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We calculate the annihilation decay widths of spin-singlet heavy quarkonia hc, hb and ηb into

light hadrons with both QCD and relativistic corrections at order O(αsv
2) in nonrelativistic QCD.

With appropriate estimates for the long-distance matrix elements by using the potential model

and operator evolution method, we find that our predictions of these decay widths are consistent

with recent experimental measurements. We also find that the O(αsv
2) corrections are small for bb

states but substantial for cc states. In particular, the negative contribution of O(αsv
2) correction

to the hc decay can lower the decay width, as compared with previous predictions without the
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2) correction, and thus result in a good agreement with the recent BESIII measurement.
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I. INTRODUCTION

The inclusive annihilation decay of heavy quarkonium is one of the important issues

in heavy quarkonium physics. It is widely accepted that the heavy quarkonium inclusive

annihilation decay can be described by nonrelativistic QCD (NRQCD) factorization [1].

In this framework, the long-distance effects that cannot be calculated perturbatively are

described by the long-distance matrix elements (LDMEs), which are classified in the order

of v, the relative velocity of heavy quarks in quarkonium. As v is small in heavy quarkonium

system, we only need to keep a few LDMEs to a definite precision goal. Recently, more

precise measurements for heavy quarkonium decay widths and branching ratios are available

[2–12]. Thus, it is necessary to provide more precise theoretical predictions to compare with

the data.

For charmonium, the cc system, the inclusive annihilation hadronic decay (into glu-

ons and light quark pairs) widths for S, P,D-wave states are all calculated up to O(αs) in

NRQCD [13–19]. Particularly, for the S-wave state ηc, the O(αsv
2) corrections have recently

been carried out [20], which means the short-distance coefficients of O(v2) LEMEs are calcu-

lated perturbatively to next-to-leading order (NLO) in αs. After taking the O(αsv
2) correc-

tions into account, the measurements of ηc decay can be described much better in NRQCD.

For the P -wave state hc, the earlier theoretical result at O(αs) predicts the hadronic decay

width of hc to be about 0.72 MeV[17], which is a factor of 2 larger than the latest mea-

surements by BESIII, where the central value of the total width is about 0.73 MeV and the

hadronic decay branching ratio is about 50%[5]. Thus it is needed to study higher order in

v corrections to examine whether the gap between theoretical predictions and experimental

measurements can be explained. It will be an interesting test for the validity of NRQCD

factorization for charmonium system.

For bottomonium, the bb system, the value of v2 is about 0.1, which is much smaller than

v2 ≈ 0.3 for charmonium. It is then expected that the v2 expansion should be better for

bottomonium, thus the study of bottomonium is more solid to check NRQCD factorization.

Recently, the process hb(1P ) → ηb(1S)γ is measured by the Belle Collaboration [8]. It is

found that the ηb decay width to be about 12.4 MeV and the decay branching fraction of

B[hb(1P ) → ηb(1S)γ] = 49.2 ± 5.7+5.6
−3.3%. It is tempting to try to explain these data in

NRQCD.
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In this paper, we will perform the O(αsv
2) calculations for the spin-singlet P -wave char-

monium hc and bottomonium hb, and also for the spin-singlet S-wave bottomonium ηb. We

find these corrections are important to understand the measured data. The rest of this

paper is organized as follows. In Sec. II we briefly introduce the NRQCD factorization for-

mulism in heavy quarkonium annihilation decays. Then we describe some technical method

in calculating O(αsv
2) short-distance coefficients in Sec.III. The results for S-wave and P

wave-states including real and virtual contributions are presented in Sec. IV. With these

results and appropriate estimates of the LDMEs, we discuss the related phenomenology in

Sec. V. In the Appendix A, we calculate the evolution of LDMEs at O(αsv
2). In the App-

nedix B, we describe our factorization scheme choice and show how to eliminate higher twist

operators. Finally, we give a brief summary in Sec. VI.

II. NRQCD FACTORIZATION FOR QUARKONIUM DECAY

In this section, we introduce the NRQCD factorization formula for the rates of spin-

singlet heavy quarkonium (ηc,b and hc,b) decays to light hadrons. The inclusive annihilation

decay width of heavy quarkonium can be factorized by the following formula [1]

Γ(H) =
∑

n

2 Imfn(µΛ)

mdn−4
Q

〈H|On(µΛ)|H〉, (1)

where Imfn(µΛ) is the short-distance (SD) coefficient which can be perturbatively calculated

using full QCD Lagrangian. The long-distance matrix elements(LDMEs) 〈H|On(µΛ)|H〉
involve non-perturbative effects and are classified by the relative velocity v bettween Q and

Q, according to power counting in Refs. [1, 21–24].

The NRQCD Lagrangian can be derived by integrating out the degrees of freedom of

order mQ, the mass of the heavy quark, from QCD Lagrangian, which gives

LNRQCD = Llight + Lheavy + δL. (2)

The heavy part of the Lagrangian describes the motions of (anti-)heavy quark in spacetime

and is given by

Lheavy = ψ†(iDt +
D2

2mQ

)ψ + χ†(iDt −
D2

2mQ

)χ (3)

where ψ(χ) denotes the Pauli spinor field that annihilates (creates) a heavy (anti-)quark,

and Dt(D) is the time(space) component of the gauge-covariant derivative Dµ. The light
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piece of the Lagrangian reads

Llight = −1

2
Tr GµνGµν +

∑

nf

qi /Dq (4)

where Gµν is the gluon field strength tensor, q is the Dirac spinor field of light quarks and

nf is the number of light flavors. The bilinear Lagrangian term which contains the order v2

correction is

δLbilinear =
c1

8m3
Q

ψ†(D2)2ψ +
c2

8m2
Q

ψ†(D · gE− gE·D)ψ

+
c3

8m2
Q

ψ†(iD×gE− gE×iD)·σψ +
c4

2mQ

ψ†(gB·σ)ψ

+ charge conjugate terms, (5)

where Ei = G0i and Bi = 1
2
ǫijkGjk are the electric and magnetic components of the gluon

field strength tensor Gµν , and ci = 1 +O(αs), i = 1, 2, 3, 4 are the dimensionless coefficients

corresponding to each operator.

In order to describe the annihilation decay of quarkonium, a set of local 4-fermion op-

erators Oi which appear in Eq. (1) are needed. For example, the operator ψ†χχ†ψ can

annihilate a QQ pair in the 1S
[1]
0 configuration. In our case, for the O(αsv

2) calculation of

spin-singlet quarkonium decay, the power counting rules [1] give the following seven opera-

tors and LDMEs in Eq. (1): for S wave quarkonium,

O(1S
[1]
0 ) = ψ†χχ†ψ, (6a)

P(1S
[1]
0 ) =

1

2
ψ†χχ†(−i

↔

D

2
)2ψ + h.c., (6b)

for P wave quarkonium,

O(1S
[8]
0 ) = ψ†T aχχ†T aψ, (7a)

P(1S
[8]
0 ) =

1

2
ψ†T aχχ†T a(−i

↔

D

2
)2ψ + h.c., (7b)

O(1P
[1]
1 ) = ψ†(−i

↔

D

2
)χ·χ†(−i

↔

D

2
)ψ, (7c)

P(1P
[1]
1 ) =

1

2
ψ†(−i

↔

D

2
)χ·χ†(−i

↔

D

2
)3ψ + h.c., (7d)

T1−8(
1S0,

1P1) =
1

2
ψ†gEχ · χ†

↔

Dψ + h.c., (7e)
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and

〈O(2S+1L
[1,8]
J )〉H ≡ 〈H|O(2S+1L

[1,8]
J )|H〉, (8a)

〈P(2S+1L
[1,8]
J )〉H ≡ 〈H|P(2S+1L

[1,8]
J )|H〉. (8b)

Note that, choosing different power counting rules, one may get different set of operators.

For example, in the power counting rule of Ref. [24], mQ and v are homogeneous, which

gives that the chromomagnetic field gB scales as (mQv)
2. While that field scales as m2

Qv
4

in Ref. [1], which is further suppressed by v2. As a result, many operators considered in

Ref. [24] disappear in our calculation, leaving the above seven. These seven matrix elements

are all independent with each other, i.e. they cannot be eliminated by field redefinition or

Poincare invariance [24].

Using the seven operators, we give the explicit form of Eq. (1) for 1S0 and 1P1 states,

Γ(H(1S0) → LH) =
F (1S

[1]
0 )

m2
Q

〈O(1S
[1]
0 )〉1S0

+
G(1S

[1]
0 )

m4
Q

〈P(1S
[1]
0 )〉1S0

, (9a)

Γ(H(1P1) → LH) =
F (1S

[8]
0 )

m2
Q

〈O(1S
[8]
0 )〉1P1

+
G(1S

[8]
0 )

m4
Q

〈P(1S
[8]
0 )〉1P1

+
F (1P

[1]
1 )

m4
Q

〈O(1P
[1]
1 )〉1P1

+
G(1P

[1]
1 )

m6
Q

〈P(1P
[1]
1 )〉1P1

. (9b)

Note that, we omit a term of T (1S0,
1P1)

m5

Q

〈T1−8(
1S0,

1P1)〉1P1
in Eq. (9b) to simplify our theoretical

framework, although the LDME 〈T1−8(
1S0,

1P1)〉1P1
is of the same order in v as 〈P(1P

[1]
1 )〉1P1

.

There are two reasons that lead us to do this simplification. Numerically, this contribution

is small, which is because T (1S0,
1P1) vanishes at leading order (LO) in αs due to the charge

parity conservation. Theoretically, and more important, this contribution is finite, that is

no infra-red (IR) poles are needed to cancel between this channel and other four channels

in Eq. (9b). It is then impossible to distinguish this finite contribution from the renormal-

ization scheme or factorization scheme choice of other operators, such as 〈O(1P
[1]
1 )〉1P1

or

〈O(1S
[8]
0 )〉1P1

. Therefore, by ignoring this operator in the hadronic decay width, it is equiv-

alent that we choose a specific renormalization scheme or factorization scheme for other

operators. In Appendix B, we will give an explicit definition of our factorization scheme

to absorb the term T (1S0,
1P1)

m5

Q

〈T1−8(
1S0,

1P1)〉1P1
. Although our scheme is in principle distin-

guished from MS scheme, as we will discussed in Appendix B, there is no difference between
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these two schemes for our purpose in this work. As a result, we will pretend to use MS

scheme in the following.

Through the above factorization formula, one can match full QCD with NRQCD to get

the short-distance (SD) coefficients F and G perturbatively. The skeleton of the matching

procedure is given by

ImM(QQ→ QQ)
∣

∣

∣

pert QCD
=

∑

n

2 Imfn(µΛ)

mdn−4
Q

〈QQ|On(µΛ)|QQ〉
∣

∣

∣

NRQCD
, (10)

The determination of SD coefficients will be discussed in detail in the next section.

III. DETAILS IN FULL QCD CALCULATION

A. Kinematics

We work in the rest frame of the heavy quarkonium. It is customary to decompose the

momenta of Q and Q as following

pQ =
1

2
P + q, (11a)

pQ =
1

2
P − q, (11b)

where P is the total momentum and q is half of the relative momentum, which satisfies the

relation P ·q = 0. The explicit four-vector form of P and q in the rest frame are

P = (2Eq, 0), (12a)

q = (0,q), (12b)

with Eq =
√

m2
Q + q2.

The treatment of final state phase space integration at O(αsv
2) level is slightly different

from ordinary calculations (i.e. leading order of v calculation). To make it simpler, we use

the following rescaling transformation for all external momenta [20, 25],

P → P ′ Eq

mQ

, (13a)

kf → k′f
Eq

mQ

, (13b)

but keep the relative momentum q and loop integral momentum l unchanged. Once we take

such trick, the q2 dependence in both phase space and current factor [i.e. 1/(2M) where
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M is the quarkonium mass] can be absorbed into amplitude, then we can safely take q → 0

in these terms and only expand q,q′ at the amplitude level, where q′ is half of the relative

momentum between QQ pair on the complex conjugate side. (Note that |q| = |q′| but their
direction don’t need to be the same, so in general q 6= q′). It should be kept in mind that

this trick can only work in the case where all final state partons are massless (i.e. gluons

and light quarks), because, in the massive partons case, the on-shell relation does not hold

under rescaling, which will break the QCD gauge invariance.

B. Covariant Projection Method in D-Dimension

Instead of using matching method directly, we use an equivalent but more efficient

method, i.e. the covariant projection method, to calculate the imaginary part of SD co-

efficients in Eq. (9a) and (9b). In order to get spin-singlet QQ decay amplitudes, we take

the following spin and color projectors onto QQ quark lines [26]:

Π0 =
1

2
√
2(Eq +mQ)

(
/P

2
+ /q +mQ)

(/P + 2Eq)γ5(−/P + 2Eq)

8E2
q

(
/P

2
− /q −mQ), (14)

and

C1 =
1√
Nc

, (15a)

C8 =
√
2Ta. (15b)

We do Taylor expansion of the projected amplitudes in powers of q to the required order,

M(q) = M(0) +
∂M(q)

∂qα

∣

∣

∣

q=0
qα +

1

2!

∂2M(q)

∂qα∂qβ

∣

∣

∣

q=0
qαqβ

+
1

3!

∂3M(q)

∂qα∂qβ∂qγ

∣

∣

∣

q=0
qαqβqγ + · · · , (16)

and then make the replacement:

qαqβ → q2

D − 1
Παβ, (17a)

qαq
′
β → q·q′

D − 1
Παβ, (17b)

qαqβqγq
′
λ → q2q·q′

D + 1
(ΠαβΠγλ +ΠαγΠβλ +ΠαλΠγβ), (17c)

to project them to definite states, where

Παβ = −gαβ +
P ′
αP

′
β

4m2
Q

, (18)
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with P ′ the rescaled heavy quarkonium momentum. For example, the third derivative term

of M convolutes with the first derivative term of M† gives the squared amplitudes term

1

3!

∂3M(q)

∂qα∂qβ∂qγ

∣

∣

∣

q=0

∂M†(q′)

∂q′λ

∣

∣

∣

q′=0
qαqβqγq′λ

→ 1

3!

q2q·q′

D + 1
(ΠαβΠγλ +ΠαγΠβλ +ΠαλΠγβ)

∂3M(q)

∂qα∂qβ∂qγ

∣

∣

∣

q=0

∂M†(q′)

∂q′λ

∣

∣

∣

q′=0
(19)

which contributes to the SD coefficient of G(1P
[1]
1 ) in Eq. (9b).

IV. PERTURBATIVE QCD RESULTS OF SHORT-DISTANCE COEFFICIENTS

We generate Feynman diagrams and amplitudes by FenyArts [27, 28], and then calcu-

late the squared amplitudes by self-written Mathematica codes. The phase space integrals

are done analytically using the method presented in Ref. [16]. Ultra-violet(UV) and infra-

red(IR) divergences are both regularized by dimensional regularization. The renormaliza-

tions for heavy quark mass mQ, heavy quark field ψQ, light quark field ψq and gluon field

Aµ are in the on-mass-shell scheme(OS), and that for the QCD coupling constant gs is in

the MS scheme,

δZOS
mQ

= −3CF

αs

4π
Nǫ

[

1

ǫUV

+
4

3

]

, (20a)

δZOS
2 = −CF

αs

4π
Nǫ

[

1

ǫUV

+
2

ǫIR
+ 4

]

, (20b)

δZOS
2l = −CF

αs

4π
Nǫ

[

1

ǫUV

− 1

ǫIR

]

, (20c)

δZOS
3 =

αs

4π
Nǫ

[

(β0 − 2CA)

(

1

ǫUV

− 1

ǫIR

)]

, (20d)

δZMS
g = −β0

2

αs

4π
Nǫ

[

1

ǫUV

+ ln
m2

Q

µ2
r

]

, (20e)

where Nǫ(mQ) = (4πµ
2
r

m2

Q

)ǫΓ(1 + ǫ) is an overall factor, and µr is the renormalization scale.

β0 = 11
3
CA − 4

3
TFnf is the one-loop coefficient of the β function, nf is the active quark

flavors, which we set to be 3 for charmonium and 4 for bottomonium.
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FIG. 1: Born level Feynman diagrams for 1S
[1]
0 ,1S

[8]
0 → gg.

A. Short-Distance Coefficients of S-Wave Quarkonium Hadronic Decay

Leading order in αs calculations give the Born level decay width and its relativistic

correction respectively as

ΓBorn(
1S

[1]
0 → gg) =

4

3
(4παs)

2 µ
4ǫ
r

m2
Q

Φ(2)(1− ǫ)(1− 2ǫ)
〈O(1S

[1]
0 )〉Born1S0

2Nc

, (21a)

Γ
(v2)

Born(
1S

[1]
0 → gg) = −2(2− ǫ)

3− 2ǫ

q2

m2
Q

ΓBorn(
1S

[1]
0 → gg), (21b)

where Φ(2) = 1
8π
( 4π
M2 )

ǫ Γ(1−ǫ)
Γ(2−2ǫ)

is the total two-body phase space in D dimension and M =

2mQ

√

1 + q2

m2

Q

is the quarkonium mass including the relativistic correction. The two Born

diagrams are illustrated in Fig. 1.

The next-to-leading order calculations include real and virtual corrections. For S-wave

Fock states (i.e. 1S
[1]
0 and 1S

[8]
0 ), UV divergences will be canceled by counter-term diagrams,

and most IR divergences will be canceled between real and virtual corrections, leaving some

residue divergences at O(v2). The cancelation of such residue divergences will be presented

in next section by calculating NRQCD LDMEs at 1-loop level. The contribution of virtual

plus counter-term corrections is

ΓVirtual(
1S

[1]
0 → gg) =

3αs

π
ΓBorn(

1S
[1]
0 → gg)fǫ(mQ)

{

[− 1

ǫ2
− 1

6
β0

1

ǫ

+
1

36
(−6β0 ln(

4m2
Q

µ2
r

) + 19π2 − 44)]

+
q2

m2
Q

[
4

3

1

ǫ2
− 4nf − 97

27

1

ǫ

− 1

324
(−72β0 ln(

4m2
Q

µ2
r

) + 8nf + 267π2 − 280)]
}

,

(22)

where fǫ(mQ) = (πµ
2
r

m2

Q

)ǫΓ(1 + ǫ). Some selected Feynman diagrams are shown in Fig. 2.

The real correction contains two sets, where one set is the final states with ggg and the

other one with qqg. Some typical Feynman diagrams are shown in Fig. 3 and Fig. 4 and the
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FIG. 2: Virtual correction Feynman diagrams for 1S
[1]
0 ,1S

[8]
0 → gg. The crossed diagrams have been

suppressed.

FIG. 3: Real correction Feynman diagrams for 1S
[1]
0 ,1S

[8]
0 ,1P

[1]
1 → ggg. The crossed diagrams have

been suppressed. The second diagram vanishes in 1P
[1]
1 .

contributions to decay width are

Γ(1S
[1]
0 → ggg) =

3αs

π
ΓBorn(

1S
[1]
0 → gg)fǫ(mQ)

{

[
1

ǫ2
+

11

6

1

ǫ
+

1

72
(724− 69π2)]

+
q2

m2
Q

[−4

3

1

ǫ2
− 3

ǫ
− 437− 42π2

27
]
}

,
(23a)

Γ(1S
[1]
0 → qqg) =

nf

2

αs

π
ΓBorn(

1S
[1]
0 → gg)

fǫ(mQ)

Γ(1 + ǫ)Γ(1− ǫ)
[−2

3

1

ǫ
− 16

9
+

q2

m2
Q

(
8

9

1

ǫ
+

86

27
)].

(23b)

FIG. 4: Real correction Feynman diagrams for 1S
[1]
0 ,1S

[8]
0 → qqg. The crossed diagrams have been

suppressed.
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Combining Eqs. (21), (22) and (23), we obtain the hadronic decay width with both QCD

radiative and relativistic corrections at NLO of 1S0 heavy quarkonium,

ΓQCD(
1S0 → LH) =ΓBorn(

1S
[1]
0 → gg)

{

[

1 +
αs

π
fǫ(mQ)

1

72
(−36β0 ln(

4m2
Q

µ2
r

)

− 64nf − 93π2 + 1908)
]

− 4

3

q2

m2
Q

[

1 +
αs

π
fǫ(mQ)(−

4

3

1

ǫ

+
1

144
(−72β0 ln(

4m2
Q

µ2
r

)− 164nf − 237π2 + 4964))
]

}

.

(24)

We note that our results agree with the previous work for O(αsv
2) correction [20] and O(αs)

correction [16, 19]. Comparing our results with Ref. [20], a slight difference of two body

phase space Φ2 between them can be found. In Ref. [20] Φ2 is defined so as to remove the

q2 dependence into the coefficients, so our individual virtual and real parts Eq. (22) and

Eq. (23) look different from the results in Ref. [20] but essentially they are equivalent. The

total NLO result Eq. (24) is explicitly the same, independent of the definition of Φ2. The

correct repetition of the hadronic decay SD coefficients of 1S0 heavy quarkonium enables us

to extend discussion from charm quark system to bottom quark system (i.e. ηb) and also

partly checks our codes when dealing with P -wave heavy quarkonium.

B. Short-Distance Coefficients of P-Wave Quarkonium Hadronic Decay

The procedure in calculating the 1P1 heavy quarkonium is similar to 1S0, although more

complicated. Additional simplification can be taken by imposing C (charge) parity conser-

vation of QCD to constrain Feynman diagrams. A straightforward result is that C parity

conservation prohibits 1P
[1]
1 Fock state, which has C = −1, to decay to two gluons, whose

C = +1, no matter they are real or virtual. By tedious but straightforward calculation, we

get the results as follows.

At the Born level,

ΓBorn(
1S

[8]
0 → gg) =

5

12
(4παs)

2 µ
4ǫ
r

m2
Q

Φ(2)(1− ǫ)(1− 2ǫ)〈O(1S
[8]
0 )〉Born1P1

, (25a)

Γ
(v2)

Born(
1S

[8]
0 → gg) = −2(2− ǫ)

3− 2ǫ

q2

m2
Q

ΓBorn(
1S

[8]
0 → gg), (25b)
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For NLO corrections,

ΓVirtual(
1S

[8]
0 → gg) =

3αs

π
ΓBorn(

1S
[8]
0 → gg)fǫ(mQ)

{

[− 1

ǫ2
+
nf − 21

9

1

ǫ

+
1

72
(−12β0 ln(

4m2
Q

µ2
r

) + 29π2 − 16)]

+
q2

m2
Q

[
4

3

1

ǫ2
− 4nf − 115

27

1

ǫ

− 1

628
(−144β0 ln(

4m2
Q

µ2
r

) + 16nf + 345π2 − 992)]
}

,

(26)

Γ(1S
[8]
0 → ggg) =

3αs

π
ΓBorn(

1S
[8]
0 → gg)fǫ(mQ)

{

[
1

ǫ2
+

7

3

1

ǫ
− π2 +

104

9
]

+
q2

m2
Q

[−4

3

1

ǫ2
− 4

ǫ
− 554− 45π2

27
]
}

,
(27)

Γ(1S
[8]
0 → qqg) =

nf

2

αs

π
ΓBorn(

1S
[8]
0 → gg)

fǫ(mQ)

Γ(1 + ǫ)Γ(1 − ǫ)
[−2

3

1

ǫ
− 16

9
+

q2

m2
Q

(
8

9

1

ǫ
+

86

27
)],

(28)

Γ(1P
[1]
1 → ggg) =

40α3
s

27
fǫ(mQ)(8πΦ2)

{

[−1

ǫ
+

7π2

24
− 5

3
]

+
q2

m2
Q

[
29

15

1

ǫ
+

4216− 555π2

900
]
}〈O(1P

[1]
1 )〉Born1P1

2Ncm4
Q

,

(29)

Summing over the above results we get the total hadronic decay width,

ΓQCD(
1P1 → LH) =ΓBorn(

1S
[8]
0 → gg)

{

[

1 +
αs

π
fǫ(mQ)(−

1

2
β0 ln(

4m2
Q

µ2
r

)

− 8

9
nf −

43π2

24
+ 34

]

− 4

3

q2

m2
Q

[

1 +
αs

π
fǫ(mQ)(−

7

12

1

ǫ

+
1

288
(−144β0 ln(

4m2
Q

µ2
r

)− 328nf − 735π2 + 12304))
]

}

+
40α3

s

27
fǫ(mQ)(8πΦ2)

{

[−1

ǫ
+

7π2

24
− 5

3
]

+
q2

m2
Q

[
29

15

1

ǫ
+

4216− 555π2

900
]
}〈O(1P

[1]
1 )〉Born1P1

2Ncm4
Q

.

(30)

C. Evaluating NRQCD LDMEs And Matching Full QCD Results

In Eqs. (24) and (30) there exists explicit IR divergences. To cancel these divergence, we

need to evaluate LDMEs at the loop level. By replacing all the Born LDMEs appearing in

12



Eq. (24) and (30) by one-loop LDMEs, all IR divergences should be canceled and the final

results will be infra-red safe quantities.

The self-energy contributions which connect Born LDMEs to their corresponding rela-

tivistic ones are first calculated in Ref. [1]. The intersecting diagrams which describe the

E1 transition between 1S
[8]
0 and 1P

[1]
1 states at O(αsv

2) in this work is new. The detailed

calculation is presented in Appendix A. Here we give the relevant results in dimensional

regularization with MS renormalization scheme,

〈O(1S
[1]
0 )〉Born1S0

→〈O(1S
[1]
0 )〉(µΛ)

1S0

{

1− 4

3

q2

m2
Q

4αs

3π
fǫ(mQ)[

1

ǫ
− ln(

µ2
Λ

4m2
Q

)]
}

, (31a)

〈O(1S
[8]
0 )〉Born1P1

→〈O(1S
[8]
0 )〉(µΛ)

1P1

{

1− 4

3

q2

m2
Q

7αs

12π
fǫ(mQ)[

1

ǫ
− ln(

µ2
Λ

4m2
Q

)]
}

+
16αs

9π
fǫ(mQ)

{

[
1

ǫ
− ln(

µ2
Λ

4m2
Q

)]

+
3q2

5m2
Q

[−1

ǫ
+ ln(

µ2
Λ

4m2
Q

)]
}〈O(1P

[1]
1 )〉Born1P1

2Ncm2
Q

,

(31b)

〈P(1S
[8]
0 )〉Born1P1

→〈P(1S
[8]
0 )〉(µΛ)

1P1
+

16αs

9π
fǫ(mQ)[

1

ǫ
− ln(

µ2
Λ

4m2
Q

)]
〈P(1P

[1]
1 )〉Born1P1

2Ncm2
Q

(31c)

where µΛ is the factorization scale. Substituting them into Eq. (24) and (30), and consid-

ering the relation

〈P(1S
[1]
0 )〉Born1S0

= q2〈O(1S
[1]
0 )〉Born1S0

, (32a)

〈P(1S
[8]
0 )〉Born1P1

= q2〈O(1S
[8]
0 )〉Born1P1

, (32b)

〈P(1P
[1]
1 )〉Born1P1

= q2〈O(1P
[1]
1 )〉Born1P1

, (32c)

we get the SD coefficients for heavy quarkonium hadronic decay of S-wave and P-wave states

13



by matching full QCD and NRQCD,

F (1S
[1]
0 ) =

4πα2
s

9

[

1− αs

π

1

72
(36β0 ln(

4m2
Q

µ2
r

) + 64nf + 93π2 − 1908)
]

, (33a)

G(1S
[1]
0 ) =− 4

3

4πα2
s

9

{

1− αs

π

1

144
[192 ln(

µ2
Λ

4m2
Q

) + 72β0 ln(
4m2

Q

µ2
r

)

+ 164nf + 237π2 − 4964]
}

,

(33b)

F (1S
[8]
0 ) =

5πα2
s

6

[

1− αs

π

1

72
(36β0 ln(

4m2
Q

µ2
r

) + 64nf + 129π2 − 2448)
]

, (33c)

G(1S
[8]
0 ) =− 4

3

5πα2
s

6

{

1− αs

π

1

288
[168 ln(

µ2
Λ

4m2
Q

) + 144β0 ln(
4m2

Q

µ2
r

)

+ 328nf + 735π2 − 12304]
}

,

(33d)

F (1P
[1]
1 ) =

5α3
s

486

[

7(π2 − 16)− 24 ln(
µ2
Λ

4m2
Q

)
]

, (33e)

G(1P
[1]
1 ) =

α3
s

3645

[

1740 ln(
µ2
Λ

4m2
Q

)− 555π2 + 9236
]

, (33f)

where F ’s and G’s are defined in Eq. (9a) and (9b).

The SD coefficients of 1S
[1]
0 agree with those in Refs. [1, 16, 19, 20, 25], that of 1S

[8]
0 and

1P
[1]
1 at leading order in v2 are also agree with previous results in Ref. [16]. The relativistic

corrections G(1S
[8]
0 ) and G(1P

[1]
1 ) are primarily new results in this work. Based on these

results, we will analyze the decay of 1S0 and 1P1 heavy quarkonium into light hadrons.

V. PHENOMENOLOGICAL DISCUSSIONS

A. Estimating NRQCD LDMEs

To get the numerical result, we also need to know the value of LDMEs. For 1S0 quarko-

nium there are two LDMEs and for 1P1 there are four. In Ref. [20] the LDMEs of ηc are

determined by combining the Cornell potential[29] with one experimental measurement,

ΓLH(ηc) or Γ
γγ(ηc)[30], and then one can predict other quantities. In the present work, since

there are not enough experimental input to determine all involved LDMEs, we will estimate

them by other method.

For ηb, the situation is similar to Ref. [20], but lacking the experiment input of the decay

width to two photons Γγγ(ηb). In this case we will determine 〈O(1S
[1]
0 )〉ηb from potential

14



model. Here we use the Buchmüller-Tye(B-T) potential model [31] and Cornell(Corn) po-

tential model [29] results as input, which give [32, 33]

〈O(1S
[1]
0 )〉B-Tηb

=
Nc

2π
|RB-T

S (0)|2 = 3.093GeV3, (34a)

〈O(1S
[1]
0 )〉Cornηb

= 〈O(3S
[1]
1 )〉CornΥ(1S) = 3.07+0.21

−0.19GeV3. (34b)

In the Eq. (34b) we use the heavy quark spin symmetry(HQSS) to relate LDMEs of ηb with

that of Υ(1S). As the B-T model and Cornell model give almost the same result, we will

only use B-T model in the following.

In order to determine 〈P(1S
[1]
0 )〉ηb , we define [20, 25]

〈v2〉ηb ≡
〈P(1S

[1]
0 )〉ηb

m2
b〈O(1S

[1]
0 )〉ηb

. (35)

Although 〈v2〉ηb can not be understood as the expectation value of v2 in potential model, it

can be estimated from the Gremm-Kapustin relation [36]

〈v2〉G-K
ηb

=
mηb − 2mpole

mpole

. (36)

Choosing mpole = 4.6 GeV for b quark and mηb = 9.391 GeV[30], we get 〈v2〉ηb = 0.042,

which is close to the potential model estimated value v2 ∼ 0.05 − 0.1. Combining these

results, we get the value of redefined LDMEs in B-T model as

〈O(1S
[1]
0 )〉ηb ≡

〈O(1S
[1]
0 )〉ηb

2Ncm2
b

= 24.36+1.09
−1.03MeV,

〈P(1S
[1]
0 )〉ηb ≡

〈P(1S
[1]
0 )〉ηb

2Ncm
4
b

= 〈v2〉ηb〈O(1S
[1]
0 )〉ηb = 1.01+0.05

−0.04MeV.

(37)

where the uncertainties are introduced by choosing mb = 4.6± 0.1 GeV.

For hc, we need to determine four LDMEs 〈O(1P
[1]
1 )〉hc

, 〈O(1S
[8]
0 )〉hc

, 〈P(1P
[1]
1 )〉hc

and

〈P(1S
[8]
0 )〉hc

. 〈O(1P
[1]
1 )〉hc

is determined by the B-T potential model [32] and

〈P(1P
[1]
1 )〉hc

≡ 〈v2〉hc
m2

c〈O(1P
[1]
1 )〉hc

≈ 〈v2〉ηcm2
c〈O(1P

[1]
1 )〉hc

, (38)

where 〈v2〉ηc = 0.228 is taken from Ref. [20]. Here we have tentatively assumed 〈v2〉hc
≈

〈v2〉ηc . The remaining two color-octet LDMEs are determined by the operator evolution

method (OEM) [1, 36, 37]. From Eq. (A10) we get the evolution equations

µ2
Λ

d〈O(1S
[8]
0 )〉

dµ2
Λ

= −7αs

9π

〈P(1S
[8]
0 )〉

m2
Q

+
16αs

9π

〈O(1P
[1]
1 )〉

2Ncm
2
Q

− 16αs

15π

〈P(1P
[1]
1 )〉

2Ncm
4
Q

,

µ2
Λ

d〈P(1S
[8]
0 )〉

dµ2
Λ

=
16αs

9π

〈P(1P
[1]
1 )〉

2Ncm2
Q

.

(39)
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Knowing the values of 〈O(1P
[1]
1 )〉 and 〈P(1P

[1]
1 )〉, the above differential equations will de-

termine the values of 〈O(1S
[8]
0 )〉 and 〈P(1S

[8]
0 )〉 by evolving from initial values at µΛ = µΛ0

.

Using two-loop running of αs, we get

〈O(1S
[8]
0 )〉(µΛ) =

64

9β0
A
〈O(1P

[1]
1 )〉

2Ncm2
Q

− 64

3β0
A

(

1

5
+

14

27β0
A

) 〈P(1P
[1]
1 )〉

2Ncm4
Q

− 28

9β0
A
〈P(1S

[8]
0 )〉(µΛ0

)

m2
Q

+ 〈O(1S
[8]
0 )〉(µΛ0

),

〈P(1S
[8]
0 )〉(µΛ) =

64

9β0
A
〈P(1P

[1]
1 )〉

2Ncm2
Q

+ 〈P(1S
[8]
0 )〉(µΛ0

),

(40)

where A ≡ ln
αs(µΛ0)

αs(µΛ)
− ln

1 + αs(µΛ0)β1/β0
1 + αs(µΛ)β1/β0

with β1 = (17C2
A − nfTR(10CA + 6CF ))/(6π).

Choosing µΛ0
= mcv ∼ 0.8 ± 0.2 GeV, the OEM assumes that the the values of 〈O(1S

[8]
0 )〉

and 〈P(1S
[8]
0 )〉 evaluated at µΛ ≈ 2mc can be estimated by the evolution term only, i.e.

neglect initial values at µΛ0
. Set mc to be its pole mass 1.5± 0.1 GeV, LDMEs at µΛ = 2mc

are

〈O(1P
[1]
1 )〉hc

≡ 〈O(1P
[1]
1 )〉hc

2Ncm4
c

= 3.537+1.124
−0.805MeV,

〈P(1P
[1]
1 )〉hc

≡ 〈P(1P
[1]
1 )〉hc

2Ncm6
c

= 0.806+0.256
−0.183MeV,

〈O(1S
[8]
0 )〉hc

≡ 〈O(1S
[8]
0 )〉hc

m2
c

= 2.040+1.208
−0.704MeV,

〈P(1S
[8]
0 )〉hc

≡ 〈P(1S
[8]
0 )〉hc

m4
c

= 0.561+0.350
−0.197MeV.

(41)

The errors are estimated by varying mc and µΛ0
, among which, the uncertainty of µΛ0

dominates the errors for the two S-wave LDMEs.

Using the same method we can determine the LDMEs for hb,

〈O(1P
[1]
1 )〉hb

= 0.7555+0.0694
−0.0623MeV, 〈P(1P

[1]
1 )〉hb

= 0.0314+0.0029
−0.0026MeV,

〈O(1S
[8]
0 )〉hb

= 0.3959+0.0611
−0.0503MeV, 〈P(1S

[8]
0 )〉hb

= 0.0169+0.0026
−0.0022MeV.

(42)

Here we choose mb = 4.6 ± 0.1 GeV, µΛ0
= mbv ∼ 1.5 ± 0.2 GeV and set 〈v2〉hb

≈ 〈v2〉ηb,
similar as the assumption for hc.

Note that, another method to determine the value of the color-octet LDME 〈O(1S
[8]
0 )〉hc

at

leading order in v is provided in Ref. [38], where LDMEs are further factorized by potential-

NRQCD factorization, and they are then expressed in terms of gluonic vacuum condensation
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factor E(µ). In Ref. [38] they gave both its evolution equation and the initial value at the

scale µ0 = 1GeV. We evolve this factor from the initial scale to 2mc, and find the value of

〈O(1S
[8]
0 )〉hc

through this method is about 3.5 MeV, which is a little larger than our result.

However, the derivation is reasonable since we include the relativistic corrections which

essentially decrease the value at leading order in v (see the second term at the right hand

of the first line in Eq. (40)).

B. Γ(ηb → LH)

We now discuss the hadronic decay width of ηb based on the values of LDMEs given

above. Let’s first fix both the renormalization scale µr and factorization scale µΛ to be 2mb

and consider the uncertainty introduced by LDMEs. For this choice of scales, the decay

width can be written as

Γ(ηb → LH) = 427.4+5.9
−5.7 × 10−3〈O(1S

[1]
0 )〉ηb − 641.4+8.8

−9.2 × 10−3〈P(1S
[1]
0 )〉ηb, (43)

where errors are estimated by varying mb = 4.6 ± 0.1GeV, and LDMEs 〈O(1S
[1]
0 〉ηb and

〈P(1S
[1]
0 〉)ηb are given by Eq. (37). As the coefficients for 〈O(1S

[1]
0 〉ηb and 〈P(1S

[1]
0 〉)ηb are

at the same order, the smallness of 〈P(1S
[1]
0 〉)ηb means the relativistic correction can only

change the total decay width by about 5%, which is not important as expected. Considering

also correlation between errors, we get the hadronic decay width of ηb with the choice of

µr = µΛ = 2mb,

Γ(ηb → LH) = 9.76+0.58
−0.54 MeV. (44)

We find the µΛ dependence is much weaker than the µr dependence, thus we only discuss

the µr dependence here. By varying the µr, we get the µr dependence of hadronic decay

width in FIG. 5. It is clear that the NLO calculation significantly reduces the µr dependence.

Varying µr from mb to 2mb, we get the decay width Γ(ηb → LH) ≈ Γtotal(ηb) ∼ 9.5 − 12

MeV. This value is consistent with the experimental data Γexp(ηb) = 10.8+4.0
−3.7

+4.5
−2.0 MeV [8].
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FIG. 5: µr dependence of Γ(ηb → LH). LO represents values without QCD and relativistic

corrections, NLO∗ includes QCD corrections but only at leading order in v, and NLO takes into

account all contributions up to O(αsv
2). The LDMEs are taken from the B-T potential model and

the Gremm-Kapustin relation. Here we set µΛ = 2mb, and mb = 4.6GeV.

C. Γ(hc → LH)

The numerical values of SD coefficients for hadronic decay width of hc are

Γ(hc → LH) =328.7+26.1
−21.8 × 10−3〈O(1S

[8]
0 )〉hc

− 39.6+3.1
−3.8 × 10−3〈O(1P

[1]
1 )〉hc

− 446.0+29.7
−35.5 × 10−3〈P(1S

[8]
0 )〉hc

+ 92.4+8.8
−7.3 × 10−3〈P(1P

[1]
1 )〉hc

,
(45)

where both the renormalization scale µr and factorization scale µΛ are set to be 2mc. The re-

defined LDMEs and their values are given in Eq. (41). With these results we then investigate

the effects of the QCD corrections and relativistic corrections.

Let us first analysis the partial widths of the four channels in Table I. Among the

four, the 〈O(1S
[8]
0 )〉hc

channel is positive and it dominates the total width. Contributions of

〈O(1P
[1]
1 )〉hc

channel and 〈P(1S
[8]
0 )〉hc

channel are negative and compatible, although the latter

one is suppressed by v2. This is because, as we mentioned before, the 1P
[1]
1 Fock state cannot

couple with two gluons and its SD coefficient is suppressed by αs. These compatible partial

decay widths are resulted by the balance between αs and v2. The last term, 〈P(1P
[1]
1 )〉hc

channel, is suppressed by both αs and v2, and it gives the smallest contribution. Summing
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up the first two channels we get the decay width at leading order in v, Γ(v0) = 0.53+0.40
−0.23MeV,

which is consistent with the previous work [17]. However, we will show later that the

experimental data favor a smaller value. Including also the relativistic corrections, the total

decay width will decrease by about 1/3. Next we list the partial widths order by order in αs

TABLE I: Γ(hc → LH) expressed with the contributions of each LDME.

〈O(1S
[8]
0 )〉hc

〈O(1P
[1]
1 )〉hc

〈P(1S
[8]
0 )〉hc

〈P(1P
[1]
1 )〉hc

Total

Γ(2S+1L
[c]
J → LH)(MeV) 0.67+0.43

−0.25 −0.14+0.04
−0.06 −0.25+0.10

−0.17 0.07+0.03
−0.02 0.35+0.25

−0.15

and v in Table II. We find the QCD correction, α1
sv

0 contribution, is as large as the leading

order contribution. Detailed study explores that the large correction mainly comes from the

1S
[8]
0 channel. In Ref. [39], the authors pointed out that the large correction for 1S

[1]
0 channel,

similar to the 1S
[8]
0 channel, is due to the existence of renormalons, and they also proposed a

resummation method to deal with the renormalons. Nevertheless, resummation of this kind

for 1S
[8]
0 channel is beyond the scope of this work, and we will leave it as a future study.

In our work, as both of the α0
sv

2 contribution and the α1
sv

2 contribution are negative, they

can balance the enhancement by QCD correction of 1S
[8]
0 channel. Moreover, we find our

complete NLO correction improves the normalization and factorization scale dependence

compared with the NLO* result, which are shown in FIG. 6.

TABLE II: Γ(hc → LH) expressed with contributions at various orders of αs and v.

.
α0
sv

0 α1
sv

0 α0
sv

2 α1
sv

2 Total

Γ(hc → LH)(MeV) 0.32+0.21
−0.12 0.21+0.20

−0.11 −0.12+0.04
−0.08 −0.06+0.04

−0.08 0.35+0.25
−0.15

In order to compare with the experiment data [5], we also need the E1 transition decay

width Γ(hc → ηc+γ) up to the v2 order, because this is another important decay channel of

hc. Ref. [17] estimated the transition decay widths but only at leading order in v by using

HQSS between the spin-singlet and triplet P-wave charmonia,

Γ(hc → γηc) =
(Ehc

γ )3

9

2
∑

J=0

(2J + 1)
Γ(χcJ → γJ/ψ)

(EχcJ
γ )3

. (46)

And the obtained E1 width is 615 ± 29 keV using the PDG Data [30]. This result is

consistent with the potential model calculations at leading order in v [40]. However, if the

v2 corrections are considered, HQSS will not hold any more. Ref. [40] showed that the width
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FIG. 6: µr and µΛ dependence of Γ(hc → LH). The upper plots are for µr and lower ones for µΛ.

From left to right the plots are shown for LO, NLO∗ and NLO respectively, where NLO∗ includes

O(αs) but excludes O(αsv
2) corrections.

of hc → γηc can be reduced from 650 KeV to 385 KeV by relativistic effects. Subsequent

studies using various potential models [34, 41, 42] also observed similar relativistic effects,

resulting in E1 transition width at the range of 354-323 KeV. In this paper we choose the

value Γ(hc → γηc) = 385 keV from Ref. [40].

Combining the LH and γηc decay channels of hc, we get the predictions for total decay

width Γth(hc) = 0.74+0.25
−0.15 MeV and the branching ratio Bth(hc → ηc + γ) = 52 ± 13%.

Our predictions are consistent with the new experimental data Γexp(hc) = 0.73+0.45
−0.28 MeV

and Bexp(hc → ηc + γ) = 54.3 ± 6.7 ± 5.2% measured by the BESIII Collaboration [5].

However, if we ignore the relativistic corrections to the hadronic decay width, the total

width will increase to 0.92 MeV and the E1 transition branching ratio will be decreased to

42%. Therefore, it is evident that the relativistic corrections play an important role in the

hc decay and they can lead to a better agreement between theoretical prediction and the

experimental data.
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D. Γ(hb → LH)

Similar to hc, we get the decay width for hb,

Γ(hb → LH) =145.9+2.1
−2.0 × 10−3〈O(1S

[8]
0 )〉hb

− (15.3± 0.3)× 10−3〈O(1P
[1]
1 )〉hb

− (196.0± 3.0)× 10−3〈P(1S
[8]
0 )〉hb

+ (35.8± 0.6)× 10−3〈P(1P
[1]
1 )〉hb

.
(47)

The µr and µΛ dependence are plotted in Fig. 7, where again we find the complete NLO cor-

rection largely reduces the scale dependence. From partial decay width of each contribution

in Table III and IV, it is clear that the v2 correction effect is much smaller for hb than that for

hc, while QCD correction is still important. The E1 transition decay width for hb is evaluated

in the NR [43], GI [42] and Screened-potential models [35], and the results are listed in Ta-

ble V. Compared with the experiment data Bexp(hb(1P ) → ηb(1S)γ) = 49.2± 5.7+5.6
−3.3% [8],

our prediction using NR model fits it very well, and predictions using other three models

are also within the error band.

TABLE III: Γ(hb → LH) expressed with contributions of each LDME.

〈O(1S
[8]
0 )〉hb

〈O(1P
[1]
1 )〉hb

〈P(1S
[8]
0 )〉hb

〈P(1P
[1]
1 )〉hb

Total

Γ(2S+1L
[c]
J → LH)(keV) 57.78+9.42

−7.79 −11.58+1.13
−1.29 −3.32+0.45

−0.54 1.12+0.12
−0.11 44.00+8.23

−6.73

TABLE IV: Γ(hb → LH) expressed with various orders of αs and v.

.
α0
sv

0 α1
sv

0 α0
sv

2 α1
sv

2 Total

Γ(hb → LH)(keV) 33.41+5.39
−4.46 12.78+3.39

−2.72 −1.91+0.26
−0.31 −0.29+0.15

−0.19 44.00+8.23
−6.73

TABLE V: Γ(hb → ηb + γ) and B(hb → ηb + γ) in NR, GI and Screened-potential models(SNR0

is calculated using the zeroth-order wave functions while SNR1 using the first-order relativistically

corrected wave functions)

.

NR GI SNR0 SNR1

Γ(hb → ηb + γ) (keV) 41.8 37.0 55.8 36.3

Γtotal(hb) (keV) 85.8 81.0 100.0 80.3

B(hb → ηb + γ) 48.7% 45.7% 55.9% 45.2%
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FIG. 7: µr and µΛ dependence of Γ(hb → LH). From left to right the three plots represent LO,

NLO∗ and NLO respectively, where NLO∗ includes O(αs) but excludes O(αsv
2) corrections.

VI. SUMMARY

We have calculated order αsv
2 corrections for the annihilation hadronic decay widths of

spin-singlet heavy quarkonia ηb, hc and hb within the framework of NRQCD. The short-

distance coefficients are calculated by covariant projection method, and the LDMEs are

estimated by using the potential model and operator evolution methods. For the hc decay,

we find that O(v2) and O(αsv
2) corrections contribute large and negative values to the

decay width, which substantially reduce the decay width calculated in the leading order

in v2. It shows that relativistic corrections play an important role in hadronic decays of

cc system, and can improve the theoretical results as compared with experimental data.

Our calculated total decay width Γth(hc) = 0.74+0.25
−0.15 MeV and branching ratio Bth(hc →

ηc+γ) = 52±13% are consistent with the measurements by BESIII [5]. For ηb and hb decays,

we have calculated their hadronic decay widths and found that Γ(ηb → LH) = 9.76+0.58
−0.54 MeV

and Γ(hb → LH) = 44.00+8.23
−6.73 keV. We conclude that for the bb system O(αsv

2) corrections

are not as important as in the cc system. We have also compared our theoretical results

with experimental data [5, 8] and found that in general our calculations are consistent with

data within theoretical and experimental uncertainties.
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FIG. 8: The one-loop NRQCD diagrams which involve the Feynman rules up to O(v2). The

Coulomb interactions and the cross diagrams have been suppressed.
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Appendix A: EVOLUTION OF NRQCD MATRIX ELEMENTS O(1S
[8]
0 ) and P(1S

[8]
0 )

AT O(αsv
2)

In order to cancel the infrared divergence in short-distance coefficients of 1P
[1]
1 Fock state,

we need to evaluate the NRQCD four-fermion operators O(1S
[8]
0 ) and P(1S

[8]
0 ) to sufficient

order.

The O(αs) correction diagrams include three sets: self-energy diagrams which are related

to self-energy corrections of external heavy (anti-)quarks; coulomb diagrams where the gluon

is connected with both initial or final heavy quark and anti-quark; and the intersecting

diagrams where the gluon is related to an initial heavy (anti-)quark and a final (anti-)quark.

The results of the first two sets have been given in Refs. [20, 44] and here we only calculate

the intersecting diagrams which relate to the transition from S wave to P wave.

Using the Lagrangian shown in Eq. (3) and (5) we can write the amplitudes of diagrams

in Fig. 8 are (other crossed diagrams are not shown)
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Ia+b+c = ig2s

∫

dDl

(2π)D
q ·q′ − (q ·l)(q′·l)/l2
m2

Q(l
2
0 − l2 + iǫ)

1− q2/2m2
Q − q′2/2m2

Q

[q0 − l0 − (q−l)2

2mQ
+ iǫ][q′0 − l0 − (q′−l)2

2mQ
+ iǫ]

,

(A1a)

Id = ig2s

∫

dDl

(2π)D
−1

[q0 − l0 − (q−l)2

2mQ
+ iǫ][q′0 − l0 − (q′−l)2

2mQ
+ iǫ]

, (A1b)

where q = (q0, q) is the heavy quark external momentum and l = (l0, l) is loop integral

momentum. Since there is no pole on the upper-half of l0’s complex plane, the second

integral Id yields zero. Contour-integrating the first integral over l0 around the l0 = |l| − iǫ

pole, we find

Ia+b+c = g2s

∫

dD−1l

(2π)D−1

q ·q′ − (q ·l)(q′·l)/l2
2m2

Q|l|
1− q2/2m2

Q − q′2/2m2
Q

[−|l| − l2

2mQ
+ q·l

mQ
+ iǫ][−|l| − l2

2mQ
+ q′·l

mQ
+ iǫ]

.

(A2)

Before further performing the integration, we will expand the relative momentum in the

denominator [45]. Assuming that q ·l/mQ, q
′ ·l/mQ and l2/mQ are far smaller than |l|, we

get the required expansion

Ia+b+c =
g2s

2m2
Q

∫

dD−1l

(2π)D−1

q ·q′ − (q ·l)(q′·l)/l2
|l|3 (1− q2/2m2

Q − q′2/2m2
Q)

×
(

1 + (
q ·l

|l|mQ

)2 + (
q′ ·l
|l|mQ

)2
)

+ (high order or irrelevant expansions). (A3)

This integral can be reduced by taking the following substitution

lilj → 1

D − 1
δijl2, (A4a)

liljlklr → 1

(D − 1)(D + 1)
(δijδkr + δikδjr + δirδkj)l4, (A4b)

where δij is D − 1 dimensional Euclidean delta symbol. The integral yields

Ia+b+c =
πα

(b)
s

2m2
Q

q ·q′

π2

D − 2

D − 1
(1− D − 1

D + 1

1

2m2
Q

(q2 + q′2))

(

1

ǫUV

− 1

ǫIR

)

. (A5)

Summing up all the diagrams we get

I =
2α

(b)
s

πm2
Q

D − 2

D − 1
q ·q′

(

1

ǫUV

− 1

ǫIR

)

(1− D − 1

D + 1

1

2m2
Q

(q2 + q′2))

×
[

CF

1⊗ 1

2Nc

+BFT
a ⊗ T a

]

O(1S
[8]
0 ).

(A6)
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Recalling the definitions of O(1P
[1]
1 ) and P(1P

[1]
1 ) we can write

〈H|O(1S
[8]
0 )|H〉 = 〈H|O(1S

[8]
0 )|H〉Born +

2(D − 2)α
(b)
s

(D − 1)πm2
Q

(

1

ǫUV

− 1

ǫIR

)

×
[

CF

〈H|O(1P
[1]
1 )|H〉

2Nc

− D − 1

(D + 1)m2
Q

CF

〈H|P(1P
[1]
1 )|H〉

2Nc

]

,

(A7a)

〈H|P(1S
[8]
0 )|H〉 = 〈H|P(1S

[8]
0 )|H〉Born +

2(D − 2)α
(b)
s

(D − 1)πm2
Q

(

1

ǫUV

− 1

ǫIR

)

CF

〈H|P(1P
[1]
1 ))|H〉

2Nc

,

(A7b)

where we have omitted terms for O(1P
[8]
1 ) and P(1P

[8]
1 ) since they are irrelevant in our

work. The presence of UV divergence indicates that the LDMEs need renormalization. The

relevant counter-term in the MS scheme can be chosen as

〈H|O(1S
[8]
0 )|H〉 = µ−2ǫ

Λ

{

〈H|O(1S
[8]
0 )|H〉(µΛ) +

4αs

3πm2
Q

(

1

ǫUV

+ ln 4π − γE

)

×
[

CF

〈H|O(1P
[1]
1 )|H〉

2Nc

− 3

5m2
Q

CF

〈H|P(1P
[1]
1 )|H〉

2Nc

]}

,

(A8a)

〈H|P(1S
[8]
0 )|H〉 = µ−2ǫ

Λ

{

〈H|P(1S
[8]
0 )|H〉(µΛ) +

4αs

3πm2
Q

(

1

ǫUV

+ ln 4π − γE

)

× CF

〈H|P(1P
[1]
1 )|H〉

2Nc

}

,

(A8b)

where µΛ is the NRQCD renormalization scale. Combining Eq. (A7) and (A8) we find

〈H|O(1S
[8]
0 )|H〉Born = µ−2ǫ

Λ 〈H|O(1S
[8]
0 )|H〉(µΛ) +

4αs

3πm2
Q

(

1

ǫIR
+ ln 4π − γE

)

×
(

µ

µΛ

)2ǫ
[

CF

〈H|O(1P
[1]
1 )|H〉

2Nc

− 3

5m2
Q

CF

〈H|P(1P
[1]
1 )|H〉

2Nc

]

,

(A9a)

〈H|P(1S
[8]
0 )|H〉Born = µ−2ǫ

Λ 〈H|P(1S
[8]
0 )|H〉(µΛ) +

4αs

3πm2
Q

(

1

ǫIR
+ ln 4π − γE

)

×
(

µ

µΛ

)2ǫ

CF

〈H|P(1P
[1]
1 )|H〉

2Nc

.

(A9b)

Considering also the self-energy contribution [see Eq. (B14) in Ref. [1]], we get the total
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loop corrections of NRQCD LDMEs

〈H|O(1S
[8]
0 )|H〉Born = µ−2ǫ

Λ 〈H|O(1S
[8]
0 )|H〉(µΛ) +

4αs

3πm2
Q

(

1

ǫIR
+ ln 4π − γE

)

×
(

µ

µΛ

)2ǫ
[

CF

〈H|O(1P
[1]
1 )|H〉

2Nc

− 3

5m2
Q

CF

〈H|P(1P
[1]
1 )|H〉

2Nc

− N2
c − 2

4Nc

〈H|P(1S
[8]
0 ))|H〉

]

,

(A10a)

〈H|P(1S
[8]
0 )|H〉Born = µ−2ǫ

Λ 〈H|P(1S
[8]
0 )|H〉(µΛ) +

4αs

3πm2
Q

(

1

ǫIR
+ ln 4π − γE

)

×
(

µ

µΛ

)2ǫ

CF

〈H|P(1P
[1]
1 )|H〉

2Nc

.

(A10b)

Appendix B: Scheme choice and absorption of 〈T1−8(
1S0,

1P1)〉1P1

In this appendix, we define the factorization scheme that we use in this work, and we will

show that there is no contribution from 〈T1−8(
1S0,

1P1)〉1P1
in our scheme. Let’s begin with

the factorization formula for Γ(H(1P1) → LH) in MS scheme

Γ(H(1P1) → LH) =
F (1S

[8]
0 )MS

m2
Q

〈O(1S
[8]
0 )〉MS

1P1
+
G(1S

[8]
0 )MS

m4
Q

〈P(1S
[8]
0 )〉MS

1P1

+
F (1P

[1]
1 )MS

m4
Q

〈O(1P
[1]
1 )〉MS

1P1
+
G(1P

[1]
1 )MS

m6
Q

〈P(1P
[1]
1 )〉MS

1P1

+
T (1S0,

1P1)
MS

m5
Q

〈T1−8(
1S0,

1P1)〉MS
1P1
, (B1)

where an explicit MS is marked for any LDME and SD coefficient. There are many scheme

choices to eliminate the last term in Eq. (B1). Our choice is to define the factorization

scheme of 〈O(1S
[8]
0 )〉1P1

by the following relation

Γ(H(1P1) → LH) =
F (1S

[8]
0 )MS

m2
Q

〈O(1S
[8]
0 )〉LT1P1

+
G(1S

[8]
0 )MS

m4
Q

〈P(1S
[8]
0 )〉MS

1P1

+
F (1P

[1]
1 )MS

m4
Q

〈O(1P
[1]
1 )〉MS

1P1
+
G(1P

[1]
1 )MS

m6
Q

〈P(1P
[1]
1 )〉MS

1P1
, (B2)

where, to distinguish from MS scheme, we denote it as leading twist scheme (LT). Note

that the relation in Eq. (B2) should be understood to be valid only at αs order, that is,

T (1S0,
1P1)

LT can be nonzero at higher order in αs. From Eqs. (B1) and (B2), we get the
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scheme transformation relation

〈O(1S
[8]
0 )〉LT1P1

− 〈O(1S
[8]
0 )〉MS

1P1
=

T (1S0,
1P1)

MS

m3
QF (

1S
[8]
0 )MS

〈T1−8(
1S0,

1P1)〉MS
1P1
. (B3)

According to the αs expansion of SD coefficients

F (1S
[8]
0 )MS =F (1S

[8]
0 )(0) + αsF (

1S
[8]
0 )(1)MS +O(α2

s), (B4a)

T (1S0,
1P1)

MS =αsT (
1S0,

1P1)
(1)MS +O(α2

s), (B4b)

we rewrite the difference as

〈O(1S
[8]
0 )〉LT1P1

− 〈O(1S
[8]
0 )〉MS

1P1
= αs

T (1S0,
1P1)

(1)MS

m3
QF (

1S
[8]
0 )(0)

〈T1−8(
1S0,

1P1)〉MS
1P1

+O(α2
s). (B5)

It is clear that the difference is suppressed by O(αsv
2), and Eq. (B2) does not determine

the scheme choice of 〈T1−8(
1S0,

1P1)〉1P1
, and one can still choose MS or other schemes. The

reason is that the scheme dependence of 〈T1−8(
1S0,

1P1)〉1P1
is at higher order in αs, which is

irrelevant to our calculation. Note that, the relation between our scheme and MS scheme

here is similar to the relation between DIS scheme and MS scheme definition for the F2

structure function of virtual γ deep inelastic scattering (see refs. [46, 47] for example).

An important consequence of Eq. (B5) is that, the evolution equations for 〈O(1S
[8]
0 )〉1P1

in

both MS and LT scheme at O(αs) are exactly the same, which follows from the fact that the

factorization scale dependence of both T (1S0,
1P1)

(1)MS and 〈T1−8(
1S0,

1P1)〉MS
1P1

are at O(αs).

Therefore, although we calculate evolution equations for LDMEs in MS scheme in Appendix

A, these results are unchanged for the LT scheme.

Especially, the estimated 〈O(1S
[8]
0 )〉1P1

in Sec. VA using OEM is the same for both LT

scheme and MS scheme. This seems to be questionable at the first glance, as Eq. (B5)

may imply its value is different under the two different schemes. However, remember that

the OEM picks up only the evolution terms in the LDMEs, and disregards all other terms.

Although Eq. (B5) tells us that 〈O(1S
[8]
0 )〉1P1

is different under two schemes, the difference

only changes the initial value, which is ignored in the OEM. As a result, in the OEM this

difference is ignored.
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