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Abstract

We use matrix models to characterize deconfinement at a nonzero temperature T for an SU(2)

gauge theory in three spacetime dimensions. At one loop order, the potential for a constant

vector potential A0 is ∼ T 3 times a trilogarithm function of A0/T . In addition, we add various

nonperturbative terms to model deconfinement. The parameters of the model are adjusted by

fitting the lattice results for the pressure. The nonperturbative terms are dominated by a constant

term ∼ T 2Td, where Td is the temperature for deconfinement. Besides this constant, we add terms

which are nontrivial functions of A0/T , both ∼ T 2 Td and ∼ T T 2
d . There is only a mild sensitivity

to the details of these nonconstant terms. Overall we find a good agreement with the lattice results.

For the pressure, the conformal anomaly, and the Polyakov loop the nonconstant terms are relevant

only in a narrow region below ∼ 1.2Td. We also compute the ’t Hooft loop, and find that the details

of the nonconstant terms enter in a much wider region, up to ∼ 4Td.
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I. INTRODUCTION

Understanding the phase transitions of a non-Abelian gauge theory is of intrinsic interest,

and of relevance to the collisions of heavy ions at ultrarelativistic energies. Numerical

simulations on the lattice provide detailed results for the pressure and other quantities in

equilibrium. This includes results in the pure gauge theory (without dynamical quarks) for

three colors [1]; for the pure SU(N) theory when N > 3 [2], and with dynamical quarks,

Refs. [3].

Besides the theory in four space-time dimensions, it is also useful to consider gauge

theories in three dimensions. For the pure glue theory, the behavior appears similar in three

and four space-time dimensions. There is confinement at zero temperature, with a linear

potential between (external) quarks in the fundamental representation. This linear potential

is characterized by a string tension, σ.

At nonzero temperature, numerical simulations on the lattice indicate that for both the-

ories, there is a deconfining transition at a temperature Td. The results of simulations in

three dimensions are given in [4–10].

There are some differences between deconfinement in three and four dimensions. For

example, in an elementary string model [11], in d space-time dimensions the relationship

between the deconfinement temperature and the string tension is

Td =

√
3σ

π(d− 2)
. (1)

The deconfinement temperature is infinite in two dimensions, as then the pure glue theory is

a free field theory (consider, e.g., A0 = 0 gauge). This ratio decreases as d increases, equal to

Td/
√
σ ≈ 0.98 in three dimensions and ≈ 0.67 in four. These values are in good agreement

with the lattice results of Refs. [3, 7]. For an SU(N) theory, the order of the transition also

changes, as infrared fluctuations in two spacial dimensions drive the transition to second

order even for three colors, where mean field theory predicts a first-order transition.

We also note that gauge theories in three dimensions may also be relevant for theories of

high temperature superconductivity [12].

For the pure glue theory, the results of lattice simulations are close to the continuum

limit. This is much harder with dynamical quarks, especially those that are light. Moreover,

while numerical simulations can directly compute many quantities in thermal equilibrium,
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obtaining results for quantities near equilibrium is rather more challenging. Such quantities

are often of greatest interest to experiment, such as for transport coefficients like the shear

viscosity.

Consequently, it is useful to have approximate models to model the deconfining transition.

One such class of theories are matrix models [13–26]. These involve zero [14, 15], one [19],

and two [20] parameters, and have been used to compute various quantities for gauge theories

in four dimensions. Such models dominate for a gauge theory on a femtosphere [24].

These matrix models are manifestly effective theories. Their virtue is simplicity. It is

known that in the pure gauge theory the Polyakov loop approaches one at infinitely high

temperature, and vanishes below Td. This can be modeled by constructing an effective the-

ory for the eigenvalues of the Wilson line. The relevant variables are A0/T , where A0 is the

timelike component of the vector potential. One then adds, by hand, terms which are func-

tions of A0/T , to drive the transition to confinement. For an SU(N) theory, this approach

is reasonable at infinite N , where this A0 field represents a master field for deconfinement.

The parameters of the matrix models are determined by fitting to the lattice data for

the pressure. Numerical simulations on the lattice gives detailed data on the pressure as

a function of temperature, p(T ). It is also useful to compute other quantities, such as

the interaction measure in four dimensions, [e(T )− 3p(T )] /T 4, where e(T ) is the energy

density. This vanishes in the conformal limit, and so naturally characterizes the deviations

from ideality.

In four dimensions, lattice simulations find that, to a good approximation, the interaction

measure, times T 2/T 2
d , is constant from ∼ 1.2Td to ∼ 4.0Td [1, 14, 17]. An approximately

constant value of interaction measure, times T 2/T 2
d , implies that the pressure is dominated

by a constant term ∼ T 2
dT

2. In the following we refer to terms independent of A0 as constant,

and to terms which depend on A0 as nonconstant. One finds that when scaled by the pressure

of an ideal gas of gluons, the ratio p(T )/pideal(T ) grows sharply for ∼ 1.2Td < T < ∼ 4.0Td.

This range is also called the semi-quark gluon plasma (semi-QGP). For the pressure the

details of the matrix model matter only in a narrow transition region, from Td to ∼ 1.2Td.

In contrast to the pressure, the ’t Hooft loop, for example, is sensitive to the details of the

matrix model in a much wider region, up to 4.0Td [19, 20].

In this paper we consider a matrix model for an SU(2) gauge theory in three space-time

dimensions. As in four dimensions, we find that the matrix model works reasonably well even
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for two colors. The major reason for studying two colors is technical. After diagonalizing

the constant matrix A0/T , for SU(N) the matrix model is a function of the N − 1 mutually

commuting eigenvalues. For two colors there is only one such eigenvalue, greatly simplifying

the computations.

Broadly, we find that the model in three dimensions looks similar to that in four dimen-

sions. The interaction measure in three dimensions, [e(T )− 2p(T )] /T 3, times a single power

of T/Td, is approximately constant from ∼ 1.2Td to ∼ 10Td [6, 10]. This implies that in

this region, the pressure is dominated by a constant term ∼ T 2Td.

In three dimensions the one- and the two-parameter matrix models are in reasonable

agreement with the lattice results for the pressure. However, near Td there are significant

differences between the matrix model and the lattice data for the interaction measure. We

then introduce a four-parameter fit which improves the agreement with the lattice data, and

reproduces the correct shape for the interaction measure near Td. In this four-parameter fit,

the Polyakov loop deviates from one over a narrow region, up to ∼ 1.2Td. In contrast, for

the ’t Hooft loop the details of the matrix model are relevant over a much broader region,

up to ∼ 4.0Td. The ’t Hooft loop also exhibits only a mild dependence on the details of the

nonconstant terms in the effective Lagrangian.

The outline of the paper is as follows. In Sec. I we introduce the basic concept of the

matrix model, and give the motivation to study it in three space-time dimensions. In Secs.

II and III we construct the effective potential using the four dimensional case as a guideline:

In Sec. II we calculate the perturbative potential to one-loop order, and in Sec. III we

model the nonperturbative contributions. In Sec. IV we present the analytical solution to

the effective potential, and in Sec. V we show the numerical fits to the lattice pressure and

to the interaction measure. In Sec. VI we compute the interface tension and present the

plots for the Polyakov loop and for the ’t Hooft loop. Finally, in Sec. VII we summarize our

results and give an outlook.
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II. PERTURBATIVE POTENTIAL

In the imaginary-time formalism, the partition function of an SU(2) gauge theory at a

temperature T is

Z =

∫
DAµ exp

{
−1

4

∫ 1/T

0

dτ

∫
d2x tr Gµν Gµν

}
, (2)

where Aµ = iAaµσ
a/2 is the gauge potential, σa are the Pauli matrices, and Gµν = ∂µAν −

∂νAµ − i g [Aµ, Aν ] is the field-strength tensor. In 2 + 1 dimensions Aµ and the coupling

constant g both have dimensions of mass1/2. Thus, results to one-loop order are proportional

to g2, which has the dimensions of mass.

The goal is to construct a model to describe the confinement-deconfinement phase tran-

sition in SU(2). We begin by computing the perturbative potential in the presence of a

constant background field

A0 = Acl0 + Aqu0 . (3)

Acl0 is a constant classical field

Acl0 =
π T q

g
σ3 , (4)

where σ3 is the diagonal SU(2) Pauli matrix,

σ3 =

 1 0

0 −1

 , (5)

and Aqu0 denotes quantum fluctuations.

In this background field the Wilson line is

L (~x) = P exp

[
ig

∫ 1/T

0

A0 (~x, τ) dτ

]
=

 eiπq 0

0 e−iπq

 . (6)

The eigenvalues of the Wilson line are given by e±iπq. They are the basic variables of this

model. The relationship between a background A0 field and the eigenvalues of the Wilson

line becomes more complicated at two-loop order and beyond, but this can be ignored to

one-loop order. The Polyakov loop is the trace of the Wilson line

l =
1

2
tr L = cos (πq) . (7)

Equation (4) is the simplest ansatz which generates a nontrivial expectation value for the

Polyakov loop. Notice, within our model the Polyakov loop differs from unity only if q 6= 0.
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One perturbative vacuum is given by A0 = q = 0, where L = 1 and l = 1. The pure

gauge SU(2) theory is invariant under global Z(2) gauge rotations. Reflecting this Z(2)

symmetry, an equivalent perturbative vacuum occurs at q = 1, where L = −1 and l = −1.

As a periodic variable, normally one would expect q to vary from 0 → 2. Because of the

Z(2) symmetry we can be more restrictive and require q to lie in the interval from 0 → 1.

If we require q to lie in this interval, a global Z(2) transformation is given by

q → 1− q : L→ = (−)

 e−iπq 0

0 eiπq

 ; l→ − l . (8)

The Z(2) symmetry will become important when we construct the effective potential, as any

possible term will have to be invariant under the transformation q → 1 − q. The confining

vacuum is given by the point halfway between these degenerate vacua,

qc =
1

2
; Lc =

 i 0

0 −i

 ; lc = 0 . (9)

Thus, one can model the transition to deconfinement by introducing potentials for q. It

is important to stress that this assumes that the expectation value of the Polyakov loop is

dominated by the classical configuration of Eq. (4). This is certainly valid at infinite N . It

is less obvious that such a master field applies even for two colors. Nevertheless, one finds

that this classical approximation provides a reasonable ansatz.

Assuming that confinement is dominated by the classical configuration of Eq. (4) does

not provide any understanding of what type of the effective Lagrangian can produce such a

state. This is the principal task of constructing matrix models for deconfinement. However,

there are perturbative contributions to the free energy in this background field. This has

been computed previously in four dimensions by many authors; see, e.g., Ref. [27, 28]. In

three dimensions it was computed in Ref. [29]. This classical field is directly relevant for the

computation of the Z(N) interface tension [27–29], which is equivalent to the string tension

of the ’t Hooft loop [30].

To one-loop order the perturbative potential is

Vpt(q) =
T

2V
tr ln

[
−D2(q)

]
, (10)

where V is the two dimensional spacial volume. Dµ (q) denotes the covariant derivative in
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the adjoint representation, in the presence of the background A0 field of Eq. (4)

Dµ(q) = ∂µ − ig [Aµ, ]

= ∂µ − iπqTδµ,0 [σ3, ] . (11)

D2(q) is the associated gauge covariant d’Alembertian

D2(q) = (∂0 − iπqT [σ3, ])2 + ~∂2 , (12)

and [σ3, ] denotes the adjoint operator

[σ3, ] t = [σ3, t] . (13)

To proceed one needs to introduce a suitable parametrization for the generators of SU(2).

It is useful to choose a ladder basis [28]

t+ =
1√
2

 0 1

0 0

 , t− =
1√
2

 0 0

1 0

 , t3 =
1

2

 1 0

0 −1

 , (14)

where t3 is proportional to the diagonal Pauli matrix σ3, and t± are the off-diagonal step

operators. These generators form an orthogonal set, with the normalization

tr
(
t23
)

=
1

2
, tr

(
t+t−

)
=

1

2
, tr

(
t+t+

)
= tr

(
t−t−

)
= 0 . (15)

The trace in Eq. (10) is over all color degrees of freedom. The diagonal mode ∼ t3 commutes

with the background field. So, the covariant derivative associated with the diagonal degree

of freedom is independent of q:

Dµσ3 = ∂µσ3 , (16)

and the potential is as in zero background field. The two off-diagonal modes ∼ t± do not

commute with Acl0 , [
σ3, t

±] = ±2t± . (17)

They give a nontrivial potential for q. The quantum correction enters by replacing ∂0 by

∂0 ± i2πTq in the covariant derivative

D0t
± = (∂0 − iπqT [σ3, ]) t± = i2πT (n∓ q) t±. (18)

In momentum space, the propagators along the off-diagonal degrees of freedom are as in zero

background field, except that the energy k0 is shifted to k±0 = i2πT (n± q). As a bosonic
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field the gluon must satisfy periodic boundary conditions, which require that n is an integer,

n = 0,±1,±2 . . ..

Summing over the diagonal and the off-diagonal modes, the full one-loop result for the

perturbative potential in the background field of Eq. (4) is

Vpt(q) =
T

2V

{
tr ln

(
k2

0 + k2
)

+ tr ln
[(
k+

0

)2
+ k2

]
+ tr ln

[(
k−0
)2

+ k2
]}

. (19)

The trace over momenta in Eq. (19) is evaluated using contour integration [31],

tr ln
[(
k±0
)2

+ k2
]

= 2V
∫

d2k

(2π)2 ln
(
1− e−|k|/T±i2πq

)
= −V

π

∫ ∞
0

dk k
∞∑
n=1

e−nk/T±i2πqn

n

= −V T
2

π

∞∑
n=1

e±i2πqn

n3
. (20)

The sum over n converges quickly, and so it can easily be evaluated numerically [29]. It is

also useful to recognize that this sum can be written in terms of the polylogarithm function,

Lij(z) =
∞∑
n=1

zn

nj
. (21)

To one-loop order the perturbative potential for q involves the polylogarithm function of the

third kind, which is the trilogarithm function,

Vpt(q) = −T
3

2π

[
Li3
(
ei2πq

)
+ Li3

(
e−i2πq

)
+ Li3(1)

]
. (22)

This expression is manifestly symmetric under Z(2) transformations, where q → 1 − q. In

Eq. (22), the last term, Li3(1) = ζ(3) ≈ 1.202..., is due to the free energy of the diagonal

mode. In zero field we obtain,

Vpt(0) = − 3
T 3

2π
ζ(3) . (23)

In total, this value is minus the pressure for three massless bosons in d = 2 + 1. Note that

unlike the four-dimensional case, in three space-time dimensions there is no factor for the

gluon spin. The full one-loop result of Eq. (22) is then the sum of the zero-field contribution

in Eq. (23) and of the quantum correction

V qu
pt (q) = −T

3

2π

[
Li3
(
ei2πq

)
+ Li3

(
e−i2πq

)
− 2Li3(1)

]
. (24)
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III. NON-PERTURBATIVE TERMS IN THE EFFECTIVE POTENTIAL

A. Four dimensions

Before considering the types of terms which can be added to model deconfinement, it is

instructive to review what happens in four dimensions. In d = 3 + 1 the perturbative term

for two colors is given by

V d=4
pt (q) = π2T 4

[
− 1

15
+

4

3
q2(1− q)2

]
. (25)

The term independent of q is the free energy for three gluons, with a factor of two for the

spin. The q-dependent term arises from a sum as in three dimensions,
∑

n e±i2πq/n4. But in

d = 3 + 1 it reduces simply to a quartic potential in q, ∼ q2(1− q)2.

There are various nonperturbative terms which one can add to model the transition to

confinement. From the lattice data we know that in four dimensions the value (e−3p)/(T 2T 2
d )

is approximately constant from 1.2Td to several times Td, [1, 14, 17]. Taking this into

account, one must certainly add a constant term ∼ T 2
d T

2. For the pressure, this is the

dominant term for temperatures above ∼ 1.2Td.

Similarly, since in three dimensions (e− 2p)/(T 2Td) is constant from ∼ 1.2Td to ∼ 10Td

[6, 10], one must also add a constant nonperturbative term ∼ TdT
2 to the potential for q.

Referring to such a constant term as nonperturbative, is somewhat of a misnomer. In three

dimensions, the coupling constant squared has dimensions of mass. Thus at one-loop order,

perturbative corrections to the free energy are ∼ g2T 2, and so automatically proportional

to T 3. Nevertheless, the results of numerical simulations on the lattice are still surprising.

It is not natural to expect that perturbation theory at one-loop order is dominant down to

temperatures as low as 1.2Td. Furthermore, the lattice does not indicate the presence of

perturbative terms at two-loop order, which would be ∼ g4T . Those at three-loop order are

independent of temperature, ∼ g6. In detail, perturbation theory is more involved, including

logarithms of g2/T [32].

The possible q-dependent nonperturbative terms in four dimensions can certainly include

a term like the perturbative potential ∼ q2(1− q)2. In addition, a term linear in q is added.

To be consistent with the Z(2) symmetry, the linear term must be ∼ q(1 − q). The need

for the linear term can be argued on two grounds. One argument is the following: When

q develops an expectation value, the deconfining phase is in an adjoint Higgs phase. While
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there is no gauge-invariant order parameter for an adjoint Higgs phase, there can still be a

first-order transition from a truly perturbative phase, where 〈q〉 = 0, to one where 〈q〉 6= 0.

This would be a second phase transition, at a temperature higher than Td. Though it is

possible, the lattice finds no evidence of such a second phase transition. A term linear in q

will give an expectation value for q at any temperature, obviating the possibility of such a

second phase transition. Another explanation was first discussed by Meisinger and Ogilvie

[15]: If one assumes that the gluons develop a mass, then expanding in the mass squared

to leading order, the one-loop determinant in a background Acl0 field is

T

V
tr ln

(
−D2

cl +m2
)
∼ m2T

V
tr

(
1

−D2
cl

)
. (26)

In Sec. III B 2 we show explicitly how this determinant generates a term linear in q. The

origin of this mass term will not be discussed here. The point is that since the determinant

is gauge invariant, the result in Eq. (26) is gauge invariant as well. Such a term arises

naturally in expanding about the supersymmetric limit. Then m is the mass of an adjoint

fermion, and Eq. (26) is the leading term in an expansion about a small mass; see [33, 34].

Altogether the possible nonperturbative potential one can construct in four dimensions

is

V d=4
npt (q) = − T 2 T 2

d

[
1

5
C1q (1− q) + C2q

2 (1− q)2 − C3

]
−B . (27)

The constant term ∼ C3T
2T 2

d is required by the lattice data for the pressure. It is the

dominant term above ∼ 1.2Td. [1, 14, 17]. The term ∼ C1 is required to avoid an adjoint

Higgs phase. This term is also generated by expanding the one-loop determinant in the

mass squared to leading order, Eq. (26), with m ∼ Td. Since there is a perturbative term

∼ q2(1 − q)2 in Eq. (25), presumably it can also arise in the nonperturbative potential.

It is natural to assume that the temperature dependence of these nonperturbative terms is

∼ T 2T 2
d , although this is manifestly an assumption. Lastly, one can add a term like an MIT

bag constant, B. This is the most general model studied to date.

Equation (27) involves four-parameters, C1, C2, C3, and B. Introducing two conditions,

one gets a model with only two independent parameters. The first condition is that the

transition occurs at Td, and not at another temperature. The second condition is that the

pressure vanishes at Td. The second condition is motivated by large-N arguments, where

the pressure is ∼ N2 in the deconfined phase, and ∼ 1 in the confined phase. However,

especially for two colors, this is a rather drastic approximation. Instead, one should add
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an effective theory for the confined phase, and ensure that the pressures match at Td. To

date this has not been done. Consequently, it is not surprising that one finds unphysical

features close to Td, within 1% of the transition, such as a negative pressure [20]. One finds

similar unphysical behavior in three dimensions. But as in four dimensions, we shall view

this purely as a consequence of not matching to a physical equation of state in the confined

phase. We discuss this further when we turn to the results of the matrix models.

B. Nonperturbative terms in three dimensions

1. Linear terms

Using the four-dimensional case as a guideline, we add the following terms to the nonper-

turbative potential: First, we need a constant term ∼ T 2Td, to ensure that (e− 2p)/(T 2Td)

is approximately constant [6, 10]. Second, it is natural to include a term similar to that

generated in perturbation theory, Eq. ( 24). Lastly, to avoid a transition to an adjoint Higgs

phase above Td, one adds a term linear in q for small q, ∼ q(1 − q). We can also write the

linear term in a more general way by adding a factor plus a constant

bq(1− q) + d , (28)

which preserves all the required features and the Z(2) symmetry. Altogether the nonper-

turbative potential for SU(2) is

V A
npt(q) = −T 2TdC1 [bq(1− q) + d] + T 2T dC3

3 ζ (3)

2π

+ T 2Td
C2

2π

[
Li3
(
ei2πq

)
+ Li3

(
e−i2πq

)
− 2ζ (3)

]
. (29)

So far we have assumed that all nonperturbative terms are proportional to T 2Td. This is

necessary for the constant term ∼ C3, but there is no such restriction for the q-dependent

terms. The possibility of a different temperature dependence for the term ∼ C1 will be

discussed later.

2. Vandermonde determinant

Besides the linear term ∼ q(1 − q), there is another possibility to construct a nonper-

turbative term which is linear in q for small q : As in four dimensions, we consider the
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expansion of the one-loop determinant to leading order in a mass parameter

T

V
tr ln

(
−D2

cl +m2
)
∼ m2T

V
tr

(
1

−D2
cl

)
. (30)

The simplest way is to follow the computation for zero mass in Eq. (20),

tr ln
[(
k±0
)2

+ k2 +m2
]

= 2V
∫

d2k

(2π)2 ln
(
1− e−E(k)/T±i2πq)

= −V
π

∫ ∞
0

dk k

∞∑
n=1

e−nE(k)/T ±i 2πq n

n
, (31)

where E(k) =
√
k2 +m2 is the energy. Now it is easy to compute the derivative with respect

to the mass, and then consider the limit m→ 0

d

dm2
tr ln

[(
k±0
)2

+ k2 +m2
]
m2=0

=
V

2Tπ

∫ ∞
0

dk
∞∑
n=1

e−nk/T ± i2πqn

=
V
2π

∞∑
n=1

e±i2πqn

n

=
V
2π

Li1(e±i2πq) . (32)

This is a polylogarithm function of the first kind, which can be written as Li1(z) = − ln(1−z).

Including both, the contributions of k+
0 and k−0 gives a result which is automatically real,

tr

(
1

−D2
cl

)
=
V
π

∞∑
n=1

cos (2πqn)

n
. (33)

In all we obtain

T

V
tr

(
1

−D2
cl

)
=
T

2π

[
Li1(ei2πq) + Li1(e−i2πq)

]
= − T

2π
{ln [1− exp (2iπq)] + ln [1− exp (−2iπq)]}

= −T
π

ln [2 sin (πq)] . (34)

Unlike the linear term, which is ∼ T 2, the term in Eq. (34) is proportional to T . This

is expected, since it enters times the square of a mass parameter, Eq. (30). On the other

hand, it is surprising that this term is identical to the Vandermonde determinant, which

enters so often in matrix models. For a femtosphere, or other small systems, it is natural

that the Vandermonde determinant enters, and dominates [24]. In large volume, however, it

is proportional to δd(0), where d is the dimension of space-time. This is in turn proportional
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to Λd, where Λ is some ultraviolet cutoff, which vanishes when applying dimensional regu-

larization. Such a regularization-dependent term is not expected to contribute in the limit

of infinite spatial volume. Thus it is surprising to find that it enters in a mass expansion in

three dimensions. Remarkably, while the Vandermonde term arises on a femtosphere [24],

it does not arise in a mass expansion in four dimensions, Eq. (26). A term such as Eq. (34)

will ensure that the condensate for q is always nonzero.

It is interesting to mention that performing a mass expansion is just one possibility to

derive the Vandermonde term from the perturbative one-loop result. A similar Vandermonde

term can also be found at the two-loop order in the perturbative expansion [28, 35, 36]. An

equivalent way to determine the q-dependence of this nonperturbative term is to consider

the second derivative of the perturbative trilogarithm function with respect to q,

d2

dq2

{
−1

2π

[
Li3
(
ei2πq

)
+ Li3

(
e−i2πq

)
− 2Li3(1)

]}
= 2π

[
Li1(ei2πq) + Li1(e−i2πq)

]
= −4π ln [2 sin(πq)] . (35)

Notice, by expanding this expression around q = 1/2, and keeping only terms to order q2

we also recover the linear term introduced in Eq. (28),

−4π ln [2 sin(πq)] = −2π

[
2 ln 2− π2

(
q − 1

2

)2
]

+O

[(
q − 1

2

)4
]
, (36)

with b = 2π3 and d = 4π ln 2 − π3/2. Strictly speaking, the Vandermonde term exhibits a

divergence at q = 0. But, as we will see later, this divergence does not pose any problem for

the present study. This is because all thermodynamical quantities in this work are computed

at the minimum of the effective potential, where the condensate for q effectively vanishes

at high temperatures, but it is never exactly zero. The linear term in Eq. (36) can also be

seen as a regularized version of the Vandermonde term in Eq. (35).

Replacing the linear term in Eq. (29) by the Vandermonde term derived in Eq. (35), the

nonperturbative potential can be written as

V B
npt(q) = − C1 T

3−δ Td
δ4π ln [2 sin(πq)] + C3T

2Td
3 ζ (3)

2π

+ T 2Td
C2

2π

[
Li3
(
ei2πq

)
+ Li3

(
e−i2πq

)
− 2 ζ (3)

]
, (37)

where δ = 1, 2 denotes two possible temperature dependences. The value δ = 2 is suggested

by the mass expansion. But it is also reasonable to try δ = 1, which gives the same

temperature dependence as for the other two nonperturbative terms.
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IV. ANALYTICAL SOLUTION

In this Section the analytical solution to the effective potential is presented. We discuss

how to determine the parameters of the model utilizing the conditions at Td. Further,

we explain how to obtain the minimum of the effective potential, and give the analytical

expressions for the pressure and for the interaction measure. The effective potential is

constructed as the sum of the perturbative result to one-loop order plus the nonperturbative

contributions. Then we can compute the pressure as a function of the temperature

p (T ) = −Veff [qmin (T )] , (38)

where qmin (T ) is the minimum of the effective potential. Using the first principle of ther-

modynamics, we can also calculate the energy density e, and the interaction measure ∆

e (T ) = T
dp

dT
− p (T ) , ∆ = e (T )− 2p (T ) . (39)

A. Linear potential

First we discuss the case where the linear term of Eq. (36) is used. The effective potential

is then

Veff = Vpt + V A
npt , (40)

where Vpt denotes the perturbative one-loop result of Eq. (22), and V A
npt(q) the nonper-

turbative contributions of Eq. (29). In the following discussion it is useful to rewrite Veff

as

Veff = −3
ζ (3)

2π
T 3

(
1− Td

T
C3

)
+ T 3

(
1− Td

T
C2

){
L (q)− 2π

[
2 ln 2− π2

(
q − 1

2

)2
]
a(T )

}
, (41)

where we introduce the notation

L (q) = − 1

2π

[
Li3
(
ei2πq

)
+ Li3

(
e−i2πq

)
− 2ζ (3)

]
,

a(T ) =
Td
T
C1(

1− Td
T
C2

) . (42)

This effective potential exhibits a second-order phase transition, see Fig. 1. Veff (q) has the

shape of a double-well potential symmetric to the confined vacuum qc = 1/2. Depending
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FIG. 1. The effective potential, Veff (q) (left panel), and its first derivative, V ′eff (q) (right panel),

as a function of q. We present the plots for three different values of a : a < ad (dashed) represents

the semi-QGP, at a = ad (solid) the phase transition to confinement takes place, and for a > ad

(dotted) the system is in the confined phase.

on the value of a, one can describe the transition from deconfinement to confinement: At

a = 0, the minima of the effective potential are given by the perturbative vacua at q = 0 and

q = 1. This is the region of complete QGP. For 0 < a < ad the system is in the semi-QGP

phase, and the distance between the confined vacuum and the two degenerate minima starts

decreasing. At ad = 0.070230 the transition to confinement takes place, and for a = ad there

is just one minimum which is given by the confined vacuum at q = 1/2.

1. Fixing the parameter at Td

Apart from Td, the effective potential of Eq. (41) involves three parameters C1, C2, C3

which are determined from the lattice measurements of the pressure in the deconfined phase.

First, we impose that the transition occurs at Td. This implies that a(Td) = ad :

ad =
C1

1− C2

, (43)

which gives C2 as a function of C1. We further require that the pressure is zero at Td , which

allows to determine C3

C3 = 1− C1 [L (0.5)− ad 8π2 ln 2]

3 ζ(3)
2π
ad

. (44)

Due to the two conditions, there is only one free parameter left, say C1. This single parameter

is utilized to fit the lattice pressure and the interaction measure.

15



0 0.02 0.04 0.06 0.08
a0

0.1

0.2

0.3

0.4

0.5

qmin Ha L

0 0.02 0.04 0.06 0.08
a

0.1

0.2

0.3

V min Ha L

FIG. 2. Left panel: the minimum of the effective potential as a function of a, qmin(a), using

the linear term (solid), and the Vandermonde term (dashed). Right panel: the potential at the

minimum as a function of a, Vmin(a). Our fits to qmin(a) and Vmin(a) are essentially identical to

the exact numerical solutions, since we work with a high precision.

2. The minimum of the effective potential

The main numerical problem to compute the pressure p(T ) resides in finding the minimum

of the effective potential as a function of q at T ≥ Td. This defines a function qmin(T ).

For mathematical clarity, it is convenient to denote the q-dependent part of the effective

potential in Eq. (41) as V (q, a),

V (q, a) = L (q)− 2π

[
2 ln 2− π2

(
q − 1

2

)2
]
a(T ) . (45)

The minimum is found by solving numerically the equation

∂V (q, a)

∂q
|
q=qmin

= 0 , (46)

for different values of a, in the range 0 ≤ a ≤ ad. This gives the minimum of the effective

potential as a function a, qmin(a). We use this solution to obtain an expression for the

potential at the minimum, which depends only on a

Vmin(a) = V [qmin(a), a] . (47)
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In principle, one needs to solve Eq. (46) for every value 0 ≤ a ≤ ad we want to study.

However, it is more convenient to find a good ansatz for qmin(a) and for Vmin(a). Then,

it is straightforward to determine the temperature-dependent minimum by utilizing the

definition for a(T ) in Eq. (42)

qmin(T ) = qmin [a (T )] = qmin

[
Td
T
C1(

1− Td
T
C2

)] ,

Vmin(T ) = Vmin [a (T )] = Vmin

[
Td
T
C1(

1− Td
T
C2

)] . (48)

To solve Eq. (46) we apply the numerical bisection method. Then we fit the numerical

solutions for qmin(a) and Vmin(a) with high precision. As an ansatz for the fits we use simple

linear expansion in rational powers of a, and in powers of ad − a. The absolute deviation

between the numerical solution and our ansatz for Vmin(a) is of the order of 10−7. It is

important to work with good accuracy, because the error bars of the lattice data for the

pressure p/(3T 3) are small, 10−5. In Fig. (2), we plot the solutions for qmin(a) and for

Vmin(a). Since we use a very high precision, the curves of our Ansätze coincide with the

curves of the exact numerical solutions.

3. Analytical expressions for the pressure and for the interaction measure

The pressure as a function of T is obtained by plugging the solution qmin (T ) of Eq. (48)

into the equation for the effective potential of Eq. (41)

p

3T 3
=

(
1− Td

T
C3

)
ζ (3)

2π
+

2πTd
3T

C1

{
2 ln 2− π2

[
qmin(T )− 1

2

]2
}

(49)

+

(
1− Td

T
C2

)
6π

{
Li3
[
ei2πqmin(T )

]
+ Li3

[
e−i2πqmin(T )

]
− 2ζ (3)

}
.

Another possibility to compute the pressure is to directly use the ansatz for Vmin(T ) depicted

in Fig. (2) and in Eq. (48),

p

3T 3
=

(
1− Td

T
C3

)
ζ (3)

2π
−
(

1− Td
T
C2

)
Vmin(T )

3
, (50)

which greatly simplifies the numerics.

Differentiating the pressure of Eq. (49) with respect to T, gives the interaction measure

∆

3T 3
= T

d

dT

( p

3T 3

)
. (51)
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FIG. 3. Lattice data, as well as the numerical fits to the pressure p/3T 3 using the linear term. We

present the curves in the one-parameter model (dashed), the two-parameter model (solid), and in

the four-parameter fit (dotted). The horizontal lines represents the perturbative constant c, which

corresponds to the perturbative limit of the pressure. In the one- and in the two-parameter models

c = ζ (3) /2π (solid), and in the four-parameter fit it is shifted by ∼ 0.5%.

Notice, since qmin(T ) vanishes in the large-T limit,

lim
T→∞

p

3T 3
→ ζ (3)

2π
= c. (52)

The constant c is the solution to the pressure in the perturbative limit. At the same time,

∆
3T 3 vanishes at large T .

Equations (49) and (51) are the final analytical results which are used to fit the lattice
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FIG. 4. Lattice data for the interaction measure ∆/3T 3 in comparison with the results for the

linear term. We present the curves in the one-parameter model (dashed), the two-parameter model

(solid), and in the four-parameter fit (dotted).

QCD data by adjusting the parameters of the model.
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FIG. 5. Numerical fits to the lattice pressure p/3T 3 using the Vandermonde term ∼ T 2. We

show the curves in the one-parameter model (dashed), the two-parameter model (solid), and in the

four-parameter fit (dotted). The horizontal lines represents the pressure in the perturbative limit.

B. Vandermonde potential

Utilizing the Vandermonde term of Eq. (35), the effective potential is given by

Veff = Vpt + V B
npt

= −3
ζ (3)

2π
T 3

(
1− Td

T
C3

)
+ T 3

(
1− Td

T
C2

)
{L (q)− 4π ln [2 sin(πq)] a(T )} , (53)
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FIG. 6. Lattice interaction measure in comparison with the results for the Vandermonde term

∼ T 2. We show the curves in the one-parameter model (dashed), the two-arameter model (solid),

and in the four-parameter fit (dotted).

where V B
npt is the nonperturbative contribution constructed in Eq. (37). Repeating the

analysis of Sec. IV A one can determine the minimum of the effective potential, qmin(a),

where the definition of the function a(T ) is now extended with a more general exponent,

a =

(
Td
T

)δ
C1(

1− Td
T
C2

) , δ = 1, 2 . (54)

The qmin(a) we obtain for the Vandermonde potential, again with a great accuracy, is de-

picted in Fig. (2). At a = ad the linear potential and the Vandermonde potential produce
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the same Vmin and qmin.

V. RESULTS

In this section we present the numerical results for the one- and the two-parameter matrix

model, and compare them to the lattice data of Ref. [10]. We show the plots for the pres-

sure, the interaction measure, and for the Polyakov loop utilizing three different options for

the q-dependent nonperturbative term ∼ C1: the linear term, T 2Td2π
[
2 ln 2− π2(q − 1

2
)2
]
,

and the Vandermonde term T 3−δ Td
δ4π log [2 sin(πq)], where we consider two different tem-

perature dependences δ = 1, 2.

Close to the critical temperature the lattice data become smeared out due to glueballs

below Td, the gluon mass above Td, and lattice artifacts such as finite-volume effects. There-

fore, it is convenient to apply a cut, and only fit the data at T > 1.05Td. Moreover the

finite-volume effect also affects the pressure at high temperatures [37, 38]. In general, one

finds that the pressure decreases with increasing volume. Motivated by the uncertainties on

the lattice near Td and at high temperatures, we also discuss the possibility of introducing

a four-parameter fit, and show the corresponding plots.

We determine the free parameters of the models by applying the corresponding nonlinear

fits to the lattice pressure. First, we present the results for the pressure and for the interac-

tion measure utilizing the linear term, Figs. (3) and (4), and the Vandermonde term, Figs.

(5) and (6). For the Vandermonde term we just show the plots for the term ∼ T 2, which

provides in general better fits than the other temperature dependence ∼ T . To give a better

overview of the results we list the values of all parameters in Table (I). In this table we also

include the results of the χ2/d.o.f. test to quantify how good our fit are. The lattice pressure

has small error bars, ∼ 10−5. Therefore it is crucial that we achieve a high accuracy for our

ansatz for Vmin(a), ∼ 10−7, to compare the best fits of the different models.

A. Results of the one-parameter model

The one-parameter model exhibits only mild sensitivity to the choice of the q-dependent

nonconstant terms. By adjusting the only free parameter of the model we already obtain

good agreement with the lattice pressure and with the interaction measure. Especially at
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Non-pert. V C1 C2 C3 δC3 Td rescale c rescale χ2/dof

1 par. vdm1 0.000041 0.999408 0.999940 0 1 1 265.668

2 par. vdm1 0.000000 1.000000 1.000000 0.024311 1 1 202.275

4 par. vdm1 0.003657 0.947923 0.994911 0.010874 0.918032 1.031652 10.8481

1 par. vdm2 0.000030 0.999563 0.999956 0 1 1 285.664

2 par. vdm2 0.000000 0.999998 1.000000 0.025252 1 1 207.833

4 par. vdm2 0.006322 0.909976 0.990921 0.103102 0.855040 0.999717 1.09882

1 par. vlin 0.000035 0.999489 0.999948 0 1 1 258.051

2 par. vlin 0.000001 0.999981 0.999998 0.023831 1 1 199.179

4 par. vlin 0.033310 0.525695 0.952861 -0.16002 0.907484 1.014434 0.54232

TABLE I. Parameters which give the best fits to the lattice pressure for different nonperturbative

terms. We use the following notation: “1 par.” for the one-parameter model, “2 par.” for the two-

parameter model, and “4 par.” for the four-parameter fit. Moreover, “vlin” denotes the linear term,

“vdm1” the Vandermonde term ∼ T, and “vdm2” the Vandermonde term ∼ T 2. The parameters C2

and C3 are not free, they are a function of C1. In “1 par.” we utilize C1 as the single free parameter

to fit the lattice data. In “2 par.” we add a second free parameter δC3 = C3(Td)−C3(∞), defined

in Eq. (55), to include the effects of the bag model constant B. In “4 par.” we further allow

for small shifts in Td, and in the perturbative constant c, in order to encompass other possible

nonperturbative effects not included in our matrix model. Moreover, we also show the results of

the χ2/dof test for our fits to the lattice pressure.

high and low temperatures the fits are close to the lattice data. At intermediate temperatures

the agreement becomes slightly worse. Moreover, the one-parameter model fails to reproduce

the correct shape of the peak in the interaction measure, residing at T ∼ 1.14Td.

An important observation is that in the one-parameter model the best fit to the lattice

pressure gives always a rather small value of C1, see Table I. From Eq. (48) and Fig. (2) one

can deduce that the smaller the value for C1, the faster the condensate for q approaches zero

above the critical temperature. If qmin(T ) ≈ 0 all q-dependent terms in the effective potential

vanish. This implies that, except from a narrow region close to Td, the thermodynamics is

completely governed by the q-independent ideal term ∼ T 3 plus the constant term ∼ T 2Td.
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B. Two-parameter model

Aiming to improve the results of the one-parameter model, we consider the two-parameter

model, as proposed in Ref. [20]. In the two-parameter model the constants C1 and C2 remain

the same as before, but C3 is replaced by the temperature-dependent parameter

C3(T ) = C3 (∞) +
C3 (Td)− C3 (∞)

T 2/T 2
d

, (55)

which is equivalent to adding an MIT bag constant B.

We find again that the results are quite similar for the linear term and the Vandermonde

term. The two-parameter fit improves the results of the one-parameter model at interme-

diate temperatures, and gives overall good agreement with the lattice data in the entire

temperature region, see Figs. (3) and (4). Only at the peak of the interaction measure

do our results deviate notably from the lattice results. It must be pointed out, however,

that the parameters of the model are fixed by imposing that the pressure vanishes at the

transition point. Instead, it would be necessary to fit the pressure in the confined phase to

some hadronic (glueball) resonance gas. Therefore, one should not expect to fit the lattice

data close to Td with a great accuracy by making this simple assumption.

Moreover, the two-parameter model also produces an extremely narrow region in which

the condensate for q is nonvanishing.

C. Four-parameter fit

The one- and the two-parameter models give already good fits to the lattice pressure and

to the interaction measure. However, at the peak of the interaction measure, residing close

to Td, the agreement becomes notably worse. Further, due to the small error bars of the

lattice pressure, the χ2/dof test still gives a large value ∼ 200.

Therefore it is interesting to investigate, wether further extending the number of degrees

of freedom can improve the results near the critical temperature, and reproduce the correct

shape for the interaction measure peak. In this work, the possibility of introducing a four-

parameter fit is discussed, which can be motivated in two ways. First, in our analytical

calculations we make two obvious approximations: We compute the perturbative potential

only to one-loop order, and we impose that the pressure must vanish at the transition point.

Moreover, due to the smearing and finite-volume effects present on the lattice close to Td and

24



in the high-temperature region, it is difficult to determine the exact values for the critical

temperature, and for the pressure in the perturbative limit. Taking these uncertainties into

account, two additional free parameters are introduced in the two-parameter matrix model,

one for Td, and one for c, which corresponds to the perturbative limit of the pressure, see

Eq. (52). We note that this four-parameter fit should be regarded just as an approximation

to a more complete model including an effective theory for the confined phase.

The two additional parameters provide a perfect agreement with the lattice pressure and

with the interaction measure for all the three nonconstant terms considered in this work,

see Figs. (3), (4), (5), and (6). Especially close to Td the results improve notably, giving a

good fit to the peak of the interaction measure, with χ2/d.o.f. ∼ 0.5 for the model with a

linear term. This shows that the difference between the model and the lattice pressure is

smaller than the error bars.

An important result is that the four-parameter fit gives a significantly larger value of C1

than the other two models, see Table (I). This implies that there is a transition region in the

deconfined phase, in which the system develops a non-trivial condensate for q, qmin(T ) 6= 0.

In our matrix model this happens in principle at all temperatures. But in practice, the

condensate is only numerically large below ∼ 1.2Td for the linear and for the Vandermonde

term, which will become clear when we discuss the Polyakov loop, Fig. (8). This is the

range where the details of the matrix model are relevant, since the q-dependent terms of the

effective theory provide a nontrivial contribution in the deconfined phase. Notably, this is

in accordance with the results in d = 3 + 1, where the condensate is nonzero up to ∼ 1.2Td.

In Table (I) we list the values for the parameters. The deviation in c is rather small

for all nonconstant terms, and can be explained as follows. At high tmperature the lattice

pressure is slightly volume-dependent, and tends to decrease with increasing volume, see

Ref. [37, 38]. This implies that on the lattice the value of c may be shifted to lower values

when the volume is increased. Moreover, this small shift in c could be partly due to the

applied one-loop approximation. Extending the calculation to higher-loop order will shift the

perturbative constant. Thus, the higher-order loop calculations and the volume dependence

could account for the difference in c.

In what concerns the shift in Td, we note that the lattice results for the interaction

measure show that there is a significant energy density below Td. This arises from two

effects. One is simply an uncertainty of the transition temperature, which is affected by

25



finite-size effects such as critical slowing down. For N = 2 the transition is of second

order. Further, from Eq. (1), in three dimensions the ratio of Td/
√
σ is higher than it is in

d = 3 + 1, remember σ is the string tension. If the ratio of the glueball masses to
√
σ is

approximately independent of the dimensionality, then the contribution of a glueball gas to

the energy density may be more significant near Td in three dimensions than in four. Such

effects from the confined phase are completely neglected in our model. Ideally, we should

develop an effective theory for the confined phase, and match that to the matrix model in

the deconfined phase. Failing to do that, we adopt the prescription of the four-parameter

fit, which we admit is an approximation to a more complete theory.

We then define the transition temperature as the point where a linear fit to the pressure

intercepts the T -axis. In this case, the best estimate of Td is obtained by the intercept of

the tangent to the inflection point with the T -axis. The inflection point is the point where

the derivative is maximum, and the second derivative vanishes. As shown in Fig. (7), the

intercept occurs at 0.94Td. This value is closer to results for the rescaled critical temperature

in the four-parameter fit, see Table (I).

Summing up, considering the possible systematic errors, the four-parameter fit allows us

to obtain good agreement with the lattice results in the entire temperature range Td ≤ T ≤

8Td, and well reproduces the peak of the conformal anomaly.

D. Polyakov loop

Utilizing the parameters listed in Table (I), which are determined by fitting the lattice

data for the pressure, it is possible to compute the Polyakov loop from Eq. (7). Figs. (8)

and (9) show the Polyakov loop for the linear term and for the Vandermonde term ∼ T 2

using the one- and the two-parameter model, as well as the four-parameter fit. In the one-

and in the two-parameter model, the Polyakov loop grows sharply from 0 to 1 above the

critical temperature. To understand this behavior we remember that the Polyakov loop is

given by l= cos [πqmin(T )] . Thus, l is only then not equal to one in the deconfined phase,

if the minimum of the effective potential differs from zero. In the one- and two-parameter

model however, the condensate, qmin(T ), is only numerically large in a narrow range close

to Td, and then it effectively vanishes. This implies that the system merges rapidly from

confinement, q = 0, into the perturbative vacuum, q = 1.
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FIG. 7. We define Td by interpolating the tangent to the inflection point of the pressure, which oc-

curs at T = 1.14Td. The point where the tangent hits the T -axis defines the transition temperature:

T ∗d ≡ 0.94.

In the four-parameter fit, which perfectly agrees with the lattice pressure, the condensate

is non-vanishing up to ∼ 1.2Td for both nonperturbative terms. Therefore the Polyakov loop

markedly varies from one in this temperature region. Notably, the width of the transition

range is widely independent of the details of the nonconstant terms discussed in this work.

VI. INTERFACE TENSION

In this section we construct the interface tension for our model, and present the results

for the ’t Hooft loop. In absence of dynamical quarks the SU(N) gauge theories exhibit a

global Z(N) symmetry associated with the center of the gauge group. The confined vacuum

is symmetric under Z(N) transformations, whereas in the deconfined phase the Z(N) sym-

metry is spontaneously broken. If the system is infinite, then the spontaneous symmetry

breakdown is related to the occurrence of N degenerate vacua. In a finite volume however,

bubbles of different vacua can form, which are separated by domain walls. The dynamics

of these bubbles is governed by the action of the domain walls, which is proportional to the

interface tension.

The Z(N) interface tension gives the tunneling probability between two different vacua of
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FIG. 8. Left panel: the Polyakov loop obtained using the linear term, in the one-parameter model

(dashed), the two-parameter model (solid), and in the four-parameter fit (dotted). Right panel:

the ’t Hooft loop divided by its perturbative limit, αpert0 = 5.104. The plots of the one- and of the

two-parameter model coincide.

the system. Following the discussion of Refs. [20, 29], we construct the interface by putting

the system in a long tube of length 2L in the z direction, and of length Lt in the other two

spatial directions, with L � Lt � β, and L→∞. The volume in the directions transverse

to z is Vtr = βLt. To model the interface tension we assume that the system is in a vacuum

state at both ends, but not in between. This forces a Z(N) interface along the z-direction.

The action of the interface is equal to the interface tension α, times the transverse volume,

Vtr

α =
S

Vtr
. (56)

To compute the interface tension one first needs to construct the effective action S, which

is given by the effective potential plus a kinetic term

S = Vtr
∫
dz [Tkin(q) + Veff (q)] . (57)

At leading order, for q varying slowly on the scale of 1/T, it is sufficient to use the kinetic

28



0.75 1. 1.25 1.5 1.75 2.
T �T d

0.2

0.4

0.6

0.8

1.

l

0 1 2 3 4
T � T d

0.2

0.4

0.6

0.8

1.

Α0 � Α0 pert

FIG. 9. The Polyakov loop (left panel), and the ’t Hooft loop scaled by its perturbative value,

αpert0 = 5.104 (right panel). The plots are obtained utilizing the Vandermonde term ∼ T 2, in

the one-parameter model (dashed), the two-parameter model (solid), and in the four-parameter fit

(dotted). For the one- and the two-parameter model the curves essentially coincide.

term at tree level, which is given by the classical action

Tkin(q) =
1

2
trG2

µν =
π2T 2

g2

(
dq

dz

)2

trσ2
3 (58)

≡ T 3

2

(
dq

dz′

)2

,

where we introduce the rescaled coordinate z

z′ = z

γ
, γ =

2π

g
√
T

. (59)

γ is the parameter which controls the width of the domain wall between the two vacua.

Notice, at the classical level the action reduces to only a kinetic term, since the classical

field of Eq. (4) commutes with itself. This means that classically there is no difference

between the two vacua.

Assuming that the vacua at the two ends of the box, z = −L and z = +L, correspond to

the two minima, qi and qf , the interface tension is connected to the shortest path between

qi and qf , which obeys the equation of motion

T 3 d
2q

dz′2
=
dVeff (q)

dq
, (60)
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with the boundary conditions q(−L) = qi and q(L) = qf . The corresponding energy density

is obtained by multiplying Eq. (60) by dq/dz′, and integrating over z′

e =
T 3

2

(
dq

dz′

)2

− Veff (q). (61)

For any solution to the equation of motion the energy is conserved, de/dz′ = 0. Therefore,

any function q(z) which minimizes the effective action with respect to the corresponding

boundary conditions satisfies:

T 3

2

(
dq

dz′

)2

= Veff (q) ,
dq

dz′
=

√
2Veff (q)

T 3
. (62)

Using the energy conservation in Eq. (62), the effective action can be written as

S = 2Vtr
∫
dzVeff (q)

= γ
√
T 3Vtr

∫ qf

qi

dq
√

2Veff (q)

=
2π

g
TVtr

∫ qf

qi

dq
√

2Veff (q) . (63)

The general form for the interface tension is then

α = α0

√
T 5

g
, (64)

where we define the dimensionless quantity

α0 = 2π

∫ qf

qi

dq

√
2Veff (q)

T 3
. (65)

It is interesting to notice that the factor 1/g2 present at the classical level in Eq. (58),

becomes 1/g. This is because the effective action acquires a potential only at one-loop order.

Furthermore, from the definition of the rescaled length z′ in Eq. (59) follows that the

relevant distance scale in the effective action is not 1/T , but 1/g
√
T . Therefore, if the

coupling constant is small, the effective action varies over much larger distance scales than

1/T . This implies that in weak coupling the variation of q(z) in space is slow and can be

ignored.
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A. The order-order interface tension

Above the deconfinement temperature the theory can be in one Z(N) vacuum, qi =

q1
min(T ), at one end of the box, and in a degenerate but inequivalent vacuum, qf = q2

min(T ),

at the other end. Due to the Z(2) symmetry q2
min(T ) = 1 − q1

min(T ). This is the order-

order interface tension, which is equivalent to a ’t Hooft loop in the deconfined phase. The

associated tunneling probability is determined by the integral

α0 = 2π

∫ q2min(T )

q1min(T )

dq

√
2Veff (q)

T 3
, (66)

where V (q) is the difference between the effective potential in q and at the minimum

V (q) = Veff (q, T )− Veff
[
q1
min(T )

]
. (67)

Figures 8 and 9 show the plots for the ’t Hooft loop scaled by its perturbative limit, αperto =

5.104. In the one-parameter model the results are essentially the same when using the linear

term and the Vandermonde term. One can understand this by remembering that in the one-

parameter model the minimum of the effective potential merges rapidly from the confined

vacuum, qmin(Td) = qc = 0.5, into the perturbative vacuum, qmin(T > Td) ≈ 0. Therefore,

the two degenerate minima are approximately at q1
min(T ) ≈ 0 and q2

min(T ) ≈ 1. Remarkably,

unlike the Polyakov loop, which becomes trivial in the one-parameter model, for the ’t Hooft

loop the details of the matrix model are relevant in the entire semi-QGP for all models

addressed in this work.

VII. CONCLUSIONS AND OUTLOOK

In this work we utilize a matrix model to study the deconfinement phase transition in pure

SU(2) glue theory in 2+1 dimensions. The basic variables of the model are the eigenvalues of

the Wilson line. First we construct the effective potential as the sum of a perturbative and a

nonperturbative part. The perturbative potential is computed in the presence of a constant

background field for the vector potential A0 ∼ q. We find that to one-loop order this gives

a trilogarithm function of A0/T. Then, in order to model the transition to deconfinement,

we introduce additional constant and nonconstant nonperturbative terms depending on T,

and on three parameters. For the nonconstant terms, which are functions of q, we try three
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different Ansätze: the linear term ∼ T 2Td2π
[
2 ln 2− π2(q − 1

2
)2
]
, and a Vandermonde-like

term with two different temperature dependences, ∼ T 3−δ Td
δ4π log [2 sin(πq)] , δ = 1, 2.

Imposing two constraints for the phase transition at T = Td leaves only one free parameter,

which is determined by fitting the lattice pressure. The numerical results for the pressure

and for the interaction measure are presented and compared to the lattice data of Ref. [10].

The one-parameter model already gives good fits to the lattice pressure and to the inter-

action measure at high and low temperatures. But at intermediate temperatures the results

deviate from the lattice results. The two-parameter model improves the agreement at inter-

mediate temperatures, and provides overall good fits to the pressure, and to the interaction

measure at all temperatures. However, in both models there is a clear deviation from the

lattice data at the peak of the interaction measure, while their χ2/d.o.f. tests indicate that

better fits are possible. Considering different options to cure this deficiency, the possibility

of constructing a four-parameter fit is discussed. Regarding possible uncertainties present

in our analytical calculations, due to the applied approximations, as well as on the lattice,

due to glueballs and finite-volume effects, the two-parameter model is extended by two ad-

ditional free parameters: one for Td, and one for the perturbative limit of the pressure,

c. The four-parameter model gives remarkably good fits to the lattice pressure and to the

interaction measure for all nonconstant terms discussed in this work. It also reproduces the

correct shape for the peak of the conformal anomaly. Furthermore, in the four-parameter fit

there is a range in the deconfined phase, where the condensate is nonzero, and the details

of the matrix model become relevant. The window of this transition region extends up to

∼ 1.2 Td. This is similar to the results for the SU(2) matrix model obtained in d = 3 + 1.

We remark however, that this four-parameter fit should be considered just as a possible ap-

proximation to a more complete model which involves an underlying effective theory for the

confined phase. Notably, the one- and the two-parameter model, as well the four-parameter

fit exhibit only a mild sensitivity to the details of the nonconstant terms.

Using the parameters determined by fitting the pressure, we also show the plots for the

Polyakov loop and for the ’t Hooft loop. In the one- and in the two-parameter model

the Polyakov loop grows sharply from 0 to 1 above above the critical temperature. This

is because in our model the Polyakov loop differs from one only when the condensate for

q is nonvanishing. In the one- and the two-parameter model, however, the condensate

effectively vanishes rapidly above Td. In the four-parameter fit the transition range where
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the condensate is nonvanishing and where the Polyakov loop varies from one extends up to

∼ 1.2 Td.

The model can be improved in two obvious ways. First, one can include perturbative

corrections at next to leading order, to ∼ g2. This will presumably correct the deviation

from the lattice data at high temperature. Second, near Td it is necessary to include an

effective theory for the confined phase. This will describe the increase in the energy density

near Td, and obviate our rather ad hoc prescription for shifting Td by hand.

Summing up, the one- and the two-parameter matrix models work reasonably well for the

pressure and for the interaction measure. They also provide reasonable predictions for the

’t Hooft loop. The four-parameter fit agrees perfectly with the lattice data even very close

to Td. Moreover, it provides reasonable results for the Polyakov loop. This is closely related

to the width of the transition region, in which the model exhibits a nontrivial minimum. So

far, the behavior of the Polyakov loop and of the ’t Hooft near Td in d = 2 + 1 have not

been computed on the lattice. These results could provide important tests of our model.
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