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Abstract

Holographic models of superconductors successfully reproduce certain experimental features of

high-temperature superconductors, such as a large gap-to-Tc ratio compared to that of conventional

superconductors. By deconstructing the extra dimension of these holographic models, similar phe-

nomenology is described by a class of models defined in the natural dimension of the supercon-

ducting system. We analyze the sensitivity of certain observables in holographic and deconstructed

holographic superconductors to details of the extra-dimensional spacetime. Our results support the

notion that certain quantitative successes of simple models of this type are accidental. However,

we also find a certain universal relationship between superconducting observables.
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I. INTRODUCTION

Holographic models of nonperturbative physical systems have been more successful quan-

titatively than should have been expected. The most developed applications of holographic

model building are to quantum chromodynamics (QCD) [1, 2], electroweak symmetry break-

ing [3] and condensed matter systems, especially superconductors [4, 5]. Arguments based

on insensitivity to model details [6], approximate conformal invariance [7] and decoupling of

high-dimension states and operators [8] have been put forward in an attempt to understand

the unreasonable effectiveness of some of these models.

Holographic models of 3+1 dimensional systems are 4+1 dimensional theories in which

the behavior of fields near the boundary of the spacetime, typically Anti-de Sitter (AdS)

space, determines the properties of the corresponding lower-dimensional system. However,

gauge theories in more than 3+1 dimensions are generally nonrenormalizable. Deconstruc-

tion of extra dimensions provides a gauge-invariant completion of higher-dimensional gauge

theories [9, 10]. A deconstructed extra-dimensional model is a lower-dimensional theory

which, below some energy scale, has an effective description in which one or more extra di-

mensions are latticized. Deconstruction is useful for model building in that it is sometimes

possible to reduce the number of “lattice sites” to just a few while maintaining the interest-

ing phenomenology of a higher-dimensional model, yielding a relatively simple model of the

system of interest. For example, in the context of electroweak symmetry breaking, decon-

struction provides one route to little Higgs models [11]. More recently, this approach has

been used to construct models with some of the properties of holographic superconductors,

even though defined in the natural dimension of the superconducting system [12].

Among the successful predictions of holographic models are certain features of high-

temperature superconductors such as an enhanced ratio of the superconducting gap (∆)

to the critical temperature (Tc) [5]. Bottom-up holographic models of finite-temperature

systems typically begin with an AdS-Schwarzschild or AdS-Reissner-Nordstrom black hole

geometry, the latter taking into account the backreaction of charge density on the geometry.

These geometries are chosen mainly for simplicity, but in holographic models of supercon-

ductors derived from string theory [4], the spacetime geometries may be more complicated

and depend on the fluxes of fields associated with D-brane configurations. Other geometric

backgrounds in holographic models arise as the induced metric on a brane embedded in a
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higher-dimensional spacetime, such as on the flavor branes in the holographic QCD model

of Sakai and Sugimoto [2], and these induced geometries are not derived as the solution to

Einstein’s equation with a specified energy-momentum tensor.

It is the goal of this paper to explore the sensitivity of observables to variations in the

details of holographic models of superconductors and in deconstructed variations of those

models. As such, we consider holographic superconductors in generalizations of the 3+1

dimensional AdS-Schwarzschild metric. We find certain generic features in the phenomenol-

ogy of these models, but details such as the ratio of the superconducting gap to the critical

temperature are sensitive to the model details, which suggests that successful quantitative

predictions in prototypical models are likely accidental. This is not to say that those models

will not prove valuable in explaining the puzzling properties of unconventional supercon-

ductors, only that quantitative predictions are more model dependent than one might have

hoped. It has already been noted that there are quantitative and even qualitative distinc-

tions between superconducting models, for example between those which take into account

the backreaction of the charge density on the metric and those that don’t [5]. The work

presented here focuses on sensitivity to the extra-dimensional spacetime, parametrizing the

AdS black-hole metric in a particular way in order to quantify the variability of supercon-

ducting observables in a class of holographic models and in deconstructed versions of those

models.

A. Holographic Superconductors

Here we briefly review the construction of holographic superconductor models and the

calculation of observables in those models. In a holographic superconductor, a charged field

condenses in an extra-dimensional black-hole background whose Hawking temperature is

below some critical temperature Tc. The temperature of the lower-dimensional system is

identified with the Hawking temperature of the higher-dimensional black hole [13]. The

charged condensate spontaneously breaks the electromagnetic U(1) gauge group1 and gives

rise to superconducting phenomenology [5].

1 To be precise, the U(1) gauge invariance of the holographic model corresponds to a global U(1) symmetry

of the lower-dimensional system. However, as argued in Ref. [5], this global U(1) can be weakly gauged

in order to determine some aspects of the dynamics of the corresponding superconducting system.
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In this work we ignore the backreaction of the charge density on the spacetime geometry,

and for now we consider an Abelian Higgs model in a 3+1 dimensional AdS-Schwarzschild

spacetime background. This is meant to describe a system which is superconducting in two

spatial dimensions, e.g. the copper-oxide planes of cuprate superconductors. We can choose

coordinates such that the lengths are normalized to the AdS scale and the metric has the

form

ds2 =
1

z2

[

f(z)dt2 − 1

f(z)
dz2 − (dx2 + dy2)

]

, (1.1)

where

f(z) = 1− zp

zpH
, (1.2)

with p = 3 corresponding to the 3+1 dimensional AdS-Schwarzschild metric.

With the Euclidean time τ ≡ it compactified with period 1/T , the Hawking temperature

associated with the modified black-hole metric follows from the condition that there be no

conical singularity at the horizon. In the absence of a conical singularity, if z∗ is the proper

distance from the horizon z = zH to a nearby point displaced only in the radial (z) direction

and β∗ is the proper circumference of the Euclidean-time circle at that fixed radial position,

then 2πz∗ = β∗. For metrics of the form (1.1), for small proper displacements from the

horizon,

2πz∗ = 2π

∫ zH

zH−ε

dz

z
√

f(z)
=

∫ zH

zH−ε

dz

zH
√

−(zH − z)f ′(zH)

=
4π

√
ε

zH
√

−f ′(zH)
, (1.3)

β∗ =

√

f(zH − ε)

zH − ε

1

T
=

√

−f ′(zH)

zH

√
ε

T
, (1.4)

and with f(z) given by Eq. (1.2), the Hawking temperature is then:

T = − 4π

f ′(zH)
=

p

4πzH
. (1.5)

In the continuum model, observables are independent of the choice of coordinates. How-

ever, away from the continuum limit, the deconstructed models are sensitive to the lat-

ticization of the extra dimension, which in turn depends on the coordinate choice. In the

continuum model, the action for the scalar field ψ and U(1) gauge field AM (M ∈ {0, 1, 2, 3})
is

S =

∫

d4x
√
g

[

−1

4
FMNF

MN + |(∂M − iAM )ψ|2 −m2|ψ|2
]

, (1.6)
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where gMN is the metric defined by Eq. (1.1). For definiteness we take m2 = −2 in AdS

units, as in Refs. [5] and [12].

Near the boundary z = 0, the field ψ has solutions

ψ(z) ∼ ψ(1)z + ψ(2)z2. (1.7)

In this model both independent solutions for ψ(x, z) have finite action, so the AdS/CFT

interpretation of the two solutions is ambiguous. Here we choose the interpretation that ψ(2)

is the condensate of the Cooper pair operator, while ψ(1) would then be the external source

for that operator, which we assume vanishes. Hence, ψ(1) = 0 is a boundary condition for

the solutions of interest.

The bulk U(1) gauge field, AM , is dual to the electric current and the background elec-

tromagnetic field. In order to allow for nonvanishing chemical potential and charge density,

we consider solutions in which the time component, A0, is nonvanishing. The equations of

motion have solutions for which A0 behaves near the boundary as

A0 ∼ µ− ρz, (1.8)

where µ is the coefficient of the non-normalizable solution and is identified with the chemical

potential, which is a source for ρ, the charge density.

The phenomenology of the model is determined by fixing the temperature T as it appears

in the AdS black-hole metric, solving the coupled equations of motion for ψ and AM subject

to the ultraviolet (i.e. z = 0) boundary conditions ψ(1) = 0, A0(0) = µ, and the infrared

(i.e. z → zH) boundary conditions A0(zH) = 0 and f ′(zH)zHψ
′(zH) = m2ψ(zH). The last

condition follows from the equations of motion, but is enforced as a regularity condition on

the numerical solutions. The Cooper pair condensate 〈O2〉 and background charge density

are then determined by ψ(2) (c.f. Eq. (1.7)) and ρ (c.f. Eq. (1.8)), respectively. Varying

the temperature T then allows for a determination of the phase structure of the model, as

〈O2〉 = 0 for T > Tc.

To analyze the frequency-dependent conductivity we fix the background for ψ and instead

solve the equations of motion for AM in a background with Aa = e−iωtεaA(z), a ∈ {1, 2},
corresponding to a uniform oscillating background electric field Ea = ∂0Aa|z→0, polarized in

the εa direction. Solutions are chosen to be ingoing at the horizon in order to enforce causal

behavior of the current two-point function [14]. The solution for Aa ∼ A
(0)
a + Jaz as z → 0
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then determines the electric current Ja(ω), from which the conductivity, σ = Ja/Ea follows.

A generic feature of superconductors is the existence of a frequency gap ωg below which

there are no modes available to excite and generate a current, so that σ(ω) = 0 for ω < ωg

for T = 0. For nonvanishing temperature, even as ω → 0 the current may be nonvanishing,

where for small enough temperature σ(ω → 0) ∝ exp−∆/T , where ∆ is the superconducting

gap. From the weakly coupled BCS theory, we would expect ∆ ≈ ωg/2, which also appears

to be satisfied in the original model of Ref. [5].

B. Deconstructed Holographic Superconductors

We will study a class of models, based on the models of Ref. [12], in which the extra

dimension of the holographic superconductor is deconstructed. Models with certain similar-

ities to these were also considered in Ref. [15]. The higher-dimensional U(1) gauge theory is

replaced by a U(1)N gauge theory in one fewer dimension, where N → ∞ in the continuum

limit. Scalar link fields charged under “neighboring” pairs of U(1) gauge groups are arranged

to have prescribed expectation values, breaking the U(1)N gauge group in such a way that

the resulting action is that of the latticized higher-dimensional theory. The massive gauge

fields replace the Kaluza-Klein modes in the continuum model. The fluctuations of the link

fields do not correspond to degrees of freedom in the continuum theory, so we assume that

they are heavy compared to the scales of interest in our analysis and disregard them in our

analysis.

Expanding the fields in components, the action of the holographic model is,

S =

∫

d4x

[

1

2
F 2
0z +

1

2f(z)
F 2
0a −

f(z)

2
F 2
za −

1

4
F 2
ab +

1

z2f(z)
|∂0ψ − iA0ψ|2

−f(z)
z2

|∂zψ − iAzψ|2 −
1

z2
|∂iψ − iAiψ|2 −

1

z4
m2|ψ|2

]

, (1.9)

where the lower-case Latin indices a, b are summed over the x and y coordinates. We now

latticize the spacetime in one dimension by replacing the z coordinate by a discrete set of

N points:

zj =







ǫ+ (j − 1)a for j = 1, . . . , N − 1

ǫ+ (N − 2) a+ aH for j = N ,
(1.10)

where zN = zH , a is the lattice spacing in z-coordinates, and ǫ is a UV cutoff. The Lagrangian
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for the deconstructed theory is of the form,

L =
N−1
∑

j=2

[

−1

4
(Fµν)j(F

µν)j + Zj|Dµψj |2
]

+
N−1
∑

j=1

[

|DµΣj |2 − ZjVj
]

, (1.11)

where Vj is the scalar potential for link field Σj , and the coefficients Zj and metric factors

gjµν by which indices are contracted vary with lattice position j. The parameters in the

model may be chosen (see Ref. [12] for more details) such that the effective theory below

the scale set by the link fields is given by the Lagrangian,

L =

N−1
∑

j=1

aj

[

1

2
(φ′

j)
2 − fj

2
(A′

aj)
2 − fj

z2j
|ψ′

j|2
]

+

N−1
∑

j=2

aj

[

1

2fj
(F0a)

2
j −

1

4
(Fab)

2
j

]

+

N−1
∑

j=2

aj

[

1

z2j fj
|∂0ψj − iφjψj |2 −

1

z2j
|∂aψj − iAajψj |2 −

1

z4j
m2|ψj |2

]

, (1.12)

where φj ≡ A0
j , fj ≡ f(zj), and the primes correspond to discretized derivatives, for example

φ′
j ≡

φj+1 − φj

a
. (1.13)

The U(1) gauge group at the first lattice site (the UV boundary site) is identified with the

electromagnetic gauge group. Solutions to the equations of motion with discretized versions

of the boundary conditions on the fields ψ and AM allow for the calculation of observables

by analogy with the holographic analysis in the continuum model [12]. In the case of a

small number of lattice sites there is no a priori reason to expect phenomenology similar to

that of the continuum model. Indeed, we find significant deviation from the predictions of

the continuum model, though certain qualitative features remain. More complete details of

these computations are presented below.

II. RESULTS

To consider the sensitivity of observables to the spacetime geometry, we allow the power

p in Eq. (1.2) to deviate from its value p = 3 corresponding to the AdS-Schwarzschild

spacetime. For generic p the metric is not a solution to Einstein’s equations with a prescribed

energy-momentum tensor. However, the initial choice of AdS-Schwarzschild geometry was

made for simplicity and is equally arbitrary, and we can imagine either fluxes of fields

that would give rise to the requisite energy-momentum tensor, or we can imagine that the
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class of spacetimes described here corresponds to the induced metric on a brane embedded

in a particular higher-dimensional spacetime. The goal here is to parametrize a class of

deviations from the prototypical spacetime in order to analyze the sensitivity of observables

to the detailed form of the spacetime metric. Our particular choice of parametrized metric

is mostly arbitrary, though the class of spacetimes considered here remains asymptotically

AdS near the boundary at z = 0.

We first analyze the continuum theory for p = 3, 3.5 and 4. In our numerics, we cut

off the spacetime in the UV at z = 10−4 and near the horizon at z = zH − 10−5. We

impose the boundary conditions discussed previously, and we fix ρ = 1, which by a scaling

relation in the model also fixes Tc ∝ ρ1/2 [5]. The superconducting condensate and the real

part of the conductivity are plotted in Fig. 1. The delta function in the real part of the

conductivity may be inferred from a pole in the imaginary part, not shown in the figure, by

the Kramers-Kronig relation for the conductivity.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0
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T
Tc

<O2>

Tc

0 10 20 30 40
0.0
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0.4

0.6

0.8

1.0

1.2

1.4

Ω

T

ReHΣL

FIG. 1: The condensate 〈O2〉 and the real part of conductivity σ, at T/Tc = 0.5, for the continuum

theory. Solid, dashed and dotted curves have p = 3, 3.5 and 4, respectively. The arrow indicates a

Dirac delta function. The critical temperature Tc in unit of ρ1/2 for p = 3, 3.5 and 4 are 0.119, 0.135

and 0.153, respectively.

At low temperature the conductivity features a sharp gap below which the real part of

the conductivity nearly vanishes. At the gap frequency, Re(σ) display a step-function type

behavior, while Im(σ) has a sharp local minimum. Even at larger temperatures, we define

the gap frequency ωg as the location of the local minimum of Im(σ). In Fig. 2, we plot the

conductivity with respect to frequency scaled in units of
√

〈O2〉. Note that the three plots

are nearly identical. In particular, the ratio ωg/
√

〈O2〉 at the minimum of Im(σ) is nearly
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FIG. 2: The conductivity at T/Tc = 0.5 for the continuum model with different values of p in the

metric. The solid lines are the real part of the conductivity, the dashed are the imaginary part.

The p values for plots from left to right are 3, 3.5 and 4, respectively. The delta function in the

real part at ω = 0 is not shown. Note the similarity of the three plots.

idependent of p in this range. However, as we will see there are important quantitative

distinctions at small ω.

It was noted in the original model of Ref. [5] that the gap-to-Tc ratio is larger in the

holographic model than in the weakly-coupled BCS theory, in rough quantitative agreement

with experimental results in high-temperature superconductors. The normal component of

the DC conductivity is defined as nn ≡ limω→0Re[σ(ω)]. For low enough temperatures, we

find that

nn ∼ e−∆/T , (2.1)

in which ∆ = Cp

√

〈O2〉, for some constant Cp. The coefficient ∆ in the exponent is the

superconducting energy gap. In order to compare with ωg found previously, we fit our data

for a range of T/Tc around 0.5, which gives a good exponential fit for nn in that range, with

relatively large ∆/T > 6. The results are summarized in Table I.

p 3.0 3.5 4.0
√

〈O2〉

Tc
8.28 7.29 6.49

∆√
〈O2〉

0.50 0.54 0.59

ωg√
〈O2〉

0.97 0.98 0.98

TABLE I: Observables for the continuum theory, at T/Tc = 0.5.

We next examine the deconstructed model with p = 3, 3.5 and 4 forN ∈ {5, 10, 100, 1000}.
We generally set the UV cutoff at z = ǫ = 1, except for the case N = 1000, for which we set
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ǫ = 0.1 to better match the continuum model. The lattice spacing at the horizon is fixed

at aH = 10−5, decoupled from the lattice spacing in the bulk which varies as the horizon

moves with temperature. We again use a scaling relation to set ρ = 1 so that Tc is fixed. As

discussed in [12], we have the following discretized version of the boundary conditions:

φ′
1 = −ρ = −1 , ψ(1) = 0 , φN = 0 , and ψ′

N−1 =
2

3zN
ψN , (2.2)

where the primes are discretized derivatives as in Eq. 1.13. Electromagnetism is defined as

the U(1) interaction at the UV boundary site, i.e. the lattice site closest to z = 0. We

find solutions for which the x-component of the bulk gauge fields oscillate while the other

components do not fluctuate,

Axi(t) = e−iωtAxi, (2.3)

where on the right-hand side of Eq. (2.3), Axi is time-independent. The conductivity σ =

Jx
1 /Ex1 is found to be given by a discretized version of the holographic calculation for σ in

the continuum model:

σ = −if1(Ax2 − Ax1)/a

ωAx1
. (2.4)

To obtain reasonable phenomenology we find that an ingoing-wave type boundary condition

is necessary even in the deconstructed models. Due to the behavior of the metric near the

horizon, we find it beneficial to impose a discretized version of the ingoing-wave boundary

condition a bit away from the horizon in order to better mimic the continuum solutions. In

particular, we impose the frequency-dependent boundary condition of Ref. [12]:

AxN−n = 1 and AxN−n−1 = 1− iωa

fN−n−1

. (2.5)

The shift into the bulk, given by n, is chosen to be n = 20, 10, 2 and 2 for N = 1000, 100, 10

and 5, respectively. In Fig. 3 we plot the condensate and the real part of the conductivity

for p = 3. It was suggested in Ref. [12] that the large resonances in the conductivity may

correspond to exciton-polariton resonances due to the broken U(1) gauge groups in the

model. The p = 3.5 and 4 cases are qualitatively similar, and some examples are given in

Fig. 4. The critcal temperatures at which the condensate starts to form are listed in Table II.

To further analyze observables in the deconstructed models we mimic the analysis of the

continuum model. It can be seen directly from the locations of the minimum of Im(σ) in

Fig. 4 that ωg/
√

〈O2〉 6= 1, but its value is not sensitive to p in the range examined, even in
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FIG. 3: The condensate 〈O2〉 and the real part of the conductivity for the deconstructed model for

p = 3 and T/Tc = 0.5. The solid curves correspond to N = 1000 lattice sites. The dashed curves,

in order from top to bottom near the origin in the left-hand plot and from bottom to top in the

right-hand plot correspond to N = 100, 10 and 5, respectively. The arrow indicates a Dirac delta

function from the DC superconductivity.

N 1000 100 10 5

p = 3 0.118 0.104 0.094 0.079

Tc 3.5 0.134 0.118 0.107 0.090

4 0.151 0.132 0.121 0.101

TABLE II: Critical temperatures in units of ρ1/2.

the 5-site model. The relation (2.1) continues to be well satisfied and defines the gap ∆ as

in the continuum model. The pole in the imaginary part of the conductivity is manifest in

Fig. 4, and is related to the delta-function in the real part via a Kramers-Kronig relation.

The results for observables are listed in Table III.

III. CONCLUSIONS

We have analyzed the dependence of the charged condensate and the complex conductiv-

ity on the form of the black-hole metric in holographic superconductors and in deconstructed

versions of those models. We found that certain model predictions are relatively insensitive

to the details of the spacetime. For example, the approximate relation between the gap
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FIG. 4: The conductivity at T/Tc = 0.5 for the deconstructed model. The solid lines are the real

part of conductivity, the dashed are imaginary. The p values for plots from left to right are 3, 3.5

and 4, respectively. The rows of plots from top to bottom correspond to N = 1000, 100, 10 and 5,

respectively.

frequency and the superconducting condensate,

ωg/
√

〈O2〉 = 1, (3.1)

persists while the metric is varied in the continuum model. In the deconstructed model

this ratio differs from 1, but remains insensitive to the deconstructed metric. On the other

hand, we have seen relatively strong dependence of other observables on the details of the
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N 1000 100 10 5

p = 3 7.77 7.32 6.38 5.29√
〈O2〉

Tc
3.5 6.85 6.48 5.61 4.62

4 6.09 5.78 4.99 4.09

3 0.52 0.52 0.48 0.28

∆√
〈O2〉

3.5 0.58 0.58 0.56 0.33

4 0.64 0.64 0.63 0.38

3 1.03 1.55 1.22 1.83

ωg√
〈O2〉

3.5 1.05 1.60 1.26 1.84

4 1.06 1.64 1.30 1.85

TABLE III: Observables for the deconstructed model. The
√

〈O2〉 and ωg in the table are taken

at T/Tc = 0.5.

metric, such as the ratio of the superconducting gap ∆ to Tc. Furthermore, in deconstructed

models we found that this ratio can be significantly smaller than in the continuum model.

The model sensitivity supports the conclusion that the quantitative success of the simplest

holographic models of superconductors is accidental. However, qualitative features of these

and related models continue to suggest the possibility of explaining some of the unusual

properties of unconventional superconductors. For example, in addition to a large gap,

related models describe a strange metallic phase [16] in which the resistivity does not vary

like T 2 as in the Fermi liquid description of metals. In an effort to make contact with physical

systems, it remains important to continue to investigate which aspects of the holographic

models and their deconstructed cousins are responsible for the nonconventional behavior of

the superconductors described by these models.
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