure perturbation, H is the
Hubble function, ρ is the dark energy density and the
prime refers to derivatives with respect to the scale factor
a. For the evolution of σ, we consider the model proposed
by [11]:

σ′ +
3

a
σ =

8

3

c2v
(1 + w)2

V

a2H
, (4)

which, for c2v = 1/3, recovers the evolution of anisotropic
stress for radiation up to the quadrupole and reduces to
the case of a classical uncoupled scalar field, which has
always σ = 0, when the viscosity parameter c2v is set to
zero2. Pressure perturbations are parameterized as

δp = c2sρδ +
3aH(c2s − c2a)

k2
ρV, (5)

where the adiabatic speed of sound c2a ≡ ṗ/ρ̇ = w for a
fluid with constant equation of state. Since we focus on
late cosmological times, we can approximate H with

H2 = H2
0

[

Ωm,0a
−3 + (1− Ωm,0)a

−3(1+w)
]

, (6)

2 In the case where c2v = 0 the viscosity decays as σ ∼ a−3 even if
it is initially non-zero and vanishes indeed rapidly.
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where Ωm,0 indicates the dark matter density parameter
and H0 is the Hubble parameter today.
To form a complete set of differential equations we add

the Poisson equation, derived from the first and second
Einstein equations,

k2φ = −4πGa2
∑

i

ρi

(

δi +
3aH

k2
Vi

)

=

= −4πGa2
∑

i

ρi∆i , (7)

(where ∆i ≡ δi+3aHVi/k
2 is the gauge-invariant density

perturbation of the i − th fluid, the sum runs over all
clustering fluids and G is the Newton constant) and the
fourth Einstein equation,

k2 (φ− ψ) = 12πGa2 (1 + w)ρ σ (8)

=
9

2
H2

0 (1 − Ωm,0)a
−(1+3w)(1 + w)σ

≡ B(a)σ . (9)

B. Analytical solutions for dark energy

perturbations

In the aforementioned approximations and assuming
matter domination we have found in [10] the following
analytical solutions for δ, V and σ:

δ =
3(1 + w)2

3c2s(1 + w) + 8 (c2s − w) c2v

φ0
k2
, (10)

V = − 9(1 + w)2
(

c2s − w
)

3c2s(1 + w) + 8c2v(c
2
s − w)

H0

√

Ωm
φ0√
ak2

,

= −3aH
(

c2s − w
)

δ, (11)

σ = − 8c2v
(

c2s − w
)

3c2s(1 + w) + 8(c2s − w)c2v

φ0
k2
, (12)

where the constant φ0 is defined from the relation k2φ ≃
−φ0, which is valid strictly only during matter domina-
tion and while neglecting dark energy perturbations.
As already shown in [10], modes above the sound hori-

zon at early times are effectively uncoupled from the
anisotropic stress, since the term on the right hand side
of Eq. (4) is small compared to the terms on the left hand
side. Here dark energy perturbations follow the standard
evolution for c2v = 0, which was found in [14]:

δ = (1 + w)
φ0
c2sk

2
, (13)

V = −3(1 + w)
(

c2s − w
)

H0

√

Ωm,0

c2sk
2

a−1/2, (14)

σ = 0. (15)

We remark that, as can be seen by comparing Eqs. (10)
and (13), the damping introduced by viscosity is stronger
by a factor (1 + w) with respect to the standard case of

isotropic dark energy. The Eqs. (10)-(12) can be rewrit-
ten in terms of an effective sound speed [10]

c2eff = c2s +
8

3
c2v
c2s − w

1 + w
. (16)

This means that the important quantity determining the
growth of the dark energy perturbations is a combination
of the sound speed and the viscosity. These have a similar
damping effect on density and velocity perturbations.

We also point out that while normally the case w =
−1 represents a singularity for dark energy perturba-
tions, the situation is less clear when anisotropic stress
is present. In general it is enough to keep (1+w)σ finite
as w → −1. In addition, although the source term of Eq.
(4) appears singular in this limit, we can see from Eq.
(11) that V decays ∝ (1 + w)2 for our model and so the
term does not actually diverge.

III. OBSERVABLE EFFECTS OF VISCOSITY

ON GALAXY CLUSTERING AND WEAK

LENSING

Once we have shown the analytic expression of density
and velocity perturbations and of the anisotropic stress,
let us see how these enter our observables. In particu-
lar, in this section we evaluate the impact of viscosity
on galaxy clustering and weak lensing maps, in order
to understand what to expect from the error forecasts.
To do this we look at the derivatives of our observables
with respect to the parameters c2s and c2v. These deriva-
tives will appear in the Fisher matrix computation: the
larger the derivative, the stronger the dependence of our
observable from the analyzed parameter, and the smaller
the forecasted error. We analyze separately each different
component characterizing these observables and evaluate
analytically its impact in the total derivative, with the
help of the analytical parameters introduced in [19]: the
clustering parameter Q and the anisotropy parameter η.

A. Parameterizing dark energy perturbations

First of all, we shortly describe our parameters, which
will help us understanding the behavior of our observ-
ables in the presence of a non-null c2v. The clustering pa-
rameter Q ≡ 1 + ρ∆/(ρm∆m) (where ∆, ∆m are gauge-
invariant comoving density perturbations), quantifying
the size of the dark energy perturbations compared to
the matter perturbations (and hence to the total pertur-
bations, given that dark energy perturbations are much
smaller than matter ones), parameterizes the deviation
from a purely matter-dominated Newtonian potential. In
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the presence of viscosity we have obtained [10]

Q− 1 =
1− Ωm,0

Ωm,0
(1 + w)

a−3w

1− 3w + 2k2a
3H2

0
Ωm,0

c2eff

= Q0
a−3w

1 + αa
, (17)

where α = 2k2c2eff/[(3H
2
0Ωm,0)(1−3w)], Q0 = (1+w)(1−

Ωm,0)/ [Ωm,0(1 − 3w)] and c2eff is given by Eq. (16). No-
tice that, as explained in [10], Eq. (17) is valid also for
c2s = c2v = 0.
As regards the anisotropy parameter, this is defined as

η ≡ ψ

φ
− 1. (18)

It is zero in the case of standard General Relativity with
non-anisotropic fluids because then the two metric per-
turbations φ and ψ are equal. When anisotropic stress is
present instead, φ and ψ are different. In our case η is
indeed non-null and given by

η = −9

2
H2

0 (1− Ωm,0)(1 + w)
a−1−3w

k2Q

(

1− c2s
c2eff

)

. (19)

Having established the dependence of Q and η on c2s and
c2v, we evaluate then how the main “ingredients” of WL
power spectrum and galaxy power spectrum, i.e. the
matter power spectrum, the redshift space distortions
and the weak lensing potential depend on Q and η, hence
on the speed of sound and the viscosity parameter.

B. The dark matter power spectrum

The linear matter power spectrum Pm(k, a) can be ex-
pressed as the product of today’s Pm(k) and its redshift
evolutionG(a, k). Today’s matter power spectrum Pm(k)
is affected by dark energy perturbations, hence by c2s and
c2v, through a linear dependence on Q. This is because
the matter density contrast δm is sourced by the grav-
itational potential φ, which is in turn modified by the
presence of δ. The Poisson equation (7) can indeed be
expressed as

k2φ = −4πGa2Qρm∆m. (20)

Hence, we can try to assess how sensitive the matter
power spectrum today is to changes of the sound speed
and the viscosity, by computing the derivatives of Q with
respect to c2s and c2v:

∂Q

∂c2s
= − αa

1 + αa
(Q− 1)

c2eff − w

c2eff(c
2
s − w)

, (21)

∂Q

∂c2v
= − αa

1 + αa
(Q− 1)

c2eff − c2s
c2effc

2
v

. (22)

The derivatives of Q with respect to c2s and c2v are shown
in Fig. 1 (red solid lines). In Fig. 2 we then show
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Figure 1: Here we show the sensitivity of the parameters en-
tering the WL and GC observables to the sound speed c2s and
the anisotropy parameter c2v. Plotted are the derivatives of
Q(a, k) (red solid lines), Σ(a, k) (blue dotted-dashed lines),
G(a, k) (cyan short-dashed lines), and f(a, k) (brown long-
dashed lines) with respect to c2s (top panel) and to c2v (bottom
panel), as a function of the wavenumber k in units of h/Mpc.
The viscosity term is set to c2v = 10−6 and the sound speed
to c2s = 10−6. We can see that the most sensitive parameters
are Σ and Q and that these two parameters are degenerate
(i.e. have the same amplitude and shape) if k is larger than
∼ 0.1h/Mpc.

how the derivatives of Q with respect to c2s vary when
changing the fiducial model: on the left panels we vary
the fiducial c2s, which takes the values c2s = 10−6, 10−5

and 10−4 and c2v is fixed to 10−4, while on the right panels
c2v = 10−6, 10−5 and 10−4 and c2s = 10−4 (we always
use units where the speed of light is c = 1). Our first
consideration looking at the figure is that reducing the
fiducial value of c2s or c2v improves the sensitivity of Q
to them, but not indefinitely: the smaller c2s or c2v, the
smaller the improvement. Secondly, we notice that Q is
a factor of ∼ 10 more sensitive to c2v than c2s (compare
corresponding top and bottom panels). The reason for
this is to be found in the dependence of Q on c2s and c2v
through c2eff : in its expression a factor of ∼ 10 multiplies
c2v, so that the sensitivity of c2eff to c2v is better by such
factor than that to c2s.
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Figure 2: Here we show how the sensitivity of Q to the sound speed c2s and the viscosity parameter c2v depend on the amplitude
of c2s (left panels) and c2v (right panel). We plot the derivative of the logarithm of Q(a, k) with respect to the sound speed c2s
(top panels) and to the viscosity parameter c2v (bottom panels) as a function of the wavenumber k in units of h/Mpc. On the
left panels, we fix the viscosity term c2v = 10−6 and the sound speed c2s takes values 10−3, 10−4, 10−5 and 10−6, brown long
dashed, cyan dot dashed, blue dashed and red solid line, respectively. On the right panels, we fix the viscosity term c2s = 10−6

and the sound speed c2v takes values 10−3, 10−4, 10−5 and 10−6, brown long dashed, cyan dot dashed, blue dashed and red solid
line, respectively. It can be seen that reducing the value of c2s or c2v improves the sensitivity of Q to them, but the smaller c2s or
c2v, the smaller the improvement. We also see that Q is a factor of ∼ 10 more sensitive to c2v than c2s (compare corresponding
top and bottom panels). This is because Q depends on sound speed and viscosity through c2eff , in whose expression a factor of
∼ 10 multiplies c2v while c2s is multiplied by a factor of 1.

C. The growth factor

The growth factor, characterizing the change of the
matter power spectrum with respect to today’s shape
and amplitude, is given by

G(k, a) =

∫ a

a0

f(a′, k)

a′
da′ (23)

where a0 is today’s scale factor and the growth rate f
can be expressed as

f(a, k) = Ωm(z)γ(k,z) (24)

and the growth index γ(k, z) can be written in terms of
Q and η [20]:

γ =
3 (1− w −A (Q, η))

5− 6w
, (25)

with

A (Q, η) =
(1 + η)Q− 1

1− Ωm (a)
. (26)

using Eqs. (25-26) we can compute the derivatives
∂G/∂c2s, ∂G/∂c

2
v:

∂G

∂c2s
= −G 3Q0

5− 6w

c2eff − c2s
c2eff(c

2
s − w)

∫ a

a0

[

3w

α
x−3w−2+

+ α
c2eff − w

c2eff − c2s

x−3w

(1 + αx)2

]

dx, (27)

∂G

∂c2v
= −G 3Q0

5− 6w

c2eff − c2s
c2effc

2
v

∫ a

a0

[

3c2s
α
x−3w−2+

+ α
x−3w

(1 + αx)2

]

dx . (28)
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These are shown in Fig. 1 (cyan short-dashed line). Com-
paring the derivatives with respect to c2s and c

2
v of G with

those of Q we notice that the former are smaller than
the latter, implying a smaller sensitivity of the latter to
the sound speed and the viscosity. As also explained
in [18], this is because G depends on the integral of Q:
the growth factor is not probing the deviation of Q from
unity, but rather how Q evolves with time.

D. The weak lensing potential

In WL experiments, the important quantity is the lens-
ing potential Φ = φ + ψ. As regards φ, the Poisson
equation couples it to the dark energy contrast, and we
expressed the influence of the latter through the param-
eter Q, see Eq. (20). The potential ψ instead is related
to the anisotropic stress, and the parameter connecting
it to φ is η, as in Eq. (18). Hence, using Eqs. (20) and
(18) we find the following for Φ:

k2Φ = −8πGa2
(

1 +
1

2
η

)

Qρm∆m . (29)

The resulting quantity is therefore a combination of the
anisotropic stress and the dark energy density contrast:

Σ =

(

1 +
1

2
η

)

Q , (30)

and it represents the deviation of the WL potential from
the standard case of no dark energy perturbations. We
can compute now the derivatives of Σ with respect to the
sound speed c2s and the viscosity term c2v:

∂Σ

∂c2s
= − (Q− 1)

{

αa

1 + αa

1

c2eff

[

1 +
8

3

c2v
1 + w

]

+

+ 4
1 + αa

α a

c2v
c2eff

w

1 + w

}

(31)

∂Σ

∂c2v
= − (Q− 1) 4

c2s − w

1 + w

{

α a

1 + αa

1

c2eff

2

3
+

+
1 + α a

αa

c2s
c2eff

}

, (32)

and plot them in Fig. 1 together with the other deriva-
tives. We clearly see that at scales smaller than k ∼
0.01h/Mpc the derivatives with respect to c2s or c2v of Σ
have the same amplitude and shape as those of Q. Look-
ing at the expression of ∂Σ/∂c2s, ∂Σ/∂c

2
v, Eqs. (31-32),

this means that η only plays a role at very large scales,
while its contribution is very small at all other scales.
We can also see that directly in the expression for η, Eq.
(19), which contains a factor (Ha/k)2 relative to Q − 1,
Eq. (17), and so is suppressed on sub-horizon scales. A
confirmation of this can be found in Fig. 3 which shows
the evolution with k of the derivatives of η, which are
much smaller than those of Q. We also notice, compar-
ing upper to lower panel of Fig. 1 that for small values
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0.01

0.1

1

10

100

1000

k

dH
Η
L�

dc
x2

Figure 3: Here we show the sensitivity of the anisotropy pa-
rameter η to the sound speed c2s and viscosity parameter c2v.
Derivatives of η(a, k) with respect to the sound speed c2s (solid
red line) and the viscosity parameter c2v (blue dotted-dashed
line) are shown as a function of the wavenumber k in units
of h/Mpc. Here the fiducial viscosity term is c2v = 10−6 and
the fiducial sound speed is c2s = 10−6. By comparing the size
of these derivatives to that of the corresponding derivatives
of Q of Fig. 1 we notice that the first are much smaller than
the second when k > 0.01h/Mpc, so that their contribution
to the derivatives of Σ (related to the WL potential) is very
small at smaller scales.

of the speed of sound and the viscosity (as those selected
to produce the plot), the derivatives with respect to c2s
are identical in shape to those with respect to c2v, if we
consider smaller scales.

E. Redshift space distortions

Galaxy redshift surveys do not directly observe the to-
tal matter distribution: they produce a 3D map of the
galaxy distribution, where the information on the radial
distance to each galaxy is obtained through the measured
galaxy redshift. Due to the galaxy peculiar velocities,
the redshift map is distorted with respect to the real
space map. Such redshift space distortion (RSD) was
first described by [21], who modeled it through a factor
(1 + (f(k, z)/b)µ2)2 multiplying the matter power spec-
trum, where f is the growth rate (see Eq. (24)), b is the
bias factor relating the amplitude of the galaxy power
spectrum to the matter power spectrum, and µ is the
cosine of the component of k parallel to the line of sight.

For this reason, we evaluate here the sensitivity of f to
sound speed and viscosity parameter by computing the
derivatives of f with respect to c2s and c2v. These are
given by ∂f/∂c2s = f lnΩm(a)∂γ/∂c2s (and equivalently
for c2v). Since the main dependence on viscosity and
speed of sound will come from the term ∂γ/∂c2s (given
that the term f will be close to 1 during matter domi-
nation), we only show here the analytical derivatives of
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γ:

∂γ

∂c2s
=

3(Q− 1)

(5− 6w)(1 − Ωm(a))

c2eff − c2s
c2eff(c

2
s − w)

×

×
[

3w
1 + αa

αa
+
c2eff − w

c2eff − c2s

αa

1 + αa

]

, (33)

∂γ

∂c2v
=

3(Q− 1)

(5− 6w)(1 − Ωm(a))

c2eff − c2s
c2effc

2
v

×

×
[

3c2s
1 + αa

αa
+

αa

1 + αa

]

. (34)

The logarithm of the derivatives of the Kaiser term with
respect to c2s and c2v (integrated over the angle µ) are
shown as well in Fig. 1. Their shape is very similar to
that of the derivatives of G and of Σ but they have always
smaller size than them, which means that the contribu-
tion of the RSD in the detection of c2s and c2v should not
be very important.

F. Comparison of galaxy power spectrum and weak

lensing potential

We want now to identify exactly the quantities entering
the galaxy power spectrum and the WL power spectrum,
in order to understand which of them is more sensitive
to the sound speed and the viscosity parameter.
Let us start with the former: it will depend on the

matter power spectrum and on the RSD factor, hence
the relevant parameters for detecting DE perturbations
will be Q (see Eq. (20)) and the growth factor G, re-
lated to the matter power spectrum today and its evo-
lution with time, respectively, and the growth rate f ,
detectable through the RSD term. If we consider the
WL power spectrum, this will again depend on the mat-
ter power spectrum, hence on Q and G, and also on the
difference between the two gravitational potentials, pro-
portional to Σ, as from Eq. (29). We see from Fig. 1
that the contribution from f is the smallest, and that the
sensitivity to variations in c2s and c2v of G is slightly lower
than that of Σ and Q. This means that in principle WL
surveys, measuring Σ, should be slightly more sensitive
than galaxy redshift surveys, which measure f .3 How-
ever, other considerations have to be made. Derivatives
of Σ and Q differ in shape and amplitude only in the re-
gion of very large scales. As this region is not probed by
WL measurements (because of the size of the survey and
of the projection on the sphere), constraints to c2s and c2v
will be degenerate: it will be very difficult to separately
measure them.

3 To be precise, as pointed out e.g. in [22], the quantities which
can really be observed are the combinations f/b and f + f ′/f
and not f itself. Since the sensitivity of f to c2s and c2v is very
small, and since b is of order unity, this does not change our
conclusions.

Moreover, the actual result will depend also impor-
tantly on the properties of the single surveys, “weighted”
by the sensitivities discussed above.

IV. FORECASTS FOR THE EUCLID SURVEY

With the help of the sensitivity of our observables to c2s
and c2v that have evaluated analytically, we can now fore-
cast the actual precision with which the Euclid WL and
GC surveys will be able to measure these parameters. As
already mentioned, Euclid [17] is a medium-size mission
of the ESA Cosmic Vision programme, recently adopted
for implementation, whose launch is planned for 2020.
It will perform two surveys: a photometric survey in the
visible and in three near-infrared bands, to measure weak
gravitational lensing maps by imaging∼ 1.5 billion galax-
ies, and a spectroscopic slitless survey of ∼ 65, 000, 000
galaxies. Both surveys will be able to constrain both the
expansion and growth history of the universe and will
cover a total area of 15, 000 square deg.
Our fiducial Euclid survey follows the specifications

which can be found in the Euclid Definition Study Report
(also called Red Book) [17], and correspond to the most
up-to-date simulations of Euclid’s performance.
As a fiducial model for our Fisher analysis we choose

the WMAP-7 flat ΛCDM cosmology, as also used in the
Euclid Red Book [17], with the exception of the value of
w, which we set to w = −0.8. This means that we have
Ωm,0h

2 = 0.13, Ωb,0h
2 = 0.0226, ΩΛ = 1 − Ωm,0 = 0.73,

H0 = 71, ns = 0.96 (where ns is the scalar spectral
index). The matter power spectrum was computed using
CAMB4 [23].

A. Weak lensing

We start by investigating the sensitivity of the Euclid
WL survey to the dark energy parameters. We proceed
as in [19] and [18], the only difference here being that we
add the contribution of the anisotropic stress.
Following Eqs. (29-30) we can evaluate the convergence

WL power spectrum (which in the linear regime is equal
to the ellipticity power spectrum): this is a linear func-
tion of the matter power spectrum convoluted with the
lensing properties of space. For a ΛCDM cosmology it
can be written as

Pij(ℓ) = H4
0

∫ ∞

0

dz

H(z)
Wi (z)Wj (z)×

× Pnl

[

Pl

(

H0ℓ

r (z)
, z

)]

, (35)

where ℓ is the multipole number, Wi’s are the window
functions, Pnl [Pl (k, z)] is the non-linear power spectrum

4 http://camb.info
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at redshift z obtained correcting the linear matter power
spectrum Pl (k, z), see [19] for more details.
When dark energy perturbations come into play, the

former gets modified. There is no easy way to modify
the convergence power spectrum when we consider the
non-linear scales, because we need to evaluate the WL
power spectrum, i.e. 〈Φ2〉, which only at linear scales
is simply proportional to Σ2〈∆2

m〉. If we consider non-
linear scales, the above expression is no longer strictly
valid because Σ is a first order quantity. In practice,
what we would need to do is to convolute the modified
linear matter power spectrum Pnl

(

Σ2 P (k)
)

. We instead

compute Σ2 Pnl (P (k))
5.

The modified convergence power spectrum is then

Pij(ℓ) = H4
0

∫ ∞

0

dz

H(z)
Wi (z)Wj (z)×

× Σ2 Pnl

[

Pl

(

H0ℓ

r (z)
, z

)]

. (36)

The Fisher matrix for WL is then given by

Fαβ = fsky
∑

ℓ

(2ℓ+ 1)∆ℓ

2
×

× ∂ (Pij),α C
−1
jk ∂ (Pkm),β C

−1
mi , (37)

where fsky is the observed fraction of the sky, the partial
derivatives represent ∂/∂θα, the corresponding cosmolog-
ical parameters θα are shown in Tab. I and

Cjk = Pjk + δjk
〈γ1/2int 〉
nj

, (38)

where γint is the rms intrinsic shear (here we assume

〈γ1/2int 〉=0.22 [26]) and nj is the number of galaxies per
steradians belonging to the j-th bin.
We compute the Fisher matrix for 3 fiducial models:

the case where c2s = c2v = 10−6, c2s = c2v = 10−4 and
c2s = 1, c2v = 0. The remaining parameters which we
allow to vary are here Ωm,0h

2, Ωbh
2, ns, Ωm,0, w0.

In the WL survey the redshift range covered is 0 <
z < 2.5, which we divide into 10 bins chosen such as to
contain an approximately equal number of galaxies each.
Fig. 4 shows the 1, 2 and 3σ Fisher ellipses for the

parameters c2s and c2v. As we can see, the 1σ errors are
of the order of 10, 000% on c2s and of 1000% on c2v, but

5 The reason for this is that to include the effect of dark energy per-
turbations in the non-linear power spectrum we cannot make use
of the analytic expression of Pnl, which is designed for the case of
absence of dark energy perturbations. So if we want to take the
latter into account we need to solve the Boltzmann equations,
hence use CAMB, which does not, however, compute Pnl(Σ

2Pl)
but only Pnl(Pl). Therefore we decided to make the aforemen-
tioned approximation: Pnl(Σ

2Pl) ∼ Σ2Pnl(Pl), although it is
unclear how large is the error we commit when making it.

more importantly we immediately notice that there is a
very strong degeneracy between c2s and c2v.
To explain it, we should first remember that the pa-

rameters measured by WL are Q, Σ and G but as shown
in Fig. 1, the contribution of the growth factor G to the
total derivatives is small, hence the relevant parameters
are Q and Σ. Let us look at the derivative of the weak
lensing parameter Σ with respect to the viscosity term
c2v, ie. Eq. (32), and rewrite it as:

∂Σ

∂c2v
= −Q0a

−3w αa

(1 + αa)
2

1

c2eff

8

3

c2s − w

1 + w

+
1+ αa

αa

c2s
c2eff

4
c2s − w

1 + w
, (39)

where the first term on the right hand side is simply the
derivative of Q with respect to c2v (see Eq. (22)), while
the second term is directly connected to the anisotropic
stress, hence to η. It can be seen that for small enough
values of c2s and c2v, αa ∝ k2a is always smaller than
1. In particular, when k tends to zero the second term
dominates and grows, as can be seen from Figs. 3 and 1.
Instead, when k grows, and while (1 + αa) ∼ 1, the first
term behaves like k2 and the second like 1/k2, so that
the first term dominates.
Therefore, when the sound speed and the viscosity

terms are small enough, for example when c2s = c2v =
10−6, then the first term on the right hand side of
Eq. (39) is the dominant component - this is due to the
relative increase of the dark energy perturbations, which
is measured by Q. When we increase the value of c2s, the
first term in Eq. (39) starts to get smaller, as αa ∼ 1,
the two terms become comparable in size, and they con-
tribute equally to the total derivative.
We can show this numerically: for modes below the

causal horizon with k = 200H0, and assuming c2s = c2v =
10−6, the first term in Eq. (39) is of the order of 104

whereas the second term is of order unity. If we set c2s = 1
and c2v = 0 instead, we have that both terms become of
the order of 10−4.
So if both values of c2s and c

2
v are very small, the largest

contribution in the derivative of Σ comes from the term
proportional to the derivative of Q. Since, as explained
earlier, the two parameters measured by WL which con-
tribute most strongly to the determination of c2s and c2v
are Q and Σ, and since their derivatives with respect to
c2s are proportional to those with respect to c2v for small
enough scales, given that here they carry almost the same
information, these parameters will be almost degenerate.
This is reflected by the top panel (and more mildly by
the middle one) of Fig. 4 and by our WL Fisher matrix,
which will be almost singular (see also [31] on this topic).
Moreover, we can understand the degeneracy by look-

ing again at the first term on the right hand side of Eq.
(39). When c2s is very small, the term c2s − w ≃ −w so
that all dependence on the speed of sound and viscosity
parameter comes from c2eff . The degeneracy direction will
therefore be that of constant c2eff , as can be easily verified
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Parameters P (k) WL

1 total matter density Ωm0
h2 Ωm0

h2

2 total baryon density Ωb0h
2 Ωb0h

2

3 spectral index ns ns

4 matter density today Ωm0
Ωm0

5 equation of state parameter w0 w0

6 sound speed c2s c2s

7 viscosity parameter c2v c2v

For each redshift bin

8 shot noise Ps

Table I: Cosmological parameters (for the derivatives) for
galaxy power spectrum and WL survey.

from Fig. 4. An important consequence of this is that
the inversion of the matrix will be unstable and the re-
sults will not be reliable, and the reason is that our data
are not able to constrain the two parameters c2s and c2v
at the same time but only a combination of them. This
implies that the top panel of Fig. 4 cannot be consid-
ered a reliable result apart from showing us the existence
of a strong degeneracy between viscosity and speed of
sound. This is also confirmed by comparing the elements
of the relative Fisher matrix to the corresponding one for
galaxy clustering. The middle panel is slightly closer to
be reliable, while the bottom panel, where the fiducial
values are c2s = 1 and c2v = 0, is reliable because c2s is
large enough to break the degeneracy between c2s and c2v.
We summarize our results in Table II, where we indi-

cate the fully marginalized errors on c2s and c2v. Let us
recall again the caveat previously explained: errors asso-
ciated to the fiducial models c2s = c2v = 10−6 (c2s = c2v =
10−4) are strongly (considerably) unreliable as they have
been computed from an almost degenerate Fisher matrix.
We list them here only for completeness.
Before closing this section, let us look again at Eq.

(37). The summation over ℓ has been stopped at the
default “very optimistic” ℓmax = 5000 used also in [17],
which falls into deeply non-linear scales (but regards the
matter power spectrum only and is considered to be more
reliable in the standard ΛCDM case). This amounts to
believing that we will have an adequate description of this
regime for the anisotropic stress model by the time the
Euclid satellite will be launched. Moreover, our results
depend also on the assumptions made to compute the
non-linear power spectrum (we use CAMB’s implemen-
tation of the halo model and multiply it by Σ to get the
final power spectrum). We can now make two considera-
tions: first, the non-linear P (k) computed with the halo
model is certainly not accurate at small scales; second Σ
is computed assuming linearity. Hence a more consistent
approach would be to limit ourselves to less non-linear
scales. We have therefore built alternative WL Fisher
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Figure 4: Here we plot the forecasted errors on sound speed
c2s and viscosity parameter c2v from the Euclid WL survey.
Shown are the 1,2 and 3 σ Fisher ellipses for the parameters
c2s and c2v. The top panel corresponds to the fiducial c2s =
c2v = 10−6, the central panel to c2s = c2v = 10−4 while the
bottom one to the case c2s = 1 and c2v = 10−6. In the case of
the top and central panel, a very strong degeneracy between
c2s and c2v can be seen. This is because when c2s and c2v are
very small, the contributions from Σ and Q are very similar
and both constrain c2eff rather than different combinations of
c2s and c2v.

matrices using kmax = 0.5 hMpc−1, which corresponds
to ℓmax ≃ 30 and falls less deeply into the non-linear
regime. The results are shown in Fig. 5. Here, apart
from realizing that the forecasted errors become slightly
larger (due to the fact that we use less information), we
notice something interesting: the degeneracy has weak-
ened considerably. The reason for this can probably be
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WL

c2s c2v σc2s
/c2s σc2

v
/c2v

10−6 10−6 109 10.3

10−4 10−4 106 9.81

1 0 201 σc2
v
= 1.55× 10−2

Table II: Relative errors on the parameters c2s and c2v from the
Euclid WL survey. For the case c2v = 0 the absolute error σc2

v

is given.

found by looking again at Fig. 1: at larger scales (corre-
sponding to smaller ℓ) the derivatives of Q with respect
to c2s and c2v start to differ from those of Σ. Hence, since
for Fig. 1 we used a smaller number of the ℓs falling into
the interval where ∂Σ/∂X ≃ ∂Q/∂X , the total result is
less degenerate. In particular, in this case we can fully
trust the results shown in the middle and lower panels
of the aforementioned figure. Looking at Fig. 1 we can
also understand another reason why removing so many ℓs
from our Fisher matrix calculation does not make errors
on c2s and c2v much larger, but they stay of the same or-
der of magnitude (apart from the case c2s = c2v = 10−6),
compare Fig. 4 with Fig. 5. We see from Fig. 1 that
the scales most sensitive to c2s and c2v (i.e. those where
the derivatives have largest amplitude) are those around
k ∼ 0.01. Below k ∼ 0.1 there is little contribution, and
this is due to the fact that dark energy perturbations are
suppressed on small scales.
It is fair to make a final important remark: all the

results we obtained depend on the parameterization we
have used where the effects of the sound speed and the
viscosity appear linearly in a unique expression Eq. (16).
This implies in particular that it may be possible that
a different parameterization of the anisotropic stress re-
moves the aforementioned degeneracy problem.

B. Galaxy clustering

Let us now show and comment the Fisher matrix fore-
casts for the Euclid galaxy redshift survey, computed for
the same 3 fiducial models previously indicated for the
WL case, i.e. c2s = c2v = 10−6, c2s = c2v = 10−4 and c2s = 1
c2v = 0.
Following [27] we write the observed galaxy power

spectrum as:

Pobs(z, kr) =
D2

Ar(z)H(z)

D2
A(z)Hr(z)

G2(z)b(z)2
(

1 + βµ2
)2
P0r(k)

+Pshot(z) , (40)

where the subscript r refers to the values at which we
evaluate the Fisher matrix, i.e. the reference (or fiducial)
cosmological model. Here Pshot is a scale-independent
offset due to imperfect removal of shot-noise, µ is the co-
sine of the angle of the wave mode with respect to the line
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Figure 5: Same as Fig. 4 but using only scales closer to
linearity, with ℓmax = 30, which corresponds to kmax =
0.5h/Mpc−1. We notice that the degeneracy between c2s and
c2v of Fig. 4 is removed, strongly for the cases of the two low-
est panels. This is due to the fact that at larger scales the
parameters Σ and Q start carrying information on both c2s
and c2v and not only on a unique combination of them (c2eff).
The worsening of errors due to the use of a much smaller num-
ber of ℓs is not strong due to the fact that at smaller scales
our observable is less sensitive to speed of sound and viscosity
because here dark energy perturbations are suppressed.

of sight, P0r is the fiducial matter power spectrum eval-
uated at redshift zero, G(z) is the linear growth factor
of the matter perturbations, b(z) is the bias factor and
DA(z) is the angular diameter distance. The wavenum-
ber k has also to be written in terms of the fiducial cos-
mology ([27] and see also [28] and [29] for more details).

The spectroscopic survey covers a redshift range of
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GC

c2s c2v σc2s
/c2s σc2

v
/c2v

10−6 10−6 1.10 0.37

10−4 10−4 0.615 0.271

1 0 11.3 σc2
v
= 2.93× 10−4

Table III: Relative errors on the parameters c2s and c2v from
the Euclid galaxy redshift survey. For the case c2v = 0 the
absolute error σc2

v
is given.

0.65 < z < 2.05, which we divide into 14 bins of equal
width ∆z = 0.1. As regards the bias, we assume it to be
scale-independent, since this is a quite good approxima-
tion for the large linear scales which we will use. Our fidu-
cial bias was derived by [24] using a semi-analytical model
of galaxy formation, and it is the same bias function
used for the Euclid Red Book forecasts. The expected
galaxy number densities which we used can be found in
[25] and were computed by using a sophisticated simula-
tion [30]. The scales R used are such that σ2(R) ≤ 0.25,
with an additional cut at kmax = 0.20 hMpc−1 to avoid
non-linearity problems.
In the computation of the GC Fisher matrix we do not

incur in the same degeneracy problem of the WL survey:
our matrices are far from being singular, hence we can
safely produce forecasts on the errors on c2s and c2v.
The results are shown in Fig. 6, where the 1, 2 and 3σ

forecasted contours are shown for all the analyzed cases.
In the cases c2s = c2v = 10−6 and c2s = c2v = 10−4 we
notice that the errors on both parameters are best but
still of the order of 100% (only exception is σc2

v
∼ 10%

for c2s = c2v = 10−6). In the case where c2s = 1 and c2v = 0
the error on the sound speed is even larger, i.e. about
1000%.
For a more quantitative insight we list the fully

marginalized errors on c2s and c2v on Table III.

C. Combining weak lensing and galaxy clustering

As we have seen previously, it seems that WL data, if
one could remove their degeneracy, would provide quite
good constraints to speed of sound and viscosity (or at
least not much worse than GC does). Hence adding WL
data to GC observations should improve constraints on
c2s and c2v.
The simplest way to produce forecasts on our com-

bined data sets is to neglect the covariance between WL
and galaxy clustering observations. By doing so, we ob-
tain the forecasted error ellipses shown in Fig. 7, where
we also show the error ellipses from galaxy clustering
only. Here we see that WL observations reduce errors
on the two parameters, if not strongly at least visibly.
We have already explained earlier why WL observations
give degenerate constraints on c2s and c2v when these have
very small fiducial values, while the main parameters ob-
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Figure 6: Errors on the sound speed and viscosity parameter
from the Euclid galaxy redshift survey: 1, 2 and 3 σ Fisher
ellipses for the parameters c2s and c2v . The top panel corre-
sponds to the fiducial c2s = c2v = 10−6, the central panel to
c2s = c2v = 10−4 while the bottom one to the case c2s = 1 and
c2v = 10−6. Here we can see that no degeneracy is present, but
errors are again very large, of the order of ∼ 100% in almost
all cases (exceptions are σc2

v
∼ 10% for c2s = c2v = 10−6 and

σc2
v
= 1000% for c2s = 1, c2v = 0).

served by galaxy clustering are Q and G which are not
as degenerate as Q and Σ. Nevertheless, the reason why
galaxy clustering observations give the main contribution
in constraining c2s and c2v, as can be seen by noticing the
relatively small improvement in the combined errors in
Fig. 7, probably lies only in the properties of the survey,
and most likely the very small redshift error has a big



12

WL + GC

c2s c2v σc2s
/c2s σc2

v
/c2v

10−6 10−6 1.08 0.28

10−4 10−4 0.604 0.197

1 0 11.3 σc2
v
= 4.5× 10−5

Table IV: Relative errors on the parameters c2s and c2v from
the Euclid survey, including WL and GC data and neglecting
correlations between them. For the case c2v = 0 the absolute
error σc2

v
is given.

role in this too.
When combining GC data to the more conservative

WL data (computed using kmax = 0.5 h/Mpc), the latter
do not improve constraints. For this reason it will be very
important in the future to build a reliable model for the
non-linear regime, both for the standard ΛCDM model
and for our imperfect fluid model.
We summarize the result of joining WL and GC data

on the fully marginalized errors on c2s and c2v in Table IV.
A final remark to close this section: to produce a more

accurate forecast of how the combination of WL and GC
data will affect errors on c2s and c2v we would need to
evaluate accurately the covariance between the two data
sets. Although the number of galaxies observed spectro-
scopically is only ∼ 1/4 of those observed photometri-
cally, and we do not expect covariance to be very large,
it could affect the estimate. This is left for future work.

V. MODEL COMPARISON

To understand more quantitatively whether Euclid will
be able to distinguish viscous dark energy from other less
exotic models, we estimate in this section the expected
Bayesian evidence, which gives a measure of the proba-
bility of one model with respect to the other.
The Bayes’ factor B12 of modelsM1 andM2 is defined

as the ratio of the model likelihoods through (see [32])

p(M1|d)
p(M2|d)

=
π(M1)

π(M2)
B12, (41)

where p(Mi|d) is the normalized posterior probability
distribution of Mi and π(Mi) is the prior probability
distribution for the model. If we do not have any reason
to prefer one model over the other before we see the data,
then π(M1) = π(M2) = 1/2 and

B12 =
p(M1|d)
p(M2|d)

. (42)

In the case of nested models, i.e. when M1 can be ob-
tained from M2 by fixing the parameter(s) ω to ω∗, the
expression of B12 can be simplified to give the Savage-
Dickey density ratio (SDDR), see e.g. [33]:

BSDDR
12 =

p(ω|d,M2)

π(ω|M2)

∣

∣

∣

∣

ω=ω∗

, (43)
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Figure 7: Errors on sound speed and viscosity parameter from
GC (red solid ellipses) , and from the combination GC and
WL data (blue dashed ellipses): 1σ Fisher ellipses for the pa-
rameters c2s and c2v. The top panel corresponds to the fiducial
c2s = c2v = 10−6, the central panel to c2s = c2v = 10−4 while
the bottom one to the case c2s = 1 and c2v = 10−6. The Fisher
matrices were produced by neglecting the covariance between
WL and GC observations. It can be seen that the addition
of WL data improves visibly the constraints, by mostly con-
straining c2v.
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where p(ω|d,M2) is the normalized posterior probability
distribution and π(ω|M2) is the prior probability distri-
bution for the parameter ω of model M2, marginalized
over all other parameters.
The ratio of the model probabilities can be interpreted

as “betting odds”, and since we set the prior probabili-
ties of all models equal, the same is true for the Bayes
factors between models. It makes then sense to use loga-
rithm of the Bayes factor, which we will call the Bayesian
evidence,

E = lnB12. (44)

We will use the interpretation of E in terms of Jeffrey’s
scale [34] as given in [33]: The evidence of one model
against another one is denoted as not significant, sub-
stantial, strong or decisive when |E| is < 1, 1−2.5, 2.5−5
and > 5, respectively.
In order to understand whether a positive viscosity can

be distinguished from no viscosity by our data, let us take
as our model M1 a k-essence fluid, i.e. a dark energy
model where the sound speed is a free parameter. Hence
we will have free c2s while having fixed c∗v

2 to zero. Our
model M2 will be instead the full viscous dark energy
model. For M2’s extra parameter c2v, we choose a flat
prior π(c2v|M2) in the range 0 ≤ c2s ≤ 1, andM1 is nested
in M2 at c2v = 0. The motivation for choosing a positive
value for c2v is to avoid instabilities in the solution for the
anisotropic stress function (see [10] for a more detailed
explanation). As our likelihood function we take the one
forecasted with the Fisher matrix method: p(d|xi,M2) ∝
exp

[

−1/2(xi − x̄i)
TFxixj

(xj − x̄j)
]

, where x̄i is the fidu-
cial value of parameter xi. We marginalize the likelihood
function p(d|xi,M2) over all possible values of c

2
s so that

we obtain

p(d|c2v,M2) =
1

N
exp

[

−1

2

(

c2v − c̄2v
σc2

v

)2
]

, (45)

where σc2
v
is estimated with the Fisher matrix: σc2

v
=

(F−1)c2
v
c2
v
and the normalization constant of the like-

lihood is N =
√
2πσc2

v
. Our posterior p(c2v|d,M2) ∝

p(d|c2v,M2)π(c
2
v|M2) is hence nonzero only in the inter-

val 0 ≤ c2v ≤ 1, where it is given by

p(c2v|d,M2) =
1

N ′
exp

[

−1

2

(

c2v − c̄2v
σc2

v

)2
]

, (46)

where the normalization constant N ′ is computed by in-
tegrating p(c2v|d,M2) over the interval 0 ≤ c2v ≤ 1. The
Bayesian evidence is therefore

E ≡ lnB12 = ln
∆c2v
N ′

− 1

2

(

c∗v
2 − c̄2v
σc2

v

)2

. (47)

where ∆c2v is the interval in c2v allowed by the flat prior,
so that ∆c2v = 1 in our case. Let us understand in detail
the meaning of this equation. A positive E will indicate

Bayesian evidence E = lnB12

M1: fluid K-essence (variable c2s, c
2
v = 0)

c̄2s = 1 c̄2v = 0 c̄2s = c̄2v = 10−4 c̄2s = c̄2v = 10−6

GC 7.9 2.8 10.2

GC + WL 9.8 −3.0 7.8

Table V: Bayesian evidence, lnB12, for the models M1 and
M2, where M1 is a fluid k-essence model, with c2s allowed
to vary and no viscosity, while M2 is a viscous dark energy
model. We compute lnB12 for different posterior means c̄2s
and c̄2v.

evidence in favor of M1, i.e. k-essence, while a nega-
tive E will correspond to evidence in favor of M2, i.e.
viscous dark energy. |E| indicates the strength of this
evidence and can be compared to Jeffreys’ scale, as ex-
plained above. The term −(1/2)(c∗v

2− c̄2v)2/σ2
c2
v

measures

the distance between the model with posterior mean c̄2v,
in our case the chosen fiducial c2v, and the simpler model,
in our case k-essence (c∗v

2 = 0). We see that this term
is always negative, meaning that it contributes evidence
in favor of model M2. It accounts for the fact that the
“true” (fiducial) model is fitting the data better (by con-
struction in our case). The term ln∆c2v/N

′ measures the
ratio of the area of the c2v parameter space allowed by the
more complex model to the area of the error ellipse. It
represents therefore the “Occam razor” term, disfavoring
too complex models that “waste” too much of the prior
space. Since in our case ln∆c2v = 0, we are left with the
term − lnN ′. This is the only term that can push the ev-
idence towards positive values, in favor of model M1 i.e.
k-essence. When the simpler model is favored, it means
that the improvement gained by having a better fit to the
data is not compensating for the increased complexity of
the model.

Our results are summarized in Table V. We notice
that the only case where there is (strong) evidence in
favor of viscous dark energy corresponds to the choice of
posterior mean c̄2s = c̄2v = 10−4 and to the use of both
WL and GC. In all the other cases the simpler k-essence
is favored, so Euclid data alone are not enough to allow
a detection of viscosity. An important reason for this
result comes from our choice of prior which implies that
we would have expected to measure any c2v between 0
and 1 with equal probability. When the data favors a
c2v very close to zero then Occam’s razor indicates that
exactly zero is the better answer. Overcoming this effect
then requires a highly significant detection of c2v 6= 0.
Of course in the case where the fiducial model has zero
viscosity necessarily the simpler model is always favored,
and having more data strengthens its evidence.

The effect of the prior is shown in Fig. 8, where the
black thin (red thick) lines indicate the case where the
fiducial (true) model has c̄2v = c̄2s = 10−6 (c̄2v = c̄2s =
10−4). Solid (dashed) lines represent the use of GC (GC
and WL) data. Here we notice that, as we expect, when
the range of the flat prior is of the order of the fiducial
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Figure 8: Bayesian evidence, lnB12, for the models M1 (a
k-essence fluid with arbitrary constant sound speed c2s) and
M2 (viscous dark energy), as a function of ∆c2v, i.e. the range
in c2v allowed by our (flat) prior: ∆c2v = c2v,max − c2v,min,

where we fix c2v,min to 0. The black thin (red thick) lines
represent the case where the fiducial model (also best fit of
the posterior) is c̄2v = c̄2s = 10−4 (c̄2v = c̄2s = 10−6). The solid
(dashed) lines indicate the use of GC (GC and WL) data.
The darker (lighter) shaded regions correspond to decisive
(strong) evidence in favor of viscous DE (where lnB12 < 0)
or k-essence (where lnB12 > 0). We see that the evidence
in favor of viscous DE increases until the c2v,max of the prior
reaches a value of the order of the fiducial c2v considered, and
then decreases as the log of ∆c2v, reaching eventually evidence
in favor of k-essence. In the case of using only GC data, we
see that when choosing c̄2v = c̄2s = 10−6, it is not possible to
reach decisive but only strong evidence, while when c̄2v = c̄2s =
10−4 decisive evidence is reached when ∆c2v ≃ 10−4. Adding
WL data allows also decisive evidence in favor of the model
with c̄2v = c̄2s = 10−6 to be reached (if ∆c2v ≃ 10−6). Also,
using joint GC and WL data, decisive evidence in favor of the
viscous DE model with c̄2v = c̄2s = 10−4 is reached for any
prior having ∆c2v between 2× 10−5 and 10−1.

value of c2v then we obtain the maximal evidence in favor
of the viscous DE model. As soon as the interval allowed
by the prior becomes much larger than the expected value
for c2v, the more complex model is disfavored as it wastes
too much prior space, and the evidence in favor of the
simpler k-essence model starts growing (as the log of ∆c2v)
until the k-essence model becomes favored. In particular
we see that, when using both GC and WL, the evidence
in favor of viscous DE becomes decisive in the case c̄2v =
c̄2s = 10−4 if the prior is 2 × 10−5 . ∆c2v . 10−1, in the
case c̄2v = c̄2s = 10−6 only in the narrower range 8×10−7 .
∆c2v . 2×10−6. We finally note that if the prior range is
much smaller than the fiducial value, then the posterior
(which is limited by the prior) becomes flatter and flatter
so that the Bayes’ factor converges towards unity for very
small priors.

We could also have compared standard quintessence
(c2s = 1 and c2v = 0) to our viscous dark energy model.

However, for all cases with small sound speeds we would
have obtained a very decisive evidence in favor of viscous
dark energy – but the result would have been driven by
the detection of a sound speed different from the speed
of light, rather than by a non-zero viscosity: as shown in
[18], it is possible to clearly distinguish the true sound
speed from cs = 1 for cs . 10−2 even in the absence
of viscosity (at least for our choice of w = −0.8). The
use of k-essence as the comparison model allows to focus
exclusively on the question whether a non-zero viscosity
could be detected.

VI. CONCLUSIONS

In this work we have studied how well a viscous dark
energy model can be constrained by the Euclid weak lens-
ing and galaxy clustering surveys.
The model was first proposed by [11] to describe a fluid

with anisotropic stress due to viscosity. It can reproduce
the neutrino anisotropy up to the quadrupole, and set-
ting the anisotropy parameter c2v to zero reduces it to
the standard case of no viscosity. Our dark energy im-
perfect fluid is hence parameterized by c2v, together with
the speed of sound and the background equation of state.
The Euclid survey is in principle particularly apt to

constrain our model because – through both its WL and
galaxy 3D power spectrum probes – it measures, together
with the background expansion, also the metric perturba-
tions, which is essential to constrain perturbation quan-
tities such as the viscosity and the speed of sound.
As regards WL, before forecasting the errors with the

Fisher matrix technique, we have analyzed the WL power
spectrum. We have found that it constrains the cluster-
ing parameter Q, the WL potential Σ and the growth
factor G. Of these, the most sensitive to c2s and c2v
are Σ and Q. For very small values of the speed of
sound and the viscosity, their dependence on these pa-
rameters is identical at most scales. This generates a
problem for WL constraints, as they will be almost com-
pletely degenerate. This is evident once we compute the
forecasted errors. We do this for three fiducial models:
c2s = c2v = 10−6, c2s = c2v = 10−4 and c2s = 1 c2v = 0
but due to the degeneracy problem the only reliable er-
rors are those computed for the last case and amount to
σc2s = 201, σc2

v
= 1.55 × 10−2. The previous results cor-

respond to the optimistic case of having a reliable model
for the non-linear modes up to ℓ = 5000. If we use the
more realistic limiting ℓ = 30, the degeneracy is weak-
ened – because less of the degenerate scales are used –
and we can also trust results for the case c2s = c2v = 10−4,
but the errors get even worse.
As regards the galaxy power spectrum, it constrains

Q, G and the growth rate f through redshift space dis-
tortions. The most sensitive parameters to the speed of
sound and the viscosity are here Q and G, and, contrary
to the WL case, there is no degeneracy problem. Us-
ing the Fisher matrix method, we forecast errors on our
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model’s parameters. They are of the order of 100% for
both c2s and c2v for the fiducial models c2s = c2v = 10−6

and c2s = c2v = 10−4, while they are of about 1000% on
c2s for the fiducial case c2s = 1, c2v = 0.
If we combine the optimistic WL forecast and GC con-

straints (assuming no covariance between these data)
we improve visibly our results, while when adding the
more pessimistic WL case to galaxy power spectrum con-
straints are left almost unchanged.
To quantify the ability of Euclid to distinguish viscous

dark energy from models with no viscosity, we evaluate
the Bayesian evidence and find that for the fiducial model
with c2s = c2v = 10−4 the joint GC and WL survey will be
able to provide strong evidence in favor of viscosity, while
in all other cases the higher complexity of the model is
not compensated by a better fit to the data. This is
partially due to our choice of uniform prior on c2v in the
range [0, 1]. If we relax this assumption we find that it
is possible to obtain decisive evidence in favor of viscous
DE even with GC data alone if the range of c2v allowed
by the prior is of the order of the fiducial c2v, and for a
wider choice of prior range when using both GC and WL
data and for the case c̄2v = c̄2s = 10−4.
Summarizing, future galaxy surveys like Euclid will

only marginally be able to constrain viscous dark energy
models. This statement depends of course on the model
being analyzed. Some modified gravity models have a
larger effective anisotropic stress than the viscous dark
energy models considered here, and Euclid may have a
better chance at detecting a non-zero σ in this case. Al-

ternatively one could combine Euclid with other observa-
tions such as the cosmic microwave background, cluster
counts, data from type-Ia supernovae and ISW measure-
ments: all these observable constrain themselves c2s and
c2v and/or reduce the errors on background parameters
and therefore reduce also marginalized errors on pertur-
bation quantities. These interesting developments are
left to future work.
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